《电学元件伏安特性的测量》实验报告附页

合集下载

测伏安特性实验报告

测伏安特性实验报告

测伏安特性实验报告实验目的1. 了解伏安特性的基本概念2. 学习使用伏安表进行电压电流测量3. 掌握绘制伏安特性曲线的方法实验器材1. 直流电源2. 可调电阻箱3. 伏安表4. 电线实验原理伏安特性曲线描述了电阻器或其他电子器件的电压与电流之间的关系。

在伏安特性曲线中,横轴表示电流,纵轴表示电压。

通过绘制伏安特性曲线,可以了解电阻器或电子器件的性能特点,包括线性范围、最大工作电压、最大工作电流等。

实验步骤1. 按照电路图连接实验器材,将直流电源与伏安表通过可调电阻箱连接。

2. 将可调电阻箱的电阻设为最大值,打开直流电源,调节电压使其达到所需电压范围。

3. 逐步减小可调电阻箱的电阻值,记录电压与电流的数值。

4. 根据记录的数值,绘制伏安特性曲线。

实验结果根据实验步骤记录的数据,绘制了如下的伏安特性曲线。

![伏安特性曲线](通过观察伏安特性曲线,可以得到以下结论:1. 电阻器的电流与电压呈线性关系。

2. 当电阻器电压超过一定范围时,电流的变化几乎不可感知。

3. 电阻器具有一定的最大工作电压和最大工作电流。

实验分析根据实验结果可以发现,伏安特性曲线能够直观地反映电阻器的性能特点。

在伏安特性曲线中,线性范围表示了电阻器的稳定性和精度,而最大工作电压和最大工作电流则代表了电阻器的安全工作范围。

通过实验,我们可以选择适合实际应用的电阻器,以保证电路的正常工作。

实验总结通过本次实验,我们了解了伏安特性的基本概念,并学会了使用伏安表进行电压电流测量。

我们还通过绘制伏安特性曲线,了解了电阻器的性能特点。

实验过程中,我们注意到了电阻器的线性范围、最大工作电压和最大工作电流的重要性,这些都是选择合适电阻器的关键因素。

我们应该在实际应用中综合考虑这些因素,以确保电路的正常工作和安全性。

参考文献1. 张华著.《电工技术基础实验指导书》.清华大学出版社,2010.2. 郑炳智编著.《电工基础与电子技术实验教程》.电子工业出版社,2013.。

伏安特性的测定实验报告-伏安特性曲线实验报告思考与讨论

伏安特性的测定实验报告-伏安特性曲线实验报告思考与讨论

电工实验报告本学院:班级:学号:姓名:指导教师:成绩:、实验名称:伏安特性的测定二、实验目的:1、熟悉电工综合实验装置;2、掌握几种元件的伏安特性的测试方法,加深对线性电阻元件、非线性电阻元件伏安特性的理解;3、掌握实际电压源使用调节方法;4 、学习常用直流电工仪表和设备的使用方法。

三、实验原理电路元件的伏安特性一般用该元件上的电压U 与通过该元件的电流I 之间的函数关系U=f(I) 来表示。

伏安特性以U和I分别作为纵坐标和横坐标绘制成曲线,即伏安特性曲线或外特性曲线。

电路元件的伏安特性可以用电压表、电流表测定,称为伏安测量法(伏安表法) 。

四、实验步骤及任务1、测试线性电阻R 的伏安特性曲线电路电路图:图1-1-2 测试线性电阻R 的伏安特性仿真截图:2, 测试二极管的伏安特性线路电路图:图1-1-4 测试二极管的伏安特性五、思考题:用电压表和电流表测量元件的伏安特性时,电压表可接在电流表之前或之后,两者对测量误差有何影响?实际测量时应根据什么原则选择?(画图并说明)答:伏安特性曲线,有电流表外接和内接。

当电流表外接时:由于电压表的分流作用,有欧姆定律可知,R测<R真。

所以分流越小,误差越小,所以这个适合用来测量小电阻。

即R<<Rv. 当电流表内接时:由于电流表的分压作用,由欧姆定律,R测>R真。

所以分压越少,误差越小,所以这个适合用来测量大电阻。

R>>RA.六、实验结论及收获实验结论以及数据处理:1,线性电阻的的伏安特性曲线为过原点的一条直线,也说明它为线性电阻,电压变化与电流变化是正比关系。

2,二极管的伏安特性曲线为一条曲线,所以为非线性元件。

由图可见,当加二极管上正向电压较小时,正向电流几乎等于0,只有当其两端电压超过某一数值时,正向电流才明显增大。

在此实验数据中加正向电压<0.7V 时, 电流随电压变化较缓慢,当电压超过0.7V时,电流随电压变化很快。

大学物理实验伏安特性实验报告

大学物理实验伏安特性实验报告

大学物理实验伏安特性实验报告一、实验目的1、了解电学元件伏安特性的概念和意义。

2、掌握测量电学元件伏安特性的基本方法。

3、学会使用电流表、电压表、滑线变阻器等仪器。

4、学会分析实验数据,绘制伏安特性曲线,并根据曲线得出元件的特性参数。

二、实验原理伏安特性是指电学元件两端的电压与通过它的电流之间的关系。

对于线性元件(如电阻),其伏安特性曲线是一条直线,符合欧姆定律$U = IR$;对于非线性元件(如二极管),其伏安特性曲线是非线性的。

在测量伏安特性时,通常采用限流电路或分压电路来改变元件两端的电压,从而测量不同电压下通过元件的电流。

限流电路简单,但电压调节范围较小;分压电路电压调节范围大,但电路相对复杂。

三、实验仪器1、直流电源:提供稳定的直流电压。

2、电流表:测量通过元件的电流,量程根据实验需求选择。

3、电压表:测量元件两端的电压,量程根据实验需求选择。

4、滑线变阻器:用于改变电路中的电阻,从而调节元件两端的电压。

5、待测电学元件(如电阻、二极管等)。

6、开关、导线若干。

四、实验内容与步骤1、测量线性电阻的伏安特性按照电路图连接实验电路,选择限流电路。

调节滑线变阻器,使电阻两端的电压从 0 开始逐渐增加,每隔一定电压值记录对应的电流值。

重复测量多次,以减小误差。

2、测量二极管的伏安特性按照电路图连接实验电路,选择分压电路。

正向特性测量:缓慢增加二极管两端的正向电压,记录不同电压下的电流值。

反向特性测量:逐渐增加反向电压,测量并记录反向电流值。

注意反向电压不能超过二极管的反向击穿电压。

3、数据记录设计合理的数据表格,记录测量的电压和电流值。

五、实验数据处理与分析1、线性电阻以电压为横坐标,电流为纵坐标,绘制伏安特性曲线。

根据曲线计算电阻值,与标称值进行比较。

2、二极管分别绘制正向和反向伏安特性曲线。

分析正向特性曲线,找出导通电压。

观察反向特性曲线,了解反向饱和电流和反向击穿现象。

六、实验误差分析1、仪器误差电流表、电压表的精度有限,可能导致测量误差。

电学元件的伏安特性研究实验报告

电学元件的伏安特性研究实验报告

竭诚为您提供优质文档/双击可除电学元件的伏安特性研究实验报告篇一:电学元件的伏安特性实验报告v1实验报告预习报告【实验目的】l.学习使用基本电学仪器及线路连接方法。

2.掌握测量电学元件伏安特性曲线的基本方法及一种消除线路误差的方法。

3.学习根据仪表等级正确记录有效数字及计算仪表误差。

准确度等级见书66页。

100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA)3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V)【仪器用具】直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。

从书中学习使用以上仪器的基础知识。

【实验原理】给一个电学元件通直流电,测出元件两端的电压和通过它的电流,通常以电压为横坐标、电流为纵坐标画出元件的电流和电压关系曲线,称做该元件的伏安特性曲线。

这种研究元件特性的方法叫做伏安法。

用伏安法测量电阻时,线路有两种接法,即电流表内接和电流表外接。

电流表内接,测得电阻Rx永远大于真值Rx,适于测量大电阻。

电流表外接时测得的电阻值永远小于真值,适于测量小电阻。

不同的线路会引入不同的线路误差,在实验中要根据被测电阻的大小适当地选择测量线路,减少线路误差,以求提高测量准确度。

二极管是常用的非线性元件,欧姆定律虽然不适用,电阻不再为常量,而是与元件上的电压或电流有关的变量。

钨丝灯泡也是非线性元件,加在灯泡上电压与通过灯丝的电流之间的关系为I?KV常数。

n,其中K、n是与该灯泡有关的实验数据实验1电流表内接:实验4小灯泡电流表内接实验5二极管正向偏压电流表外接二极管反向偏压电流表内接实验报告电学元件的伏安特性伏安法既可以测量线性元件的阻值,又可以测量非线性元件的伏安特性,具有测量范围宽、适应性广等优点,因此被广泛使用。

【实验目的】l.学习使用基本电学仪器及线路连接方法(:电学元件的伏安特性研究实验报告)。

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案)

实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U 作用下,测量出相应的电流I ,然后逐点绘制出伏安特性曲线I =f (U ),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源 1 台2.直流电压表 1 块3.直流电流表 1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管 1 只7.稳压二极管 1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性 按图1-2接线。

调节直流稳压电源的输出电压U ,从0伏开始缓慢地增加(不得超过10V ),在表1-1中记下相应的电压表和电流表的读数。

表1-1 测定线性电阻的伏安特性U (V ) 0 1 2 3 4 5 6 78 9 10I (mA ) 011.982.993.984.975.966.967.968.949.942.测定白炽灯泡的伏安特性将图1-2中的1kΩ线性电阻R 换成一只12V ,0.1A 的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

实验一电路元件伏安特性的测绘报告

实验一电路元件伏安特性的测绘报告

警告:本实验报告是居于模拟万用电表MF47测量所得的数据进行处理得到的。

可以模仿,切勿抄袭!实验一:电路元件伏安特性的测绘一、实验目的1、学会识别常用电路元件的方法2、掌握线性电阻、非线性电阻元件伏安特性的逐点测试法3、掌握实验装置上直流电工仪表和设备的使用方法。

二、原理说明任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系()UI=来表示,即用UfI-平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

1、线性电阻器的伏安特性曲线是一条过坐标原点的直线,如图1-1中的a曲线所示,该直线的斜率等于该电阻器的电导值。

2、一般的白炽灯泡在工作时灯丝处于高温状态,其灯丝电阻随着温度的上升而增大,通过白炽灯的电流越大,其温度越高,阻值也也大,一般灯泡的“冷电阻”与“热电阻”的阻值可相差几倍甚至几十倍,所以它的伏安特性如图1-1中的b曲线所示。

3、一般的半导体二极管是一个非线性电阻元件,其特性如图1-1中的c曲线,正向压降很小(一般鍺管约为0.2-0.3V,硅管约为0.5-0.7V),正向电流随正向压降的升高而急遽上升,而反向电压从零一直增加到十几至几十伏时,其反向电流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

4、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特别,如图1-1中的d曲线。

在反向电压开始增加时,其反向电压开始增加的时候,其反向电流几乎为零,但当反向电压增加到某一数值是(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增大,以后它的端电压将维持恒定,不再随外加的反向电压的升高而增大。

序号名称型号与规格数量备注1可调直流稳压电源0-10V 12 直流数字毫安表 13 直流数字电压表 14 二极管2AP9 15 稳压管2CW51 16 线性电阻器100Ω 1四、实验内容1、测定线性电阻器的伏安特性按图1-2接线,调节直流稳压电源的输出电压U,从0V开始缓慢地增加,一直到9V,记下相应的电压表和电流表的读数。

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

【报告】伏安特性实验报告

【报告】伏安特性实验报告

【关键字】报告伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点尝试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R 决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点尝试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

电路元件伏安特性的测绘 实验报告

电路元件伏安特性的测绘 实验报告

广东第二师范学院学生实验报告院(系)名称班别姓名专业名称学号实验课程名称 电路与电子线路实验 实验项目名称 电路元件伏安特性的测绘 实验时间实验地点 实验成绩指导老师签名一、实验目的:(1) 学会识别常用电路元件的方法;(2) 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; (3) 掌握实验台上直流电工仪表和设备的使用方法.二、实验仪器: (1) 电路实验箱一台(2) 万用表一块,2AP9二极管一个,2CW51稳压管一个,不同阻值线性电阻器若干。

三、实验内容及步骤:1.测定线性电阻器的伏安特性按图3-3接线,调节稳压电源的输出电压U,从0V 开始缓慢地增加,一直到10V ,在表3—1记下相应的电压表和电流表的读数U R 和I 。

表3-1 测定线性电阻的伏安特性U R /V 0 1 2 3 4 5 6 7 8 9 10 I/mA1。

142.183。

224.275.226。

10 7。

128.139.1410。

162.测定半导体二极管的伏安特性按图3—4接线,R 为限流电阻器。

测二极管的正向特性时,其正向电流不得超过25mA ,二极管D 的正向压降U D+可在0~0.75V 之间取值。

在0.5~0.75V 之间应多取几个测量点.做反向特性实验的时候,只需将图1—3中的二极管D 反接,且其反向电压可加到30V 左右。

表3-2 测定二极管的正向特性U D+/V 0 0。

2 0.4 0。

45 0.5 0.55 0.60 0。

65 0.70 0。

75图3-4 二极管伏安特性测试 图3-3 线性电阻伏安特性测试I/mA 0 0 0.01 0.07 0.26 0.73 2。

05 6.03 17。

85 56.0表3-3 测定二极管的反向特性U D-/V 0 -5 -10 -15 -20 -25 -30I/mA 0 0 0—0.001-0。

001-0.002 -0.0023.测定稳压二极管的伏安特性(1)正向特性实验将图3-4中的二极管1N4007换成稳压二极管2CW51,重复实验内容2中的正向测量。

电路元件的伏安特性实验报告

电路元件的伏安特性实验报告

电路元件的伏安特性实验报告
《电路元件的伏安特性实验报告》
实验目的:通过实验研究电路元件的伏安特性,探究电阻、电容和电感的电压-电流关系。

实验原理:根据欧姆定律,电阻的电压-电流关系为V=IR;电容的电压-电流关
系为I=C(dV/dt);电感的电压-电流关系为V=L(dI/dt)。

实验步骤:
1. 准备实验仪器和元件:数字万用表、电阻、电容、电感、直流电源等。

2. 搭建电路:将电路元件依次连接到直流电源和数字万用表上,形成电压-电流测量电路。

3. 测量电压-电流关系:分别改变电路中的电阻、电容和电感数值,测量它们的电压-电流关系曲线。

4. 分析实验结果:根据测量数据,绘制电压-电流曲线图,分析电路元件的伏安特性。

实验结果:通过实验测量和分析,我们得到了电阻、电容和电感的伏安特性曲线。

电阻的电压-电流关系为一条直线,电容的电压-电流关系为一条曲线,电
感的电压-电流关系为一条曲线。

结论:通过本次实验,我们深入了解了电路元件的伏安特性,掌握了电阻、电
容和电感的电压-电流关系。

这对于我们在电路设计和分析中具有重要意义,为我们深入理解电路原理打下了坚实的基础。

总结:通过本次实验,我们不仅学习了电路元件的伏安特性,还培养了动手实
验和数据分析的能力。

希望通过今后的实验学习,能够更深入地理解电路原理,
为将来的工程实践打下坚实的基础。

实验三 电学元件伏安特性测量

实验三  电学元件伏安特性测量
【 实 验 目的】
大学物理实验(郑州大学) 实验三
电学元件伏安特性测量
(1)半定量观察分压电路的调节特性; (2)测定给定电阻的阻值; (3)测定半导体二极管正反向伏安特性; (4)戴维南定理的实验验证。
【 实 验 原理】
一 、 分 压电路及其调 节特性 1、 分 压 电路的接 法
如图 3.1.1 所示,将变阻器 R 的两个固定端 A 和 B 接到直流电源 E 上,而将滑动端 C 和任一固定端(A 或 B,图中为 B)作为分压的两个输出端接至负载 RL。图中 B 端电位最低,C 端电位较高,CB 间的分压大 小 U 随滑动端 C 的位置改变而改变,U 值可用电压表来测量。变阻器的这种接法通常称为分压器接法。分 压器的安全位置一般是将 C 滑至 B 端,这时分压为零。
至电源电压之间任意值变动,增大了电压调节的范围。且负载电阻阻值越大,即 RL 和 R 的比值越大,输出 电压的线性特性越好。
二 、 测 电阻
电流表准确度等级 1.5% ,量程 Im= 5 mA,RI= 39.0 Ω,△RI= 0.6 Ω。 电压表准确度等级 1.5% ,量程 Um= 3 V 时,RV= 9.83k Ω,△RV= 0.15k Ω;量程 Um= 0.75 V 时,RV= 2.46k Ω,△RV= 0.04k Ω。 其中△I=1.5%*5mA=0.075mA;电压表使用 3V 量程时△U=1.5%*3V=0.045V;电压表使用 0.75V 量程时 △U=1.5%*0.75V=0.01125V。
更准确地求得被测电阻值 R,R 的不确定度△R 可如下计算:
/ 电流表内接时, ∆R= ( ∆U )2 + ( ∆I )2 + ( ∆RI )2 ( RI )2 [1− RI ]

《电学元件伏安特性的测量》实验报告附页

《电学元件伏安特性的测量》实验报告附页

《电学元件伏安特性的测量》实验报告(数据附页)一、半定量观察分压电路的调节特点变阻器R=470Ω二、用两种线路测电阻的对比研究电流表准确度等级1.5,量程I m=5mA,R I=8.38±0.13Ω电压表准确度等级1.5,量程U m=0.75V,R V=2.52±0.04kΩ;量程U m=3V,R V=10.02±0.15kΩ三、测定半导体二极管正反向伏安特性由于正向二极管的电阻很小,采用外接法的数据;反向电阻很大,采用内接法的数据。

四、戴维南定理的实验验证1.将9V电源的输出端接到四端网络的输入端上,组成一个有源二端网络,求出等效电动势E e和等效内阻R e。

(外接法)修正后的结果:取第二组和第七组数据计算得到:E e=2.15V R e=319.5Ω由作图可得:E e=2.3V R e=352.8Ω2.用原电路和等效电路分别加在相同负载上,测量外电路的电压和电流值。

3.理论计算。

4.讨论。

等效电动势的误差不是很大,而等效电阻却很大。

原因是多方面的。

但我认为最大的原因应该是作图本身。

所有数据的点都集中在一个很小的区域,点很难描精确,直线的绘制也显得过于粗糙,人为的误差很大。

如果对数据进行拟合,可以得到I=-3.298U+6.836,于是得到E e=2.07V,R e=303.2Ω,前者误差为11.5%,后者误差为1.1%,效果比直接读图好,因为消除了读图时人为的误差。

另外一点,仪表读数也是造成误差大的一个原因。

比如电流表没有完全指向0,电压表不足一格的部分读得很不准等等。

总的讲,实验数值和理论还是有一定偏差,不能很好的证明。

实验一 电路元件的伏安特性测试(共5页)

实验一 电路元件的伏安特性测试(共5页)

实验一 电路元件的伏安特性测试一、 实验目的1. 了解线性电阻与非线性电阻伏安特性的差别。

2. 掌握独立电源伏安特性的测量方法,加深对电压源、电流源特性的认识。

3. 掌握交直流稳压电源、台式数字万用表的使用方法。

4. 练习实验曲线的绘制。

二、实验原理简述任何一个二端元件的特性可用该元件上的端电压u 与通过该元件的电流i 之间的函数关系)(i f u =来表示,即用i u -平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

1.无源器件 (1)线性电阻器是理想元件,在任何时刻它两端的电压与其电流的关系服从欧姆定律。

线性电阻器的伏安特性曲线是一条通过坐标原点的直线,如图1.1中(a )曲线所示,该直线的斜率等于该电阻器的电阻值。

在一定的条件下,金属膜电阻器、绕线电阻器等的伏安特性近似为一直线。

(2)非线性电阻器元件的伏安特性不是一条直线,它在u —i 平面上的特性曲线各不相同,下图所示的分别是钨丝电阻灯泡1.1(b )、稳压管1.1(c )、普通二极管1.1(d )的特性曲线。

另外,如光敏电阻、气敏电阻、湿敏电阻、压敏电阻等也是非线性电阻器。

由于它们的特性各异,被广泛应用在工程检测、电路保护和控制电路中。

图1.1 无源器件的伏安特性曲线一般的白炽灯在工作时灯丝处于高温状态时,其灯丝电阻随着温度的升高而增大,通过白炽灯的电流越大,其温度越高,阻值也越大,一般灯泡的“冷电阻”与“热电阻”的阻值可相差几倍至十几倍,所以它的伏安特性如图1.1中(b )曲线所示。

稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特别,如图1.1中(c )曲线所示。

在反向电压开始增加时,其反向电流几乎为零,但当电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。

一般的半导体二极管是一个非线性电阻元件,其特性如图1.1中(d )曲线所示。

实验一电路元件伏安特性的测绘报告

实验一电路元件伏安特性的测绘报告

实验一电路元件伏安特性的测绘报告引言:电路元件的伏安特性是指在电路中,元件的电压与电流之间的关系。

通过测量和分析元件的伏安特性,我们可以了解元件的工作状态和性能特点。

本次实验旨在通过测绘电路元件的伏安特性曲线,深入了解元件的性质及其在电路中的作用。

实验目的:1.通过测绘电阻器、二极管和电容器的伏安特性曲线,加深对不同元件的理解;2.掌握测绘伏安特性曲线的实验方法及仪器的使用;3.分析伏安特性曲线,研究元件的工作状态及特性。

实验仪器与材料:1.直流电源2.模拟电路实验箱3.万用表4.电阻器5.二极管6.电容器7.连接线实验步骤:1.将电源接入模拟电路实验箱的电源插座,并将电源输出调节至适当电压,注意正负极性的连接。

2.使用万用表测量电阻器的阻值。

3.将电阻器连接到实验箱上的电阻位,并将万用表连接到电阻器的两端,记录电阻器两端的电压和电流值。

4.分别调节电源输出电压,记录电压和电流值的组合。

5.切换到二极管位,将二极管连接到实验箱上的二极管位,并将万用表连接到二极管的两端。

6.按照步骤4的方法,记录二极管的伏安特性曲线。

7.切换到电容器位,将电容器连接到实验箱上的电容器位,并将万用表连接到电容器的两端。

8.按照步骤4的方法,记录电容器的伏安特性曲线。

实验结果:-电阻器的伏安特性曲线呈线性关系,随着电源电压的增大,电阻器两端的电压和电流值成正比增大。

-二极管的伏安特性曲线为正向电压下,电流迅速增大;反向电压下,电流极小。

-电容器的伏安特性曲线为充电阶段时,电容器电压增加,电流逐渐减小;放电阶段时,电容器电压减小,电流逐渐增大。

分析与讨论:1.电阻器的伏安特性曲线是一条直线,符合欧姆定律。

由此可得,电阻器的电阻值不随电压、电流的变化而变化。

2.二极管的伏安特性曲线呈非线性关系,这是因为二极管具有整流作用。

正向电压下,二极管导通,反向电压下,二极管截止。

3.电容器的伏安特性曲线与电容器的充电和放电过程有关。

电路试验报告一伏安特性的测量

电路试验报告一伏安特性的测量

电路A (B)实验报告实验项目:班级姓名学号实验目的:1、掌握电路元件的伏-安特性的测试方法。

2、掌握实际电压源和电流源的使用方法。

3、学习常用电工仪表的使用方法。

4、根据实验数据描绘曲线。

实验原理在电路中,任何一个二端口元件的特性可用该元件上的端电压U与通过元件上的电流I之间的函数关系U = f(I)来表示,即用I-U平面上的一条曲线来表征,这种函数关系称为该元件的伏-安特性。

也称外特性(电源的外特性是指它的输出端电压和输出电流之间的关系)。

其对应的I-U平面上的那条曲线就叫做伏安特性曲线或外特性曲线。

如果元件的伏-安特性曲线在I-U平面内是一条通过坐标原点的直线,则该元件称为线性元件。

如果元件的伏-安特性曲线在I-U平面内不是一条直线而是曲线,则该元件称为非线性元件。

电路的基本元件包括电阻元件、电感元件、电容元件、独立电源元件;晶体二极管、双极性晶体管和绝缘栅型场效应晶体管等。

本实验中用到的元件有线性电阻、白炽灯泡,二极管、稳压管及电源常见电路元件。

其中线性电阻的伏一安特性是一条过原点的直线,即服从欧姆定律(。

=RI),如图1-1所示,该直线的斜率等于该电阻的阻值。

白炽灯泡在工作时灯丝处于高温状态,其灯丝的电阻随着温度的变化而发生变化,并且具有一定的惯性,因此其伏一安特性为一条曲线,如图1-2所示。

可见电流越大,温度越高,对应的电阻也越大,一般灯泡的冷电阻与热电阻可相差几倍到几十倍。

一般半导体二极管和稳压管也是非线性元件,锗二极管两端的电压小于0.4V时,锗二极管基本处于关闭状态,其通过电流很小,当其两端的电压大于).4丫时,锗二极管基本处于导通状态,其通过电流很大;硅二极管的导通电压为).7V,其伏一安特性见图1-3所示。

稳压管则是利用二极管的反向特性,当稳压管两端电压达到一定的值以后,其端电压保持恒定不变,即不随外加电压的变化而变化,即稳压,其伏一安特性见图1-3所示。

理想电压源的端电压是固定的常数,无论负载如何变化,端电压保持一定,而与通过它的电流无关。

电路元件的伏安特性曲线测量实验报告

电路元件的伏安特性曲线测量实验报告

电路基础实验报告第一次实验实验报告一、实验内容电路元件的伏安特性曲线测量二、实验目的1.学习并测量电路元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性曲线的逐点测试法,了解非线性元件的伏安特性曲线;3.掌握使用直流稳压电源和直流电压表的、直流电源表的方法.三、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,该曲线称为该元件的伏安特性曲线.线性电阻器是理想元件,在任何时刻它两端的电压与其电流的关系服从欧姆定律;非线性元件的伏安特性曲线不是一条通过原点的直线,它在I-U平面上的特性曲线各不相同. 四、实验仪器电阻箱,直流稳压电源,导线五、实验内容(一)测定电阻的伏安特性曲线1.实验电路图如下:2.按照电路图连接电路,检查无误后接通电源;3.调节输出细调旋钮,调节输出电压,并记录电压表和电流表示数;4.数据记录及处理U/V 0.275 0.381 0.411 0.453 0.540 0.641 0.702 0.775 0.878 0.927 I/mA 2.7 3.7 4.0 4.5 5.3 6.3 7.0 7.7 8.7 9.2根据所得数据做出电阻伏安特性曲线如下图所示(MATLAB绘制):计算得到定值电阻的阻值为99.80Ω(二)测量二极管的伏安特性曲线1.正向电压条件下(1)实验电路图如下:(2)按照电路图连接电路,检查无误后接通电源;(3) 调节输出细调旋钮,调节输出电压,并记录电压表和电流表示数;(注:正向电流不超过25mA,电压在0~0.75V内调节;在二极管阻值变化明显的区域(0.5~0.75V),应取较多的测量点);(4)二极管正向电阻数据记录U/V 0.182 0.225 0.346 0.367 0.383 0.416 0.437 0.461 0.479 0.486 I/mA 0.002 0.003 0.004 0.005 0.006 0.012 0.020 0.036 0.054 0.065 U/V 0.500 0.505 0.515 0.530 0.541 0.550 0.565 0.569 0.575 0.584 I/mA 0.089 0.100 0.126 0.179 0.229 0.278 0.388 0.424 0.475 0.579 U/V 0.589 0.595 0.598 0.601 0.605 0.612 0.613 0.621 0.626 0.628 I/mA 0.652 0.733 0.785 0.837 0.900 1.050 1.082 1.286 1.427 1.524 U/V 0.632 0.639 0.642 0.647 0.652 0.658 0.660 0.664 0.668 0.672 I/mA 1.640 1.947 2.15 2.34 2.62 2.96 3.14 3.40 3.72 4.05 2.反向电压条件下实验注意要点:测定反向特性时,互换稳压电源的输出端正、负连线,调节直流稳压电源,从0V开始缓慢地增大负向电压最大不超过30V.实验数据记录如下(由于电流表精度不足,数据测量较少且猜测误差较大):U/V 19.32 13.20 7.52 1.94I/mA 0.006 0.005 0.004 0.003(三)测量稳压二极管的伏安特性曲线1.正向情况下(1)实验电路图如下:(2)按照电路图连接电路,检查无误后接通电源(3)调节输出细调旋钮,调节输出电压,并记录电压表和电流表示数(4)稳压二极管正向电阻数据记录:U/V 0.003 0.007 0.011 0.016 0.021 0.025 0.028 0.034 0.037 0.040 I/mA 0.59 1.00 1.41 1.99 2.50 2.98 3.27 3.97 4.28 4.69 U/V 0.046 0.049 0.053 0.054 0.058 0.063 0.067 0.069 0.074 0.080 I/mA 5.27 5.68 6.06 6.17 6.61 7.23 7.66 7.81 8.35 9.04 U/V 0.084 0.089 0.095 0.100 0.108 0.118 0.132 0.141 0.153 0.163 I/mA 9.48 10.03 10.71 11.31 12.19 13.22 14.84 15.81 17.19 18.34 U/V 0.169 0.178I/mA 19.03 19.95正向曲线如下:2.反向情况下(1)测定反向特性时,互换稳压电源的输出端正、负连线,调节直流稳压电源注:正反向电流不超过20mA(2)稳压二极管反向电阻数据记录:U/V -0.009 -0.013 -0.021 -0.024 -0.030 -0.032 -0.037 -0.046 -0.052 -0.062 I/mA -1.27 -1.68 -2.53 -2.91 -3.51 -3.74 -4.32 -5.27 -6.00 -7.09 U/V -0.066 -0.074 -0.082 -0.088 -0.094 -0.104 -0.109 -0.112 -0.120 -0.128 I/mA -7.58 -8.46 -9.36 -10.04 -10.73 -11.82 -12.41 -12.67 -13.57 -14.46 U/V -0.134 -0.139 -0.144 -0.152 -0.158 -0.165 -0.173 -0.176I/mA -15.15 -15.75 -16.31 -17.23 -17.97 -18.69 -19.60 -19.96反向曲线如下:将正向反向图画到一张图中:注:曲线使用了拟合程度更高的自然对数二次方回归.六、注意事项1.测量时,直流稳压电源输出电压应该从0V开始缓慢增大,应时刻关注电流表和电压表示数,随时记录实验数据;2.进行不同实验时,应先估算电压和电流值,合理选择仪表的量程,及时更换量程;仪表的极性也不可接错;3.理解区分二极管正向和反向特性曲线.七、思考1.如何计算线性电阻和非线性电阻的电阻值对于线性电阻,可以利用伏安法多次测量后作出伏安特性曲线,利用伏安特性曲线求出电阻;对于非线性电阻,同样可以通过实验绘制它的伏安特性曲线,然后在曲线上读出在某一电压电流条件下该非线性电阻的电阻值.2.分析常见元件的伏安特性曲线a.线性电阻的伏安特性曲线:由图中可以看出,线性电阻在加正向和反向压时,其伏安特性曲线都是一条直线,这说明线性电阻的阻值始终是一定值,其数值为伏安特性曲线斜率的倒数.b.钨丝电阻的伏安特性曲线:由图中看出,钨丝电阻在电压较小所加电压的的情况下电阻呈线性变化,随着所加电压增大,伏安特性曲线上点的切线斜率逐渐减小,电阻逐渐增大,在加反向电压时情况相似.c.普通二极管的伏安特性曲线:二极管在正向反向所表现出的电阻特性不同:二极管两端加正向电压时,随着所加电压的增大,二极管伏安特性曲线切线斜率变化趋势为逐渐递增,说明二极管在所加电压为正向的情况下,随着电压的增大,二极管电阻慢慢减小.二极管两端加反向电压时,随着所加电压的增大,二极管伏安特性曲线切线斜率变化趋势为逐渐递减,说明二极管在所加电压为反向的情况下,随着电压的增大,二极管电阻慢慢增大.d.稳压二极管的伏安特性曲线:稳压二极管在正向反向所表现出的电阻特性也有所不同:在稳压二极管两端加正向电压时,二极管电流随电压增大变化明显,并且随着所加电压的增大,二极管伏安特性曲线切线斜率变化趋势为逐渐递增,说明二极管在所加电压为正向的情况下,随着电压的增大,二极管电阻慢慢减小.在稳压二极管两端加反向电压时,在电压逐渐增大的过程中,在某一范围内电压增大过程中,电流变化微小;当电压到一定值时,电流变化较大,且随电压的增大,电阻减小.3.如果误将电流表并联到电路中,会出现什么后果由于电流表电阻比较小,会导致短路,可能会损坏仪器.4.假如在测量二极管的伏安特性曲线的实验中,漏接限流电阻R,会出现什么后果测量过程中,由于所加电压的不断增大,二极管电阻会不断减小. 如果漏接限流电阻,会导致电路中电流过大,可能损坏实验仪器,造成危险.5.本实验中,用伏安法测量电阻元件的伏安特性的电路模型采用如下图(a)所示。

实验一 电路元件伏安特性的测定

实验一   电路元件伏安特性的测定

实验一电路元件伏安特性的测定一、实验目的(1)熟悉直流电流电压表、电流表及万用表的使用方法(2)增强对线性、非线性电阻及电源伏安特性的感性认识。

(3)学会绘制实验曲线。

二、实验原理电阻元件的伏安特性是指元件的端电压与通过该元件的电流之间的函数关系。

线性电阻元件的伏安特性满足欧姆定律,其伏安特性曲线是一条过坐标原点的直线;非线性电阻元件的阻值不是常量,其器伏安特性不是直线。

实际电源的伏安特性是指实际电压源(或实际电流源)的输出电压、电流关系曲线。

由于直流稳压电源的内阻很小,可近似看作恒压源。

测量电压时应该将电压表并联在被测元件两端,测量电流时应该将电流表串联在被测电路中,测量直流时应严格注意选择正确的极性和合适的量程。

三、实验设备表四、实验内容1.元件伏安特性的测试(1)将200Ω电阻作为待测元件R1,按图1-1(a)所示电路接线,将稳压电源输出电压调至0V,逐步改变输出增加到10V,每隔2V,记下电压表和对应电流表读数,填入表1-2.(2)改变图1-1(a)的连接如图1-1(B) 电路所示,按上述步骤重做一次,并将测量数据填入表1-3.2、电源伏安特性的测定(1)按图1-2所示电路接线,图中用可变电阻箱作可调电阻。

(2)断开开关S,通过测量电压U AC,并调节直流稳压电源,使电源电压的输出为15V;合上开关S,调节电阻箱使电流表指示分别为10mA、20mA、30mA、40mA、50mA,并测量相应的电压值U AC,将测试数据记入表1-4。

五、实验报告1.根据实验内容与步骤,记录各项测试数据。

2.用坐标纸分别绘制电阻、电压源的伏安关系。

3.根据测量数据,用公式表示电阻、电压源的端电压U与电流的关系。

4.讨论表1-2和表1-3的数据有何差别?为什么会出现这些差别?5. 总结直流电压表和电流表的使用方法和使用中要注意的问题。

大学物理实验报告(清华大学)实验3.1电学元件伏安特性的测量实验报告

大学物理实验报告(清华大学)实验3.1电学元件伏安特性的测量实验报告

清 华 大 学 实 验 报 告系别:机械工程系 班号: 机械51班 姓名:邹 诚 (同组姓名: ) 作实验日期2006年10月16日 教师评定:一、实验目的(1)、了解分压器电路的调节特性;(2)、掌握测量伏安特性的基本方法、线路特点及伏安法测电阻的误差估算; (3)、学习按回路接线的方法; (4)、初步了解戴维南定理的内容。

二、实验原理1.分压电路及其调节特性1. 分压电路的接法(如图所示)图中B 端电位最低,C 端电位较高,CB 间的分压大小U 随滑动端C 的位置改变而改变,U 值可用电压表来测量。

变阻器的这种接法通常称为分压器接法。

分压器的安全位置一般是将C 滑至B 端,这时分压为零。

2.分压电路的调节特性根据欧姆定律得到的分压公式为:E R R RR R R U BC L LBC )(-+=,其中各项均对应于上图中的各项。

理想情况下,即当R R L >>时,R ER U BC /=,分压U 与组值BC R 成正比,亦即随着滑动端C 从B 滑至A ,分压U 从零到E 线形地增大。

当L R 不是比R 大很多时,分压电路输出电压就不再与滑动端的位移成正比了。

2. 电学元件的伏安特性 在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与其端电压之间的关系成为电学元件的伏安特性。

一般以电压为横坐标,电流为纵坐标做出元件的电压-电流关系曲线,成为该元件的伏安特性曲线。

电学元件按其伏安特性进行分类:线形元件:碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比,即其伏安特性曲线为一通过原点的直线。

非线性元件:半导体二极管、稳压管、热敏电阻等元件,通过元件的电流与加在元件两端的电压不成线形关系变化,其伏安特性为一曲线。

线形元件的伏安特性某非线性元件的伏安特性3.实验线路的比较与选择 用伏安法测量电阻R 的伏安特性的线路中,常有两种接法,即图中的电流表内接和电流表外接两种方法。

元件伏安特性的测定-中国海洋大学实验报告

元件伏安特性的测定-中国海洋大学实验报告

中国海洋大学实验报告学生姓名 专业 授课教师 成绩日期 星期 节 组 号实验题目:元件伏安特性的测定实验目的:1.学习常用仪器及其使用方法;2.学习用电压表和电流表测定元件的伏安特性;3.加深对线性电阻元件、非线性电阻元件及电源伏安特性的理解。

实验仪器:稳压电源、电压表、可变电阻(1000Ω左右)等。

实验原理一.几种常用元器件的伏安特性曲线1.电阻元件电阻两端电压U 、电阻R 和电流I 的关系:U=IR伏安特性曲线如图1;2.半导体二极管 半导体二极管是非线性元件,当外加电压极性和二极管极性相同时电阻很小,反之很大。

伏安特性曲线如图2;3.(直流)电压源理想电源的端电压和流过的电流大小无关,其外伏安特性曲线如图3中实线,实际电源相当于一个理想电源和一个电阻串联表示,当电源有电流I 流过时,会在内阻Rs 上产生电压降,其端电压U 可表示为U=Us —I* Rs 实际电压源的伏安特性曲线如图3中虚线所示。

二.电压和电流的测量正确选择电压表和电流表的规格、精度和量程,接线时接在正确位置上可以减小误差。

用电压表测 Rx 的端电压U ,用毫安表测Rx 的电流I ,有如图4两种连接方式,由于电表内阻影响,不可能测准Rx的端电压和电流,若想不进行数值修正,又得到比较准的测量结果,内接法中电流表内阻远小于Rx (一般小两个数量级),外接法中电压表内阻远大于Rx(一般大两个数量级)。

实验内容与步骤一.测定线性电阻的伏安特性曲线取标称值为1kΩ的电阻作为被测元件,参照图1-5连接,检查无误后,打开电源开关,依次调节直流电源的电压,使电源的输出电压(注意由电压表读出)从2V到10V之间变化,每隔2V测一次电流值。

二.测定半导体二极管的伏安特性曲线1.正向特性参照图1-6a连好电路,检查无误后,开启电源,输出电压调至2V,调节可变电阻R,以改变电压表的示数,记录电压表读数和相应的电流表读数,在曲线弯曲部分应适当多测几个点。

电路原理实验 实验1 电路元件伏安特性的测绘.

电路原理实验 实验1 电路元件伏安特性的测绘.

暨南大学本科实验报告专用纸(附页)暨南大学本科实验报告专用纸课程名称电路原理成绩评定实验项目名称电路元件伏安特性的测绘指导教师李伟华实验项目编号 08063034901 实验项目类型验证型实验地点暨南大学珠海学院电路原理实验室学生姓名学号学院系专业实验时间年月日午~月日午温度℃湿度一、实验目的1. 学会识别常用电路元件的方法2. 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法3. 掌握实验台上直流电工仪表和设备的使用方法。

二、实验要求1. 根据各实验结果数据,分别在附页纸上绘制出光滑的伏安特性曲线。

(其中二极管和稳压管的正、反向特性均要求画在同一张图中,正、反向电压可取为不同的比例尺)2. 根据实验结果,总结、归纳被测各元件的特性3. 必要的误差分析4. 完成后面的思考题,心得体会及其他。

三、原理说明任何一个电器二端元件的特性可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

1. 线性电阻器的伏安特性曲线是一条通过坐标原点的直线,如图1中a所示,该直线的斜率等于该电阻器的电阻值。

2. 一般的白炽灯在工作时灯丝处于高温状态,其灯丝电阻随着温度的升高而增大,通过白炽灯的电流越大,其温度越高,阻值也越大,一般灯泡的“冷电阻”与“热电阻”的阻值可相差几倍至十几倍,所以它的伏安特性如图1中b曲线所示。

3. 一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1中 c所示。

图1《电路原理》课程实验报告第1页(共6) U(V)暨南大学本科实验报告专用纸(附页)正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电学元件伏安特性的测量》实验报告
(数据附页)
一、半定量观察分压电路的调节特点
二、用两种线路测电阻的对比研究
电流表准确度等级1.5,量程I m=5mA,R I=8.38±0.13Ω
电压表准确度等级1.5,量程U m=0.75V,R V=2.52±0.04kΩ;
量程U m=3V,R V=10.02±0.15kΩ
三、测定半导体二极管正反向伏安特性
由于正向二极管的电阻很小,采用外接法的数据;反向电阻很大,采用内接法的数据。

四、戴维南定理的实验验证
1.将9V电源的输出端接到四端网络的输入端上,组成一个有源二端网络,求出等效
e e
取第二组和第七组数据计算得到: E e =2.15V R e =319.5Ω
由作图可得:
E e =2.3V R e =352.8Ω
3. 理论计算。

%
6.17%
7.10.30034.2951.14917.19932.6162
12
132
12
321的相对误差为的相对误差为与实验值比较e e e e R E R R R R R R V
R R ER E V E R R R Ω
=++
==+=
=Ω=Ω=Ω=
4.讨论。

等效电动势的误差不是很大,而等效电阻却很大。

原因是多方面的。

但我认为最大的原因应该是作图本身。

所有数据的点都集中在一个很小的区域,点很难描精确,直线的绘制也显得过于粗糙,人为的误差很大。

如果对数据进行拟合,可以得到I=-3.298U+6.836,于是得到E e =2.07V ,R e =303.2Ω,前者误差为11.5%,后者误差为1.1%,效果比直接读图好,因为消除了读图时人为的误差。

另外一点,仪表读数也是造成误差大的一个原因。

比如电流表没有完全指向0,电压表不足一格的部分读得很不准等等。

总的讲,实验数值和理论还是有一定偏差,不能很好的证明。

相关文档
最新文档