2017-2018学年江苏省徐州市七年级(下)期末数学试卷-(-解析版)

合集下载

2020-2021学年江苏省徐州市七年级(上)期末数学试卷(解析版)

2020-2021学年江苏省徐州市七年级(上)期末数学试卷(解析版)

2020-2021学年江苏省徐州市七年级第一学期期末数学试卷一.选择题(共8小题).1.﹣3的相反数是()A.B.﹣C.﹣3D.32.下列四个数中,无理数是()A.B.0C.0.12D.π3.正方体的表面展开图可能是()A.B.C.D.4.下列各数,依照从大到小顺序排列的是()A.20,﹣6,﹣2.13B.13,﹣2.6,﹣20C.﹣2.6,﹣13,20D.20,﹣13.6,﹣25.单项式﹣2x3y的次数为()A.1B.2C.3D.46.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥7.下列结论错误的是()A.等角的补角相等B.线段AB和线段BA表示同一条线段C.相等的角是对顶角D.平面内过一点有且只有一条直线与已知直线垂直8.如图,河道l的同侧有A,B两个村庄,计划铺设一条管道将河水引至A,B两地,下面的四个方案中,管道长度最短的是()A.B.C.D.二、填空题(每小题4分,共32分)9.某日的最低气温是﹣5℃,最高气温是2℃,则当日的温差为℃.10.若∠α=23°,则∠α的补角为°.11.我国2020年国内生产总值迈上百万亿元新台阶,1000000亿元用科学记数法可表示为亿元.12.方程2x+a=2的解是x=2,则a=.13.若代数式a2﹣3a+1的值为3,则代数式2a2﹣6a+1的值为.14.如图,将一副三角板叠在一起,使它们的直角顶点重合于O点,且∠AOB=155°,则∠COD=.15.将相同的棋子按如图所示的规律摆放,依此规律,第8个图形共有枚棋子.16.对任意有理数a、b.下面四个结论:①a+b>a;②|﹣a|=a;③a2≥0;④﹣|﹣a|=|﹣(﹣a)|.其中,正确的结论有(填写序号).三、解答题(本大题共有9小题,共84分)17.计算:(1)﹣33+|﹣12|+3×(﹣2);(2)(﹣+)×(﹣24).18.先化简,再求值:2(3x2y﹣xy2)﹣(﹣xy2+3x2y).其中x=2,y=﹣1.19.解下列方程:(1)5x+2=x;(2)﹣=1.20.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭块小正方体.21.如图,方格纸中小正方形的边长均为1cm,三角形ABC的顶点均为格点.(1)过点C画AB的平行线l1;(2)过点C画AB的垂线l2;(3)三角形ABC的面积=cm2.22.某班学生分两组参加植树活动,甲组有17人,乙组有25人,若从甲组抽调部分学生去乙组,使乙组人数为甲组人数的2倍,需抽调多少名学生?23.如图,AB与OC交于点O,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=60°,求∠AOE的度数;(2)∠COD与∠EOC存在怎样的数量关系?请说明理由.24.某市对居民用水实行阶梯水费,收费标准如表:月用水量不超过12吨的部分超过12吨不超过20吨的超过20吨的部分部分a a+14收费标准(元/吨)(1)甲用户上月用水30吨,其该月水费为元(用含a的代数式表示);(2)若a=1.5,乙用户上月水费为30元,求乙用户该月的用水量.25.如图,数轴的原点O表示学校的位置,超市位于学校正西600m的点A处,小明家位于学校正东200m的点B处,小明与妈妈在该超市购物后,同时从超市出发,沿AB步行回家,两人的速度大小保持不变.小明先把部分物品送到家,当小明妈妈行至点C处时,小明刚好到家并立即沿原路返回,帮妈妈拿余下的物品.已知小明妈妈每分钟走60m.(1)小明每分钟走多少米?(2)两人于何处再次相遇?(3)从出发到再次相遇,多少分钟时两人相距100m?参考答案一.选择题(本大题有8小题,每小题3分,共24分)1.﹣3的相反数是()A.B.﹣C.﹣3D.3【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣3的相反数是3,故选:D.2.下列四个数中,无理数是()A.B.0C.0.12D.π【分析】分别根据无理数、有理数的定义即可判定选择项.解:A、是分数,属于有理数,故本选项不合题意;B、0是整数,属于有理数,故本选项不合题意;C、0.12是有限小数,属于有理数,故本选项不合题意;D、π是无理数,故本选项符合题意.故选:D.3.正方体的表面展开图可能是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.解:由正方体四个侧面和上下两个底面的特征可知,A,B,D选项不可以拼成一个正方体,选项C可以拼成一个正方体.故选:C.4.下列各数,依照从大到小顺序排列的是()A.20,﹣6,﹣2.13B.13,﹣2.6,﹣20C.﹣2.6,﹣13,20D.20,﹣13.6,﹣2解:A、因为﹣6<﹣2.13<20,故本选项不合题意;B、因为﹣20<﹣2.6<13,故本选项符合题意;C、因为﹣13<﹣2.6<20,故本选项不合题意;D、因为﹣13.6<﹣2<20,故本选项不合题意;故选:B.5.单项式﹣2x3y的次数为()A.1B.2C.3D.4【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.解:单项式﹣2x3y的次数为:4,故选:D.6.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选:A.7.下列结论错误的是()A.等角的补角相等B.线段AB和线段BA表示同一条线段C.相等的角是对顶角D.平面内过一点有且只有一条直线与已知直线垂直【分析】根据补角的性质、线段的表示方法、对顶角的性质、垂直公理进行判断即可得到答案.解:A、和为180°的两个角互为补角,等角的补角相等说法正确,不符合题意;B、线段的表示方法是用端点的两个大写字母表示,线段AB和线段BA表示同一条线段正确说法正确,不符合题意;C、对顶角是从位置关系和数量关系两方面定义,而相等的角是对顶角仅从数量关系说明,说法错误,符合题意;D、平面内过一点有且只有一条直线与已知直线垂直,说法正确,不符合题意;故选:C.8.如图,河道l的同侧有A,B两个村庄,计划铺设一条管道将河水引至A,B两地,下面的四个方案中,管道长度最短的是()A.B.C.D.【分析】根据两点之间线段最短可判断方案B比方案C、D中的管道长度最短,根据垂线段最短可判断方案B比方案A中的管道长度最短.解:四个方案中,管道长度最短的是B.故选:B.二、填空题(本大题共有8小题,每小题4分,共32分)9.某日的最低气温是﹣5℃,最高气温是2℃,则当日的温差为7℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解:由题意可得:2﹣(﹣5),=2+5,=7(℃).故答案为:7.10.若∠α=23°,则∠α的补角为157°.【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.解:若∠α=23°,则∠α的补角为:180°﹣23°=157°.11.我国2020年国内生产总值迈上百万亿元新台阶,1000000亿元用科学记数法可表示为1×106(或106)亿元.解:1000000亿元用科学记数法可表示为1×106(或106)亿元.故答案为:1×106(或106).12.方程2x+a=2的解是x=2,则a=﹣2.【分析】把x=2代入方程2x+a=2得出4+a=2,再求出方程的解即可.解:∵方程2x+a=2的解是x=2,∴2×2+a=2,解得:a=﹣2,故答案为:﹣2.13.若代数式a2﹣3a+1的值为3,则代数式2a2﹣6a+1的值为5.【分析】由题意得:a2﹣3a=2,再整体代入计算即可.解:∵a2﹣3a+1=3,∴a2﹣3a=2,∴2a2﹣6a+1=2(a2﹣3a)+1=2×2+1=5,故答案为:5.14.如图,将一副三角板叠在一起,使它们的直角顶点重合于O点,且∠AOB=155°,则∠COD=25°.【分析】先根据直角三角板的性质得出∠AOC+∠DOB=180°,进而可得出∠COD的度数.解:∵△AOD,△BOC是一副直角三角板,∴∠AOD+∠COB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠COB+∠AOD=90°+90°=180°,∵∠AOB=155°,∴∠COD=180°﹣∠AOB=180°﹣155°=25°,15.将相同的棋子按如图所示的规律摆放,依此规律,第8个图形共有32枚棋子.【分析】根据每一个图形棋子的个数都是第几个图形乘以4,即可求出答案.解:根据所给的图形可得:第一个图有:4=1×4(个),第二个图有:8=2×4(个),第三个图有:12=3×4(个),第4个图有:16=4×4(个),…,则第n个为4n;∴第8个图形共有32枚棋子.故答案为:32.16.对任意有理数a、b.下面四个结论:①a+b>a;②|﹣a|=a;③a2≥0;④﹣|﹣a|=|﹣(﹣a)|.其中,正确的结论有③(填写序号).【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.解:①a+b>a,当b为负数时,原式不成立,故此选项错误;②|﹣a|=a,当a<0时,原式不成立,故此选项错误;③a2≥0,正确;④﹣|﹣a|=|﹣(﹣a)|,只有a=0时,原式成立,故此选项错误.故答案为:③.三、解答题(本大题共有9小题,共84分)17.计算:(1)﹣33+|﹣12|+3×(﹣2);(2)(﹣+)×(﹣24).解:(1)﹣33+|﹣12|+3×(﹣2)=﹣27+12﹣6=﹣21;(2)(﹣+)×(﹣24)=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣8+18﹣10=0.18.先化简,再求值:2(3x2y﹣xy2)﹣(﹣xy2+3x2y).其中x=2,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=6x2y﹣2xy2+xy2﹣3x2y=3x2y﹣xy2,当x=2,y=﹣1时,原式=3×22×(﹣1)﹣2×(﹣1)2=﹣12﹣2=﹣14.19.解下列方程:(1)5x+2=x;(2)﹣=1.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)移项合并得:4x=﹣2,解得:x=﹣;(2)去分母得:2(2x﹣1)﹣(x+1)=6,去括号得:4x﹣2﹣x﹣1=6,移项合并得:3x=9,解得:x=3.20.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭3块小正方体.【分析】(1)根据物体形状即可画出左视图有三列与以及主视图、俯视图都有三列,进而画出图形;(2)可在最左侧前端放两个后面再放一个即可得出答案.解:(1)如图所示:;(2)保持主视图和俯视图不变,最多还可以再搭3块小正方体.故答案为:3.21.如图,方格纸中小正方形的边长均为1cm,三角形ABC的顶点均为格点.(1)过点C画AB的平行线l1;(2)过点C画AB的垂线l2;(3)三角形ABC的面积=cm2.【分析】(1)取格点E,作直线EC即可.(2)取格点F,作直线CF即可.(3)利用分割法求解即可.解:(1)如图,直线l1即为所求作.(2)如图,直线l2即为所求作.(3)△ABC的面积=3×3﹣×2×3﹣×1×2﹣×1×3=.故答案为:.22.某班学生分两组参加植树活动,甲组有17人,乙组有25人,若从甲组抽调部分学生去乙组,使乙组人数为甲组人数的2倍,需抽调多少名学生?【分析】本题的关键描述语是:调学生后,乙组人数是甲组的2倍.那么,等量关系为:乙组人数+调来学生数=2×(甲组人数﹣调走学生数).解:设从甲组抽调了x名学生去乙组,则:25+x=2(17﹣x),解得:x=3.答:需抽调3名学生.23.如图,AB与OC交于点O,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=60°,求∠AOE的度数;(2)∠COD与∠EOC存在怎样的数量关系?请说明理由.【分析】(1)先求出∠AOC的度数,再根据角平分线的定义解答;(2)根据角平分线的定义表示出∠COD与∠EOC,然后整理即可得解.解:(1)∵∠BOC=60°,∴∠AOC=180°﹣∠BOC=180°﹣60°=120°,∵OE平分∠AOC,∴∠AOE=∠AOC=×120°=60°;(2)∠COD+∠EOC=90°.理由如下:∵OD平分∠BOC,OE平分∠AOC,∴∠COD =∠BOC,∠EOC =∠AOC,∴∠COD+∠EOC =(∠BOC+∠AOC )=×180°=90°.24.某市对居民用水实行阶梯水费,收费标准如表:超过20吨的部分月用水量不超过12吨的部分超过12吨不超过20吨的部分a a+14收费标准(元/吨)(1)甲用户上月用水30吨,其该月水费为(20a+48)元(用含a的代数式表示);(2)若a=1.5,乙用户上月水费为30元,求乙用户该月的用水量.【分析】(1)根据收费标准结合总价=单价×数量,即可得出结论;(2)先确定乙用户该月的用水量超过12吨不超过20吨,设乙用户该月的用水量为x吨,根据收费标准结合总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论.解:(1)12a+8(a+1)+(30﹣20)×4=20a+48(元).故该月水费为(20a+48)元.故答案为:(20a+48);(2)若a=1.5,12×1.5=18(元),12×1.5+8×(1.5+1)=38(元),∵18<30<38,∴乙用户该月的用水量超过12吨不超过20吨,设乙用户该月的用水量为x吨,根据题意得:18+2.5(x﹣2)=30,解得:x=16.8.答:乙用户该月的用水量为16.8吨.25.如图,数轴的原点O表示学校的位置,超市位于学校正西600m的点A处,小明家位于学校正东200m的点B处,小明与妈妈在该超市购物后,同时从超市出发,沿AB步行回家,两人的速度大小保持不变.小明先把部分物品送到家,当小明妈妈行至点C处时,小明刚好到家并立即沿原路返回,帮妈妈拿余下的物品.已知小明妈妈每分钟走60m.(1)小明每分钟走多少米?(2)两人于何处再次相遇?(3)从出发到再次相遇,多少分钟时两人相距100m?【分析】(1)根据速度=路程÷时间,列式计算即可求解;(2)根据时间=路程和÷速度和求出相遇的时间,进一步可求两人于何处再次相遇;(3)可设从出发到再次相遇,x分钟时两人相距100m,分两种情况:①小明到家前;②小明到家后;进行讨论即可求解.解:(1)[200﹣(﹣600)]÷[(﹣120+600)÷60]=100(米).故小明每分钟走100米;(2)因为[200﹣(﹣120)]÷(100+60)=2(分钟),2×60+(﹣120)=0.故两人于学校(点O处)再次相遇;(3)设从出发到再次相遇,x分钟时两人相距100m,分两种情况:①小明到家前,依题意有100x﹣60x=100,解得x=;②小明到家后,依题意有100x+60x+100=800×2,解得x=.故从出发到再次相遇,或分钟时两人相距100m.。

20172018学年江苏省泰州市七年级(下)期末数学试卷及

20172018学年江苏省泰州市七年级(下)期末数学试卷及

2021-2021 学年江苏省泰州市七年级〔下〕期末数学试卷一、选择题〔共 6 小题,每题2 分,总分值12分〕1.以下计算错误的选项是〔〕A. 2m+3n=5mn B. a6÷ a2=a4C.〔 a2〕3=a6 D. a? a2=a32.以下各式从左到右的变形,是因式分解的是〔〕A. x2﹣ 9+6x=〔 x+3〕〔 x﹣ 3〕 +6x B.〔 x+5〕〔 x﹣ 2〕=x2+3x﹣ 10 C. x2﹣ 8x+16=〔 x﹣ 4〕2D. 6ab=2a? 3b3.假设方程组的解满足 x+y=0,那么 a 的取值是〔〕A. a=﹣ 1B. a=1 C. a=0D. a 不能够确定4.不等式组中两个不等式的解集在数轴上可表示为〔〕A.B.C.D.5.以下命题:①同旁内角互补,两直线平行;②假设|a|=|b|,那么a=b;③直角都相等;④相等的角是对顶角.它们的抗命题是真命题的个数是〔〕A.4 个B.3个C.2 个D.1 个6.△ ABC的两条中线AD、 BE交于点 F,连接 CF,假设△ ABC的面积为 24,那么△ ABF的面积为〔〕A.10B. 8C.6D.4二、填空题7.生物拥有遗传多样性,遗传信息大多储蓄在DNA分子上.一个DNA分子的直径约为,这个数量用科学记数法可表示为3× 10﹣n cm,那么 n=.8.一个凸多边形的内角和是其外角和的 2 倍,那么这个多边形边形.是9.如图,点B、 C、D 在同一条直线上,CE∥ AB,∠ ACB=90°,若是∠ECD=36°,那么∠A﹦°.10.假设 a x=2,a y=3,那么 a3x﹣2y=.11.假设 a﹣b=﹣2,那么〔 a2+b2〕﹣ ab=.12.以以下图,将含有 30°角的三角板的直角极点放在相互平行的两条直线其中一条上,假设∠1=32°,那么∠ 2 的度数为.13.甲乙两队进行篮球抗衡赛,比赛规那么规定每队胜一场得 3 分,平一场得 1 分,负一场得0 分,两队一共比赛了10 场,甲队保持不败,得分不低于24 分,甲队最少胜了场.414.假设多项式4x +1 加上一个含字母的单项式,就能变形为一个含x 的多项式的平方,那么这样的单项式为.三、解答题:〔此题总分值64 分〕15.计算、化简:〔 1〕计算:〔﹣2021〕0+〔〕﹣2 +〔﹣ 3〕3;〔 2〕化简:〔 2x﹣ 3y〕2﹣〔 y+3x〕〔 3x﹣ y〕.16.因式分解:(1〕 2x2﹣ 4x+2;(2〕 a2〔 a﹣b〕 +〔 b﹣ a〕.17.完成以下证明,并在括号内填写原由::如图,∠EAB=∠ CDF,CE∥ BF.求证: AB∥CD.证明:∵ CE∥ BF,∴∠ CDF=∠C,∵∠ EAB=∠CDF,∴∠=∠,∴AB∥CD.18.解方程组或不等式组:〔1〕;〔 2〕,并写出它的整数解.19.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个极点都在小正方形的极点上,连接 BD.(1〕利用三角板在图中画出△ ABD中 AB 边上的高,垂足为 H.(2〕①画出将△ ABD先向右平移 2 格,再向上平移 2 格获取的△ A1 B1D1;②平移后,求线段 AB扫过的局部所组成的封闭图形的面积.20.第 31 届夏季奥林匹克运动会将于2021 年 8 月 5 日﹣﹣ 21 日在巴西的里约热内卢举行,小明在网上预约了开幕式和谢幕式两种门票共10 张,其中开幕式门票每张700 元,谢幕式门票每张550 元.(1〕假设小明订票总合开销 5800 元,问小李预约了开幕式和谢幕式的门票各多少张?(2〕假设小明订票开销不到 6100 元,那么开幕式门票最多有几张?21.如图,∠ ABD和∠ BDC的均分线订交于点E, BE交 CD于点 F,∠ 1+∠ 2=90°,试猜想:直线AB、CD在地址上有什么关系?∠ 2 和∠ 3 在数量上有什么关系?并证明你的猜想.22.,关于x,y 的方程组的解满足x< y< 0.〔 1〕求 a 的取值范围;(2〕化简 |a| ﹣ |a+3| .23.△ ABC中,三个内角的均分线交于点O,过点 O作 OD⊥OB,交边 BC于点 D.(1〕如图 1,猜想∠ AOC与∠ ODC的关系,并说明你的原由;(2〕如图 2,作∠ ABC外角∠ ABE的均分线交 CO的延长线于点 F.①求证: BF∥ OD;②假设∠ F=40°,求∠ BAC的度数.2021-2021 学年江苏省泰州市七年级〔下〕期末数学试卷参照答案与试题解析一、选择题〔共 6 小题,每题 2 分,总分值 12 分〕1.以下计算错误的选项是〔〕62423623A. 2m+3n=5mn B. a ÷ a =a C.〔 a〕=a D. a? a =a【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【解析】分别利用合并同类项法那么、同底数幂的乘除运算法那么以及幂的乘方运算法那么分别化简求出答案.【解答】解:A、 2m+3n,无法计算,故此选项吻合题意;B、 a6÷ a2=a4,正确,故此选项不吻合题意;C、〔 a2〕3=a6,正确,故此选项不吻合题意;D、 a? a2=a3,正确,故此选项不吻合题意;应选: A.【谈论】此题主要观察了同底数幂的乘除运算法那么以及幂的乘方运算等知识,正确掌握运算法那么是解题要点.2.以下各式从左到右的变形,是因式分解的是〔〕A. x2﹣ 9+6x=〔 x+3〕〔 x﹣ 3〕 +6x B.〔 x+5〕〔 x﹣ 2〕=x2+3x﹣ 10C. x2﹣ 8x+16=〔 x﹣ 4〕2 D. 6ab=2a? 3b【考点】因式分解的意义.【解析】依照分解因式就是把一个多项式化为几个整式的积的形式的定义,利用消除法求解.【解答】解:A、右边不是积的形式,故 A 选项错误;B、是多项式乘法,不是因式分解,故 B 选项错误;C、是运用完好平方公式,x2﹣ 8x+16=〔 x﹣ 4〕2,故 C 选项正确;D、不是把多项式化成整式积的形式,故 D 选项错误.应选: C.【谈论】此题观察了因式分解的意义,注意因式分解后左边和右边是相等的,不能够凭想象象右边的式子.这类问题的要点在于能否正确应用因式分解的定义来判断.3.假设方程组的解满足x+y=0,那么a的取值是〔〕A. a=﹣ 1B. a=1 C. a=0D. a 不能够确定【考点】二元一次方程组的解;二元一次方程的解.【专题】计算题.【解析】方程组中两方程相加表示出x+y,依照 x+y=0 求出 a 的值即可.【解答】解:方程组两方程相加得:4〔x+y 〕 =2+2a,将 x+y=0 代入得: 2+2a=0,解得: a=﹣1.应选: A.【谈论】此题观察了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.不等式组中两个不等式的解集在数轴上可表示为〔〕A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【解析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得, x≥ 1,由②得, x> 3,故不等式组的解集为:x> 3.在数轴上表示为:.应选 D.【谈论】此题观察的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到〞的原那么是解答此题的要点.5.以下命题:①同旁内角互补,两直线平行;②假设|a|=|b|,那么a=b;③直角都相等;④相等的角是对顶角.它们的抗命题是真命题的个数是〔〕A.4 个B.3个C.2 个D.1 个【考点】命题与定理.【解析】先写出命题的抗命题,再抗衡命题的真假进行判断即可.【解答】解:①同旁内角互补,两直线平行的抗命题是两直线平行,同旁内角互补,是真命题;②假设 |a|=|b|,那么a=b的抗命题是假设a=b,那么 |a|=|b|,是真命题;③直角都相等的抗命题是相等的角是直角,是假命题;④相等的角是对项角的抗命题是对顶角是相等的角,是真命题;它们的抗命题是真命题的个数是 3 个.应选 B.【谈论】此题观察了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假要点是要熟悉课本中的性质定理,用到的知识点是抗命题.6.△ ABC的两条中线AD、 BE交于点 F,连接 CF,假设△ ABC的面积为 24,那么△ ABF的面积为〔〕A.10B. 8C.6D.4【考点】三角形的面积.【解析】由中线得:S△ABD=S△ADC得 S△ABD=S△ABE,由S△ABC=24,得出△ ABE和△ ABD的面积为12,依照等式性质可知S△AEF=S△BDF,结合中点得:S△AEF=S△EFC=S△DFC=,相当于把△ADC的面积平均分成三份,每份为 4,由此可得 S△ABF=S△ABD﹣ S△BDF.【解答】解∵AD是中线,∴ S△ABD=S△ADC=S△ABC,∵S△ABC=24,∴S△ABD=S△ADC= × 24=12,同理 S△ABE=12,∴S△ABD=S△ABE,∴S△ABD﹣ S△ABF=S△ABE﹣ S△ABF,即 S△AEF=S△BDF,∵D 是中点,∴ S△BDF=S△DFC,同理 S△AEF=S△EFC,∴ S△AEF=S△EFC=S△DFC= S△ADC=× 12=4,∴S△ABF=S△ABD﹣ S△BDF=12﹣ 4=8,应选 B.【谈论】此题观察了三角形的面积问题,应用了三角形的中线将三角形分成面积相等的两局部,与各三角形面积的和与差相结合,分别求出各三角形的面积;此题是求三角形的面积,思虑的方法有两种:①直接利用面积公式求;②利用面积的和与差求;此题采用了后一种方法.二、填空题7.生物拥有遗传多样性,遗传信息大多储蓄在DNA分子上.一个DNA分子的直径约为,这个数量用科学记数法可表示为3× 10﹣n cm,那么 n= 7.【考点】科学记数法—表示较小的数.【解析】绝对值小于 1 的正数也能够利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同样的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解:∵ 0.0000003=3 × 10﹣7=3× 10﹣n;∴ n=7,故答案为: 7.【谈论】此题观察了用科学记数法表示较小的数,一般形式为a× 10﹣n,其中 1≤ |a| < 10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.8.一个凸多边形的内角和是其外角和的 2 倍,那么这个多边形是6边形.【考点】多边形内角与外角.【专题】研究型.【解析】多边形的外角和是360 度,多边形的内角和是它的外角和的 2 倍,那么多边形的内角和是720度,依照多边形的内角和能够表示成〔n﹣ 2〕 ? 180°,依此列方程可求解.【解答】解:设多边形边数为n.那么 360°× 2=〔 n﹣ 2〕 ?180°,解得 n=6.故答案为: 6.【谈论】此题主要观察了多边形内角和公式及外角的特色,求多边形的边数,能够转变为方程的问题来解决.9.如图,点B、 C、 D 在同一条直线上, CE∥ AB,∠ ACB=90°,若是∠ ECD=36°,那么∠ A﹦54°.【考点】平行线的性质.【解析】由∠ACB=90°,∠ ECD=36°,求得∠ ACE的度数,又由CE∥AB,即可求得∠A 的度数.【解答】解:∵∠ECD=36°,∠ ACB=90°,∴∠ ACD=90°,∴∠ ACE=∠ACD﹣∠ ECD=90°﹣ 36° =54°,∵CE∥ AB,∴∠ A=∠ ACE=54°.故答案为: 54°.【谈论】此题观察了平行线的性质.解题的要点是注意数形结合思想的应用.10.假设 a x=2,a y=3,那么 a3x﹣2y=.【考点】同底数幂的除法;幂的乘方与积的乘方.【专题】计算题.【解析】依照同底数幂的除法及幂的乘法与积的乘方法那么,进行计算即可.【解答】解:a3x﹣2y =〔a x〕3÷〔 a y〕2=8÷ 9=.故答案为:.【谈论】此题观察了同底数幂的除法法那么:底数不变,指数相减,属于基础题,掌握运算法那么是要点.11.假设 a﹣b=﹣ 2,那么〔a2+b2〕﹣ab=2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【解析】原式提取,利用完好平方公式分解,把等式代入计算即可求出值.【解答】解:∵a﹣ b=﹣ 2,∴原式 =〔a2+b2﹣2ab〕=〔a﹣b〕2=2.故答案为: 2.【谈论】此题观察了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的要点.12.以以下图,将含有 30°角的三角板的直角极点放在相互平行的两条直线其中一条上,假设∠1=32°,那么∠ 2 的度数为 28° .【考点】平行线的性质.【解析】第一过 A 作 AE∥ NM,尔后判断AE∥ GH,依照平行线的性质可得∠3=∠1=35°,再计算出∠4的度数,再依照平行线的性质可得答案.【解答】解:过A作 AE∥ NM,∵NM∥ GH,∴ AE∥ GH,∴∠ 3=∠ 1=32°,∵∠ BAC=60°,∴∠ 4=60°﹣ 32° =28°,∵NM∥ AE,∴∠ 2=∠ 4=28°,故答案为: 28°.【谈论】此题主要观察了平行线的判断与性质,要点是掌握两直线平行,内错角相等.13.甲乙两队进行篮球抗衡赛,比赛规那么规定每队胜一场得 3 分,平一场得队一共比赛了10 场,甲队保持不败,得分不低于24 分,甲队最少胜了71 分,负一场得场.0 分,两【考点】一元一次不等式的应用.【解析】设甲队胜了x 场,那么平了〔10﹣x〕场,依照胜一场得 3 分,平一场得 1 分,负一场得0 分,比赛10 场,得分24 分,列出不等式,求出x 的最小整数解.【解答】解:设甲队胜了x 场,那么平了〔10﹣ x〕场,由题意得, 3x+〔 10﹣ x〕≥ 24,解得: x≥ 7,即甲队最少胜了7 场.故答案为: 7.【谈论】此题观察了一元一次不等式的应用,解答此题的要点是读懂题意,设出未知数,找出不等关系,列出不等式求解.14.假设多项式4x4+1 加上一个含字母的单项式,就能变形为一个含x 的多项式的平方,那么这样的单项式为± 4x2,4x8.【考点】完好平方式.【解析】由于多项式4x4+1 加上一个含字母的单项式后能成为一个含x 的多项式的平方,可能是二次项或八次项,分 2 种情况谈论即可.【解答】解:∵多项式4x4+1 加上一个单项式后能成为一个整式的完好平方,∴此单项式可能是二次项,可能是常数项,可能是一次项,还可能是 4 次项,① 4x4+4x8+1=〔2x4+1〕2,故此单项式是 4x8.②∵422224x +1±4x =〔 2x± 1〕,故此单项式是±4x ;故答案是:±4x2, 4x8.【谈论】此题是完好平方公式的应用;两数的平方和,再加上或减去它们积的 2 倍,就组成了一个完全平方式.注意积的 2 倍的符号,防范漏解.三、解答题:〔此题总分值64 分〕15.计算、化简:〔 1〕计算:〔﹣2021〕0+〔〕﹣2+〔﹣ 3〕3;(2〕化简:〔 2x﹣ 3y〕2﹣〔 y+3x〕〔 3x﹣ y〕.【考点】平方差公式;完好平方公式;零指数幂;负整数指数幂.【解析】〔 1〕依照 0 次幂和负指数幂,即可解答;(2〕依照完好平方公式和平方差公式,即可解答.【解答】解:〔1〕〔﹣ 2021〕0+〔〕﹣2+〔﹣3〕3;=1+4﹣ 27=﹣ 22;(2〕〔 2x﹣ 3y〕2﹣〔 y+3x 〕〔 3x﹣ y〕=4x2﹣ 12xy+9y 2﹣ 9x2+y 2=﹣ 5x2﹣ 12xy+10y 2.【谈论】此题观察了平方差公式和完好平方公式,解决此题的要点是熟记平方差公式和完好平方公式.16.因式分解:(1〕 2x2﹣ 4x+2;(2〕 a2〔 a﹣b〕 +〔 b﹣ a〕.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【解析】〔 1〕原式提取2,再利用完好平方公式分解即可;(2〕原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:〔1〕原式=2〔x2﹣2x+1〕=2〔x﹣1〕2;(2〕原式 =a2〔 a﹣ b〕﹣〔 a﹣ b〕 =〔 a﹣b〕〔 a2﹣ 1〕 =〔 a﹣ b〕〔 a+1〕〔 a﹣ 1〕.【谈论】此题观察了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的要点.17.完成以下证明,并在括号内填写原由::如图,∠EAB=∠ CDF,CE∥ BF.求证: AB∥CD.证明:∵ CE∥ BF,∴∠ CDF=∠C两直线平行,内错角相等,∵∠ EAB=∠CDF,∴∠ C =∠EAB,∴ AB∥ CD 同位角相等,两直线平行.【考点】平行线的判断与性质.【解析】依照平行线的性质获取∠ CDF=∠ C,等量代换获取∠ C=∠ EAB,依照平行线的判判定理即可获取结论.【解答】证明:∵CE∥ BF,,∴∠ CDF=∠C,两直线平行,内错角相等,∵∠ EAB=∠CDF,∴∠ C=∠ EAB,∴ AB∥ CD,同位角相等,两直线平行.故答案为:,两直线平行,内错角相等,C,EAB,同位角相等,两直线平行.【谈论】此题观察了平行线的性质和判断,熟练掌握平行线的判断和性质是解题的要点.18.解方程组或不等式组:〔1〕;〔 2〕,并写出它的整数解.【考点】一元一次不等式组的整数解;解二元一次方程组;解一元一次不等式组.【解析】〔 1〕整理后① +②得出 3x=7,求出 x,把 x 的值代入①求出y 即可;〔 2〕先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:〔1〕整理得:,①+②得: 3x=7,解得: x= ,把 x=代入①得:+5y=0 ,解得: y=﹣,所以原方程组的解为:;(2〕∵解不等式①得:x< 3,解不等式②得:x≥ 1,∴不等式组的解集为1≤ x<3,∴不等式组的整数解为1, 2.【谈论】此题观察认识二元一次方程组,解一元一次不等式组,不等式组的整数解的应用,能把二元一次方程组转变为一元一次方程是解〔1〕的要点,能求出不等式组的解集是解〔2〕的要点.19.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个极点都在小正方形的极点上,连接 BD.(1〕利用三角板在图中画出△ ABD中 AB 边上的高,垂足为 H.(2〕①画出将△ ABD先向右平移 2 格,再向上平移 2 格获取的△ A1 B1D1;②平移后,求线段 AB扫过的局部所组成的封闭图形的面积.【考点】作图- 平移变换;三角形的角均分线、中线和高.【解析】〔 1〕依照三角形高线的定义进行作图;〔 2〕①依照平移的方向和距离作出平移后的三角形;②线段 AB 扫过的局部所组成的封闭图形能够看作由一个平行四边形和一个直角三角形组成,计算出它们的面积并相加即可.【解答】〔 1〕如图:线段 DH即为所求.〔 2〕①如图:△ A1B1D1即为所求.②如图,线段AB 扫过的局部所组成的封闭图形〔阴影局部〕的面积=2× 4+× 1× 2=8+1=9.【谈论】此题主要观察了作图,作图时要先找到图形的要点点,分别把这几个要点点依照平移的方向和距离确定对应点后,再按次连接对应点即可获取平移后的图形.在作三角形的高时,从三角形的一个极点向底边作垂线,垂足与极点之间的线段即为三角形的高.20.第31 届夏季奥林匹克运动会将于2021 年8 月5 日﹣﹣ 21日在巴西的里约热内卢举行,小明在网上预约了开幕式和谢幕式两种门票共10 张,其中开幕式门票每张700 元,谢幕式门票每张550 元.(1〕假设小明订票总合开销 5800 元,问小李预约了开幕式和谢幕式的门票各多少张?(2〕假设小明订票开销不到 6100 元,那么开幕式门票最多有几张?【考点】一元一次不等式的应用;二元一次方程组的应用.【解析】〔 1〕设开幕式门票x 张,谢幕式门票y 张,成立方程组即可解决问题.(2〕设开幕式门票有 x 张,列出不等式即可.【解答】解:〔 1〕设开幕式门票 x 张,谢幕式门票 y 张,由题意,解得答:开幕式门票 2 张,谢幕式门票8 张;(2〕设开幕式门票有 x 张,由题意 700x+550 〔 10﹣ x〕< 6100,解得x<4,∵ x 是整数,∴ x 的中点整数为 3,∴开幕式门票最多 3 张.【谈论】此题观察一元一次不等式的应用,二元一次方程组的应用,解题的要点是学会设未知成立方程组或不等式解决实责问题,属于中考常考题型.AB、21.如图,∠ ABD和∠ BDC的均分线订交于点 E, BE交 CD于点 F,∠ 1+∠ 2=90°,试猜想:直线CD在地址上有什么关系?∠ 2 和∠ 3 在数量上有什么关系?并证明你的猜想.【考点】平行线的判断与性质.【解析】依照角之间的关系求证AB∥ CD,尔后依照平行线的性质求出∠ 2 与∠ 3 在数量上的关系.【解答】解:AB∥ CD,∠ 2+∠ 3=90°.原由以下:∵BE、 DE分别均分∠ ABD、∠ CDB,∴∠ ABD=2∠ 1,∠ BDC=2∠ 2.∵∠ 2+∠ 1=90°,∴∠ ABD+∠CDB=180°,∴AB∥CD.∴∠ 3=∠ABF.∵∠ 1=∠ ABF,∠ 2+∠1=90°.∴∠ 2+∠ 3=90°.【谈论】此题观察了角均分线定义和平行线的性质和判断的应用,熟练掌握平行线的判判定理与性质是解此题的要点.22.,关于x,y 的方程组的解满足x< y< 0.(1〕求 a 的取值范围;(2〕化简 |a| ﹣ |a+3| .【考点】二元一次方程组的解.【专题】研究型.【解析】〔 1〕依照方程组,能够用关于 a 的代数式表示出x、y,尔后依照x< y< 0,能够求得 a 的取值范围;(2〕依照〔 1〕中 a 的取值范围能够对 |a| ﹣ |a+3| 进行化简.【解答】解:〔 1〕解得,,∵x< y< 0,∴解得, a<﹣ 3,即 a 的取值范围是 a<﹣ 3;〔 2〕∵ a<﹣ 3,∴a+3< 0,∴|a| ﹣ |a+3|=﹣ a+a+3 =3.【谈论】此题观察二元一次方程组组的解,解题的要点是明确题意,找出所求问题需要的条件.23.△ ABC中,三个内角的均分线交于点O,过点 O作 OD⊥OB,交边 BC于点 D.(1〕如图 1,猜想∠ AOC与∠ ODC的关系,并说明你的原由;(2〕如图 2,作∠ ABC外角∠ ABE的均分线交 CO的延长线于点 F.①求证: BF∥ OD;②假设∠ F=40°,求∠ BAC的度数.【考点】平行线的判断与性质.【解析】〔 1〕依照角均分线的定义获取∠OAC+∠ OCA= 〔 180°﹣∠ ABC〕,∠ OBC= ∠ ABC,由三角形的内角和获取∠AOC=90° +∠OBC,∠ ODC=90° +∠ OBD,于是获取结论;〔 2〕①由角均分线的性质获取∠EBF=90°﹣∠ DBO,由三角形的内角和获取∠ODB=90°﹣∠ OBD,于是获取结论;②由角均分线的性质获取∠FBE 〔∠ BAC+∠ ACB〕,∠ FCB=ACB,依照三角形的外角的性质即可获取结论.【解答】解:〔1〕∠ AOC=∠ODC,原由:∵三个内角的均分线交于点O,∴∠ OAC+∠OCA= 〔∠ BAC+∠ BCA〕=〔180°﹣∠ ABC〕,∵∠ OBC= ∠ ABC,∴∠ AOC=180°﹣〔∠ OAC+∠OCA〕 =90° +∠ ABC=90° +∠ OBC,∵OD⊥ OB,∴∠ BOD=90°,∴∠ ODC=90° +∠ OBD,∴∠ AOC=∠ODC;〔 2〕①∵ BF均分∠ ABE,∴∠ EBF= ∠ ABE= 〔 180°﹣∠ ABC〕 =90°﹣∠ DBO,∵∠ ODB=90°﹣∠ OBD,∴∠ FBE=∠ODB,∴BF∥ OD;②∵ BF 均分∠ ABE,∴∠ FBE=ABE= 〔∠ BAC+∠ ACB〕,∵三个内角的均分线交于点O,∴∠ FCB=ACB,∵∠ F=∠ FBE﹣∠ BCF= 〔∠ BAC+∠ACB〕﹣∠ ACB=BAC,∵∠ F=40°,∴∠ BAC=2∠ F=80°.【谈论】此题观察了平行线的性质和判断,角均分线的定义,三角形的内角和,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的要点.1、一知半解的人,多不谦虚;见多识广有本领的人,必然谦虚。

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。

2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。

2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)

2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)

2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)1 / 152017-2018学年江苏省徐州市睢宁县七年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1. (-a 2)3=( )A. B.C. D. 2. 下列运算正确的是( )A.B. C.D. 3. 下列式子是完全平方式的是( )A. B.C. D. 4. 如图,下列结论中不正确的是( )A. 若 ,则B. 若 ,则C. 若 ,则D. 若 ,则5. 下列各式中,计算结果为x 2-1的是( )A. B. C. D.6. 若 ,则p 的值是( )A. B. C. 1 D. 27. (2+1)(22+1)(24+1)(28+1)(216+1)的计算结果的个位数字是( )A. 8B. 5C. 4D. 28. 如图,在三角形纸片ABC 中,∠B =∠C =35°,过边BC上的一点,沿与BC 垂直的方向将它剪开,分成三角形和四边形两部分,则在四边形中,最大的内角的度数为( )A. B. C. D.二、填空题(本大题共8小题,共16.0分)9. 计算:-2a 2(a -3ab )=______.10. 某红外线波长为0.00 000 094m ,用科学记数法把0.00 000 094m 可以写成______m .11. 一个三角形的两边长分别是2和6,第三边长为奇数,则其周长为______.12. 如图,已知AB ∥CD ,∠ACB =90°,则图中与∠CBA 互余的角是______.13. 已知(a +b )2=10,(a -b )2=6,则ab =______.14. 如图是一块从一个边长为50cm 的正方形材料中剪出的垫片,现测得FG =5cm ,则这个剪出的图形的周长是______cm .15.如图,在△ABC,中,∠BAC=90°,沿AD折叠△ABC,使点B恰好落在AC边上的点E处,若∠C=20°,则∠ADE=______.16.小明从P点出发,沿直线前进10米后向右转a,接着沿直线前进10米,再向右转a,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则a的度数是______.三、计算题(本大题共2小题,共12.0分)17.因式分解:①3a2-27;②(x-3)(x-5)+1.18.一个直角三角形的两条直角边长分别为2a+1和3a-1,该三角形面积为S,试用含a的代数式表示S(结果要化成最简形式),并求当a=2时,S的值.四、解答题(本大题共7小题,共48.0分)19.计算:①(-)-1+(-2)2×50-(-)-2;②2a5-a2•a3+(2a4)2÷a3.20.先化简再求值:(2a+b)(b-2a)-(a-3b)2,其中a=-1,b=2.2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)3 / 1521. 如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)画出△ABC 中AB 边上的中线CM ;(3)画出△ABC 中AB 边上的高CD ,垂足是D ;(4)图中△ABC 的面积是______.22. 如图,已知AB ∥CD ,∠1=∠2,CF 平分∠DCE .(1)试判断直线AC 与BD 有怎样的位置关系?并说明理由;(2)若∠1=80°,求∠3的度数.23. 如图,将一张长方形大铁皮切割成九块,切痕如图虚线所示,其中有两块是边长都为xdm 的大正方形,两块是边长都为ydm 的小正方形,五块是长宽分别是xdm 、ydm 的全等小长方形,且x >y .(1)用含x 、y 的代数式表示长方形大铁皮的周长为______dm ;(2)若每块小长方形的面积10dm 2,四个正方形的面积为58dm 2,试求该切痕的总长.24.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2,例如二次三项式x2-2x+9的配方过程如下:x2-2x+9=x2-2x+1-1+9=(x-1)2+8.请根据阅读材料解决下列问题:(1)比照上面的例子,将下面的两个二次三项式分别配方:①x2-4x+1=______;②3x2+6x-9=3(x2+2x)-9=______;(2)已知x2+y2-6x+10y+34=0,求3x-2y的值;(3)已知a2+b2+c2+ab-3b+2c+4=0,求a+b+c的值.25.四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.(1)若点O在四边形ABCD的内部,①如图1,若AD∥BC,∠B=40°,∠C=70°,则∠DOE=______°;②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)答案和解析1.【答案】D【解析】解:(-a2)3=-a6.故选:D.根据幂的乘方计算即可.此题主要考查了幂的乘方运算,关键是根据法则进行计算.2.【答案】C【解析】解:A、m3+m3=2m3,故此选项不合题意;B、m3•m3=m6,故此选项不合题意;C、(-m)•(-m)4=-m5,故此选项符合题意;D、(-m)5÷(-m)2=-m3,故此选项不合题意;故选:C.分别利用合并同类项法则以及同底数幂的乘法运算法则、同底数幂的除法运算法则计算得出答案.此题主要考查了合并同类项以及同底数幂的乘法运算、同底数幂的除法运算等知识,正确掌握运算法则是解题关键.3.【答案】B【解析】解:下列式子是完全平方式的是a2+2a+1=(a+1)2,故选:B.利用完全平方公式的结构特征判断即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.【答案】A【解析】【分析】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题5 / 15的关键,注意它们之间的区别.由平行线的性质和判定得出选项A不正确,选项B、C、D正确;即可得出结论.【解答】解:∵AD∥BC,∴∠1=∠2,选项A不正确;∵∠1=∠2,∴AD∥BC,选项B正确;∵∠2=∠C,∴AE∥CD,选项C正确;∵AE∥CD,∴∠1+∠3=180°,选项D正确;故选:A.5.【答案】B【解析】解:(x+1)(x-1)=x2-1.故选B.原式利用完全平方公式,平方差公式计算即可得到结果.此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.6.【答案】A【解析】【分析】本题主要考查多项式乘多项式,熟练掌握多项式相乘的法则,根据一次项为0得出关于p的方程是关键.将原式左边根据多项式乘以多项式法则展开,将p 看做常数合并后,结合原式右边知一次项系数为0,可得答案.【解答】解:,由题意知,-2-p=0,2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)解得:p=-2,故选A.7.【答案】B【解析】解:原式=(2-1)•(2+1)•(22+1)•(24+1)…(216+1)=(22-1)•(22+1)•(24+1)…(216+1)=(24-1)•(24+1)…(216+1)=232-1=232-1∵21=2,22=4,23=8,24=16,25=32,…,∴其结果个位数以2,4,8,6循环,∵32÷4=8,∴232的个位数字为6,∴原式的个位数字为6-1=5.故选:B.原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.【答案】D【解析】解:由三角形的内角和,得∠A=180°-35°-35°=110°,由四边形的内角和,得最大的内角为360°-90°-110°-35°=125°,故选:D.根据三角形的内角和,可得∠A,根据四边形的内角和,可得答案.本题考查了多边形的内角,利用多边形的内角和是解题关键.9.【答案】-2a3+6a3b【解析】7 / 15解:-2a2(a-3ab)=-2a3+6a3b.故答案为:-2a3+6a3b.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.此题考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.10.【答案】9.4×10-7【解析】解:0.00 000 094=9.4×10-7,故答案为:9.4×10-7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【答案】13或15【解析】解:∵三角形的两边长分别是2和6,∴第三边的长的取值范围为4<第三边<8,又第三边是奇数,故第三边只有是5和7,则周长是13或15,故答案为:13或15.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.考查了三角形的三边关系的知识,注意三角形的三边关系,还要注意奇数这一条件.2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)9 / 1512.【答案】∠BAC 和∠ACE【解析】解:∵∠ACB=90°,∴∠CAB+∠ABC=90°, 即∠CAB 与∠ABC 互余.∵AB ∥CD ,∴∠CAB=∠ACE .∴∠CAB 与∠ACE 互余.故答案为:∠BAC 和∠ACE .先根据直角三角形的性质,得出∠CAB+∠ABC=90°,再由AB ∥CD 得出∠CAB=∠ACE ,进而可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等. 13.【答案】1【解析】解:∵(a+b )2=a 2+2ab+b 2=10,(a-b )2=a 2-2ab+b 2=6,两式相减可得4ab=4,∴ab=1.故答案为:1.根据完全平方公式得到(a+b )2=a 2+2ab+b 2=10,(a-b )2=a 2-2ab+b 2=6,再把它们相减可得4ab=4,即可求出ab 的值.本题考查完全平方公式,关键是熟练掌握完全平方公式,难点是得到4ab=4. 14.【答案】210【解析】解:如图所示:这块垫片的周长为:50×4+FG+NH=200+10=210(cm ),故答案为:210.利用平移的性质将EF ,GH ,AH ,分别向左和上平移即可得出平移后图形,进而求出这块垫片的周长.本题考查了生活中的平移现象,利用平移的性质得出是解题关键.15.【答案】65°【解析】解:在△ABC 中,∠CAB=90°,∠C=20°,∴∠B=90°-∠C=70°.由折叠的性质可得:∠EAD=∠CAB=45°,∠AED=∠B=70°,∴∠ADE=180°-∠EAD-∠AED=65°.故答案为:65°.根据直角三角形的性质求出∠B的度数,根据翻折变换的性质求出∠EAD和∠AED的度数,根据三角形内角和定理求出∠ADE即可.本题考查的是翻折变换、直角三角形的性质和三角形内角和定理,理解翻折变换的性质、熟记三角形内角和等于180°是解题的关键.16.【答案】30°【解析】解:由题意,得120÷10=12,图形是十二边形,α=360°÷12=30°,故答案为:30°.根据多边形的外角和与外角的关系,可得答案.本题考查了多边形的外角,利用周长除以边长得出多边形是解题关键.17.【答案】解:①原式=3(a2-9)=3(a+3)(a-3);②原式=x2-5x-3x+15+1=x2-8x+16=(x-4)2.【解析】①原式提取3,再利用平方差公式分解即可;②原式整理后,利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.【答案】解:根据题意得:S=(2a+1)(3a-1)=3a2+a-,当a=2时,S=12+1-=.【解析】利用三角形面积公式表示出S,将a的值代入计算即可求出值.此题考查了多项式乘多项式,以及代数式求值,熟练掌握运算法则是解本题的关键.2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)11 / 1519.【答案】解:①原式=-4+4×1-4=-4+4-4=-4;②原式=2a 5-a 5+4a 8÷a 3=2a 5-a 5+4a 5=5a 5.【解析】①根据零指数幂、负指数幂以及乘方进行计算即可;②根据同底数幂的乘法、完全平方公式以及积的乘方进行计算即可.本题考查了整式的混合运算,掌握同底数幂的乘法、完全平方公式以及积的乘方、合并同类项是解题的关键.20.【答案】解:原式=(b 2-4a 2)-(a 2-6ab +9b 2)=b 2-4a 2-a 2+6ab -9b 2=-5a 2+6ab -8b 2,当a =-1,b =2时,原式=-5×1+6×(-1)×2-8×22=-5-12-32=-49. 【解析】先根据乘法公式算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.21.【答案】8【解析】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,CM 即为所求;(3)如图,CD 即为所求;(4)S △ABC =7×5-2-×1×3-×2×6-×5×7=35-2--6-=8.故答案为:8.(1)根据图形平移的性质画出△A1B1C1即可;(2)根据格点的特点作出AB边上的中线CM即可;(3)过点C向AB边的延长线作垂线,垂足为点D即可;(4)利用矩形的面积减去三个顶点上三角形的面积和两个格点的面积即可.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.22.【答案】解:(1)AC∥BD.理由:∵AB∥CD,∴∠2=∠CDF.∵∠1=∠2,∴∠1=∠CDF,∴AC∥BD;(2)∵∠1=80°,∴∠ECD=180°-∠1=180°-80°=100°.∵CF平分∠ECD,∴∠ECF=∠ECD=×100°=50°.∵AC∥BD,∴∠3=∠ECF=50°.【解析】(1)先根据AB∥CD得出∠2=∠CDF,再由∠1=∠2即可得出结论;(2)先求出∠ECD的度数,再由角平分线的性质求出∠ECF的度数,根据平行线的性质即可得出结论.本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.23.【答案】(6x+6y)【解析】(1)根据题意得:长方形大铁皮的周长=2(2x+y+x+2y)=6x+6y(dm);故答案为:(6x+6y);(2)由题意可知:xy=10,2x2+2y2=58,2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)即:x2+y2=29,∵(x+y)2=x2+2xy+y2=29+20=49∴x+y=7,∴切痕总长为6×7=42dm.(1)由长方形的对边相等容易得出结果;(2)由题意和图形得出关系式,即可得出答案.本题考查了整式的混合运算以及矩形的性质;熟记矩形的性质是解决问题的关键.24.【答案】解:(1)①(x-2)2-3;②3(x+1)2-12;(2)∵x2+y2-6x+10y+34=0,∴x2-6x+9+y2+10y+25=0,∴(x-3)2+(y+5)2=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19;(3)a2+b2+c2+ab-3b+2c+4=0,∴a2+ba+b2+b2-3b+3+c2+2c+1=0,∴(a+b)2+(b-2)2+(c+1)2=0,∴a=-b,b=2,c=-1,∴a=-1,∴a+b+c=-1+2+(-1)=0.【解析】解:(1)①x2-4x+1=(x-2)2-3;②3x2+6x-9=3(x2+2x)-9=3(x+1)2-12;故答案为:(x-2)2-3,3(x+1)2-12;(2)∵x2+y2-6x+10y+34=0,∴x2-6x+9+y2+10y+25=0,∴(x-3)2+(y+5)2=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19;(3)a2+b2+c2+ab-3b+2c+4=013 / 15∴a2+ba+b2+b2-3b+3+c2+2c+1=0,∴(a+b)2+(b-2)2+(c+1)2=0,∴a=-b,b=2,c=-1,∴a=-1,∴a+b+c=-1+2+(-1)=0.(1)由题中所给的已知材料可得x2-4x+1和a2+ab+b2的配方后的形式;(2)通过配方后,求得x,y的值,再代入代数式求值;(3)通过配方后,求得a,b,c的值,再代入代数式求值.本题考查了根据完全平方公式:a2±2ab+b2=(a±b)2进行配方的能力.25.【答案】125【解析】解:(1)①∵AD∥BC,∠B=40°,∠C=70°,∴∠BAD=140°,∠ADC=110°,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAE=70°,∠ODC=55°,∴∠AEC=110°,∴∠DOE=360°-110°-70°-55°=125°;故答案为:125;②∠B+∠C+2∠DOE=360°,理由:∵∠DOE=∠OAD+∠ADO,∵AE、DO分别平分∠BAD、∠CDA,∴2∠DOE=∠BAD+∠ADC,∵∠B+∠C+∠BAD+∠ADC=360°,∴∠B+∠C+2∠DOE=360°;(2)∠B+∠C=2∠DOE,理由:∵∠BAD+∠ADC=360°-∠B-∠C,∠EAD+∠ADO=180°-∠DOE,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAD=2∠EAD,∠ADC=2∠ADO,∴∠BAD+∠ADC=2(∠EAD+∠ADO),∴360°-∠B-∠C=2(180°-∠DOE),∴∠B+∠C=2∠DOE.(1)①根据平行线的性质和角平分线的定义可求∠BAE,∠CDO,再根据三角形外角的性质可求∠AEC,再根据四边形内角和等于360°可求∠DOE的度数;2017-2018年江苏省徐州市睢宁县七年级(下)期中数学试卷(解析版)②根据三角形外角的性质和角平分线的定义可得∠DOE和∠BAD、∠ADC的关系,再根据四边形内角和等于360°可求∠B、∠C、∠DOE之间的数量关系;(2)g根据四边形和三角形的内角和得到∠BAD+∠ADC=360°-∠B-∠C,∠EAD+∠ADO=180°-∠DOE,根据角平分线的定义得到∠BAD=2∠EAD,∠ADC=2∠ADO,于是得到结论.此题考查了多边形内角与外角,平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°的知识点.15 / 15。

2017-2018学年徐州市七年级下期中数学试卷含答案解析(2套)

2017-2018学年徐州市七年级下期中数学试卷含答案解析(2套)

2017-2018学年江苏省徐州市部分学校七年级(下)期中数学试卷一、选择题(本大题有8小题,每小题3分,共24分)1.下列运算正确的是()a“2.3一5口,2、3一5厂6•2一3 2.3一5A.%•尤—xB.(x)—xC.x—X—XD.x+x—x2.目前,世界上能制造出的最小晶体管的长度只有0.00000004m,将0.00000004用科学记数法表示为()A.4X108B.4X10"C.0.4X108D.- 4X1083.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4B.5C.6D.94.下列各式由左边到右边的变形,是因式分解的是()A.3x(x+y)+3x2+3xyB.- 2x2- 2xy=-2x(x+y)C.(x+5)(x- 5)=/-25D.j+x+l=x(x+1)+15.如图,下列说法中,正确的是()A.因为匕4+匕。

=180°,所以AD//BCB.因为NC+ZD=180°,所以A3〃CQC.因为ZA+ZD=180°,所以A8〃C£>D.因为ZA+/C=180°,所以AB//CD6.如图,直线a〃仇将一个直角三角尺按如图所示的位置摆放,若4=58°,则Z2的度数为()A.30°B.32°C.42°D.58°7.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和。

类卡片的张数分别为()归RA.2,3,7B.3,7,2C.2,5,3D.2,5,78.如果(-99)°,b=(-0.1)t-2,那Q,b,C三数的大小为(A.a>b>cB.c~>a>bC.C<Z?<6ZD.a>c>b二、填空题(本大题共有8小题,每小题4分,共32分)9.在ZXABC中,£4=40°,ZB=60°,则ZC=°.10.若正多边形的一个外角是40°,则这个正多边形的边数是.11.若(x-4)(x+7)=X1+mx+n,贝!]m+n=.12.若x+y=3,则2七2>的值为.13.将一副三角板如图放置,使点A在DE上,BC//DE,则ZACE的度数为14.已知单项式I*?/3与-5x2y2的积为以社时,那么m-n=.15.若4】-g+9是完全平方式,则m的值是.16.观察下列等式:32-『=8xi;52-32=8X2;72-52=8X3;请用含正整数"的等式表示你所发现的规律:.三、解答题(本大题共有9小题,共84分)17.(16分)计算:⑴(-2)2+(2018-71)0-(y)-1;(2)(-x2)3-x*x5+ (2x3)之;(3)5002-499X501;(4)(x-1)(x2-1)(i+l)・18.(6分)先化简,再求值:(x-1) 2 -2x(%- 3) +(x+2)(x-2),其中x=2.19.(8分)把下列各式分解因式:(1)2a2-50;(2)(a+b)2+4(a+b+1)20.(8分)如图,在方格纸中,每个小正方形的边长为1个单位长度,△ABC的顶点都在格点上.(1)画出△ABC先向右平移6格,再向上平移1格所得的△△'B'C;(2)画出ZXABC的AB边上的中线CZ)和高线CE;(3)AABC的面积为.21.(8分)如图,点E、F分别在48、CD上,AD分别交BF、CE于点、H、G,Z1=Z2,ZB=ZC.(1)探索BF与CE有怎样的位置关系?为什么?(2)探索ZA与ZD的数量关系,并说明理由.22.(6分)已知:a+b=3,ab=l,试求(1)(a-1)(b-1)的值;(2)a3b+ab3的值.23.(10分)(1)填空:31-3°=3‘---->X2,32-31=3'-----5X2,33- 32=3(----->X2,…(2)探索(1)中式子的规律,试写出第"个等式,并说明第n个等式成立;(3)计算:3+32+33+-+32018.24.(10分)阅读材料:若m2-2mn+2ir-8n+16=0,求m、"的值.解:'.*m2-2mn+2rT-8"+16=0,(m2- 2mn+n,')+(«2 -8«+16)=0(m- n)2+(n- 4)2=0,(m-n)2=0,("- 4)2=0,.'.n=4,m=4.根据你的观察,探究下面的问题:(1)a2+b2-4a+4=0,贝!]a=.b=.(2)己知j+2,2-2xy+6y+9=0,求见的值.(3)已知△A BC的三边长a、b、c都是正整数,且满足2a2+&2- 4a-6Z?+ll=0,求/XABC的周长.25.(12分)(1)如图1,在△ABC中,ZDBC与4CB分别为△A3。

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。

2017-2018学年度下学期七年级(下)期中数学试卷(有答案和解析)

2017-2018学年度下学期七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A.7×10﹣6B.0.7×10﹣6C.7×10﹣7D.70×10﹣82.下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.D.2a3•3a2=6a53.16m÷4n÷2等于()A.2m﹣n﹣1B.22m﹣n﹣2C.23m﹣2n﹣1D.24m﹣2n﹣14.若9x2+ax+16是完全平方式,则a应是()A.12B.﹣12C.±12D.±245.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)6.下列三条线段能构成三角形的是()A.1,2,3B.3,4,5C.7,10,18D.4,12,77.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0D.q+2p=08.下列分解因式正确的是()A.a﹣16a3=(1+4a)(a﹣4a2)B.3x﹣6y+3=3(x﹣2y)C.x2﹣x﹣2=(x+2)(x﹣1)D.﹣x2+2x﹣1=﹣(x﹣1)29.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°10.如图,有下列判定,其中正确的有()①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+∠4=180°,则AD∥BC.A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分)11.五边形的内角和是°.12.计算﹣a3•(﹣a)2=.13.(x﹣1)0=1成立的条件是.14.若x+3y﹣2=0,则2x•8y=.15.如果,那么a,b,c的大小关系为.16.若(x﹣3)(x+m)=x2+nx﹣15,则n=.17.已知x﹣y=5,(x+y)2=49,则x2+y2的值等于.18.如图a是长方形纸带,∠DEF=22°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是.三、解答题(共9小题,满分64分)19.(12分)计算(1)2a(a﹣2a3)﹣(﹣3a2)2;(2)(﹣1)2017+(π﹣3.14)0﹣()﹣2;(3)(x﹣3)(x+2)﹣(x+1)220.(8分)分解因式(1)4a2x2+16ax2y+16x2y2;(2)a2(a﹣3)﹣a+3.21.(5分)若33×9m+4÷272m﹣1的值为729,求m的值.22.(5分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.23.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.24.(6分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.25.(6分)如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=70°,则∠ABC+∠BCD=°;∠E=°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F,所添加的条件为.26.(8分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.27.(8分)已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故选:C.【点评】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】分别利用完全平方公式以及同底数幂的乘法和积的乘方计算分析得出即可.【解答】解:A、(﹣2a3)2=4a6,故此选项错误;B、(a﹣b)2=a2+b2﹣2ab,故此选项错误;C、=2a+,故此选项错误;D、2a3•3a2=6a5,此选项正确.故选:D.【点评】此题主要考查了完全平方公式的应用以及同底数幂的乘法和积的乘方等知识,熟练掌握完全平方公式的形式是解题关键.3.【分析】先转化为底数为2的幂的除法,再利用同底数幂相除,底数不变指数相减计算即可.【解答】解:16m÷4n÷2,=24m÷22n÷2,=24m﹣2n﹣1.故选:D.【点评】本题考查同底数幂的除法,转化为同底数幂的除法是解题的关键.4.【分析】利用完全平方公式的结构特征判断即可得到a的值.【解答】解:∵9x2+ax+16是完全平方式,∴a=±24.故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点评】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.6.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,不符合题意;B、3+4>5,能够组成三角形,符合题意;C、7+10<18,不能够组成三角形,不符合题意;D、4+7<12,不能够组成三角形,不符合题意.故选:B.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.8.【分析】分别利用提取公因式法以及公式法和十字相乘法分解因式进而得出答案.【解答】解:A、a﹣16a3=a(1+4a)(1﹣4a),故A错误;B、3x﹣6y+3=3(x﹣2y+1),故B错误;C、x2﹣x﹣2=(x﹣2)(x+1),故C错误;D、﹣x2+2x﹣1=﹣(x﹣1)2,故D正确.故选:D.【点评】此题主要考查了提取公因式法以及十字相乘法和公式法分解因式,熟练应用公式法分解因式是解题关键.9.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB,根据平行线的性质求出∠ABD+∠EDB,即可求出答案.【解答】解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=180°﹣∠ABC+180°﹣∠EDC=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故选:D.【点评】本题考查了平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.10.【分析】根据等角对等边,平行线的性质与判定对各小题分析判断即可得解.【解答】解:①若∠1=∠3,则AB=AD,故本小题错误;②若AD∥BC,则∠2=∠3,故本小题错误;③若∠1=∠3,AD∥BC,则∠1=∠2,正确;④若∠C+∠3+∠4=180°,则AD∥BC正确;综上所述,正确的有③④共2个.故选:B.【点评】本题考查了平行线的判定与性质,是基础题,准确识图并熟记平行线的判定方法与性质是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分)11.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.12.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:﹣a3•(﹣a)2=﹣a3•a2=﹣a5.故答案为:﹣a5.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.13.【分析】根据零指数幂:a0=1(a≠0),求解即可.【解答】解:由题意得,x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】本题考查了零指数幂,解答本题的关键是掌握a0=1(a≠0).14.【分析】原式利用幂的乘方及积的乘方运算法则变形,将已知等式变形后代入计算即可求出值.【解答】解:∵x+3y﹣2=0,即x+3y=2,∴原式=2x+3y=22=4.故答案为:4【点评】此题考查了幂的乘方与积的乘方,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.15.【分析】先依据零指数幂的性质和负整数指数幂的性质求得a,b,c的值,然后在比较大小即可.【解答】解:∵a=(﹣0.1)0=1,b=(﹣0.1)﹣1=﹣=﹣10,c=(﹣)2=,∴a>c>b.故答案为:a>c>b.【点评】本题主要考查的是零指数幂的性质和负整数指数幂的性质,掌握相关性质是解题的关键.16.【分析】首先利用多项式乘以多项式计算出(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x ﹣3m,进而可得x2+(m﹣3)x﹣3m=x2+nx﹣15,从而可得m﹣3=n,﹣3m=﹣15,再解即可.【解答】解:(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x﹣3m,∵(x﹣3)(x+m)=x2+nx﹣15,∴x2+(m﹣3)x﹣3m=x2+nx﹣15,∴m﹣3=n,﹣3m=﹣15,解得:m=5,n=2,故答案为:2.【点评】此题主要考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17.【分析】首先得出x2+y2﹣2xy=25①,进而得出x2+y2+2xy=49②,求出x2+y2的值即可.【解答】解:∵x﹣y=5,∴x2+y2﹣2xy=25①,∵(x+y)2=49,∴x2+y2+2xy=49②,∴①+②得:2(x2+y2)=74,∴x2+y2=37.故答案为:37.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.18.【分析】根据两直线平行,内错角相等可得∠EFB=∠DEF,再根据翻折的性质,图c中∠EFB 处重叠了3层,然后根据根据∠CFE=180°﹣3∠EFB代入数据进行计算即可得解.【解答】解:∵∠DEF=22°,长方形ABCD的对边AD∥BC,∴∠EFB=∠DEF=22°,由折叠,∠EFB处重叠了3层,∴∠CFE=180°﹣3∠EFB=180°﹣3×22°=114°.故答案为:114°.【点评】本题考查了翻折变换,平行线的性质,观察图形判断出图c中∠EFB处重叠了3层是解题的关键.三、解答题(共9小题,满分64分)19.【分析】(1)先计算乘法和乘方,再合并同类项即可得;(2)先计算乘方、零指数幂和负整数指数幂,再计算加减可得;(3)先计算乘法和完全平方式,再去括号、合并同类项即可得.【解答】解:(1)原式=2a2﹣4a4﹣9a4=2a2﹣13a4;(2)原式=﹣1+1﹣9=﹣9;(3)原式=x2+2x﹣3x﹣6﹣(x2+2x+1)=x2+2x﹣3x﹣6﹣x2﹣2x﹣1=﹣3x﹣7.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.20.【分析】(1)首先提取公因式4x2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式(a﹣3),再利用平方差公式分解因式即可.【解答】解:(1)4a2x2+16ax2y+16x2y2;=4x2(a2+4ay+4y2)=4x2(a+2y)2;(2)a2(a﹣3)﹣a+3=(a﹣3)(a2﹣1)=(a﹣3)(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得:m=2.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.22.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=6,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.23.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.24.【分析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.【解答】解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.25.【分析】(1)先根据三角形内角和定理求出∠FBC+∠BCF=180°﹣∠F=110°,再由角平分线定义得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.由角平分线定义得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,然后根据三角形内角和定理求出∠E =180°﹣(∠DAE+∠ADE)=110°;(2)由四边形ABCD的内角和为360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根据三角形内角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.【解答】解:(1)∵∠F=70,∴∠FBC+∠BCF=180°﹣∠F=110°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,∴∠E=180°﹣(∠DAE+∠ADE)=110°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为220°;110°;AB∥CD.【点评】本题考查了三角形、四边形内角和定理,角平分线定义,平行线的判定,等式的性质,利用数形结合,理清角度之间的关系是解题的关键.26.【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=﹣2.【点评】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.27.【分析】(1)①利用角平分线的性质求出∠ABO的度数;②利用角平分线的性质和平行线的性质求得∠OAC=60°;(2)需要分类讨论:当点D在线段OB上和点D在射线BE上两种情况.【解答】解:(1)①∵∠MON=80°,OE平分∠MON.∴∠AOB=∠BON=40°,∵AB∥ON,∴∠ABO=40°故答案是:40°;②如答图1,∵∠MON=80°,且OE平分∠MON,∴∠1=∠2=40°,又∵AB∥ON,∴∠3=∠1=40°,∵∠BAD=∠ABD,∴∠BAD=40°∴∠4=80°,∴∠OAC=60°,即x=60°.(2)存在这样的x,①如答图2,当点D在线段OB上时,若∠BAD=∠ABD,则x=40°;若∠BAD=∠BDA,则x=25°;若∠ADB=∠ABD,则x=10°.②如答图3,当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=115°,C不在ON上,舍去;综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=10°、25°、40°.【点评】本题考查的是平行线的性质,三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.。

2018-2019学年七年级下期末考试数学试卷及答案

2018-2019学年七年级下期末考试数学试卷及答案

2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。

满分100分。

考试时间90分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。

2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷 解析版

2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷  解析版

2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中恰一项是符合题目要求的)1.(2分)下方的“月亮”图案可以由如图所示的图案平移得到的是()A.B.C.D.2.(2分)某红外线遥控器发出的红外线波长为0.00000094m,将0.00000094用科学记数法表示为()A.9.4×10﹣7B.0.94×10﹣6C.9.4×10﹣6D.9.4×1073.(2分)下列各式从左边到右边的变形,是因式分解的是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.(a+b)2=a2+2ab+b2D.a2b=ab•a4.(2分)二元一次方程2x+3y+10=35的一个解可以是()A.B.C.D.5.(2分)已知a>b,则下列不等关系正确的是()A.﹣a>﹣b B.3a>3b C.a﹣1<b﹣1D.a+1<b+26.(2分)如图,在Rt△ABC中,∠A=90°,直线DE∥BC,分别交AB、AC于点D、E,若∠ADE =30°,则∠C的度数为()A.30°B.40°C.50°D.60°7.(2分)命题“若a=b,则|a|=|b|”与其逆命题的真假性为()A.该命题与其逆命题都是真命题B.该命题是真命题,其逆命题是假命题C.该命题是假命题,其逆命题是真命题D.该命题与其逆命题都是假命题8.(2分)已知AB=3,BC=1,则AC的长度的取值范围是()A.2≤AC≤4B.2<AC<4C.1≤AC≤3D.1<AC<3二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)9.(2分)计算:a5÷a2的结果是.10.(2分)计算(x+1)(2x﹣1)的结果为.11.(2分)因式分解:ab2﹣2ab+a=.12.(2分)不等式2x﹣1<3的解集是.13.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.14.(2分)如图,将一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C、D的位置,DE与BC 相交于点G.若∠1=40°,则∠2=°.15.(2分)将不等式“﹣2x>﹣2”中未知数的系数化为“1”可得到“x<1”,该步的依据是.16.(2分)不等式组的整数解为.17.(2分)如图,BE是△ABC的中线,D是AB的中点,连接DE.若△ABC的面积为1,则四边形DBCE的面积为.18.(2分)二元一次方程组有可能无解.例如方程组无解,原因是:将①×2得2x+4y=2,它与②式存在矛盾,导致原方程组无解.若关于x、y的方程组无解,则a、b须满足的条件是.三、解答题(本大题共9小题,共64分)19.(8分)计算:(1)()﹣2﹣π0+(﹣3)2(2)2m3•3m﹣(2m2)2+m6÷m220.(4分)解二元一次方程组21.(5分)先化简,再求值:(a+2b)(a﹣2b)﹣a(a﹣b),其中a=2,b=3.22.(6分)解不等式x2﹣4<0.请按照下面的步骤,完成本题的解答.解:x2﹣4<0可化为(x+2)(x﹣2)<0.(1)依据“两数相乘,异号得负”,可得不等式组①或不等式组②.(2)不等式组①无解;解不等式组②,解集为.(3)所以不等式x2﹣4<0的解集为.23.(6分)把下面的证明过程补充完整已知:如图,∠1+∠2=180°,∠C=∠D,求证:∠A=∠F.证明:∵∠1+∠2=180°(已知)∴∠C=∠ABD()∵∠C=∠D(已知),∴(等量代换).∴AC∥DF().∴∠A=∠F().24.(6分)如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=80°,求∠CAD的度数.25.(8分)课本上,我们利用数形结合思想探索了整式乘法的法则和一些公式.类似地,我们可以探索一些其他的公式.【以形助数】借助一个棱长为a的大正方体进行以下探索.(1)在其一角截去一个棱长为b(b<a)的小正方体,如图1所示,则得到的几何体的体积为.(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,因为BC=a,AB=a﹣b,CF =b,所以长方体①的体积为ab(a﹣b),类似地,长方体②的体积为,长方体③的体积为:(结果不需要化简)(3)将表示长方体①、②、③的体积的式子相加,并将得到的多项式分解因式,结果为.(4)用不同的方法表示图1中几何体的体积,可以得到的等式为.【以数解形】(5)对于任意数a、b,运用整式乘法法则证明(4)中得到的等式成立.26.(11分)某校组织学生乘汽车前往自然保护区野营.从学校出发后,汽车先以60km/h的速度在平路上行驶,后又以30km/h的速度爬坡到达目的地;返回时,汽车沿原路线先以40km/h的速度下坡,后又以60km/h的速度在平路上行驶回到学校.(1)用含x、y的代数式填表:(2)已知汽车从学校出发到到达目的地共用时5h.①若汽车在返回时共用时4h,求(1)的表格中的x、y的值.②若学校与目的地的距离不超过180km,请围绕“汽车从学校出发到到达目的地”这一过程中汽车行驶的“时间”或“路程”,提出一个能用一元一次不等式解决的问题,并写出解答过程.27.(10分)已知△ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接PB、PC,设∠PBA=x°,∠PCA=y°,∠BPC=m°,∠BAC=n°.(1)如图,当点P在△ABC内时,①若n=80,x=10,y=20,则m=;②探究x、y、m、n之间的数量关系,并证明你得到的结论.(2)当点P在△ABC外时,直接写出x、y、m、n之间所有可能的数量关系,并画出相应的图形.2017-2018学年江苏省南京市秦淮区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中恰一项是符合题目要求的)1.(2分)下方的“月亮”图案可以由如图所示的图案平移得到的是()A.B.C.D.【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【解答】解:通过图案平移得到必须与图案完全相同,角度也必须相同,观察图形可知C可以通过图案①平移得到.故选:C.【点评】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2.(2分)某红外线遥控器发出的红外线波长为0.00000094m,将0.00000094用科学记数法表示为()A.9.4×10﹣7B.0.94×10﹣6C.9.4×10﹣6D.9.4×107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2分)下列各式从左边到右边的变形,是因式分解的是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.(a+b)2=a2+2ab+b2D.a2b=ab•a【分析】直接利用因式分解的定义分别分析得出答案.【解答】解:A、ab+ac+d=a(b+c)+d,不符合因式分解的定义,故此选项错误;B、a2﹣1=(a+1)(a﹣1),正确;C、(a+b)2=a2+2ab+b2,是多项式乘法,故此选项错误;D、a2b=ab•a,不符合因式分解的定义,故此选项错误;故选:B.【点评】此题主要考查了因式分解的定义,正确把握定义是解题关键.4.(2分)二元一次方程2x+3y+10=35的一个解可以是()A.B.C.D.【分析】把x看做已知数表示出y,即可确定出方程一个解.【解答】解:方程2x+3y=25,解得:y=(25﹣2x),当x=14时,y=﹣1,则方程的一个解为,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.(2分)已知a>b,则下列不等关系正确的是()A.﹣a>﹣b B.3a>3b C.a﹣1<b﹣1D.a+1<b+2【分析】利用不等式的性质对A、B、C进行判断;利用特殊值对D进行判断.【解答】解:∵a>b,∴﹣a<﹣b,3a>3b,a﹣1>b﹣1,当a=﹣1,b=﹣2时,a+1=b+2.故选:B.【点评】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.(2分)如图,在Rt△ABC中,∠A=90°,直线DE∥BC,分别交AB、AC于点D、E,若∠ADE =30°,则∠C的度数为()A.30°B.40°C.50°D.60°【分析】根据“两直线平行,同位角相等”可得出∠B的度数,由三角形的内角和为180°可得出∠C 的度数.【解答】解:∵DE∥BC,∴∠ADE=∠B=30°.∵∠A+∠B+∠C=180°,且∠A=90°,∴∠C=180°﹣90°﹣30°=60°.故选:D.【点评】本题考查了三角形的内角和定义以及平行线的性质,解题的关键是求出∠B的度数.解决该题型题目时,根据角的计算求出角的度数,再结合平行线的性质找出结论.7.(2分)命题“若a=b,则|a|=|b|”与其逆命题的真假性为()A.该命题与其逆命题都是真命题B.该命题是真命题,其逆命题是假命题C.该命题是假命题,其逆命题是真命题D.该命题与其逆命题都是假命题【分析】写出其逆命题,进而判断即可.【解答】解:命题“若a=b,则|a|=|b|”的逆命题为:若|a|=|b|,则a=b,是假命题,而命题“若a =b,则|a|=|b|”是真命题;故选:B.【点评】本题考查命题的真假判断,考查原命题、逆命题等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.8.(2分)已知AB=3,BC=1,则AC的长度的取值范围是()A.2≤AC≤4B.2<AC<4C.1≤AC≤3D.1<AC<3【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:若A,B,C三点共线,则AC=2或=4;若A,B,C三点不共线,则根据三角形的三边关系:第三边大于两边之差1,而小于两边之和7.即:2<AC<4.故线段AC的长度的取值范围是2≤AC≤4.故选:A.【点评】此题考查三角形三边关系,注意考虑三点共线和不共线的情况.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)9.(2分)计算:a5÷a2的结果是a3.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:原式=a5﹣2=a3,故答案为:a3.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.10.(2分)计算(x+1)(2x﹣1)的结果为2x2+x﹣1.【分析】直接利用多项式乘法运算法则计算得出答案.【解答】解:(x+1)(2x﹣1)=2x2+x﹣1.故答案为:2x2+x﹣1.【点评】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.11.(2分)因式分解:ab2﹣2ab+a=a(b﹣1)2.【分析】原式提取a,再运用完全平方公式分解即可.【解答】解:原式=a(b2﹣2b+1)=a(b﹣1)2;故答案为:a(b﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(2分)不等式2x﹣1<3的解集是x<2.【分析】先移项,再合并同类项,化系数为1即可.【解答】解:移项得,2x<3+1,合并同类项得,2x<4,化系数为1得,x<2.故答案为;x<2.【点评】本题考查的是解一元一次不等式,即①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.13.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.14.(2分)如图,将一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C、D的位置,DE与BC 相交于点G.若∠1=40°,则∠2=110°.【分析】根据两直线平行,同旁内角互补,可得∠DEG+∠1=180°,∠2+∠DEF=180°,再根据翻折变换的性质可得:∠DEF=∠DEG,可得结论.【解答】解:∵四边形ABCD是矩形,∴AD∥CB,∴∠DEG+∠1=180°,∠2+∠DEF=180°,∵∠1=40°,∴∠DEG=180°﹣40°=140°,由折叠得:∠DEF=∠DEG=70°,∴∠2=180°﹣70°=110°,故答案为:110,【点评】本题考查了平行线的性质,翻折变换的性质,熟记各性质是并准确识图是解题的关键.15.(2分)将不等式“﹣2x>﹣2”中未知数的系数化为“1”可得到“x<1”,该步的依据是不等式两边都乘以(或除以)同一个负数,不等号的方向改变.【分析】由题意知不等式两边都除以﹣2,结合不等式的性质求解可得.【解答】解:该步的依据是:不等式两边都乘以(或除以)同一个负数,不等号的方向改变,故答案为:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.【点评】本题主要考查不等式的性质,解题的关键是熟练掌握不等式的基本性质.16.(2分)不等式组的整数解为0,1.【分析】分别解两个不等式,找两个不等式解集公共部分就是该不等式组的解集,再找出符合x取值范围的整数解即可.【解答】解:解不等式x﹣3(x﹣2)≥4得:x≤1,解不等式得:x>﹣1,即不等式组的解集为:﹣1<x≤1,符合x的取值范围的整数解为:0,1.故答案为:0,1.【点评】本题考查一元一次不等式组的整数解,掌握解不等式组的方法是解题的关键.17.(2分)如图,BE是△ABC的中线,D是AB的中点,连接DE.若△ABC的面积为1,则四边形DBCE的面积为.【分析】由AD=DB,AE=EC,推出DE∥CB,DE=BC,推出△ADE∽△ABC,可得=()2=,由此即可解决问题;【解答】解:∵AD=DB,AE=EC,∴DE∥CB,DE=BC,∴△ADE∽△ABC,∴=()2=,=1,∵S△ABC=,∴S△ADE∴S=.四边形DBCE【点评】本题考查三角形的面积,三角形的中位线定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(2分)二元一次方程组有可能无解.例如方程组无解,原因是:将①×2得2x+4y=2,它与②式存在矛盾,导致原方程组无解.若关于x、y的方程组无解,则a、b须满足的条件是a=且b≠2.【分析】①×2得2x+2ay=2b,根据方程组无解得出2a=3且2b≠4,解之可得.【解答】解:,①×2,得:2x+2ay=2b,由题意知2a=3且2b≠4,解得:a=且b≠2,故答案为:a=且b≠2.【点评】本题主要考查解二元一次方程组,解题的关键是理解并掌握方程组无解的情况.三、解答题(本大题共9小题,共64分)19.(8分)计算:(1)()﹣2﹣π0+(﹣3)2(2)2m3•3m﹣(2m2)2+m6÷m2【分析】(1)直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用单项式乘以单项式以及积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:(1)原式=4﹣1+9=12;(2)原式=6m4﹣4m4+m4=3m4.【点评】此题主要考查了实数运算以及单项式乘以单项式,正确化简各数是解题关键.20.(4分)解二元一次方程组【分析】利用加减消元法解二元一次方程组.【解答】解:,①×2﹣②得,3y=﹣3,解得,y=﹣1,把y=﹣1代入①得,x=3,则方程组的解为.【点评】本题考查的是二元一次方程组的解法,掌握加减法解二元一次方程组的一般步骤是解题的关键.21.(5分)先化简,再求值:(a+2b)(a﹣2b)﹣a(a﹣b),其中a=2,b=3.【分析】根据整式的运算法则即可求出答案【解答】解:当a=2,b=3时,原式=a2﹣4b2﹣a2+ab=ab﹣4b2=6﹣36=﹣30【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.(6分)解不等式x2﹣4<0.请按照下面的步骤,完成本题的解答.解:x2﹣4<0可化为(x+2)(x﹣2)<0.(1)依据“两数相乘,异号得负”,可得不等式组①或不等式组②.(2)不等式组①无解;解不等式组②,解集为﹣2<x<2.(3)所以不等式x2﹣4<0的解集为﹣2<x<2.【分析】(1)根据两数相乘,同号得正知另一个不等式组为两整式均为负数;(2)根据大小小大中间找可得;(3)由以上不等式的解集可得答案.【解答】解:(1)依据“两数相乘,异号得负”,可得不等式组①或不等式组②,故答案为:;(2)不等式组①无解;解不等式组②,解集为﹣2<x<2,故答案为:﹣2<x<2;(3)所以不等式x2﹣4<0的解集为﹣2<x<2,故答案为:﹣2<x<2.【点评】本题主要考查解一元一次不等式组,解题的关键是掌握有理数的乘法法则得出不等式组并熟练掌握解不等式组的能力.23.(6分)把下面的证明过程补充完整已知:如图,∠1+∠2=180°,∠C=∠D,求证:∠A=∠F.证明:∵∠1+∠2=180°(已知)∴∠C=∠ABD(两直线平行,同位角相等)∵∠C=∠D(已知),∴∠D=∠ABD(等量代换).∴AC∥DF(内错角相等,两直线平行).∴∠A=∠F(两直线平行,内错角相等).【分析】由∠1+∠2=180°根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1+∠2=180°(己知)∴BD∥CE(同旁内角互补,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)∵∠C=∠D(己知),∴∠D=∠ABD(等量代换).∴AC∥DF(内错角相等,两直线平行).∴∠A=∠F(两直线平行,内错角相等).故答案为:两直线平行,同位角相等;∠D=∠ABD;内错角相等,两直线平行;两直线平行,内错角相等.【点评】此题考查了平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用.24.(6分)如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=80°,求∠CAD的度数.【分析】根据角平分线定义求出∠CBE=∠EBA=34°,根据三角形外角性质求出∠C,即可求出答案.【解答】解:∵BE为△ABC的角平分线,∴∠CBE=∠EBA=34°,∵∠AEB=∠CBE+∠C,∴∠C=80°﹣34°=46°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=44°.【点评】本题考查了三角形内角和定理和三角形外角性质,能灵活运用三角形内角和定理求出角的度数是解此题的关键.25.(8分)课本上,我们利用数形结合思想探索了整式乘法的法则和一些公式.类似地,我们可以探索一些其他的公式.【以形助数】借助一个棱长为a的大正方体进行以下探索.(1)在其一角截去一个棱长为b(b<a)的小正方体,如图1所示,则得到的几何体的体积为a3﹣b3..(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,因为BC=a,AB=a﹣b,CF =b,所以长方体①的体积为ab(a﹣b),类似地,长方体②的体积为b2(a﹣b),,长方体③的体积为a2(a﹣b):(结果不需要化简)(3)将表示长方体①、②、③的体积的式子相加,并将得到的多项式分解因式,结果为(a﹣b)(a2+ab+b2).(4)用不同的方法表示图1中几何体的体积,可以得到的等式为a3﹣b3=(a﹣b)(a2+ab+b2).【以数解形】(5)对于任意数a、b,运用整式乘法法则证明(4)中得到的等式成立.【分析】(1)由大正方体的体积减去小正方体的体积可得;(2)根据长方体的体积=长×宽×高,可求体积;(3)根据提公因式法可求得;(4)根据几何体体积的不同表示方法可得:a3﹣b3=(a﹣b)(a2+ab+b2);(5)运用整式乘法法则可证明:a3﹣b3=(a﹣b)(a2+ab+b2)成立.【解答】解:(1)由题意可得:a3﹣b3.故答案为:a3﹣b3.(2)由题意可得:b2(a﹣b),a2(a﹣b)故答案为:b2(a﹣b),a2(a﹣b)(3)由题意可得:b2(a﹣b)+a2(a﹣b)+ab(a﹣b)=(a﹣b)(a2+ab+b2)故答案为:(a﹣b)(a2+ab+b2)(4)根据几何体体积的不同表示方法可得:a3﹣b3=(a﹣b)(a2+ab+b2)故答案为:a3﹣b3=(a﹣b)(a2+ab+b2)(5)∵右边=(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3.∴右边=左边∴对于任意数a、b,a3﹣b3=(a﹣b)(a2+ab+b2)成立.【点评】本题考查了因式分解的应用,立体图形,整式的乘法,利用数形结合思想解决问题是本题的关键.26.(11分)某校组织学生乘汽车前往自然保护区野营.从学校出发后,汽车先以60km/h的速度在平路上行驶,后又以30km/h的速度爬坡到达目的地;返回时,汽车沿原路线先以40km/h的速度下坡,后又以60km/h的速度在平路上行驶回到学校.(1)用含x、y的代数式填表:(2)已知汽车从学校出发到到达目的地共用时5h.①若汽车在返回时共用时4h,求(1)的表格中的x、y的值.②若学校与目的地的距离不超过180km,请围绕“汽车从学校出发到到达目的地”这一过程中汽车行驶的“时间”或“路程”,提出一个能用一元一次不等式解决的问题,并写出解答过程.【分析】(1)根据时间=即可得到结论;(2)①根据题意得方程组,列方程组即可得到结论;②根据题意列不等式即可得到结论.【解答】解:(1)由题意得,,x,,y;故答案为:,x,,y;(2)①根据题意得,,解得:;②平路的长度最多为多少?根据题意得,x+30(5﹣)≤180,解得:x≤60,答:平路的长度最多为60km.【点评】本题考查了一元一次不等式的应用,二元一次方程组的应用,正确的理解题意是解题的关键.27.(10分)已知△ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接PB、PC,设∠PBA=x°,∠PCA=y°,∠BPC=m°,∠BAC=n°.(1)如图,当点P在△ABC内时,①若n=80,x=10,y=20,则m=110;②探究x、y、m、n之间的数量关系,并证明你得到的结论.(2)当点P在△ABC外时,直接写出x、y、m、n之间所有可能的数量关系,并画出相应的图形.【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:m=n+x+y.利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题;【解答】解:(1)①∵∠A=80°,∴∠ABC+∠ACB=100°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=70°,∴∠BPC=110°,∴m=110,故答案为110.②结论:m=n+x+y.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC =180°,∴∠A+∠PBA+∠PCA=∠BPC,∴m=n+x+y.(2)x、y、m、n之间所有可能的数量关系:①如图1中,m+x=n+y;②如图2中,n=x+m+y;③如图3中,n+x=m+y;④如图4中,x=m+n+y;⑤如图5中,y=m+n+x;⑥如图6中,x+y+m+n=360°【点评】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。

2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷 ( 解析版)

2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷 ( 解析版)

2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷一、选择题(每题2分,共16分)1.(2分)若三角形的两条边的长度是4cm和10cm,则第三条边的长度可能是()A.4 cm B.5 cm C.9 cm D.14 cm2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a63.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣44.(2分)已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.﹣5C.﹣3D.55.(2分)如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,补充下哪一条件后,能应用“SAS”判定△ABC≌△DEF()A.AC=DF B.BE=CF C.∠A=∠D D.∠ACB=∠DFE6.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°7.(2分)下列命题:①同旁内角互补;②若|a|=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是()A.4个B.3个C.2个D.1个8.(2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=2x2+2x+m,则m的值是()A.﹣40B.﹣8C.24D.8二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为.10.(3分)若x n=4,y n=9,则(xy)n=.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a=.12.(3分)内角和等于外角和2倍的多边形是边形.13.(3分)若a+b=7,ab=12,则a2﹣3ab+b2=.14.(3分)如图,在△ABC中,∠A=50°,若剪去∠A得到四边形BCDE,则∠1+∠2=.15.(3分)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是.16.(3分)如图,在长方形ABCD中,AD=BC=8,BD=10,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,当t=时,△DEG和△BFG全等.三、解答题:17.(6分)计算:(1)﹣12017+(π﹣3)0+()﹣1(2)(﹣a)3•a2+(2a4)2÷a318.(9分)将下列各式分解因式:(1)6x2﹣9xy+3x(2)18a2﹣50(3)(a2+1)2﹣4a219.(3分)解二元一次方程组:20.(5分)先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.21.(8分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)记网格的边长为1,则在平移的过程中线段BC扫过区域的面积为.22.(7分)若关于x,y的二元一次方程组,(1)若x+y=1,求a的值为.(2)若﹣3≤x﹣y≤3,求a的取值范围.(3)在(2)的条件下化简|a|+|a﹣2|.23.(6分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.24.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)求证:CD∥EF;(2)若∠A=70°,求∠FEC的度数.25.(8分)为了参加学校举办的“校长杯”足球联赛,某中学八(1)班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,八(2)班学生购买了品牌A足球3个、B品牌足球1个,共花费230元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A、B两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请你帮助学校分别设计出来.26.(10分)已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分)1.(2分)若三角形的两条边的长度是4cm和10cm,则第三条边的长度可能是()A.4 cm B.5 cm C.9 cm D.14 cm【分析】据三角形三边关系定理,设第三边长为xcm,则10﹣4<x<10+4,即6<x<14,由此选择符合条件的线段.【解答】解:设第三边长为xcm,由三角形三边关系定理可知,6<x<14,∴x=9cm符合题意.故选:C.【点评】本题考查了三角形三边关系的运用.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6【分析】A、经过分析发现,a与2a2不是同类项,不能合并,本选项错误;B、利用同底数幂的除法法则,底数不变,指数相减,即可计算出结果;C、根据同底数幂的乘法法则,底数不变,指数相加,即可计算出结果;D、根据积的乘方法则,底数不变,指数相乘,即可计算出结果.【解答】解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D.【点评】此题考查了同底数幂的乘法、除法法则,以及积的乘方法则的运用,是一道基础题.3.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.【点评】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(2分)已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.﹣5C.﹣3D.5【分析】将代入2x+my=1,即可转化为关于m的一元一次方程,解答即可.【解答】解:将代入2x+my=1,得4﹣m=1,解得m=3.故选:A.【点评】此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.5.(2分)如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,补充下哪一条件后,能应用“SAS”判定△ABC≌△DEF()A.AC=DF B.BE=CF C.∠A=∠D D.∠ACB=∠DFE【分析】应用(SAS)从∠B的两边是AB、BC,∠E的两边是DE、EF分析,找到需要相等的两边.【解答】解:两边和它们的夹角对应相等的两个三角形全等(SAS).∠B的两边是AB、BC,∠E的两边是DE、EF,而BC=BE+EC、EF=EC+CF,要使BC=EF,则BE=CF.故选:B.【点评】本题考查了三角形全等的条件,判定三角形全等一定要结合图形上的位置关系,从而选择方法.6.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选:C.【点评】本题考查了三角形内角和定理,平行线的性质的应用,注意:两直线平行,同旁内角互补,题目比较好,难度适中.7.(2分)下列命题:①同旁内角互补;②若|a|=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是()A.4个B.3个C.2个D.1个【分析】根据平行线的性质,绝对值、余角、三角形外角的性质判断即可.【解答】解:①两直线平行,同旁内角互补,是假命题;②若|a|=|b|,则a=b或a=﹣b,是假命题;③同角的余角相等,是真命题;④三角形的一个外角等于与它不相邻的两个内角的和,是假命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=2x2+2x+m,则m的值是()A.﹣40B.﹣8C.24D.8【分析】利用题中的新定义化简已知等式左边,确定出m的值即可.【解答】解:根据题意得:(x+2)(x﹣1)+(x+3)(x﹣2)=2x2+2x﹣8=2x2+2x+m,则m=﹣8,故选:B.【点评】此题考查了整式的加减,弄清题中的新定义是解本题的关键.二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 6.5×10﹣6.【分析】根据科学记数法和负整数指数的意义求解.【解答】解:0.0000065=6.5×10﹣6.故答案为:6.5×10﹣6.【点评】本题考查了科学记数法﹣表示较小的数,关键是用a×10n(1≤a<10,n为负整数)表示较小的数.10.(3分)若x n=4,y n=9,则(xy)n=36.【分析】先根据积的乘方变形,再根据幂的乘方变形,最后代入求出即可.【解答】解:∵x n=4,y n=9,∴(xy)n=x n•y n=4×9=36.故答案为:36.【点评】本题考查了幂的乘方和积的乘方的应用,用了整体代入思想.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a=±6.【分析】利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵关于x的多项式x2+ax+9是完全平方式,∴a=±6,故答案为:±6【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12.(3分)内角和等于外角和2倍的多边形是六边形.【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和2倍可得方程180(n﹣2)=360×2,再解方程即可.【解答】解:设多边形有n条边,由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:六.【点评】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).13.(3分)若a+b=7,ab=12,则a2﹣3ab+b2=﹣11.【分析】直接利用完全平方公式将原式变形进而计算得出答案.【解答】解:∵a+b=7,ab=12,∴(a+b)2=49,则a2+2ab+b2=49,故a2+b2=49﹣2×12=25,则a2﹣3ab+b2=25﹣3×12=﹣11.故答案为:﹣11.【点评】此题主要考查了完全平方公式,正确记忆完全平方公式:(a±b)2=a2±2ab+b2是解题关键.14.(3分)如图,在△ABC中,∠A=50°,若剪去∠A得到四边形BCDE,则∠1+∠2=230°.【分析】根据三角形内角和为180度可得∠B+∠C的度数,然后再根据四边形内角和为360°可得∠1+∠2的度数.【解答】解:∵△ABC中,∠A=50°,∴∠B+∠C=180°﹣50°=130°,∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°.故答案为:230°.【点评】此题主要考查了三角形内角和,关键是掌握三角形内角和为180°.15.(3分)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是4.【分析】根据三角形的重心的性质得到BF=2FE,AF=2FD,根据三角形的面积公式计算即可.【解答】解:∵△ABC的中线AD,BE相交于点F,∴点F是△ABC的重心,∴BF=2FE,AF=2FD,∵△ABF的面积是4,∴△AEF的面积是2,△DBF的面积是2,∴△ABD的面积是6,∴△ABC的面积是12,∴四边形CEFD的面积=12﹣4﹣2﹣2=4,故答案为:4.【点评】本题考查的是重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16.(3分)如图,在长方形ABCD中,AD=BC=8,BD=10,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,当t=或2s时,△DEG和△BFG全等.【分析】分两种情形分别求解即可解决问题;【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC,有两种情形:①DE=BF,BG=DG,∴2t=8﹣t,t=.②当DE=BG,DG=BF时,设DG=y,则有,解得t=2,∴满足条件的t的值为或2s.故答案为或2s.【点评】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题:17.(6分)计算:(1)﹣12017+(π﹣3)0+()﹣1(2)(﹣a)3•a2+(2a4)2÷a3【分析】(1)原式利用乘方的意义,以及零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方,单项式乘除单项式法则计算即可求出值.【解答】解:(1)原式=﹣1+1+2=2;(2)原式=﹣a5+4a5=3a5.【点评】此题考查了整式的除法,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(9分)将下列各式分解因式:(1)6x2﹣9xy+3x(2)18a2﹣50(3)(a2+1)2﹣4a2【分析】(1)通过提取公因式3x进行因式分解;(2)先提公因式2,然后利用平方差公式进行因式分解;(3)利用平方差公式进行因式分解.【解答】解:(1)原式=3x(2x﹣3y+1);(2)原式=2(3a+5)(3a﹣5);(3)原式=(a+1)2(a﹣1)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.19.(3分)解二元一次方程组:【分析】解此题运用的是代入消元法.【解答】解:由方程②得x=4﹣2y,代入到方程①中得:2(4﹣2y)﹣3y=1,解得y=1,x=2,所以方程组的解为.【点评】此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.20.(5分)先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣1×6+5=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.(8分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)记网格的边长为1,则在平移的过程中线段BC扫过区域的面积为28.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用钝角三角形高线的作法得出答案;(4)利用平移的性质结合平行四边形的面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:线段CD即为所求;(3)如图所示:高线AE即为所求;(4)在平移的过程中线段BC扫过区域的面积为:4×7=28.故答案为:28.【点评】此题主要考查了平移变换以及基本作图,正确得出对应点位置是解题关键.22.(7分)若关于x,y的二元一次方程组,(1)若x+y=1,求a的值为.(2)若﹣3≤x﹣y≤3,求a的取值范围.(3)在(2)的条件下化简|a|+|a﹣2|.【分析】(1)两方程相加、再除以3可得x+y=a+,由x+y=1可得关于a的方程,解之可得;(2)两方程相减可得x﹣y=3a﹣3,根据﹣3≤x﹣y≤3可得关于a的不等式组,解之可得;(3)根据绝对值性质去绝对值符号、合并同类项即可得.【解答】解:(1),①+②,得:3x+3y=3a+1,则x+y=a+,∵x+y=1,∴a+=1,解得:a=,故答案为:;(2)①﹣②,得:x﹣y=3a﹣3,∵﹣3≤x﹣y≤3,∴﹣3≤3a﹣3≤3,解得:0≤a≤2;(3)∵0≤a≤2,∴a﹣2≤0,则原式=a+2﹣a=2.【点评】本题主要考查解二元一次方程组和一元一次不等式组的能力,根据题意得出关于a的不等式是解题的关键.23.(6分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.【分析】(1)根据已知利用HL即可判定△BEC≌△DEA;(2)根据第一问的结论,利用全等三角形的对应角相等可得到∠B=∠D,从而不难求得DF⊥BC.【解答】证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.【点评】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.24.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)求证:CD∥EF;(2)若∠A=70°,求∠FEC的度数.【分析】(1)根据垂直于同一条直线的两直线平行证明;(2)根据直角三角形的性质求出∠ACD,根据角平分线的定义求出∠ACE,结合图形求出∠DCE,根据平行线的性质解答即可.【解答】(1)证明:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)解:∵CD⊥AB,∴∠ACD=90°﹣70°=20°,∵∠ACB=90°,CE平分∠ACB,∴∠ACE=45°,∴∠DCE=45°﹣20°=25°,∵CD∥EF,∴∠FEC=∠DCE=25°.【点评】本题考查的是平行线的判定和性质、直角三角形的性质,掌握两直线平行、内错角相等、直角三角形的两锐角互余是解题的关键.25.(8分)为了参加学校举办的“校长杯”足球联赛,某中学八(1)班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,八(2)班学生购买了品牌A足球3个、B品牌足球1个,共花费230元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A、B两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请你帮助学校分别设计出来.【分析】(1)设购买一个A品牌足球需要x元,一个B品牌足球需要y元,根据“购买A品牌足球1个、B品牌足球2个,共花费210元;购买品牌A足球3个、B品牌足球1个,共花费230元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买A品牌足球m个,购买B品牌足球n个,根据总价=单价×数量,即可得出关于m、n 的二元一次方程,再结合m、n均为非负整数,即可得出各购买方案.【解答】解:(1)设购买一个A品牌足球需要x元,一个B品牌足球需要y元,根据题意得:,解得:.答:购买一个A品牌足球需要50元,一个B品牌足球需要80元.(2)设购买A品牌足球m个,购买B品牌足球n个,根据题意得:50m+80n=1500,∵m、n均为非负整数,∴,,,.答:学校有4种购买足球的方案,方案一:购买A品牌足球30个、B品牌足球0个;方案二:购买A 品牌足球22个、B品牌足球5个;方案三:购买A品牌足球14个、B品牌足球10个;方案四:购买A品牌足球6个、B品牌足球15个.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.26.(10分)已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是AP⊥BC;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是CF=BE+EF;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.【分析】(1)根据等腰三角形的三线合一解答;(2)证明△ABE≌△CAF,根据全等三角形的性质得到BE=AF,AE=CF,结合图形证明;(3)证明△CFP≌△AEM,根据全等三角形的性质证明;(4)根据S △ABC =S △APB +S △APC 得到d 1+d 2=,根据垂线段最短计算即可.【解答】解:(1)AP 与BC 的位置关系是AP ⊥BC , 理由如下:∵AB =AC ,点D 是BC 的中点, ∴AD ⊥BC ,当点P 与点D 重合时,AP ⊥BC , 故答案为:AP ⊥BC ; (2)CF =BE +EF ,理由如下:∵BE ⊥AP ,CF ⊥AP ,∴∠BAE +∠CAP =90°,∠ACF +∠CAP =90°, ∴∠BAE =∠ACF , 在△ABE 和△CAF 中,,∴△ABE ≌△CAF , ∴BE =AF ,AE =CF , ∴CF =AE +AF +EF =BE +EF , 故答案为:CF =BE +EF ; (3)CP =AM ,证明:∵∠BAE =∠ACF , ∴∠EAM =∠FCP , 在△CFP 和△AEM 中,,∴△CFP ≌△AEM , ∴CP =AM ;(4)S △ABC =×BC ×AD =4,由图形可知,S △ABC =S △APB +S △APC =×AP ×BE +×AP ×CF =×AP ×(d 1+d 2),∴d 1+d 2=,当AP ⊥BC 时,AP 最小,此时AP =2,∴d1+d2的最大值为=4.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年江苏省徐州市七年级(下)期中数学试卷(解析版)

2017-2018学年江苏省徐州市七年级(下)期中数学试卷(解析版)

2017-2018学年江苏省徐州市七年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是()A. B. C. D.2.近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.分解因式x2y-y3结果正确的是()A. B. C. D.5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为()A. ①②B. ①③C. ②③D. 以上都错6.如图所示,小华从A点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A. 200米B. 180米C. 160米D. 140米7.如图,△ABC的角平分线相交于点P,∠BPC=125°,则∠A的度数为()A. B. C. D.8.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A. B. C. D.二、填空题(本大题共8小题,共24.0分)9.七边形的内角和是______.10.一个等腰三角形一边长为2,另一边长为5,那么这个等腰三角形的周长是______ .11.(x-2y)2= ______ .12.分解因式:4a2-25b2=______.13.多项式x2+mx+25能用完全平方公式分解因式,则m= ______ .14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=______°.15.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=______°.16.已知3x=6,3y=9,则32x-y= ______ .三、计算题(本大题共2小题,共21.0分)17.计算(1)(2-π)0+()-2+(-2)3(2)0.5200×(-2)202(3)(-2x3)2•(-x2)÷[(-x)2]3(4)(3x-1)(x+1)18.化简求值:(3a+b)2-(3a-b)(3a+b)-5b(a-b),其中a=1,b=-2.四、解答题(本大题共7小题,共51.0分)19.因式分解(1)3x(a-b)-6y(b-a)(2)-a3+2a2-a.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.(利用网格点和三角板画图)(1)画出平移后的△A′B′C′.(2)画出AB边上的高线CD;(3)画出BC边上的中线AE;(4)若连接BB′、CC′,则这两条线段之间的关系是______ .21.看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:AD平分∠BAC.证明:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=90°,∠EGC=90° ______∴∠ADC=∠EGC(等量代换)∴AD∥EG ______∴∠1=∠3 ______∠2=∠E ______又∵∠E=∠3(已知)∴∠1=∠2 ______∴AD平分∠BAC ______ .22.四边形ABCD中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.求证:(1)∠1+∠2=90°;(2)BE∥DF.23.探索题:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1(x-1)(x4+x3+x2+x+1)=x5-1根据前面的规律,回答下列问题:(1)(x-1)(x n+x n-1+x n-2+…+x3+x2+x+1)= ______(2)当x=3时,(3-1)(32016+32015+32014+…+33+32+3+1)= ______(3)求:(22015+22014+22013+…+23+22+2+1)的值.(请写出解题过程)24.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图②中的阴影部分的面积为______ ;(2)观察图②请你写出(a+b)2,(a-b)2,ab之间的等量关系是______ ;(3)根据(2)中的结论,若x+y=4,xy=,则(x-y)2= ______ ;(4)实际上通过计算图形的面积可以探求相应的等式.如图③,你发现的等式是______ .25.如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=______°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=______°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=______°(用含α、n的代数式表示)答案和解析1.【答案】D【解析】解:由图可知,ABC利用图形的翻折变换得到,D利用图形的平移得到.故选:D.根据图形平移与翻折变换的性质解答即可.本题考查的是利用平移设计图案,熟知图形平移不变性的性质是解答此题的关键.2.【答案】C【解析】解:0.00016=1.6×10-4,故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B【解析】解:A、a3•a2=a5,故本选项错误;B、(a2b)3=a6b3,故本选项正确;C、a8÷a2=a6,故本选项错误;D、a+a=2a,故本选项错误.故选B.根据同底数幂的乘法、幂的乘方及同底数幂的除法法则,分别进行各选项的判断即可.本题考查了幂的乘方、同底数幂的乘除法及合并同类项的法则,属于基础题,掌握各部分的运算法则是关键.4.【答案】D【解析】解:x2y-y3=y(x2-y2)=y(x+y)(x-y).故选:D.首先提取公因式y,进而利用平方差公式进行分解即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.5.【答案】C【解析】解:①∠1=∠2,可判定AD∥BC,不能判定AB∥CD;②∠3=∠4,可判定AB∥CD;③AD∥BE可得∠1=∠2,再由∠D=∠B,可得∠3=∠4,可判定AB∥CD;④∠BAD+∠BCD=180°,不能判定AB∥CD;故选:C.利用内错角相等两直线平行,以及等量代换及同旁内角互补两直线平行即可得到结果.此题主要考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.6.【答案】B【解析】【分析】本题考查了多边形的外角与内角,利用多边形外角和除以一个外角得出多边形的边数是解题关键,多边形的外角和为360°,每一个外角都为20°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为20°,∴多边形的边数为360°÷20°=18,∴小华一共走了:18×10=180米.故选B.7.【答案】C【解析】解:∠1+∠2+∠BPC=180°(三角形内角和等于180°),∵∠BPC=125°,∴∠1+∠2=55°,∵BP、CP是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∴∠ABC+∠ACB=110°,∵∠ABC+∠ACB+∠A=180°,∴∠A=70°.故选C.先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的性质求出∠ABC+∠ACB的度数,由三角形内角和定理即可求出答案.本题考查的是三角形内角和定理及角平分线的性质,属较简单题目.8.【答案】A【解析】解:延长AE交CD于F,∵AB∥CD,∠A=115°,∴∠AFD=65°,又∵∠AED是△DEF的外角,∠E=80°,∴∠CDE=80°-65°=15°.故选:A.先延长AE交CD于F,根据AB∥CD,∠A=115°,即可得到∠AFD=65°,再根据∠AED是△DEF的外角,∠E=80°,即可得到∠CDE=80°-65°=15°.本题主要考查了平行线的性质以及三角形外角性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.9.【答案】900°【解析】解:七边形的内角和是:180°×(7-2)=900°.故答案为:900°.由n边形的内角和是:(n-2)•180°,将n=7代入即可求得答案.此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为(n-2)•180°是解此题的关键.10.【答案】12【解析】解:分两种情况:当腰为3时,2+2<5,所以不能构成三角形;当腰为5时,2+5>5,所以能构成三角形,周长是:2+5+5=12.故答案为:12.题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.【答案】x2-4xy+4y2【解析】解:原式=x2-4xy+4y2.故答案为:x2-4xy+4y2.原式利用完全平方公式展开后即可得到结果.本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.12.【答案】(2a+5b)(2a-5b)【解析】解:原式=(2a+5b)(2a-5b),故答案为:(2a+5b)(2a-5b)原式利用平方差公式分解即可.此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.13.【答案】±10【解析】解:∵多项式x2+mx+25能用完全平方公式分解因式,∴m=±10,故答案为:±10利用完全平方公式的结构特征判断即可确定出m的值.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.14.【答案】80【解析】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.本题考查了平行线的性质,三角板的知识,比较简单,熟记性质是解题的关键.15.【答案】110【解析】解:由折叠可得∠3=180°-2∠2=180°-110°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°-70°=110°,故答案为:110.由折叠可得∠3=180°-2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.此题主要考查了翻折变换和平行线的性质,关键是掌握两直线平行,同旁内角互补.16.【答案】4【解析】解:32x-y=32x÷3y=(3x)2÷3y=36÷9=4,故答案为:4.根据同底数幂的除法,幂的乘方,可得答案.本题考察了同底数幂的除法,熟记法则并根据法则计算是解题关键.17.【答案】解:(1)原式=1+9-8=2;(2)原式=[0.5×(-2)]200×(-2)2=1×4=4;(3)原式=4x6•(-x2)÷x6=-4x2;(4)原式=3x2+3x-x-1=3x2+2x-1.【解析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式逆用积的乘方及同底数幂的乘法法则计算即可得到结果;(3)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;(4)原式利用多项式乘以多项式法则计算即可得到结果.此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=9a2+6ab+b2-9a2+b2-5ab+5b2=ab+7b2,当a=1,b=-2,原式=-2+28=26.【解析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)3x(a-b)-6y(b-a)=3x(a-b)+6y(a-b)=3(a-b)(x+2y);(2)-a3+2a2-a=-a(a2-2a+1)=-a(a-1)2.【解析】(1)利用提公因式法分解因式即可求解;(2)利用提公因式法提取-a,再根据完全平方公式分解因式求解.此题主要考查了提公因式法与公式法,关键是注意观察式子特点,找准分解因式的方法,要分解彻底.20.【答案】平行且相等【解析】解:(1)△A′B′C′如图所示;(2)AB边上的高线CD如图所示;(3)BC边上的中线AE如图所示;(4)这两条线段之间的关系是平行且相等.故答案为:平行且相等.(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)根据三角形的高线的定义结合图形作出即可;(3)根据三角形的中线的定义结合图形作出即可;(4)根据平移的性质解答.本题考查了利用平移变换作图,平移的性质,三角形的高线的定义,三角形的中线的定义,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.【答案】(垂直的定义);(同位角相等,两直线平行);(两直线平行,内错角相等);(两直线平行,同位角相等);(等量代换);(角平分线定义)【解析】证明:∵AD⊥BC于D,EG⊥BC于G(已知),∴∠ADC=90°,∠EGC=90°(垂直的定义),∴∠ADC=∠EGC(等量代换),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∠2=∠E(两直线平行,同位角相等),又∵∠E=∠3(已知),∴∠1=∠2 (等量代换),∴AD平分∠BAC(角平分线的定义),故答案为:(垂直的定义);(同位角相等,两直线平行);(两直线平行,内错角相等);(两直线平行,同位角相等);(等量代换);(角平分线的定义).根据垂直得出∠ADC=∠EGC,根据平行线的判定得出AD∥EG,根据平行线的性质得出∠1=∠3,∠2=∠E,求出∠1=∠2,即可得出答案.本题考查了平行线的性质和判定,角平分线定义等知识点,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.【答案】证明:(1)∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【解析】本题主要考查了平行线的判定与性质,关键是掌握四边形内角和为360度,同位角相等,两直线平行.(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.23.【答案】x n+1-1;32017-1【解析】解:(1)∵(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,∴(x-1)(x n+x n-1+…x+1)=x n+1-1.故答案是:x n+1-1;(2)当x=3时,(3-1)(32016+32014+32013+…+33+32+3+1)=32017-1,故答案是:32017-1;(3)(2-1)(22015+22014+…+22+2+1)=22016-1.(1)根据平方差公式和多项式的乘法运算法则进行计算即可得解.(2)把x=3,n=2016代入(1)中的等式进行求值;(3)根据(1)中得到的规律,在所求的代数式前添加(2-1),利用平方差公式进行计算即可.此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.24.【答案】(b-a)2;(a+b)2-(a-b)2=4ab;7;(a+b)•(3a+b)=3a2+4ab+b2 【解析】解:(1)阴影部分为边长为(b-a)的正方形,所以阴影部分的面积(b-a)2,故答案为:(b-a)2;(2)图2中,用边长为a+b的正方形的面积减去边长为b-a的正方形等于4个长宽分别a、b的矩形面积,所以(a+b)2-(a-b)2=4ab,故答案为:(a+b)2-(a-b)2=4ab;(3)∵(x+y)2-(x-y)2=4xy,而x+y=4,x•y=,∴42-(x-y)2=4×,∴(x-y)2=7,故答案为:7;(4)边长为(a+b)与(3a+b)的矩形面积为(a+b)(3a+b),它由3个边长为a的正方形、4个边长为a、b的矩形和一个边长为b的正方形组成,∴(a+b)•(3a+b)=3a2+4ab+b2.故答案为:(a+b)•(3a+b)=3a2+4ab+b2.(1)阴影部分为边长为(b-a)的正方形,然后根据正方形的面积公式求解;(2)在图2中,大正方形有小正方形和4个矩形组成,则(a+b)2-(a-b)2=4ab;(3)由(2)的结论得到(x+y)2-(x-y)2=4xy,再把x+y=4,x•y=得到(x-y)2=7;(4)观察图形得到边长为(a+b)与(3a+b)的矩形由3个边长为a的正方形、4个边长为a、b的矩形和一个边长为b的正方形组成,则有(a+b)•(3a+b)=3a2+4ab+b2.本题考查了完全平方公式的几何背景:利用面积法证明完全平方公式(a-b)2=a2-2ab+b2.25.【答案】(1)①45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC-∠BAD=45°+α-α=45°;(2)30;(3)【解析】解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA-∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC-∠BAD=45°+α-α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC-∠BAD=30°+α-α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC-∠BAD=+β-β=,故答案为:.(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD=∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=+β,由∠D=∠ABC-∠BAD得出答案.本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。

2017-2018学年沪科版七年级下册期末数学试卷含答案解析

2017-2018学年沪科版七年级下册期末数学试卷含答案解析

2017-2018学年沪科版七年级下册期末数学试卷含答案解析2017-2018学年七年级(下)期末数学试卷一、选择题1.在实数0.1,0.2,√2,0.中,无理数的个数是()A。

2个 B。

1个 C。

3个 D。

4个2.下列图形中,不能通过其中一个四边形平移得到的是()A。

B。

C。

D。

3.下列运算正确的是()A。

(2a^2)^3=8a^6 B。

-a^2b^2×3ab^3=-3a^3b^5C。

a^2+=-1 D。

a^2•=-14.某种计算机完成一次基本运算的时间约为0.xxxxxxxx3秒,把数据0.xxxxxxxx3用科学记数法表示为()A。

0.3×10^-8 B。

0.3×10^-9 C。

3×10^-8 D。

3×10^-95.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为()A。

20x/12+20(x/5)=1200 B。

20x/12+2(x/5)=1200C。

20x/15+20(x/5)=1200 D。

20x/15+2(x/5)=12006.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A。

∠1=∠3 B。

∠5=∠4 C。

∠5+∠3=180° D。

∠4+∠2=180°7.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为()A。

26cm B。

52cm C。

78cm D。

104cm8.如图,长方形ABCD的周长为16,以长方形四条边为边长向外作四个正方形,若四个正方形面积之和为68,则长方形ABCD的面积为()A。

12 B。

15 C。

18 D。

209.观察下列等式:a1=n,a2=1-n,a3=1-n,a4=1-n,…根据其蕴含的规律可得()A。

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(

A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(

A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?

专练09(几何题)-2019~2020学年下学期七年级期末考点必杀200题(人教版)(解析版)

专练09(几何题)-2019~2020学年下学期七年级期末考点必杀200题(人教版)(解析版)

专练09(几何题)(20道)1.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数.小明的思路是:如图2,过 P 作 PE AB ,通过平行线性质,可得 5060110APC ∠=+=.问题迁移:(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.【来源】北京市朝阳外国语学校2019-2020学年七年级下学期5月阶段性测试数学试题【答案】(1)∠CPD=∠α+∠β,理由见解析;(2)①当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;②当点P 在B 、O 两点之间时,∠CPD=∠α−∠β【解析】(1)∠CPD=αβ∠+∠,理由如下:如图3,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE +∠CPE=αβ∠+∠;(2)①当点P 在A 、M 两点之间时,∠CPD=βα∠-∠,理由如下:如图4,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠EPD ,β∠=∠CPE ,∴∠CPD=∠CPE −∠EPD=βα∠-∠;②当点P 在B 、O 两点之间时,∠CPD=αβ∠-∠,理由如下:如图5,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE −∠CPE=αβ∠-∠,综上所述,当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;当点P 在B 、O 两点之间时,∠CPD=∠α−∠β.【点睛】本题主要考查了在平行线性质及判定的综合运用,熟练掌握相关概念是解题关键.2.(1)如图1,AB ∥CD ,点M 为直线AB ,CD 所确定的平面内的一点,若∠A =105︒+α,∠M =108︒-α,请直接写出∠C 的度数 ;(2)如图2,AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点,点E 在直线CD 上,AN 平分∠PAB ,射线AN 的反向延长线交∠PCE 的平分线于M ,若∠P =30︒,求∠AMC 的度数;(3)如图3,点P 与直线AB ,CD 在同一平面内,AN 平分∠PAB ,射线AN 的反向延长线交∠PCD 的平分线于M ,若∠AMC =180︒-12∠P ,求证:AB ∥CD .【来源】湖北省武汉市外国语学校2019-2020学年七年级下学期期中数学试题【答案】(1)147C ∠=︒;(2)105AMC ∠=︒;(3)证明过程见解析【解析】解:(1)如图,连接AC ,在AMC 中,180MAC MAC MCA ∠+∠+∠=︒,∵AB ∥CD ,180BAC ACD ∴∠+∠=︒,180180360BAM M MCD ∴∠+∠+∠=︒+︒=︒,∵∠A =105︒+α,∠M =108︒-α,∴105(108367)014a a MCD ︒++︒⎡⎤∠=︒-=︒⎣⎦-;(2)如图,延长BA 与CP 交于Q ,记CQ 和AM 交于点H ,∵AN 平分∠PAB ,BAN PAN ∴∠=∠,1802QAP BAN ∴∠=︒-∠,∵∠P =30︒,∴3018022102CQA P QAP BAN BAN ∠=∠+∠=︒+︒-∠=︒-∠,30MHC NHP NAP P BAN ∠=∠=∠-∠=∠-︒,∵AB ∥CD ,2102ECQ CQA BAN ∴∠=∠=︒-∠,∵CM 平分∠PCE ,()11210210522MCH ECP BAN BAN ∴∠=∠=⨯︒-∠=︒-∠,180AMC MHC MCH ∠=︒-∠-∠,()18030(105)105AMC BAN BAN ∴∠=︒-∠-︒-︒-∠=︒; (3)如图,连接AC ,则180PAC PCA P ∠+∠=︒-∠,180MAC MCA M ∠+∠=︒-∠,∵∠AMC =180︒-12∠P , 12MAC MCA P ∴∠+∠=∠, 11802MAC MCA PAC PCA P ∴∠+∠+∠+∠=︒-∠, 即11802PAM PCM P ∠+∠=︒-∠, ∵AN 平分∠PAB ,MC 平分∠PCD ,,BAM PAM DCM PCM ∴∠=∠∠=∠,11802BAM DCM P ∴∠+=︒-∠, 1118018022BCA DCA P P ∴∠+∠=︒-∠+∠=︒, ∴AB ∥CD .【点睛】本题考查的平行线及三角形的综合知识,在这里要注意添加根据题意添加合适的辅助线,这里需要用到三角形的内角和、平行四边形的性质、角平分线的性质以及对顶角等综合性质,难度稍大.3.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒. (2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系; (3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.【来源】湖北省武汉市青山区武钢实验学校2019-2020学年七年级下学期期中数学试题【答案】(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【解析】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.4.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.【来源】重庆市西南大学附属中学校2018-2019学年七年级下学期期中数学试题【答案】(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【解析】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P ,1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠,322∠=∠∴.又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒. 5.已知//AB CD ,点M 为平面内一点.(1)如图1,ABM ∠和DCM ∠互余,小明说过M 作//MP AB ,很容易说明BM CM ⊥。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)

【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)

2017-2018学年七年级数学上册期末模拟题一、选择题:1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A.0.34×108B.3.4×106 C.34×106D.3.4×1072.如图是一个正方体,则它的表面展开图可以是()3.一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( )A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.下列方程中,以-2为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-15.计算1-(-2)的正确结果是( )A.-2 B.-1 C.1 D.36.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xy C.3y2﹣2y2=1 D.3x2+2x=5x37.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A.1个B.2个C.3个D.4个8.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2B.-1 C,0 D,211.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元12.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是()A.2015 B.1036 C.518 D.259二、填空题:13.x,y,z在数轴上的位置如图所示,则化简|x-y|+|z-y|的结果是______.14.18.36°= °′″.15.如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。

苏科版江苏省苏州市张家港市2017-2018学年七年级(下)期末数学试卷(含解析)

苏科版江苏省苏州市张家港市2017-2018学年七年级(下)期末数学试卷(含解析)

2017-2018学年江苏省苏州市张家港市七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列计算结果正确的是()A.x+2y=3xy B.x2•x3=x6C.x6÷x3=x2D.(﹣x2y)2=x4y22.(3分)用科学记数法表示0.0000204结果正确的是()A.2.04×10﹣3B.2.04×10﹣4C.2.04×10﹣5D.2.04×10﹣6 3.(3分)如图,数轴上所表示关于x的不等式组的解集是()A.x≥2B.x>2C.x>﹣1D.﹣1<x≤2 4.(3分)如图,AB∥CD,AD平分∠BAC,且∠D=30°,则∠C的度数为()A.80°B.100°C.120°D.140°5.(3分)已知是方程x﹣ky=1的解,那么k的值为()A.﹣1B.1C.D.﹣6.(3分)“对顶角相等”的逆命题是()A.如果两个角是对顶角,那么这两个角相等B.如果两个角相等,那么这两个角是对顶角C.如果两个角不是对顶角,那么这两个角不相等D.如果两个角不相等,那么这两个角不是对顶角7.(3分)若二项式4a2+ma+1是一个含a的完全平方式,则m等于()A.4B.4或﹣4C.2D.2或﹣28.(3分)若(a+b)2=7,(a﹣b)2=3,则a2+b2﹣3ab的值为()A.4B.3C.2D.09.(3分)如图,AB∥CD,∠1=110°,∠ECD=70°,∠E的大小是()A.30°B.40°C.50°D.60°10.(3分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.(3分)计算:2x(x﹣y)=.12.(3分)一个多边形的内角和是外角和的4倍,那么这个多边形是边形.13.(3分)已知m+n=5,mn=3,则m2n+mn2=.14.(3分)若a m=2,a n=8,则a2m+n=.15.(3分)若实数x,y满足,则代数式2x+3y﹣2的值为.16.(3分)若不等式组只有一个整数解,则m的取值范围是.17.(3分)如图,把△ABC沿EF翻折,叠合后的图形如图.若∠A=60°,∠1=95°,则∠2的度数为.18.(3分)如图,在△ABC中,E是BC上的一点,EC=2BE,D是AC的中点,AE与BD交于点F,△ABC的面积为12,设△ADF,△BEF的面积分别为S1,S2,则S1﹣S2的值为.三、解答题(本大题共10小题,共76分。

江苏省徐州市2017-2018学年度第二学期期末考试七年级数学试卷(Word版含答案)

江苏省徐州市2017-2018学年度第二学期期末考试七年级数学试卷(Word版含答案)

江苏省徐州市2017-2018学年度第二学期期末考试七年级数学试题(提醒:本卷共4页,满分为140分,考试时间为90分钟:答案全部涂、写在答题卡上,写在本卷上无效.)一、选择题(每小题3分,共24分)1.方程组⎩⎨⎧+-=+5211y x x 的解是A ·⎩⎨⎧=-=31y x ,B ·⎩⎨⎧=-=32y x , C.⎩⎨⎧==12y x D ·⎩⎨⎧-==12y x 2.人体中成熟红细胞的平均直径为0.0000077m ,用科学记数法可表示为A .7.7×510-mB .7.7×106-mC .77×106-mD .77x106-m3.下列计算正确的是A .4a 2一2a 2=2B .(a 2)3=a 5C . a 3.a 6=a 9D .(2a 2)33=6a 64.三角形的两边长分别为3和4,其第三条边的长度可能是A .5B .7C .9D .105.若a <b ,则下列不等式正确的是A .a —2<b —2B .a —b >0C .2a >2b D .—2a <—2b 6.下列命题中,假命题是A .直角三角形的两个锐角互余 ’B .平行于同一条直线的两条直线平行C .平移前后的两图形中,两组对应点的连线平行D .平移前后的两图形中,两组对应点的连线相等7.如图,下列条件:①∠B+∠BCD =180°;②∠1=∠2; ③∠3=∠4; ④∠B =∠5. 其中,能判定AB ∥CD 的条件有A .1个B .2个C .3个D .4个8.某校组织21名教师外出培训,宾馆可选2人间或3人间租住,若所租房间均需住满, 则不同的租房方案共有A .5种B .4种C .3种D .2种七年级数学试题 第1页(共4页)七年级数学试题 第1页(共4页)二、填空题(每小题4分,共32分)9.不等式x -3≤2的解集是__________.10.在同一平面内,若a_⊥b ,b ⊥c ,则a 与c 的位置关系是__________·11.若x m =4,y m =8,则(xy)m =____________·12.命题:“若两直线平行,则同旁内角互补”的逆命题是_________·13.若n 边形的内角和为540°,则n =__________·14.已知⎩⎨⎧=-=21y x 是二元一次方程m x +2y =1的解,则m =____________·15.若(a+b)2=16,(a 一b)2=14,则代数式a 2b 2的值为__________·16.如图,在△ABC 中,点D 、E 分别为BC 、AD 的中点,EF =2FC ,若△ABC 的面积为12cm2,则△BEF 的面积为_____________cm2.三、解答题(共84分)(第16题) 17.(本题8分)计算:(1)-12018+(π—3)0+(21)1-;( 2)9a ·a 2·a 3+ (一2a 2)3一a 8÷a 2.18.(本题8分)把下列各式分解因式:(1)2x 2—4x +2;(2)a 4一16.19. (本题8分)先化简,再求值:(a+3)(a 一3) +(a+2)2一4(a 一1),其中a =-21.20. (本题10分)(1)解方程组:⎩⎨⎧=-=+124y x y x ;(2)解不等式组:1213143 ⎪⎩⎪⎨⎧--+≥+x x xx .七年级数学试题 第2页(共4页)21. (本题6分)完成下面的证明.已知:如图,∠1=∠ACB ,∠2=∠3,FH ⊥AB 于H求证:CD ⊥AB .证明:∵FH ⊥AB(已知),∴ ∠BHF =_______°(垂直的定义).∵∠1=∠ACB (已知),∴DE ∥BC (_________).∵∠2=∠BCD (_________).∵∠2=∠3 (已知),∴∠3=__________ (__________).∴CD ∥FH(__________).∴∠BDC =∠BHF =90°(两直线平行,同位角相等).∴CD ⊥AB(垂直的定义).22.(本题12分’已知关于x 、y 的方程组⎩⎨⎧-=-+=+5412k y x k y x(1)求方程组的解(用含k 的代数式表示); ·(2)若方程组的解满足:x <0.且y >0,求k 的取值范围.23.(本题8分)如图,已知AB ∥DE ,∠ABC 、∠CED 的平分线交于点F .探究∠BFE 与 ∠BCE 之间的数量关系,并证明你的结论·(第23题)七年级数学试题 第3页(共4页)24.(本题12分)某公司有A、,B两种型号的客车11辆;它们的载客量(不含司机)、日租金、车辆数如下表所示.已知这11辆客车满载时可搭载乘客350人.A型客车B型客车载客量(人/辆) 40 25日租金(元/辆) 320 200车辆数(辆) a b(1)求a、b的值;(2)某校七年级师生周日集体参加社会实践,计划租用A、B两种型号的客车共6辆,且租车总费用不超过1700元.、’①最多能租用A型客车多少辆? 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年江苏省徐州市七年级(下)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)方程组的解是()A.B.C.D.2.(3分)人体中成熟红细胞的平均直径为,用科学记数法可表示为()A.×10﹣5m B.×10﹣6m C.77×10﹣5m D.77×10﹣6m3.(3分)下列计算正确的是()A.4a2﹣2a2=2 B.(a2)3=a5C.a3?a6=a9D.(2a2)3=6a64.(3分)三角形的两边长分别为3和4,其第三条边的长度可能是()A.5 B.7 C.9 D.105.(3分)若a<b,则下列不等式正确的是()A.a﹣2<b﹣2 B.a﹣b>0 C.>D.﹣2a<﹣2b6.(3分)下列命题中,假命题是()A.直角三角形的两个锐角互余B.平行于同一条直线的两条直线平行C.平移前后的两图形中,两组对应点的连线平行D.平移前后的两图形中,两组对应点的连线相等7.(3分)如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=5,其中能判定AB∥CD的条件的个数有()A.1 B.2 C.3 D.48.(3分)某校组织21名教师外出培训,宾馆可选2人间或3人间租住,若所租房间均需住满,则不同的租房方案共有()A.5种B.4种C.3种D.2种二、填空题(每小题4分,共32分)9.(4分)不等式x﹣3≤2的解集是.10.(4分)在同一平面内,若a⊥b,b⊥c,则a与c的位置关系是.11.(4分)若x m=4,y m=8,则(xy)m=.12.(4分)命题:“两直线平行,则同旁内角互补”的逆命题为.13.(4分)已知n边形的内角和为540°,则n=.14.(4分)已知是是二元一次方程mx+2y=1的解,则m.15.(4分)若(a+b)2=16,(a﹣b)2=14,则代数式a2+b2的值为.16.(4分)如图,在△ABC中,已知点D、E分别为BC、AD的中点,EF=2FC,且△ABC的面积为12,则△BEF的面积为.三、解答题(共84分)17.(8分)计算:(1)﹣12018+(π﹣3)0+()﹣1;(2)9a?a2?a3+(﹣2a2)3﹣a8÷a2.18.(8分)把下列各式分解因式:(1)2x2﹣4x+2;(2)a4﹣16.19.(8分)先化简,再求值:(a+3)(a﹣3)+(a+2)2﹣4(a﹣1),其中a=﹣.20.(10分)(1)解方程组:(2)解不等式组:21.(6分)填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=.∵∠1=∠ACB(已知)∴DE∥BC()∴∠2=.()∵∠2=∠3(已知)∴∠3=.()∴CD∥FH()∴∠BDC=∠BHF=.°()∴CD⊥AB.22.(12分)已知关于x、y的方程组(1)求方程组的解(用含k的代数式表示);(2)若方程组的解满足:x<0且y>0,求k的取值范围.23.(8分)如图,已知AB∥DE,∠ABC、∠CED的平分线交于点F.探究∠BFE与∠BCE之间的数量关系,并证明你的结论.24.(12分)某公司有A、B两种型号的客车共11辆,它们的载客量(不含司机)、日租金、车辆数如下表所示,已知这11辆客车满载时可搭载乘客350人.A型客车B型客车载客量(人/辆)4025日租金(元/辆)320200车辆数(辆)a b(1)求a、b的值;(2)某校七年级师生周日集体参加社会实践,计划租用A、B两种型号的客车共6辆,且租车总费用不超过1700元.①最多能租用A 型客车多少辆②若七年级师生共195人,写出所有的租车方案,并确定最省钱的租车方案.25.(12分)甲、乙两长方形的边长如图所示(m 为正整数),其面积分别为S 1、S 2.(1)用“<”或“>”号填空:S 1 S 2;(2)若一个正方形与甲的周长相等.①求该正方形的边长(用含m 的代数式表示);②若该正方形的面积为S 3,试探究:S 3与S 1的差(即S 3﹣S 1)是否为常数若为常数,求出这个常数;如果不是,请说明理由;(3)若满足条件0<n <|S 1﹣S 2|的整数n 有且只有10个,求m 的值.2017-2018学年江苏省徐州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)方程组的解是()A.B.C.D.【分析】用加减法解方程组即可.【解答】解:,(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选:D.【点评】此题考查二元一次方程组的解法.2.(3分)人体中成熟红细胞的平均直径为,用科学记数法可表示为()A.×10﹣5m B.×10﹣6m C.77×10﹣5m D.77×10﹣6m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:,用科学记数法可表示为×10﹣6m.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列计算正确的是()A.4a2﹣2a2=2 B.(a2)3=a5C.a3?a6=a9D.(2a2)3=6a6【分析】本题考查了积的乘方和幂的乘方进行计算即可.【解答】解:A、4a2﹣2a2=2a2,错误;B、(a2)3=a6,错误;C、a3?a6=a9,正确;D、(2a2)3=8a6,错误;故选:C.【点评】本题考查了积的乘方和幂的乘方,掌握运算法则是解题的关键.4.(3分)三角形的两边长分别为3和4,其第三条边的长度可能是()A.5 B.7 C.9 D.10【分析】设第三边长为x,根据三角形的三边关系定理可得4﹣3<x<4+3,确定x的范围后可得答案.【解答】解:设第三边长为x,由题意得:4﹣3<x<4+3,即1<x<7,故选:A.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.5.(3分)若a<b,则下列不等式正确的是()A.a﹣2<b﹣2 B.a﹣b>0 C.>D.﹣2a<﹣2b【分析】直接利用不等式的基本性质进而分析得出答案.【解答】解:A、将a<b的两边都减去2可得a﹣2<b﹣2,此选项正确;B、将a<b的两边都减去b可得a﹣b<0,此选项错误;C、将a<b的两边都除以2可得<,此选项错误;D、将a<b的两边都乘以﹣2可得﹣2a>﹣2b,此选项错误;故选:A.【点评】此题主要考查了不等式的性质,正确掌握不等式的性质是解题关键.6.(3分)下列命题中,假命题是()A.直角三角形的两个锐角互余B.平行于同一条直线的两条直线平行C.平移前后的两图形中,两组对应点的连线平行D.平移前后的两图形中,两组对应点的连线相等【分析】利用平移的性质、直角三角形的性质及平行线的判定等知识逐一判断后即可确定正确的选项.【解答】解:A、直角三角形的两个锐角互余是真命题;B、平行于同一条直线的两条直线平行是真命题;C、平移前后的两图形中,两组对应点的连线平行(或在同一条直线上),是假命题;D、平移前后的两图形中,两组对应点的连线相等是真命题;故选:C.【点评】本题考查了命题与定理的知识,解题的关键是利用平移的性质、直角三角形的性质及平行线的判定解答.7.(3分)如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=5,其中能判定AB∥CD的条件的个数有()A.1 B.2 C.3 D.4【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BDC=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选:C.【点评】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.8.(3分)某校组织21名教师外出培训,宾馆可选2人间或3人间租住,若所租房间均需住满,则不同的租房方案共有()A.5种B.4种C.3种D.2种【分析】设住3人间的需要x间,住2人间的需要y间,根据总人数是21人,列出不定方程,解答即可.【解答】解:设住3人间的需要有x间,住2人间的需要有y间,3x+2y=21,所以,,,,所以4种不同的安排.故选:B.【点评】此题主要考查了二元一次方程的应用,解答此题的关键是,根据题意,设出未知数,列出不定方程,再根据不定方程的未知数的特点解答即可.二、填空题(每小题4分,共32分)9.(4分)不等式x﹣3≤2的解集是x≤5 .【分析】根据不等式的性质移项,再合并同类项即可.【解答】解:x﹣3≤2,x≤5,故答案为:x≤5【点评】本题考查了解一元一次不等式的应用,主要根据不等式的性质解答是关键.10.(4分)在同一平面内,若a⊥b,b⊥c,则a与c的位置关系是a∥c.【分析】根据在同一平面内,垂直于同一条直线的两条直线互相平行即可求解.【解答】解:∵a⊥b,b⊥c,∴a∥c.故答案为a∥c.【点评】本题考查了平行线的判定:在同一平面内,垂直于同一条直线的两条直线互相平行.11.(4分)若x m=4,y m=8,则(xy)m=32 .【分析】根据(ab)n=a n b n(n是正整数)进行计算即可.【解答】解:(xy)m=x m y m=4×8=32,故答案为:32.【点评】此题主要考查了积的乘方,关键是掌握积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.12.(4分)命题:“两直线平行,则同旁内角互补”的逆命题为同旁内角互补,两直线平行.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“两直线平行,同旁内角互补”的题设是“两直线平行”,结论是“同旁内角互补”,故其逆命题是“同旁内角互补,两直线平行”.故应填:同旁内角互补,两直线平行.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.(4分)已知n边形的内角和为540°,则n= 5 .【分析】根据多边形的内角和公式(n﹣2)?180°列式计算即可得解.【解答】解:根据题意得,(n﹣2)?180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边形的内角和公式,熟记公式是解题的关键.14.(4分)已知是是二元一次方程mx+2y=1的解,则m=3 .【分析】将代入二元一次方程得出关于m的方程,解之可得.【解答】解:将代入二元一次方程mx+2y=1,得:﹣m+4=1,解得:m=3,故答案为:=3.【点评】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.15.(4分)若(a+b)2=16,(a﹣b)2=14,则代数式a2+b2的值为15 .【分析】已知等式利用完全平方公式化简,整理即可求出所求.【解答】解:(a+b)2=a2+2ab+b2=16①,(a﹣b)2=a2﹣2ab+b2=14②,①+②得:2(a2+b2)=30,则a2+b2=15.故答案为:15【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.16.(4分)如图,在△ABC中,已知点D、E分别为BC、AD的中点,EF=2FC,且△ABC的面积为12,则△BEF的面积为 4 .【分析】由点D是BC的中点,可得△ABD的面积=△ACD的面积=△ABC,由E是AD的中点,得出△ABE的面积=△DBE的面积=△ABC的面积,进而得出△BCE的面积=△ABC的面积,再利用EF =2FC,求出△BEF的面积.【解答】解:∵点D是BC的中点,∴△ABD的面积=△ACD的面积=△ABC=6,∵E是AD的中点,∴△ABE的面积=△DBE的面积=△ABC的面积=3,△ACE的面积=△DCE的面积=△ABC的面积=3,∴△BCE的面积=△ABC的面积=6,∵EF=2FC,∴△BEF的面积=×6=4,故答案为:4.【点评】本题主要考查了三角形的面积,解题的关键是根据中点找出三角形的面积与原三角形面积的关系.三、解答题(共84分)17.(8分)计算:(1)﹣12018+(π﹣3)0+()﹣1;(2)9a?a2?a3+(﹣2a2)3﹣a8÷a2.【分析】(1)先计算乘方、零指数幂和负整数指数幂,再计算加减可得;(2)先计算同底数幂相乘、积的乘方与积的乘方、同底数幂的除法,再合并同类项即可得.【解答】解:(1)原式=﹣1+1+2=2;(2)原式=9a6﹣8a6﹣a6=0.【点评】本题主要考查实数的混合运算与整式的运算,解题的关键是掌握零指数幂和负整数指数幂、同底数幂的乘法、积的乘方与积的乘方、同底数幂的除法的运算法则.18.(8分)把下列各式分解因式:(1)2x2﹣4x+2;(2)a4﹣16.【分析】(1)原式提取2,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2;(2)原式=(a2+4)(a2﹣4)=(a2+4)(a+2)(a﹣2).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.(8分)先化简,再求值:(a+3)(a﹣3)+(a+2)2﹣4(a﹣1),其中a=﹣.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=a2﹣9+a2+4a+4﹣4a+4=2a2﹣1,当a=﹣时,原式=﹣1=﹣.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(10分)(1)解方程组:(2)解不等式组:【分析】(1)利用加减法求解即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:(1),①﹣②,得3y=3,解得y=1.将y=1代入①,得x=3.所以原方程组的解为;(2),由①,得x≥﹣2,由②,得x<﹣1.所以不等式组的解集为﹣2≤x<﹣1.【点评】本题考查了一元一次不等式组的解法,掌握求解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.也考查了解二元一次方程组.21.(6分)填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=90°.∵∠1=∠ACB(已知)∴DE∥BC(同位角相等,两直线平行)∴∠2=∠BCD.(两直线平行,内错角相等)∵∠2=∠3(已知)∴∠3=∠BCD.(等量代换)∴CD∥FH(同位角相等,两直线平行)∴∠BDC=∠BHF=90 .°(两直线平行,同位角角相等)∴CD⊥AB.【分析】先根据垂直的定义得出∠BHF=90°,再由∠1=∠ACB得出DE∥BC,故可得出∠2=∠BCD,根据∠2=∠3得出∠3=∠BCD,所以CD∥FH,由平行线的性质即可得出结论.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角角相等)∴CD⊥AB.故答案为:90°;同位角相等,两直线平行;∠BCD;两直线平行,内错角相等;∠BCD;等量代换;同位角相等,两直线平行;90;两直线平行,同位角角相等.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.22.(12分)已知关于x、y的方程组(1)求方程组的解(用含k的代数式表示);(2)若方程组的解满足:x<0且y>0,求k的取值范围.【分析】(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x<0且y>0可得关于k的不等式组,解之可得.【解答】解:(1),①+②,得:2x=6k﹣4,解得:x=3k﹣2,①﹣②,得:2y=﹣2k+6,解得:y=﹣k+3,所以方程组的解为;(2)∵x<0且y>0,∴,解得:k<.【点评】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.23.(8分)如图,已知AB∥DE,∠ABC、∠CED的平分线交于点F.探究∠BFE与∠BCE之间的数量关系,并证明你的结论.【分析】过点C作直线MN∥AB,然后证明MN∥DE,根据平行线的性质可得∠DEC=∠ECN,∠ABC=∠BCN,进而可得∠BCE=∠ABC+∠DEC,同理可得∠BFE=∠ABF+∠DEF,在根据角平分线的性质可得∠ABC=2∠ABF,∠DEC=2∠DEF,等量代换可得答案.【解答】解:过点C作直线MN∥AB,∵AB∥DE,MN∥DE,∴MN∥DE,∴∠DEC=∠ECN,∵AB∥DE,∴∠ABC=∠BCN,∴∠BCE=∠ABC+∠DEC,同理∠BFE=∠ABF+∠DEF,∵∠ABC、∠CED的平分线交于点F,∴∠ABC=2∠ABF,∠DEC=2∠DEF,∴∠BCE=2∠ABF+2∠DEF=2∠BFE.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.24.(12分)某公司有A、B两种型号的客车共11辆,它们的载客量(不含司机)、日租金、车辆数如下表所示,已知这11辆客车满载时可搭载乘客350人.A型客车B型客车载客量(人/辆)4025日租金(元/辆)320200车辆数(辆)a b(1)求a、b的值;(2)某校七年级师生周日集体参加社会实践,计划租用A、B两种型号的客车共6辆,且租车总费用不超过1700元.①最多能租用A型客车多少辆②若七年级师生共195人,写出所有的租车方案,并确定最省钱的租车方案.【分析】(1)根据题意结合这11辆客车满载时可搭载乘客350人,得出方程组求出答案;(2)根据(1)中所求,进而利用租用A、B两种型号的客车共6辆,且租车总费用不超过1700元,七年级师生共195人,进而得出不等式求出答案.【解答】解:(1)由题意,得:,解得:;(2)①设计划租用A型客车x辆,则计划租用B型客车(6﹣x)辆,由题意得:320x+200(6﹣x)≤1700,解得:x≤,∵x取非负整数,∴x的最大值为4,答:最多能租用4辆A型客车;②根据题意,得:40x+25(6﹣x)≥195,解得:x≥3,∴3≤x≤,∵x为正整数,∴x=3,4,所以所有的租车方案为;方案一:A3,B3,费用为:3×320+3×200=1560元;方案一:A4,B2,费用为:4×320+2×200=1680元;所以最省钱的租车方案为:租用A型客车3辆,B型客车3辆.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.25.(12分)甲、乙两长方形的边长如图所示(m为正整数),其面积分别为S1、S2.(1)用“<”或“>”号填空:S1>S2;(2)若一个正方形与甲的周长相等.①求该正方形的边长(用含m 的代数式表示);②若该正方形的面积为S 3,试探究:S 3与S 1的差(即S 3﹣S 1)是否为常数若为常数,求出这个常数;如果不是,请说明理由;(3)若满足条件0<n <|S 1﹣S 2|的整数n 有且只有10个,求m 的值.【分析】(1)根据矩形的面积公式计算即可;(2)根据矩形和正方形的周长和面积公式即可得到结论;(3)根据题意得出关于m 的不等式,解之即可得到结论.【解答】解:(1)图①中长方形的面积S 1=(m +7)(m +1)=m 2+8m +7,图②中长方形的面积S 2=(m +4)(m +2)=m 2+6m +8,比较:∵S 1﹣S 2=2m ﹣1,m 为正整数,m 最小为1∴2m ﹣1≥1>0,∴S 1>S 2;故答案为:>;(2)①2(m +7+m +1)÷4=m +4;②S 3﹣S 1=(m +4)2﹣(m 2+8m +7)=9定值;(3)由(1)得,|S 1﹣S 2|=|2m ﹣1|,且m 为正整数,2m ﹣1>0,∴S 1﹣S 2=2m ﹣1,∵0<n <|S 1﹣S 2|,∴0<n <2m ﹣1,由题意得10<2m ﹣1≤11, 解得:<m ≤6,∵m 为正整数,∴2m ﹣1=11,∴m =6.【点评】本题主要考查整式的混合运算,解题的关键是掌握多项式乘多项式、矩形的性质、正方形的性质等知识.。

相关文档
最新文档