【真题】2017年北京市高考理科数学试卷含答案(Word版)

合集下载

2017北京卷高考理数试题及答案

2017北京卷高考理数试题及答案

2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷与答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出得四个选项中,选出符合题目要求得一项。

(1)若集合A={x|–2x1},B={x|x–1或x3},则A B=(A){x|–2x–1} (B){x|–2x3}(C){x|–1x1} (D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应得点在第二象限,则实数a得取值范围就是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示得程序框图,输出得s值为(A)2(B)3 2(C)53(D )85(4)若x ,y 满足,则x + 2y 得最大值为(A )1 (B )3 (C )5 (D )9(5)已知函数1(x)33xx f ⎛⎫=- ⎪⎝⎭,则(x)f(A )就是奇函数,且在R 上就是增函数 (B )就是偶函数,且在R 上就是增函数 (C )就是奇函数,且在R 上就是减函数(D )就是偶函数,且在R 上就是减函数(6)设m,n 为非零向量,则“存在负数λ,使得m n λ=”就是“m n 0⋅<”得 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥得三视图如图所示,则该四棱锥得最长棱得长度为(A )32 (B )23 (C )22 (D )2(8)根据有关资料,围棋状态空间复杂度得上限M 约为,而可观测宇宙中普通物质得原子总数N 约为、则下列各数中与MN最接近得就是 (参考数据:lg3≈0、48)(A )1033 (B )1053 (C )1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2017年高考北京理科数学试题及答案(word解析版)(K12教育文档)

2017年高考北京理科数学试题及答案(word解析版)(K12教育文档)

2017年高考北京理科数学试题及答案(word解析版)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考北京理科数学试题及答案(word解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考北京理科数学试题及答案(word解析版)(word版可编辑修改)的全部内容。

2017年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项. (1)【2017年北京,理1,5分】若集合–21{|}A x x =<<,–1{|}3B x x x =<>或,则A B =( )(A )1|}–2{x x <<- (B )3|}–2{x x << (C )1|}–1{x x << (D)3|}1{x x << 【答案】A【解析】{}21A B x x =-<<-,故选A .(2)【2017年北京,理2,5分】若复数()()1i i a -+在复平面内对应的点在第二象限,则实数a 的取值范围是( )(A )(),1-∞ (B )(),1-∞- (C )()1,+∞ (D )()1,-+∞ 【答案】B【解析】()()()()1i i 11i z a a a =-+=++-,因为对应的点在第二象限,所以1010a a +<⎧⎨->⎩,解得:1a <-,故选B .(3)【2017年北京,理3,5分】执行如图所示的程序框图,输出的s 值为( ) (A )2(B )32 (C )53 (D )85【答案】C【解析】0k =时,03<成立,第一次进入循环111,21k s +===,13<成立,第二次进入循环,2132,22k s +===,23<成立,第三次进入循环31523,332k s +===,33< 否,输出53s =,故选C .(4)【2017年北京,理4,5分】若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则2x y +的最大值为( ) (A )1 (B)3 (C)5 (D )9 【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D .(5)【2017年北京,理5,5分】已知函数1()3()3x x f x =-,则()f x ( )(A )是奇函数,且在R 上是增函数 (B)是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数 【答案】A 【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数故选A .(6)【2017年北京,理6,5分】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( )(A)充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D)既不充分也不必要条件 【答案】A【解析】若0λ∃<,使m n λ=,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<,反过来,若0m n ⋅<,那么两向量的夹角为(0090,180⎤⎦ ,KS5U 并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A .(7)【2017年北京,理7,5分】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )(A )32 (B )23 (C )22 (D)2 【答案】B【解析】几何体是四棱锥,如图,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=,故选B .(8)【2017年北京,理8,5分】根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是( )(参考数据:30.48lg ≈)(A )3310(B )5310 (C )7310 (D )9310 【答案】D【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D .第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分。

2017年高考北京卷理数试题解析(解析版)

2017年高考北京卷理数试题解析(解析版)

绝密★本科目考试启用前 2017年普通高等学校招生全国统一考试数 学(理)(北京卷)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合A ={x |–2<x <1},B ={x |x <–1或x >3},则A I B =(A ){x |–2<x <–1} (B ){x |–2<x <3} (C ){x |–1<x <1}(D ){x |1<x <3}【答案】A 【解析】试题分析:利用数轴可知{}21A B x x =-<<-I ,故选A. 【考点】集合的运算【点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.(2)若复数()()1i i a -+在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B【解析】 由()()()()1i i i i 111i a a a a a -+=+-+=++-,则1010a a +<⎧⎨->⎩,即1a <-.故选B【考点】复数的运算【点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i(a ,b ∈R ) 平面向量u u u rOZ . (3)执行如图所示的程序框图,输出的s 值为(A )2(B )32(C )53(D )85【答案】C【解析】当0k =时,03<,执行程序1k =,2s =,13<成立,执行程序2k =,32s =,23<,执行程序3k =,53s =,33>,否输出53s =.故选C.【考点】循环结构【点睛】解决此类型问题时要注意:第一,要明确是当型循环结构,还是直到型循环结构,并根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错.(4)若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1(B )3 (C )5 (D )9【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当2z x y =+过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.【考点】线性规划【点睛】本题主要考查简单的线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.求目标函数的最值的一般步骤为:一画、二移、三求.常见的目标函数类型有:(1)截距型:形如z ax by =+.求这类目标函数的最值时常将函数z ax by =+转化为直线的斜截式:a z y xb b =-+,通过求直线的截距zb的最值间接求出z 的最值;(2)距离型:形如 ()()22z x a y b =-+-;(3)斜率型:形如y b z x a-=-,而本题属于截距形式. (5)已知函数1()3()3xx f x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A 【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3xy =是增函数,13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数,故选A. 【考点】函数的性质【点睛】本题属于基础题型,根据()f x -与()f x 的关系就可以判断出函数的奇偶性,判断函数单调性的方法:(1)利用平时学习过的基本初等函数的单调性;(2)利用函数图象判断函数的单调性;(3)利用函数的四则运算判断函数的单调性,如:增函数+增函数=增函数,增函数−减函数=增函数;(4)利用导数判断函数的单调性.(6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】A【解析】 若0λ∃<,使λ=m n ,即两向量方向相反,夹角为180o ,若0⋅<m n ,也可能夹角为(90,180⎤⎦oo,方向并不一定相反,故不一定存在.故选A.【考点】向量,充分必要条件【点睛】判断充分必要条件的的方法:(1)根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要条件,同时q 是p 的必要不充分条件;若p q ⇔,那么p ,q 互为充要条件;若,p q q p ≠>≠>,那么就是既不充分也不必要条件.(2)当命题是以集合形式给出时,那就看包含关系,已知:,p x A ∈:q x B ∈,若A B ≠⊂,那么p 是q 的充分不必要条件,同时q 是p 的必要不充分条件;若A B =,那么p ,q 互为充要条件;若没有包含关系,那么就是既不充分也不必要条件.(3)命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断. (7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )2 (B )3(C )2(D )2【答案】B【解析】 几何体四棱锥如图所示,最长棱为正方体的体对角线,即22222223l =++=. 故选B.【考点】三视图【点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093 【答案】D【解析】 设36181010M x N ==,两边取对数36180lg lg 3lg10361lg 380x =-=-,即93.28x =,所以接近9310.故选D.【考点】对数运算【点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2017年普通高等学校招生全国统一考试数学试题理(北京卷,参考解析)

2017年普通高等学校招生全国统一考试数学试题理(北京卷,参考解析)

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。

穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。

食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。

如果可能的话,每天吃一两个水果,补充维生素。

另外,进考场前一定要少喝水!住:考前休息很重要。

好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。

考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。

用:出门考试之前,一定要检查文具包。

看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。

行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。

绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合A ={x |–2x1},B={x |x–1或x3},则AB =(A ){x |–2x –1} (B ){x |–2x 3} (C ){x |–1x1} (D ){x |1x3}【答案】A【解析】{}21A Bx x =-<<-I ,故选A.(2)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B【解析】()()()()111z i a i a a i =-+=++-,因为对应的点在第二象限,所以1010a a +<⎧⎨->⎩ ,解得:1a <-,故选B.(3)执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53(D )85【答案】C【解析】0k =时,03<成立,第一次进入循环111,21k s +===,13<成立,第二次进入循环,2132,22k s +===,23<成立,第三次进入循环31523,332k s +===,33< 否,输出53s =,故选C.(4)若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9 【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.(5)已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.(6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】A【解析】若0λ∃<,使m n λ=r r,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<r r r rr r,反过来,若0m n ⋅<r r,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A.(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )2 【答案】B【解析】几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=选B.(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093 【答案】D【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2017年高考理科数学北京卷(含详细答案)

2017年高考理科数学北京卷(含详细答案)

值 a, b, c 依次为
.
14.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点 Ai 的横、纵坐 标分别为第 i 名工人上午的工作时间和加工的零件数,点 Bi 的横、纵坐标分别为第 i
名工人下午的工作时间和加工的零件数, i 1,2,3 .
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.
__ __
要求的一项.
__ __
1.若集合 A {x | –2 x 1}, B {x | x –1 或 x 3} ,则 AB
()
___号
生 考
__ __

A.{x | –2 x –1}
--------------------
C.{x | –1 x 1}
B.{x | –2 x 3} D.{x |1 x 3}
y
x,
()
A.1
B.3
C.5
D.9
5.已知函数 f (x) 3x ( 13)x ,则 f (x)
()
A.是奇函数,且在 R 上是增函数
B.是偶函数,且在 R 上是增函数
C.是奇函数,且在 R 上是减函数
C.是偶函数,且在 R 上是减函数
6.设 m, n 为非零向量,则“存在负数 ,使得 m n ”是“ m n 0 ”的
(n
n n n 1 1 2 2 n n
1,2,3 ) ,其中 max x
,
x
,,
x
表示 x
,x
,,
x

s 个数中最大的数.
(1)若 a
n ,b
12n12s
2n 1,求 c , c , c
的值,并证明c

2017年高考真题——数学(理)(北京卷)+Word版含解析(参考版)

2017年高考真题——数学(理)(北京卷)+Word版含解析(参考版)

y2 = 1 的离心率为 3 m
则实数 m=_________.
1+ m = 3⇒m=2 1
10 若等差数列 {an } 和等比数列 {bn } 满足 a1=b1=–1
a4=b4=8

a2 =_______. b2
答案
解析
1
−1 + 3d = − q 3 = 8 ⇒ d = 3, q = −2 ⇒
a2 −1 + 3 = =1 b2 −1× (−2)
解得
因为对
的点在第二象限

a + 1 < 0 1 − a > 0
a < −1
故选 B. 输出的 s 值为
3 执行如 所示的程序框
-1-
A 2 答案 C 解析
B
3 2
C
5 3
D
8 5
k = 0 时 0 < 3 成立 第一次进入循环 k = 1, s =
入循环 k = 2, s =
2 +1 3 = 2 2
点 P 的坐标为 1,0
11 在极坐标系中 点 A 在圆 ρ 2 − 2 ρ cos θ − 4 ρ sin θ + 4 = 0 则|AP|的最小值为__________ห้องสมุดไป่ตู้. 答案 1 解 析
C : x 2 + y 2 − 2 x − 4 y + 4 = 0 ⇒ ( x − 1) 2 + ( y − 2) 2 = 1
B {x|–2 D {x|1
A I B = { x −2 < x < −1}
故选 A.
2 若复数 1–i A C –∞ 1 1 +∞
a+i 在复 面内对 的点在第二象限 则实数 a 的取值范围是 B D –∞ –1 –1 +∞

2017年高考真题答案及解析:理科数学(北京卷)

2017年高考真题答案及解析:理科数学(北京卷)

2017年普通高等学校招生全国考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本市卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合{}21A x x =-<<,{}13B x x x =<->或,则A B =( )。

(A ){}21x x -<<- (B ){}23x x -<< (C ){}11x x -<< (D ){}13x x <<【答案】A【难度】容易【点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(2)若复数()()1i a i -+在复平面内对应的点在第二象限,则实数a 的取值范围是( )。

(A )(),1-∞i (B )(),1-∞-(C )()1,+∞(D )(1,)-+∞【答案】B【难度】容易【点评】本题在高二数学(理)下学期课程讲座 第四章《复数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(3)执行如图所示的程序框图,输出的s 值为( )。

(A)2(B)3 2(C)5 3(D)8 5【答案】C【难度】容易【点评】本题在高考数学(理)提高班讲座第十三章《算法与统计》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(4)若,x y满足3,2,,xx yy x≤⎧⎪+≥⎨⎪≤⎩则2x y+的最大值为()。

(A)1(B)3(C)5(D)9 【答案】D【难度】容易【点评】本题在高考数学(理)提高班讲座 第二章《函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(5)已知函数()133xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( )。

(A )是奇函数,且在R 上是增函数(B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A【难度】中等【点评】本题在高考数学(理)提高班讲座 第三章《函数的性质及其应用》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

2017年北京理数高考真题(含答案)

2017年北京理数高考真题(含答案)

2017年北京理数高考真题(含答案)绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合A={x|–2x1},B={x|x–1或x3},则A B=(A){x|–2x–1} (B){x|–2x3}(C){x|–1x1} (D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A )2 (B )32(C )53(D )85(4)若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A ) 1(B )3(C)5(D )9 (5)已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数(6)设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的(A )充分而不必要条件 (B )必第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(9)若双曲线221y x m-=的离心率为,则实数m =_________.(10)若等差数列{}n a 和等比数列{}n b 满足a 1=b 1=–1,a 4=b 4=8,则22a b =_______.(11)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP |的最小值为___________.(12)在平面直角坐标系xOy 中,角α与角β均以Ox为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.(13)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.(14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的学科&网零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.①记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是_________.②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________.三、解答题共6小题,共80分。

2017年北京市高考理科数学试卷及答案

2017年北京市高考理科数学试卷及答案

绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学〔理〕〔卷〕本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试完毕后,将本试卷和答题卡一并交回。

第一局部〔选择题共40分〕一、选择题共8小题,每题5分,共40分。

在每题列出的四个选项中,选出符合题目要求的一项。

〔1〕假设集合A={x|–2x1},B={x|x–1或x3},那么AB=〔A〕{x|–2x–1}〔B〕{x|–2x3}〔C〕{x|–1x1} 〔D〕{x|1x3}〔2〕假设复数〔1–i〕(a+i)在复平面内对应的点在第二象限,那么实数a的取值范围是〔A〕(–∞,1)〔B〕(–∞,–1)〔C〕(1,+∞)〔D〕(–1,+∞)〔3〕执行如下图的程序框图,输出的s值为〔A〕2〔B〕3 2〔C 〕53〔D 〕85〔4〕假设x ,y 满足,那么x + 2y 的最大值为〔A 〕1 〔B 〕3 〔C 〕5 〔D 〕9〔5〕函数1(x)33xx f ⎛⎫=- ⎪⎝⎭,那么(x)f〔A 〕是奇函数,且在R 上是增函数 〔B 〕是偶函数,且在R 上是增函数 〔C 〕是奇函数,且在R 上是减函数〔D 〕是偶函数,且在R 上是减函数〔6〕设m,n 为非零向量,那么“存在负数λ,使得m n λ=〞是“m n 0⋅<〞的 〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充分必要条件〔D 〕既不充分也不必要条件〔7〕某四棱锥的三视图如下图,那么该四棱锥的最长棱的长度为〔A 〕32 〔B 〕23 〔C 〕22 〔D 〕2〔8〕根据有关资料,围棋状态空间复杂度的上限M 约为,而可观测宇宙中普通物质的原子总数N 约为.那么以下各数中与MN最接近的是 〔参考数据:lg3≈0.48〕〔A 〕1033 〔B 〕1053 〔C 〕1073 〔D 〕1093第二局部〔非选择题 共110分〕二、填空题共6小题,每题5分,共30分。

2017年北京理数高考真题(含答案)

2017年北京理数高考真题(含答案)

2017年北京理数高考真题(含答案)绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合A={x|–2x1},B={x|x–1或x3},则A B=(A){x|–2x–1} (B){x|–2x3}(C){x|–1x1} (D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A )2 (B )32(C )53(D )85(4)若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A ) 1(B )3(C)5(D )9 (5)已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数(6)设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的(A )充分而不必要条件 (B )必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)2(B)3(C)2(D)2(8)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约最接近的是为1080.则下列各数中与MN(参考数据:lg3≈0.48)(A)1033(B)1053(C)1073(D)1093第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2017年北京市高考理科数学试卷及答案

2017年北京市高考理科数学试卷及答案

绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共 页, 分。

考试时长 分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共 小题,每小题 分,共 分。

在每小题列出的四个选项中,选出符合题目要求的一项。

( )若集合 – , – 或 ,则( ) – – ( ) –( ) – ( )( )若复数( – ) 在复平面内对应的点在第二象限,则实数 的取值范围是( ) –∞,( ) –∞,–( ) , ∞( ) – , ∞( )执行如图所示的程序框图,输出的 值为( )( )3 2( )53( )85( )若 , 满足,则 的最大值为( ) ( )( ) ( )( )已知函数1(x)33xxf⎛⎫=- ⎪⎝⎭,则(x)f( )是奇函数,且在 上是增函数 ( )是偶函数,且在 上是增函数 ( )是奇函数,且在 上是减函数( )是偶函数,且在 上是减函数( )设 为非零向量,则“存在负数λ,使得m n λ=”是“m n 0⋅<”的 ( )充分而不必要条件 ( )必要而不充分条件 ( )充分必要条件 ( )既不充分也不必要条件( )某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ) 2 ( ) 3 ( ) 2 ( )( )根据有关资料,围棋状态空间复杂度的上限 约为,而可观测宇宙中普通物质的原子总数 约为则下列各数中与MN最接近的是 (参考数据: )( ) ( ) ( ) ( )第二部分(非选择题 共 分)二、填空题共 小题,每小题 分,共 分。

( )若双曲线221y x m-=,则实数 ( )若等差数列{}n a 和等比数列{}n b 满足 , ,则22a b ( )在极坐标系中,点 在圆22cos 4sin 40ρρθρθ--+=,点 的坐标为 ,则 的最小值为( )在平面直角坐标系 中,角 与角 均以 为始边,它们的终边关于 轴对称。

2017年普通高等学校招生全国统一考试北京卷理科数学(2017年北京市高考理科数学)

2017年普通高等学校招生全国统一考试北京卷理科数学(2017年北京市高考理科数学)

2017年普通高等学校招生全国统一考试(北京卷)理科数学1.若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}解析A∩B={x|﹣2<x<﹣1},故选A.答案A2.若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)解析设z=(1﹣i)(a+i)=(a+1)+(1﹣a)i,因为复数z在复平面内对应的点(a+1,1﹣a)在第二象限,所以{a+1<0,1﹣a>0,解得a<﹣1.故选B.答案B3.执行如图所示的程序框图,输出的s值为()A.2B.32C.53D.85解析当k=0时,0<3成立,第一次进入循环,k=1,s=1+11=2;1<3成立,第二次进入循环,k=2,s=2+1 2=32;2<3成立,第三次进入循环,k=3,s=32+132=53;3<3不成立,输出s=53.故选C.答案C4.若x,y满足{a≤3,a+a≥2,a≤a,则x+2y的最大值为()A.1B.3C.5D.9解析由题意画出可行域(如图).设z=x+2y,则z=x+2y表示斜率为﹣12的一组平行线,当过点C(3,3)时,目标函数取得最大值z max =3+2×3=9.故选D.答案D5.已知函数f(x)=3x﹣(13)a,则f(x)() A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数解析因为f(x)的定义域为R,f(﹣x)=3﹣x﹣(13)﹣a=(13)a﹣3x=﹣f(x),所以函数f(x)是奇函数.又y=3x和y=﹣(13)a在R上都是增函数,所以函数f(x)在R上是增函数.故选A.答案A6.设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析m,n为非零向量,若存在λ<0,使m=λn,即两向量反向,夹角是180°,则m·n=|m||n|cos180°=﹣|m||n|<0.反过来,若m·n<0,则两向量的夹角为(90°,180°],并不一定反向,即不一定存在负数λ,使得m =λn,所以是充分而不必要条件.故选A.答案A7.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3√2B.2√3C.2√2D.2解析由题意可知,直观图为四棱锥A﹣BCDE(如图所示),最长的棱为正方体的体对角线AE=√22+22+22=2√3.故选B .答案B8.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与aa最接近的是( ) (参考数据:lg3≈0.48) A .1033 B .1053C .1073D .1093解析设a a =x =33611080,两边取对数,得lg x =lg 33611080=lg3361﹣lg1080=361×lg3﹣80≈93.28,所以x ≈1093.28,即与a a最接近的是1093.故选D . 答案D9.若双曲线x 2﹣a 2a =1的离心率为√3,则实数m =__________.解析由题意知a =1,b =√a ,m>0,c =√a 2+a 2=√1+a ,则离心率e =aa =√1+a =√3,解得m =2. 答案210.若等差数列{a n }和等比数列{b n }满足a 1=b 1=﹣1,a 4=b 4=8,则a2a 2=__________.解析设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,由题意知﹣1+3d =﹣q 3=8,即{﹣1+3a =8,﹣a 3=8,解得{a =3,a =﹣2.故a 2a 2=﹣1+3﹣1×(﹣2)=1. 答案111.在极坐标系中,点A 在圆ρ2﹣2ρcos θ﹣4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP|的最小值为__________. 解析设圆心为C ,则圆C :x 2+y 2﹣2x ﹣4y +4=0,即(x ﹣1)2+(y ﹣2)2=1,故|AP|min =|PC|﹣r =2﹣1=1. 答案112.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α﹣β)=__________.解析方法1:因为角α与角β的终边关于y 轴对称,根据三角函数定义可得sin β=sin α=13,cos β=﹣cos α,因此,cos(α﹣β)=cos αcos β+sin αsin β=﹣(2√23)2+(13)2=﹣79.方法2:由角α与角β的终边关于y 轴对称可得β=(2k +1)π﹣α,k ∈Z ,则cos(α﹣β)=cos[2α﹣(2k +1)π]=﹣cos2α=2sin 2α﹣1=2×(13)2﹣1=﹣79.答案﹣7913.能够说明“设a ,b ,c 是任意实数,若a>b>c ,则a +b>c ”是假命题的一组整数a ,b ,c 的值依次为__________.解析答案不唯一,如令a=﹣1,b=﹣2,c=﹣3,则a>b>c,而a+b=﹣3=c,能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题.答案﹣1,﹣2,﹣3(答案不唯一)14.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是__________;(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是__________.解析(1)连接A1B1,A2B2,A3B3,分别取线段A1B1,A2B2,A3B3的中点C1,C2,C3,显然C i的纵坐标即为第i名工人一天平均加工的零件数,由图可得点C1最高,故Q1,Q2,Q3中最大的是Q1.(2)设某工人上午、下午加工的零件数分别为y1,y2,工作时间分别为x1,x2,则该工人这一天中平均每小时加工的零件数为p=a1+a2a1+a2=a1+a22a1+a22=k OC(C为点(x1,y1)和(x2,y2)的中点),由图可得a aa2>a aa1>a aa3,故p1,p2,p3中最大的是p2.答案(1)Q1(2)p215.在△ABC中,∠A=60°,c=37A.(1)求sin C的值;(2)若a=7,求△ABC的面积.解(1)在△ABC中,因为∠A=60°,c=37a,所以由正弦定理得sin C=a sin aa =37×√32=3√314.(2)因为a=7,所以c=37×7=3.由余弦定理a2=b2+c2﹣2bc cos A得72=b2+32﹣2b×3×12,解得b=8或b=﹣5(舍).所以△ABC的面积S=12bc sin A=12×8×3×√32=6√3.16.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD ∥平面MAC,P A=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC 与平面BDP 所成角的正弦值.(1)证明设AC ,BD 交点为E ,连接ME.因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME ,所以PD ∥ME. 因为ABCD 是正方形,所以E 为BD 的中点. 所以M 为PB 的中点.(2)解取AD 的中点O ,连接OP ,OE.因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD ,所以OP ⊥平面ABCD . 因为OE ⊂平面ABCD ,所以OP ⊥OE. 因为ABCD 是正方形,所以OE ⊥AD .如图建立空间直角坐标系O ﹣xyz ,则P (0,0,√2),D (2,0,0),B (﹣2,4,0),aa⃗⃗⃗⃗ =(4,﹣4,0),aa⃗⃗⃗⃗ =(2,0,﹣√2).设平面BDP 的法向量为n =(x ,y ,z ), 则{a ·aa ⃗⃗⃗⃗ =0,a ·aa ⃗⃗⃗⃗ =0,即{4a ﹣4a =0,2a ﹣√2a =0.令x =1,则y =1,z =√2.于是n =(1,1,√2),平面P AD 的法向量为p =(0,1,0). 所以cos <n ,p >=a ·a |a ||a |=12. 由题知二面角B ﹣PD ﹣A 为锐角,所以它的大小为π3. (3)解由题意知M (﹣1,2,√22),C (2,4,0),aa ⃗⃗⃗⃗ =(3,2,﹣√22). 设直线MC 与平面BDP 所成角为α, 则sin α=|cos <n ,aa ⃗⃗⃗⃗ >|=|a ·aa ⃗⃗⃗⃗||a ||aa ⃗⃗⃗⃗ |=2√69. 所以直线MC 与平面BDP 所成角的正弦值为2√69.17.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“ ”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论) 解(1)由图知,在服药的50名患者中,指标y 的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为1550=0.3.(2)由图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.P (ξ=0)=C 22C 42=16,P (ξ=1)=C 21C 21C 42=23,P (ξ=2)=C 22C 42=16. 所以ξ的分布列为故ξ的期望E (ξ)=0×16+1×23+2×16=1.(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差.18.已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解由抛物线C :y 2=2px 过点P (1,1),得p =12.所以抛物线C 的方程为y 2=x.抛物线C 的焦点坐标为(14,0),准线方程为x =﹣14.(2)证明由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由{a =aa +12,a 2=a 得4k 2x 2+(4k ﹣4)x +1=0. 则x 1+x 2=1﹣a a 2,x 1x 2=14a 2. 因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1),直线ON 的方程为y=a2a 2x ,点B 的坐标为(a 1,a 2a 1a 2).因为y 1+a 2a 1a 2﹣2x 1=a 1a 2+a 2a 1﹣2a 1a 2a 2=(aa 1+12)a 2+(aa 2+12)a 1﹣2a 1a 2a 2=(2a ﹣2)a 1a 2+12(a 2+a 1)a 2=(2a ﹣2)×14a 2+1﹣a 2a2a 2=0,所以y 1+a 2a1a 2=2x 1.故A 为线段BM 的中点. 19.已知函数f (x )=e x cos x ﹣x.(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间[0,π2]上的最大值和最小值.解(1)因为f (x )=e x cos x ﹣x ,所以f'(x )=e x (cos x ﹣sin x )﹣1,f'(0)=0.又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(2)设h (x )=e x (cos x ﹣sin x )﹣1,则h'(x )=e x (cos x ﹣sin x ﹣sin x ﹣cos x )=﹣2e x sin x.当x ∈(0,π2)时,h'(x )<0,所以h (x )在区间[0,π2]上单调递减. 所以对任意x ∈(0,π2]有h (x )<h (0)=0, 即f'(x )<0.所以函数f (x )在区间[0,π2]上单调递减.因此f (x )在区间[0,π2]上的最大值为f (0)=1,最小值为f (π2)=﹣π2.20.设{a n }和{b n }是两个等差数列,记c n =max{b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,aa a >M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.(1)解c 1=b 1﹣a 1=1﹣1=0,c 2=max{b 1﹣2a 1,b 2﹣2a 2}=max{1﹣2×1,3﹣2×2}=﹣1,c 3=max{b 1﹣3a 1,b 2﹣3a 2,b 3﹣3a 3}=max{1﹣3×1,3﹣3×2,5﹣3×3}=﹣2. 当n ≥3时,(b k +1﹣na k +1)﹣(b k ﹣na k )=(b k +1﹣b k )﹣n (a k +1﹣a k )=2﹣n<0, 所以b k ﹣na k 关于k ∈N *单调递减.所以c n =max{b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }=b 1﹣a 1n =1﹣n. 所以对任意n ≥1,c n =1﹣n ,于是c n +1﹣c n =﹣1. 所以{c n }是等差数列.(2)证明设数列{a n }和{b n }的公差分别为d 1,d 2,则b k ﹣na k =b 1+(k ﹣1)d 2﹣[a 1+(k ﹣1)d 1]n =b 1﹣a 1n +(d 2﹣nd 1)(k ﹣1).所以c n={a1﹣a1a+(a﹣1)(a2﹣aa1),当a2>aa1时,a1﹣a1a,当a2≤aa1时.①当d1>0时,取正整数m>a2a1,则当n≥m时,nd1>d2,因此c n=b1﹣a1n.此时,c m,c m+1,c m+2,…是等差数列.②当d1=0时,对任意n≥1,c n=b1﹣a1n+(n﹣1)max{d2,0}=b1﹣a1+(n﹣1)(max{d2,0}﹣a1).此时,c1,c2,c3,…,c n,…是等差数列.③当d1<0时,当n>a2a1时,有nd1<d2.所以a aa =a1﹣a1a+(a﹣1)(a2﹣aa1)a=n(﹣d1)+d1﹣a1+d2+a1﹣a2a≥n(﹣d1)+d1﹣a1+d2﹣|b1﹣d2|.对任意正数M,取正整数m>max{a+|a1﹣a2|+a1﹣a1﹣a2﹣a1,a2a1},故当n≥m时,a aa>M.。

2017年全国高考理科数学试题及答案-北京卷(可编辑修改word版)

2017年全国高考理科数学试题及答案-北京卷(可编辑修改word版)

⎨ ⎩绝密★本科目考试启用前2017 年普通高等学校招生全国统一考试理科数学(北京卷)本试卷共 5 页,150 分。

考试时长 120 分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共 40 分)一、选择题:共 8 小题,每小题 5 分,共 40 分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合 A = {x | -2 < x < 1},B = {x | x < -1或x > 3},则 A B =(A ){x |-2 < x < -1} (B ){x | -2 < x < 3}(C ){x | -1 < x < 1}(D ){x |1 < x < 3}(2) 若复数(1- i )(a + i ) 在复平面内对应的点在第二象限,则实数 a 的取值范围是(A )(-∞,1) (B ) (-∞, -1)(C )(1, +∞) (3) 执行如图所示的程序框图,输出的 s 值为(A )2 3(D )(-1, +∞) (B ) 2 5 (C ) 3 8 (D )5⎧x ≤ 3 (4) 若 x , y 满足⎪x + y ≥ 2 ⎪ y ≤ x ,则 x + 2 y 的最大值为(A )1(B )3(C )5(D )9(5) 已知函数 f (x ) = 3x- (1) x,则 f (x )3(A )是奇函数,且在 R 上是增函数 (B )是偶函数,且在 R 上是增函数3 (C )是奇函数,且在 R 上是减函数(D )是偶函数,且在 R 上是减函数(6) 设 m , n 为非零向量,则“存在负数,使得 m = n ”是“ m ⋅ n < 0 ”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(7) 某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A ) 3 (B ) 2 (C ) 2 (D )2(8) 根据有关资料,围棋状态空间复杂度的上限 M 约为3361 ,而可观测宇宙中普通物质的原子总数 N 约为1080.则下列各数中与 M N最接近的是( )(参考数据:lg3≈0.48)(A )1033(B )1053(C )1073(D )1093第二部分(非选择题 共 110 分)二、填空题:共 6 小题,每小题 5 分,共 30 分。

2017年高考理科数学北京卷含答案

2017年高考理科数学北京卷含答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前北京市2017年普通高等学校招生全国统一考试数 学本试卷满分150分,考试时间120分钟.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合–21{|}A x x =<<,–1{|}3B x x x =<>或,则A B =( )A .–2|}1{–x x <<B .3|}–2{x x <<C .1|}–1{x x <<D .3|}1{x x <<2.若复数(1i)(i)a -+在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(–∞,1)B .(–∞,–1)C .(1,+∞)D .(–1,+∞)3.执行如图所示的程序框图,输出的s 值为A .2B .C .D .4.若x ,y 满足 则x + 2y 的最大值为( )A .1B .3C .5D .95.已知函数1(x)3()3x xf =-,则()f x( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数C .是偶函数,且在R 上是减函数6.设,m n 为非零向量,则“存在负数λ,使得m n λ=”是“0m n <”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A.B.C.D .28.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的 ( )(参考数据:30.48lg ≈) A .1033 B .1053 C .1073D .109332538532x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,,毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.若双曲线221yx m-=则实数m = . 10.若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b = . 11.在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP |的最小值为 .12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-= . 13.能够说明“设,,a b c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数的值,,a b c 依次为 .14.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,1,2,3i =.①记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是 . ②记p i 为第i 名工人在这一天中平均每小时加工的零件数,则123,,p p p 中最大的是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分) 在△ABC 中,60A =︒∠,37c a =. (1)求sin C 的值;(2)若7a =,求△ABC 的面积.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)16.(本小题14分)如图,在四棱锥P−ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC,PA PD ==4AB =. (1)求证:M 为PB 的中点; (2)求二面角B −PD −A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.17.(本小题13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ; (3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)18.(本小题14分)已知抛物线22C y px =:过点1(1)P ,.过点(10,)2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.19.(本小题13分)已知函数()cos xf x e x x =-.(1)求曲线(x)y f =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.20.(本小题13分)设{}n a 和{}n b 是两个等差数列,记{}1122max ,,,n n n c b a n b a n b a n =---(n 1,2,3)=,其中{}12max ,,,n x x x 表示12,,,s x x x 这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++是等差数列.2017年普通高等学校招生全国统一考试(北京卷)数学答案解析第一部分一、选择题 1.【答案】A【解析】由集合交集的定义可得{}=|21A B x x -<<-,故选A .【考点】集合的交运算 2.【答案】B【解析】因为(1i)(i)1(1)i z a a a =-+=++-,所以它在复平面内对应的点为(1,1)a a +-,又此点在第二象限,所以1010a a +<⎧⎨->⎩,,解得1a <-,故选B . 【考点】复数的乘法及几何意义 3.【答案】C【解析】运行该程序,0,1,3;k s k ==<M数学试卷 第9页(共18页) 数学试卷 第10页(共18页)11011,2,3;1k s k +=+===< 213112,,3;22k s k +=+===<3152123,,3332k s k +=+====.输出的s 值为53.故选C .【考点】程序框图 4.【答案】D【解析】不等式组所表示的平面区域如图中阴影部分所示,是以点(1,1),33,31A B C -(,)(,)为顶点的三角形及其内部.当直线:2z x y =+ 经过点B 时,2x y + 取得最大值,所以max 3239z =+⨯=,故选D.【考点】二元一次不等式组所表示的平面区域、困解法求最值 5.【答案】A【解析】因为1()3()3xxf x =-,且定义域为R ,所以111()3()=()3[3()]()333xxxxxx f x f x ---=--=--=-,即函数()f x 是奇函数.又3x y =在R 上是增函数,1()3x y =在R 上是减函数,所以1()3()3x x f x =-在R 上是增函数.故选A.【考点】函数的奇偶性与单调性 6.【答案】A【解析】因为m ,n 是非零向量,所以cos ,0m n m n m n =<的充要条件是cos ,0m n <.因为0λ<,则由m n λ=可知m ,n 的方向相反,,180m n =︒,所以cos ,0m n <,所以“存在负数λ,使得m n λ=”可推得“0m n < ”;而由“0m n <”,可推得“cos ,0m n <”,但不一定推得“m ,n 的方向相反”,从而不一定推得“存在负数λ,使得m n λ=”.综上所述,“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件,故选A. 【考点】充分必要条件与平面向量 7.【答案】B【解析】由三视图还原为如图所示的四棱锥A-BCC 1B 1,从图中易得最长的棱为1AC === B.【考点】几何体的三视图 8.【答案】D【解析】因为361lg3361lg33610.48173=⨯≈⨯≈,所以17310M ≈,则1739380101010M N ≈=,故选D . 【考点】指数与对数的运算数学试卷 第11页(共18页) 数学试卷 第12页(共18页)第二部分二.填空题 9.【答案】2【解析】由双曲线的标准方程可知21a =,2b m =,所以1a =,c =,所以1=2m =. 【考点】考查双曲线的标准方程与离心率. 10.【答案】1【解析】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则4138a d =-+=,解得343;18d b q ==-=,解得2q =-.所以22132,1(2)2a b =-+==-⨯-=,所以221a b =. 【考点】等差数列与等比数列的通项公式 11.【答案】1【解析】将圆的极坐标方程化为直角坐标方程为222440x x y +--+=y ,即22121x y -+-=()(),圆心为(1,2),半径1r =.因为点10P (,)到圆心的距离21d ==>,所以点P 在圆外,所以AP 的最小值为211d r -=-=. 【考点】圆的极坐标方程,点与圆的位置关系 12.【答案】79-【解析】解法一 因为角α与角β的终边关于y 轴对称,所以2k αβππ+=+,k Z ∈,所以2217cos()cos(22)cos 2(12sin )12()39k αβππααα⎡⎤-=+-=-=--=--⨯=-⎢⎥⎣⎦.解法二 因为1sin =03α> ,所以角α 为第一象限角或第二象限角,当角α为第一象限角时,可取其终边上一点(),则cos α=,又()关于y 轴对称的点()-在角β的终边上,所以1sin ,cos 33ββ==- 此时()117cos cos cos sin sin 339αβαβαβ⎛-=+=+⨯=- ⎝⎭ .当角α 为第二象限时,可取其终边上一点()-,则cos 3α=-,因为()-关于y轴对称的点()在角β的终边上,所以1sin ,cos 33ββ== ,此时()117cos cos cos sin sin 33339αβαβαβ⎛-=+=-⨯+⨯=- ⎝⎭.综上可得,()7cos 9αβ-=- .【考点】三角函数的概念、两角差的三角函数公式 13.【答案】1,2,3---(答案不唯一)【解析】因为“设,,a b c 是任意实数.若a b c >>,则a b c +>”是假命题,则它的否定“设存在实数,,a b c .若a b c >>,则a b c +≤”是真命题.由于a b c >>,所以2a b c +>,又a b c +≤,所以0c <.因此,,a b c 依次可取整数1,2,3---,满足a b c +≤.【考点】全称命题的真假与不等式的性质 14.【答案】1Q2P【解析】①i Q 为i A 与i B 的纵坐标之和,123i =,,,作图可得11A B 中点的纵坐标比2233,A B A B 中点的纵坐标大,所以123Q Q Q ,,中最大的是1Q .②(1,2,3)i i i i i A B p i A B +==+的纵坐标的纵坐标的横坐标的横坐标,分别作123,,B B B 关于原点的对称点123',','B B B ,比较直线'''112233,,A B A B A B 的斜率,可得直线'22A B 的斜率最大,所以123,,p p p 中最大的是2p .【考点】散点图 三、解答题15.【答案】(1)在△ABC 中,因为∠A=60°,37c a =,所以由正弦定理得数学试卷 第13页(共18页) 数学试卷 第14页(共18页)sin 3sinC 7214c A a ==⨯=. (2)因为7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯,解得8b =或5b =-(舍).所以△ABC的面积11sinA 8322S bc ==⨯⨯=【考点】正弦定理,余弦定理以及三角形的面积公式 16.【答案】(1)如图,设AC ,BD 的交点为E ,连接ME . 因为PD ∥平面MAC ,平面MAC ∩平面PDB=ME ,所以PD ∥ME . 因为ABCD 是正方形,所以E 为BD 的中点.所以M 为PB 的中点.(2)取AD 的中点O ,连接OP ,OE. 因为P A=PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD ,所以OP ⊥平面ABCD. 因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为ABCD 是正方形,所以OE ⊥AD .如图建立空间直角坐标系O-xyz,则00P (,200D (,,),240B -(,,),4 4.0,BD PD =-=(,).设平面BDP 的法向量为(,,)n x y z =,则0,0,n BD n PD ⎧=⎪⎨=⎪⎩即440,20.x y x -=⎧⎪⎨=⎪⎩ 令1x =,则1,y z ==于是n =.平面P AD 的法向量为(0,1,0)p =.所以1cos ,2n p n p n p ⋅==. 由题知二面角B-PD-A 为锐角,所以它的大小为3π. (3)由题意知(1,2,(2,4,0),(3,2,22M C MC -=-. 设直线MC 与平面BDP 所成角为α,则2sin cos ,=n MC n MCn MCα==. 所以直线MC 与平面BDP 所成角的正弦值为9. 【考点】空间中直线、平面的位置关系以及二面角、线面角17.【答案】(1)由图知,在服药的50名患者中,指标y 的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为150.350=. (2)由图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C. 所以ξ的所有可能取值为0,1,2.21122222222444121(0),(1),(2)636C C C C P P P C C C ξξξ=========.所以ξ的分布列为故ξ的期望121()0121636E ξ=⨯+⨯+⨯=. (3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差. 【考点】散点图,随机事件的概率,随机变量的分布列、数学期望 18.【答案】(1)由抛物线2:2C y px =过点11P (,),得12p =.数学试卷 第15页(共18页) 数学试卷 第16页(共18页)所以抛物线C 的方程为2y x =.抛物线C 的焦点坐标为1(,0)4,准线方程为14x =-. (2)由题意,设直线l 的方程为1(0)2y k x k =+≠,l 与抛物线C 的交点为1122(,),(,)M x y N x y .由21,2y kx y x ⎧=+⎪⎨⎪=⎩得224(44)10k x k x +-+=. 则12122211,4k x x x x k k -+==.因为点P 的坐标为(1,1),所以直线OP 的方程为y x =,点A 的坐标为12(,)x x . 直线ON 的方程为22y y x x =,点B 的坐标为2112(x ,)y xx . 因为21122112112222y x y x y x x x y x x x +-+-= 12211221221222211(k )()2221(22)()211(2k 2)420,x x kx x x x x k x x x x x k k k x +++-=-++=--⨯+==所以211122y xy x x +=.故A 为线段BM 的中点。

2017高考数学北京卷理(附参考答案及详解)

2017高考数学北京卷理(附参考答案及详解)

的 取 值 范 围 是 $! ! %
)%$0 1 #!%
*%$0 1 #0!%
+%$!#/ 1 %
,%$0!#/ 1 %
(!执 行 如 图 所 示 的 程 序 框 图 #输 出 的: 值 为 $! ! %
第2题图
)%(槡$
*%$槡(
+%$槡$
,%$
.!根据有关资料#围棋状态空间 复 杂 度 的 上 限 3 约 为 ((&!#而 可 观
3!若双曲线 #$0-?$ '!的离心率为 槡(#则实数 ?'!!!!!
!#!若 等 差 数 列!+*"和 等 比 数 列!2*"满 足+! '2! ' 0!#+- '2- '.#
则+$ 2$
'
!
!
!
!
!
!!!在极坐标系中#点 " 在 圆$$ 0$$456#0-$678#/-'# 上#点 6
的 坐 标 为 $!##%#则""6"的 最 小 值 为 ! ! ! ! !
C@÷áø $"%& `3Qø 9: 5 @"& =L 9: 9 @(" =L!
"ÐÑ¥*×>K:'*; ' 槡!.E '槡(#
) !.E'(#XB E'"!
!#!!! & | W [ þ !*- "* V W - .#| â [ þ !+- "* V â -G#
, !3 - .
.
4
mI '& -n7tv*,t!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合A={x|–2x1},B={x|x–1或x3},则AB=(A){x|–2x–1} (B){x|–2x3}(C){x|–1x1} (D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A)2(B)3 2(C )53(D )85(4)若x ,y 满足,则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9(5)已知函数1(x)33xxf ⎛⎫=- ⎪⎝⎭,则(x)f(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数(6)设m,n 为非零向量,则“存在负数λ,使得m n λ=”是“m n 0⋅<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )2(8)根据有关资料,围棋状态空间复杂度的上限M 约为,而可观测宇宙中普通物质的原子总数N 约为.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)若双曲线221y x m-=的离心率为3,则实数m =_______________. (10)若等差数列{}n a 和等比数列{}n b 满足a 1=b 1=–1,a 4=b 4=8,则22a b =__________. (11)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=,点P 的坐标为(1,0),则|AP|的最小值为 .(12)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称。

若1sin 3α=,cos()αβ-= .(13)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a+b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.(14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标学科&网分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3。

①记Q 1为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是_________。

②记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是_________。

三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分) 在△ABC 中,A =60°,c =37a . (Ⅰ)求sin C 的值;(Ⅱ)若a =7,求△ABC 的面积. (16)(本小题14分)如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,P A =PD =6,AB=4.(I)求证:M 为PB 的中点; (II)求二面角B-PD-A 的大小;(III)求直线MC 与平面BDP 所成角的正炫值。

(17)(本小题13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组个50名,一组服药,另一组不服药。

一段时间后,记录了两组患者的生理指标xy 和的学科.网数据,并制成下图,其中“·”表示服药者,“+”表示为服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(Ⅱ)从图中A,B,C,D,四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(Ⅲ)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)(18)(本小题14分)已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点. (Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点. (19)(本小题13分) 已知函数f (x )=e x cos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,2π]上的最大值和最小值. (20)(本小题13分)设{a n }和{b n }是两个等差数列,记c n =max{b 1–a 1n ,b 2–a 2n ,…,b n –a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(Ⅰ)若a n =n ,b n =2n –1,求c 1,c 2,c 3的值,并证明{c n }是等差数列; (Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,nc M n>;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.2017年北京高考数学(理科)参考答案与解析1.A【解析】集合{}|21=-<<A x x 与集合{}|13=<->或B x x x 的公共部分为{}|21-<<-x x ,故选A . 2.B【解析】(1i)(i)(1)(1)i -+=++-a a a ,对应的点在第二象限,∴1010+<⎧⎨->⎩a a 解得:1<-a故选B .3.C【解析】当0=k 时,3<k 成立,进入循环,此时1=k ,2=s ;当1=k 时,3<k 成立,继续循环,此时2=k ,32=s ; 当2=k 时,3<k 成立,继续循环,此时3=k ,53=s ;当3=k 时,3<k 不成立,循环结束,输出s . 故选C .4.D【解析】设2=+z x y ,则122=-+zy x ,由下图可行域分析可知,在()33,处取得最大值,代入可得max 9=z ,故选D .5.A【解析】奇偶性:()f x 的定义域是R ,关于原点对称,由()()113333--⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭xxxx f x f x 可得()f x 为奇函数. 单调性:函数3=xy 是R 上的增函数,函数13⎛⎫= ⎪⎝⎭xy 是R 上的减函数,根据单调性的运算,增函数减去减函数所得新函数是增函数,即()1=33⎛⎫- ⎪⎝⎭xxf x 是R 上的增函数.综上选A6.A【解析】由于m ,n 是非零向量,“存在负数λ,使得λ=m n .”根据向量共线基本定理可知m 与n 共线,由于0λ<,所以m 与n 方向相反,从而有0⋅<m n ,所以是充分条件。

反之,若0⋅<m n ,m 与n 方向相反或夹角为钝角时,m 与n 可能不共线,所以不是必要条件。

综上所述,可知λ=m n ”是“0⋅<m n ”的充分不必要条件,所以选A .7.B【解析】如下图所示,在四棱锥-P ABCD 中,最长的棱为PA ,所以2222=2(22)23+=+=PA PC AC ,故选B .8.D【解析】由于36180lglg lg lg3lg103610.488093.28=--⨯-=MM N N=≈, 所以93.2810MN≈,故选D . 9.2【解析】∵双曲线的离心率为3∴3=ca∴223=c a∵1=a ,=b m ,222+=a b c ∴222223312==-=-=-=b m c a a a10.1【解析】∵{}n a 是等差数列,11=-a ,48=a ,∴公差3=d ∴212=+=a a d∵{}n b 为等比数列,11=-b ,48=b ∴公比2=-q ∴212==b b q 故221=a b 11.1【解析】把圆22cos 4sin 40ρρθρθ--+=改写为直角坐标方程222440+--+=x y x y ,化简为22(1)(2)1x y -+-=,它是以()1,2为圆心,1为半径的圆。

画出图形,连结圆心O 与点P ,交圆于点A ,此时AP 取最小值,A 点坐标为()1,1,1=AP .O (1,2)P (1,0)A (1,1)21yx12.79-【解析】∵因为角α和角β的终边关于y 轴对称∴1sin sin 3αβ==,cos cos αβ=-∴()cos cos cos sin sin αβαβαβ-=+2227cos sin 2sin 19ααα=-+=-=-13.1-,2-,3-【解析】由题意知a ,b ,c 均小于0,所以找到任意一组负整数,满足题意即可. 14.① 1Q ② 2p【解析】①设线段i i A B 的中点为(),i i i C x y ,则2=i i Q y ,其中123=,,i . 因此只需比较1C ,2C ,3C 三个点纵坐标的大小即可. ②由题意,=ii iy p x ,123=,,i ,故只需比较三条直线1OC ,2OC ,3OC 的斜率即可. 15.【解析】(1)37=c a由正弦定理得:33333sin sin 77214==⨯=C A (2)37=<c a a60∴∠<∠=︒C A ∴∠C 为锐角由33sin 14=C 得:13cos 14=Csin sin[π()]sin()B A C A C ∴=-+=+sin cos cos sin A C A C =+313133214214=⨯+⨯437=又337377==⨯=c a1sin 2ABC S ac B ∆∴=1437327=⨯⨯⨯63=16.【解析】(1)取AC 、BD 交点为N ,连结MN .∵PD ∥面MAC PD ⊂面PBD面PBD ∩面MAC MN = ∴PD MN ∥在PBD △中,N 为BD 中点 ∴M 为PB 中点 (2)方法一:取AD 中点为O ,BC 中点为E ,连结OP ,OE ∵PA PD =,∴PO AD ⊥ 又面PAD ⊥面ABCD 面PAD ∩面ABCD AD = ∴PO ⊥面ABCD以OD 为x 轴,OE 为y 轴,OP 为z 轴建立空间直角坐标可知()200D ,,,()200A -,,,()240B -,,,()002P ,, 易知面PD 的法向量为()010m =,,且()202PD =-,,,()242PB =--,, 设面PBD 的法向量为()n x y z =,, 2202420x z x y z ⎧-=⎪⎨-+-=⎪⎩ 可知()112n =,,∴()222211cos 21112m n <>==⨯++, 由图可知二面角的平面角为锐角 ∴二面角B PD A --大小为60︒ 方法二:过点A 作AH PD ⊥,交PD 于点E ,连结BE ∵BA ⊥平面PAD ,∴PD BA ⊥, ∴PD ⊥平面BAH ,∴PD BH ⊥,∴AEB ∠即为二面角B PD A --的平面角AD PO AE PD ⋅=⋅,可求得433AE =4tan 343AEB ∠==∴60AEB ∠=︒ (3)方法一:点2122M ⎛⎫- ⎪ ⎪⎝⎭,,,()240C ,, ∴2322MC ⎛⎫=- ⎪ ⎪⎝⎭,, 由(2)题面BDP 的一个法向量()112n =,, 设MC 与平面BDP 所成角为θ ∴22232126sin cos 91941122MC n θ+-=<>==++⋅++,() 方法二:记AC BD F =,取AB 中点N ,连结MN ,FN ,MF 取FN 中点G ,连MG ,易证点G 是FN 中点,∴MG PO ∥ ∵平面PAD ⊥平面ABCD ,PO AD ⊥, ∴PO ⊥平面ABCD ∴MG ⊥平面ABCD 连结GC ,13GC =,1222MG PO ==∴362MC =∵6PD =,42BD =,22PB =,由余弦定理知3cos 3PDB ∠= ∴6sin 3PDB ∠=,∴1sin 422PDB S PD DB PDB =⋅⋅∠=△GNFPHMBCDA设点C 到平面PDB 的距离为h ,13P DBC PDB V S h -=⋅△又13P DBC C PDB BCD V V S PO --==⋅△,求得2h =记直线MC 与平面BDP 所成角为θ∴226sin 9362h MC θ===17.【解析】(1)50名服药者中指标y 的值小于60的人有15人,故随机抽取1人,此人指标y 的值小于60的概率为1535010= (2)ξ的可能取值为:0,1,2()2224106ξ===C P C ,()11222442163ξ⋅====C C P C ,()2224126ξ===C P C ξ 0 1 2P16 23 16121()0121636ξ=⨯+⨯+⨯=E(3)从图中服药者和未服药者指标y 数据的离散程度观察可知,服药者的方差大。

相关文档
最新文档