基本不等式说课定稿.ppt

合集下载

基本不等式课件(共43张PPT)

基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。

基本不等式ppt课件

基本不等式ppt课件
对于任意实数a和b,$(a-b)^2 \geq 0$,即 $a^2 - 2ab + b^2 \geq 0$。
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明

基本不等式说课课件

基本不等式说课课件

(2)等号成立的条件:当且仅当 a=b 时取等号.
3.基本不等式的意义
(1)代数意义 正数a,b的算术平均数不小于它的几何平均数 (2)几何意义; 圆的半径不小于圆内半弦长
作业 课后探讨
学校计划用一段长为36m的篱笆围成一矩形菜园,问 这个矩形的长、宽各为多少时,菜园的面积最大,最大 面积是多少?
其他同学交流,
运用此图标能较容易的观 察出面积之间的关系
大正方形面积的大小关系
教学情景设计
问题
设计意图
重要不等式的证明
a2 b2 2a b
当且仅当a=b时等号成立
关于不等式的证明学生 可以先独立完成再与小 组其他同学交流 证明方 法不唯一
教学情景设计
问题
设计意图
如果a>0,b>0, 用 a,a, bb 分别代
知识目标
探索基本不等式的证明过程及简单应用


1.注重学生自主、合作、探究学习;
目 标
能力目标
2.培养学生观察、猜想、归纳等思维 能力
情感目标
培养学生的学习兴趣及获取结论 的体验和感悟
教学重难点
教学重点:应用数形结合的思想理解不等式 教学难点:基本不等式几何意义的挖掘
教法说明
我采用探究式教学,启发引导学生去观 察、思考、归纳,并采取小组式教学,注重 学生自主、合作、探究学习,为学生创造一 个个“科学前沿”,要重视孩子获取知识的 体验和感悟。
例题的简单变式 检查学生的学习应用情况
3. 若实数x,y, 且x+y=5, 则 3x 3y 的最小值是()
A. 10 B.6 3 C.4 6 D. 18 3
本课小结
1.重要不等式

2.2 基本不等式(第一课时)课件(共16张PPT).ppt

2.2 基本不等式(第一课时)课件(共16张PPT).ppt

课后练习
1.已知x>0,求 值.
2x
1 x
的最小值及相应的x
2.已知x,y>0,x+2y=4,求 xy的最大值及相 应的x,y值.
3.已知0<x<1,求x(1-x)的最大值及相应 的x值.
可以得到:
a b 2 a(b a 0,b 0)
通常把上式写作:
ab a b(a 0,b 0)(当且仅当a=b时,等号成立) 2
↑ 几何 平均值
↑ 算术 平均值
通常称上述不等式为基本不等式.其中,a b 叫做正数a,b的 2
算术平均数, ab 叫做正数a,b的几何平均数.
代数解释:两个正数的算术平均数不小于它们的几何平均数。
积定和最小,和定积最大
课堂练习
已知x,y都是正数,且x≠y,求证:
(1) x y 2 yx
2 2xy xy
x y
证明:1因为x, y 0,所以 x ,y 0,
yx
所以 x y 2 x y 2 y x yx
当且仅当 x y ,即x y时,等号成立. yx
又x y,
所以 x y 2. yx
注意 ⇔ ⇒ ⇔
4
可乘性 a>b,c>0⇒ac>bc; a>b,c<0⇒ac<bc c的符号
5 同向可加性 a>b,c>d⇒a+c>b+d
6
同向同正可乘 性
a>b>0,c>d>0⇒ac>bd
7
可乘方性 a>b>0⇒an>bn(n∈N*,n≥2)
8
可开方性 a>b>0⇒ n a n b (n∈N*,n≥2)
只要把上述过程倒过来,就是我们熟悉的方法了。

基本不等式(共43张)ppt课件

基本不等式(共43张)ppt课件
15
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。

基本不等式说课课件

基本不等式说课课件
3. 计算判别式$Delta=b^2-4ac$。 4. 根据$Delta$的值,确定不等式的解集形式。
解法步骤与技巧
01
解题技巧
02
03
04
当$Delta<0$时,不等式无实 数解。
当$Delta=0$时,不等式有一 个重根,解集为单元素集。
当$Delta>0$时,不等式有两 个不相等的实数根,解集为区
CHAPTER 05
分式不等式和绝对值不等式 解法
分式不等式解法
转化思想
将分式不等式转化为整式不等式 ,通过通分、去分母等步骤,简
化问题。
分类讨论
根据分母的符号进行分类讨论,分 别解出不同情况下的解集。
注意事项
在解题过程中,要注意分母不能为 零,以及符号的变化。
绝对值不等式解法
定义法
根据绝对值的定义,将绝对值不 等式转化为分段函数,分别求解
典型例题解析
例题1
解不等式$ax^2 - (a + 1)x + 1 < 0$。
解析
首先观察不等式,发现含有参数$a$,且$a$的取值会影响不等式的性质和解集。因此,需要对$a$进行分类讨论 。当$a = 0$时,不等式变为$-x + 1 < 0$,解得$x > 1$;当$a neq 0$时,不等式可化为$(ax - 1)(x - 1) < 0$ ,根据$a$的正负和大小关系分别讨论不等式的解集。综合各类情况,得到原不等式的解集。
过程与方法
通过问题导入、探究学习、合作交流 等方式,引导学生主动参与学习和思 考,培养学生的自主学习能力和合作 精神。
教学方法与手段
教学方法
采用启发式教学法、探究式教学法、讲练结合法等多种教学方法,注重学生的 主体性和能动性。

基本不等式ppt课件

基本不等式ppt课件

a+b
当且仅当a
2
= b时,等号成立.
思考:如图,是圆的直径,点是上一点, = ,
D
= .过点作垂直于的弦,连接,.
a+b
ab
2
半径 = _______________,则
= _______________
与大小关系怎么样?
a+b

(1)当积xy等于定值P时,

2
证明:∵ x,y都是正数, ∴
1 2
时,积有最大值 .
4
xy.
p, ∴ x + y ≥ 2 p,
积定和最小
当且仅当x = y时,上式等号成立.
于是,当x = y时,和x + y有最小值2 p.
(2)当和x + y等于定值S时, xy ≤
S
,∴xy
2
当且仅当x = y,上式等号成立.
2
2
∴x +
4
]
2−x
4
,得x
2−x
4
的最大值为−2.
x−2
+ 2 ≤ −2 (2 − x)(
4
)
2−x
+ 2 = −2,
= 0或x = 4(舍去),即x = 0时等号成立.
练习巩固
练习2:已知0 < < 1,求 1 − 的最大值.
解:∵0 < < 1,∴ 1 − x > 0
∴ 1 − ≤
∴x +
4
x+4
− 4 ≥ 2 (x + 4) ∙
4
,即x
x+4
4
的最小值为0.

《基本不等式》课件

《基本不等式》课件
《基本不等式》PPT课件
欢迎来到《基本不等式》PPT课件!在本次课程中,我们将深入探讨基本不等 式的概述、定义、性质以及证明方法。通过应用实例,我们将进一步理解如 何求最小值和进行定理证明。让我们一起展望本课件带来的新知识和启示!
基本不等式的概述
基本不等式是数学中的重要概念,用于比较两个数或者两个代数式的大小关 系。它是我们学习不等式的基石,掌握基本不等式对于解决更复杂的不等式 问题至关重要。
乘法性
将不等式的两边同时乘以 (或除以)相实数时, 不等式的符号反向。
基本不等式的证明方法
数学归纳法
通过归纳假设和递推关系,逐 步证明基本不等式的成立。
代数证明
将基本不等式转化为代数表达 式,通过代数运算和推导来证 明。
几何证明
借助几何图形和几何关系,通 过几何推理来证明基本不等式。
应用实例1:求最小值
基本不等式在求解数学问题时扮演着重要角色。通过对一些实际问题的分析,我们可以利用基本不等式的性质 来找到函数的最小值,有效地解决各种优化问题。
应用实例2:定理证明
基本不等式被广泛运用于数学定理的证明中。通过灵活应用基本不等式的定 义和性质,我们可以推导出一系列重要的数学结论和定理,拓展数学领域的 边界。
基本不等式的定义
基本不等式指的是一类具有特定形式的不等式,其中常见的包括平均数不等 式、均方根不等式和柯西-施瓦茨不等式。这些定义为我们解决各种数学问题 提供了强大的工具。
基本不等式的性质
单调性
基本不等式满足严格单调性, 即当其中的变量递增(或递 减)时,不等式的符号也相 应地改变。
加法性
将不等式的两边同时加上 (或减去)相同的实数时, 不等式的符号保持不变。
总结和展望

人教版必修五数学《基本不等式》PPT课件

人教版必修五数学《基本不等式》PPT课件

人教版必修五数学《基本不等式》PPT课件•课程介绍与目标•基本不等式概念及性质•基本不等式证明方法•基本不等式应用举例目录•拓展与提高:含参数的基本不等式问题•课程总结与回顾01课程介绍与目标人教版必修五数学教材基本不等式章节内容概述与前后知识点的联系教材版本及内容概述教学目标与要求知识与技能目标掌握基本不等式的形式、性质和应用方法,能够运用基本不等式解决简单的最值问题。

过程与方法目标通过探究、归纳、证明等过程,培养学生的数学思维和逻辑推理能力。

情感态度与价值观目标让学生感受数学的美和严谨性,培养学生的数学兴趣和数学素养。

本节课共分为引入、新课、巩固练习、小结四个部分。

课程安排时间分配重点与难点引入部分5分钟,新课部分30分钟,巩固练习部分15分钟,小结部分5分钟。

本节课的重点是基本不等式的形式、性质和应用方法;难点是运用基本不等式解决复杂的最值问题。

030201课程安排与时间02基本不等式概念及性质不等式定义及表示方法不等式的定义用不等号连接两个解析式所组成的数学式子。

不等式的表示方法常见的不等号有“<”、“>”、“≤”、“≥”和“≠”,用于表示两个量之间的大小关系。

对称性传递性可加性同向正值可乘性基本不等式性质探讨01020304当a=b 时,a<b,b>a 同时成立,反之亦然。

若a>b 且b>c ,则a>c ;若a<b且b<c ,则a<c 。

同向不等式可以相加,即若a>b 且c>d ,则a+c>b+d 。

若a>b>0且c>d>0,则ac>bd 。

特殊情况下的基本不等式均值不等式对于任意两个正数a和b,有√(ab)≤(a+b)/2,当且仅当a=b 时取等号。

柯西不等式对于任意两组实数a1, a2, …, an和b1, b2, …, bn,有(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)≥(a1b1+a2b2+...+anbn)^2,当且仅当ai/bi为常数时取等号。

基本不等式ppt课件

基本不等式ppt课件
基本不等式

我们都知道,把一个物体放在天平的一个盘
子上,在另一个盘子上放砝码使天平平衡,
可称得物体的质量为 .

如果是一架臂长不同(其他因素不计)的天平,
那么 并非物体的实际质量.
问题1.怎样用两臂长不同的天平称物体的质量?

问题1.怎样用两臂长不同的天平称物体的质量?

取平均值:
ab
导果”的证明思路.
ab
如果 a,b是正数,那么 ab
(当且仅当 a b时,等号成立).
2
当 a,b 0 时,不等式仍然成立.
基本不等式:
ab
ab
(a,b 0)
2
对于正数 a,b ,
ab
算术平均数:
2
几何平均数: ab
两个正数的几何平均数不大于算术平均数
问题3.设 a,b为正数,证明下列不等式成立:
2
证法2: 对于正数 a,b ,
ab
要证 ab

2
只要证 2 ab a b ,
只要证 0 a 2 ab b ,
只要证 0 ( a b ) 2 .
ab
因为最后一个不等式成立,所以 ab
成立,
2
当且仅当 a b时,等号成立.
分析法:是从结论出发,分析确定不等式成立的
2

1
( a b)2
2

ab
- ab 0
因为 ( a b ) 0, 所以
2
ab
得 ab
(当且仅当 a b时,等号成立).
2
2
ab
如果 a,b是正数,那么 ab
(当且仅当 a b时,等号成立).

《基本不等式》PPT课件

《基本不等式》PPT课件

一元一次不等式的解法
解一元一次不等式的基本步骤
01
去分母、去括号、移项、合并同类项、系数化为1。
解一元一次不等式需要注意的事项
02
在解不等式的过程中,要确保每一步都是等价变换,不改变不
等式的解集。
解一元一次不等式的实例分析
03
通过具体例子展示解一元一次不等式的详细步骤和注意事项。
一元一次不等式的应用举例
课程目标与要求
知识与技能
掌握不等式的定义、性质及基本 不等式,能够运用所学知识解决
相关问题。
过程与方法
通过探究、归纳、证明等方法, 培养学生的数学思维和解决问题
的能力。
情感态度与价值观
培养学生对数学的兴趣和热爱, 认识到数学在解决实际问题中的 重要作用。同时,通过基本不等 式的学习,培养学生的严谨、细
排序不等式的概念与性质
性质 反序和不大于乱序和,乱序和不大于顺序和。
当且仅当$a_i = b_i$($i = 1, 2, ldots, n$)时,反序和等于顺序和。
切比雪夫不等式的概念与性质
概念:对于任意两个实数序列$a_1, a_2, ldots, a_n$和$b_1, b_2, ldots, b_n$,若它们分别单调不 减和单调不增,则有$frac{1}{n}sum_{i=1}^{n}a_i cdot frac{1}{n}sum_{i=1}^{n}b_i leq frac{1}{n}sum_{i=1}^{n}a_ib_i$。
1 2
一元一次不等式在生活中的应用 例如比较两个数的大小、判断某个数是否满足某 个条件等。
一元一次不等式在数学中的应用 例如在解方程、求函数值域等问题中,经常需要 利用一元一次不等式进行求解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计意图
(1)要证明证过③程课,只本要上证是以(填空a 形- 式b出)现2 的,0学④生能够独立完成,这
也能进一步培养学生的自学能力,符合课改精神;
(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式
的(章理中3显()解 会然强此;重种,调B点证④D基讲E明是解本A方C成,不法此立等是处的“式有分.当取必析要且等法让仅的”学当条,生在a件初=选“步b修时了等教,解”不材。)的等《式推中理的与等证明号》成一立.
4.2、运用分析法证明基本不等式
如果 a>0,b>0 , 用 和 ( a - b)2 0
也可写成
分别代替a,b。可以得到
(强调基本不等式成立的前提条件“正”)(演绎推理)
问题4:你能用不等式的性质直接推导吗?
要证
a+b 2 ab ①
只要证
a+b ab

2
要证② ,只要证 a+b-2 ab 0 ③
(3)有利于培养学生团结合作的精神。
时间安排:
引入约5分钟 证明基本不等式约10分钟 几何意义约10分钟 知识应用约15分钟 小结约5分钟
五、板书设计






a

b
a2 +b2

a2 b2 2ab
分析法证明
基本不等式
几何解释
例题讲解
例2
小结 作业
4.3、不等式的几何解释
如图,AB是圆的直径,C是AB上任一
点,AC=a,CB=b,过点C作垂直于AB
D
的弦DE,连AD,BD,则CD= ,半径

问题5: 你能用这个图得出基本不 A
B C
等式的几何解释吗? (学生积极思
考设,计通意图过几何画板帮助学生理解)
几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解 数学,是数学学习中的重要方面。只有做到了直观上的理解,才E 是真
例2:(1)把36写成两个正数的积,当两个正数 取什么值时,它们的和最小?
(2)把18写成两个正数的和,当两个正数取什 设么计值意时图 ,它们的积最大?
(1)此题目利用基本不等式求最值,包含正用,逆用,体现了基
本(不(2等)式让强的学调应利生用用价分不值组等;式合求作最值、的探关究键点完:成“正)”“定”“等”;
1.2、 教学目标
知识目标: 探索基本不等式的证明过程;会 用
基本不等式解决最值问题。
能力目标: 培养学生观察、试验、归纳、判断、
猜想等思维能力。
情感目标:
培养学生严谨求实的科学态度,体 会数与形的和谐统一,领略数学的 应用价值,激发学生的学习兴趣和 勇于探索的精神。
1.3、教学重点、难点
根据课程标准制定如下的教学重点、难点
勃利高中高一数学组:惠春红
说教材
说教法

说学法

说教学设计
说板书设计
一、说教材
◆本节课在教材中的地位和作用 ◆教学目标 ◆教学重点、难点
1.1本节教材的地位和作用
“基本不等式” 是必修5的重点内容, 在课本封面上就体现出来了。它是在学 完“不等式的性质”、“不等式的解法” 及“线性规划”的基础上对不等式的进 一步研究.在不等式的证明和求最值过 程中有着广泛的应用。求最值又是高考 的热点。同时本节知识又渗透了数形结 合、化归等重要数学思想,有利于培养 学生良好的思维品质。
正的理解。
4.4、基本不等式的应用
例1.证明 a+1 2 a (a 0)
x+ 1 2(x>0) x
设计意图 (1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能 够练习“分析法”证明不等式的过程;
(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是 一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式; (3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生 理解不等式的内涵。



方形的面积为S=__, A
Rt△ABE,Rt△BCF,Rt△CDG,
H a
E b
Rt△ADH是全等三角形,它们
a2 +b2

的面积之和是S’=_
从图形中易得,s≥s’,即
Байду номын сангаас
a2 b2 2ab

a2 b2 2ab
问题1:它们有相等的情况吗?何时相等? 问题2:当 a,b为任意实数时,上式还成立吗?(学生积 极思考,通过几何画板帮助学生理解)
重点:
应用数形结合的思想理解不等式,并 从不同角度探索基本不等式。
难点: 基本不等式的内涵及几何意义的挖掘,
用基本不等式求最值。
二、说教法
本节课借助几何画板,使用多媒体辅助 进行直观演示.采用启发式教学法创设问题 情景,激发学生开始尝试活动.运用生活 中的实际例子,让学生享受解决实际问题的 乐趣. 课堂上主要采取对比分析;让学生边 议、边评;组织学生学、思、练。通过师 生和谐对话,使情感共鸣,让学生的潜能、 创造性最大限度发挥,使认知效益最大。 让学生爱学、乐学、会学、学会。
一般地,对于任意实数a、b,我们有 a2 b2 2ab
设当计且意仅图当(重点强调)a=b时,等号成立(合情推理) (1)运用2002年国际数学家大会会标引入,能让学生进一步 体问会题中3国:数你学能的给历出史它悠的久证,明感吗受?数(学让与学生生活独的立联证系明。) (2)运用此图标能较容易的观察出面积之间的关系,引入基 本不等式很直观。 (3)三个思考题为学生创造情景,逐层深入,强化理解.
三、说学法
为更好的贯彻课改精神,合理的对学生 进行素质教育,在教学中,始终以学生主 体,教师为主导.因此我在教学中让学生 从不同角度去观察、分析,指导学生解决 问题,感受知识的形成过程,培养学生数 形结合的意识和能力,让学生学会学习。
四、说教学设计
◆运用2002年国际数学家大会会标引入 ◆运用分析法证明基本不等式 ◆不等式的几何解释 ◆基本不等式的应用
4.1、运用2002年国际数学家大会会标引入
如图,这是在北京召开的第24 届国际数学家大会会标.会标根据 中国古代数学家赵爽的弦图设计的 ,颜色的明暗使它看上去象一个风 车,代表中国人民热情好客。(展 示风车)
正方形ABCD

中,AE⊥BE,BF⊥CF,CG⊥DG,
DH⊥AH,设AE=a,BE=b,则正
相关文档
最新文档