《函数的单调性》教案(北师大版必修1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:2.3.1 函数的单调性

教学目的:

(1)了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思

(2)理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间

(3)掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性

教学重点:函数的单调性的概念;

教学难点:利用函数单调的定义证明具体函数的单调性 授课类型:新授课 课时安排:1课时 教 具:多媒体

教材分析: 高[考∴试﹤题∴库]

函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学

在本节课中的教学中以函数的单调性的概念为线,它始终贯穿于整个课堂教学过

程;利用函数的单调性的定义证明具体函数的单调性是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握

按现行新教材结构体系,学生只学过一次函数、反比例函数、正比例函数、二次函数,所以对函数的单调性研究也只能限于这几种函数学生的现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中须加强 GkStK

根据以上分析本节课教学方法以在多媒体辅助下的启发式教学为主;同时,本节课在教学过程中对教材中的函数3

x y =的图象进行了删除,教学中始终以23+=x y 、2

x y =、

x

y 1

=

等函数为例子进行讨论研究 教学过程: 一、复习引入:

⒈ 复习:按照列表、描点、连线等步骤先分别画函数x

y =3x y =的图象. 2x y =的图象如图1,3x y =如图2.

⒉ 引入:从函数2

x y =的图象(图1)看到:

图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当

1x <2x 时,有1y <2y .

这时我们就说函数y =)(x f =2x 在[0,+ ∞)上是增函数. 图象在y 轴的左侧部分是下降的,也就是说, 当x 在区间(-∞,0)上取值时,随着x 的增大, 相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得

1y =)(1x f ,2y =)(2x f ,那么当1x <2x 时,有1y >2y .

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数.

函数的这两个性质,就是今天我们要学习讨论的GkStK 二、讲解新课: ⒈ 增函数与减函数

定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值21,x x ,⑴若当

1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是增函数(如图3);⑵若当1x <2

x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4).

当x ∈[0,+∞)时是增函数,当x ∈(-∞,0)时是减函数. ⒉ 单调性与单调区间

若函数y=f(x)在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间.此时也说函数是这一区间上的单调函数.

在单调区间上,增函数的图象是上升的,减函数的图象是下降的. 说明:⑴函数的单调区间是其定义域的子集;

⑵应是该区间内任意的两个实数,就不

能保证函数是增函数(或减函数),例如,图5中,在21,x x 样的

特定位置上,虽然使得)(1x f >)(2x f ,但显然此图象表示的

函数不是一个单调函数;

⑶除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f , ”改为“)(1x f ≤)(2x f 或)(1x f ≥)(2x f ,”即可;

⑷定义的内涵与外延:

内涵是用自变量的大小变化来刻划函数值的变化情况;

外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减.

②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下

降则为减函数. 三、讲解例题:

例1 如图6是定义在闭区间[-5,5]上的

函数)(x f y =的图象,根据图象说出)

(x f y =的单调区间,以及在每一单调区 学7优5高

0考g 网k]

说明:函数是增函数还是减函数,是对定义域内

某个区间而言的.有的函数

学7优5高0考g 网kGkStK]

间上,函数)(x f y =是增函数还是减函数.

解:函数)(x f y =的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中)(x f y =在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.

说明:函数的单调性是对某个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题;另外,中学阶段研究的主要是连续函数或分段连续函数,对于闭区间上的连续函数来说,只要在开区间上单调,它在闭区间上也就单调,因此,在考虑它的单调区间时,包括不包括端点都可以;还要注意,对于在某些点上不连续的函数,单调区间不包括不连续点.

例2 证明函数23)(+=x x f 在R 上是增函数. 证明:设21,x x 是R 上的任意两个实数,且1x <2x ,则

)(1x f -)(2x f =(31x +2)-(32x +2)=3(1x -2x ),

相关文档
最新文档