全等三角形之倍长中线法教学文案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形之倍长中

线法

仅供学习与交流,如有侵权请联系网站删除 谢谢2

全等三角形之倍长中线

1. 如图,AD 为△ABC 的中线. (1)求证:AB +AC >2AD .

(2)若AB =5,AC =3,求AD 的取值范围.

2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD .

求证:AB =AC .

3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且

AB =AC .

D C

B A

E D C

B D

B A

仅供学习与交流,如有侵权请联系网站删除 谢谢3

求证:①CE =2CD ;②CB 平分∠DCE .

4. 如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,

BE =AC ,BE 的延长线交AC 于点F . 求证:∠AEF =∠EAF .

5. 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CA 的延长线于点

F ,交AB 于点

G ,BG =CF .

求证:AD 为△ABC 的角平分线.

6. 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F 是CD

的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE 的长.

F E

D

C

A

G

F

E D

B A

F

E D

C

B A

仅供学习与交流,如有侵权请联系网站删除 谢谢4

7. 如图,在正方形ABCD 的边CB 的延长线上取一点E ,△FEB 为等腰直角三角形,∠

FEB =90°,连接FD ,取FD 的中点G ,连接EG ,CG .

求证:EG =CG 且EG ⊥CG .

1. 已知:如图,在梯形ABCD 中,AD ∥BC ,AB =AD +BC ,E 是CD 的中点.

求证:AE ⊥BE .

2. 已知:如图,△ABC 与△BDE 均为等腰直角三角形,BA ⊥AC ,ED ⊥BD ,垂足分别为A ,

D ,连接EC ,F 为EC 中点,连接AF ,DF ,猜测AF ,DF 的数量关系和位置关系,并说明理由.

3. 已知:如图,D 为线段AB 的中点,在AB 上任取一点C (不与点

A ,

B ,D 重合),分别以A

C ,BC 为斜边在AB 同侧作等腰Rt △ACE 与等腰Rt △BCF ,∠AEC =∠CFB =90°,连接DE ,DF ,EF .

求证:△DEF 为等腰直角三角形.

G

F

E D

C B A

E

D C B A

F

E D A

F

E

B

A

仅供学习与交流,如有侵权请联系网站删除 谢谢5

4. 已知:如图,在四边形ABCD 中,AB ∥DC ,E 为BC 边的中

点,∠BAE =∠EAF ,AF 与DC 的延长线相交于点F .试探究线段AB 与AF ,CF 之间的数量关系,并说明理由.

1. 在△ABC 中,AC =5,中线AD =4,则边AB 的取值范围是_______________.

2. 已知:如图,在△ABC 中,AB ≠AC ,D ,E 在BC 上,且

DE =EC ,过D 作DF ∥AB 交AE 于点F ,DF =AC . 求证:AE 平分∠BAC .

3. 已知:如图,在△ABC 中,AB =4,AC =2,点D 为BC 边的中点,

且AD 是整数,则AD =________.

4.已知:如图,BD 平分∠ABC 交AC 于D ,点E 为CD 上一点,且AD =DE ,EF ∥BC 交BD 于F .求证:AB =EF .

5.已知:如图,在△ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边向外作等腰直角三角形.求证:EF =2AD .

E

D

C

B

A

F

E D A D C

B

A

F E D

C

B

A

F

E

D C

B A

6.如图,在△ABC中,AB >AC,E为BC边的中点,AD为

∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.

7.如图,在四边形ABCD中,AD∥BC,点E在BC上,点F是CD的中点,连接AF,若∠DAF=∠EAF,求证:AF⊥EF.

G

F

E D C

A

F

E

D B C

A

仅供学习与交流,如有侵权请联系网站删除谢谢6

相关文档
最新文档