高速PCB电路的布线设计指南
PCB高速信号布线
PCB高速信号布线PCB是印刷电路板(Printed Circuit Board)的英文缩写,它是现代电子产品设计中不可或缺的一部分。
PCB可以在小面积内集成大量的电子元器件,有效地节省了电路板设计的空间。
在PCB 设计中,电路连接的正确性和可靠性是至关重要的。
其中高速信号线的布线设计尤为重要,因为高速信号线往往具有很高的频率和信号速度,容易受到信号衰减、反射、干扰等各种影响。
PCB高速信号布线的目标是尽量减小信号的反射和传导干扰,并且保持信号的完整性。
这个过程需要考虑多个因素,如信号速度、布线长度、布线材料、针脚间距、信号电平等等。
一、布线长度当高速信号线的长度超过了特定的阈值时,会产生反射和信号失真的问题。
此时需要采取一些措施来保持信号完整性。
其中一种方法是添加阻抗匹配电路,使信号源和负载之间的阻抗匹配。
电阻匹配可以降低信号反射,使信号保持不变。
这种方法的缺点是占用空间、增加功耗,但在高速布线设计中是必要的。
二、地平面高速线和地面之间的几何布局也非常重要。
在同层PCB中,地平面应该保持尽可能的连续,适当的地平面将有助于减少反射和传导干扰。
在多层PCB中,每个逻辑层应该都有一个地面平面来提供良好的集总环境。
一个好的地平面应该是连续的、均匀分布,并且根据需要提供足够的连通电绳。
在高速布线设计中,地平面的设计是必须的。
三、材料在高速布线设计中,选择合适的PCB材料对于保持信号完整性非常重要。
常见的PCB材料有FR-4、Rogers等。
在高速布线设计中,一般采用介电常数低、相对介电常数稳定的材料。
介电常数低可以降低信号的传播延迟,不稳定的相对介电常数会导致信号传播速度的变化,从而影响信号完整性。
四、穿孔的位置当需要在PCB板上穿孔时,应该注意使用穿孔位置对高速信号线的影响。
在PCB板上钻孔时,会产生一些毛刺,这些毛刺有可能对信号完整性产生负面的影响,因此,需要对孔壁进行平整处理。
五、差分布线差分信号传输是现在高速布线的普遍应用。
高速PCB设计指南
高速PCB设计指南高速PCB设计是电子设计领域中的一个重要分支。
高速PCB设计涉及到比较高的频率信号的传输,如高速数据总线、时钟、控制信号等。
随着电子技术的快速发展,高速PCB设计已经成为一个必要的技能。
本文将为您提供高速PCB设计的基本指南。
一、PCB板布局在进行高速PCB设计时,PCB板布局是非常关键的。
以下是几个需要注意的方面:1. RF电路和敏感板路应该远离高功率板路。
2. 高速数字信号应当互相分离开来,避免信号干扰。
3. 模拟信号路径应该和数字信号路径分离开来。
4. 时钟和数据线需要独立布局,减少相互干扰的影响。
5. 保持合理的板厚度并且保持一致。
6. 尽量减少信号层的数量,这能减少移动信号的时间延迟。
7. 适当加入障碍物物避免辐射的干扰,同时进行地垫。
二、信号完整性高速PCB设计需要考虑信号完整性的问题,保证信号的质量和稳定性。
1. 确定信号的路径。
2. 在尽可能短时间内连接信号。
3. 接口处必须要匹配阻抗。
4. 优化功率地方的供电电路。
5. 在设计时需要考虑信号畸变。
三、布线PCB布线是高速PCB设计中的一个重要环节。
以下是您需要关注的点:1. 在电源附近使用CAP滤波器,同时优化供电地焊盘。
2. 在时钟和数据线路线长领域内布置并优化相应的差分路线。
3. 适当的铺铜层能有效减少层间传输的互联参数。
并在特殊情况下,使用壳体充当屏蔽。
4. 在IO端口上使用自适应阻抗技术。
5. 使用捆绑电线和费正负电平特性电缆。
四、仿真分析在高速PCB设计时,仿真分析是一种非常有效的工具,可以帮助您预测PCB设计的结果并优化开发流程。
1. 使用仿真工具来分析布局的合理性。
2. 使用仿真工具跑完整电路板的分析。
3. 使用时间领域和频域仿真工具,以检测信号时间延迟和频率响应的问题。
4. 使用SPICE仿真工具进行供电电路仿真。
五、技术细节通过这里的技术细节,可以帮助您更好地进行高速PCB设计:1. 在PCB设计时,要留有足够的边距和缓冲区域。
PCB板布局布线基本规则
PCB板布局布线基本规则PCB(Printed Circuit Board)板布局布线是电路设计中的关键步骤之一,正确合理的布局布线可以保证电路的性能与稳定性。
下面将介绍一些PCB板布局布线的基本规则。
1.分离高频与低频信号:将高频与低频信号进行分离布局,以减少干扰。
高频信号线与低频信号线应尽可能平行布线,减少交叉。
2.分离模拟与数字信号:模拟与数字信号互相干扰的可能性较大,应将二者分离布局。
同时,在两者的接口处应预留地线屏蔽来降低非线性失真。
3.分层布局:将电路分布在不同的层次上,以减少干扰。
一般将模拟信号和数字信号分布在不同的层次上,并通过地平面、电源平面等层次进行电磁屏蔽。
4.自上而下布局:从信号源开始,自上而下分布。
这样可以减少信号线的长度,降低信号线的阻抗。
在布局时应尽量控制信号线的长度,避免过长导致信号衰减。
5.电源布局:电源是整个电路的基础,应尽可能靠近电源输入端布局,减少电源线路长度,降低电源线的阻抗。
同时,电源线应与信号线分离布线,避免互相干扰。
6.地线布局:地线在板布局中同样非常重要。
应尽量缩短地线的长度,减低地线的阻抗,并合理布局地线的走向,避免地线回团。
7.路径最佳化:布局时应保证信号路径的最短化,减少信号线的长度,降低信号传输时的延迟和衰减。
8.信号线与分量之间的距离:信号线与分量之间的距离尽可能短,可以减少耦合与串扰。
9.三角规则:同一面板上尽量遵循三角形规则,将相关信号线布局成三角形状,以减少互相干扰。
10.差分线布局:对于高速信号线,采用差分传输可以减少噪声和串扰。
差分信号线应尽可能平行布线,并保持等长。
11.布线层次顺序:布线时应按照信号的重要程度进行布线,先布线主干信号,再布线次要信号。
12.符号规范:在布线过程中应遵循相应的电气规范,使用适当的符号表示不同的信号。
总的来说,PCB板布局布线中的基本规则都是为了减少干扰、降低阻抗、缩短信号路径,保证电路的性能稳定性。
PCB设计指南
PCB设计指南1、微调您的元件布置PCB布局过程的元件放置阶段既是科学又是艺术,需要对电路板上可用的主要元器件进行战略性考虑。
虽然这个过程可能具有挑战性,但您放置电子元件的方式将决定您的电路板的制造难易程度,以及它如何满足您的原始设计要求。
虽然存在元件放置的常规通用顺序,如按顺序依次放置连接器,印刷电路板的安装器件,电源电路,精密电路,关键电路等,但也有一些具体的指导方针需要牢记,包括:取向 - 确保将相似的元件定位在相同的方向上,这将有助于实现高效且无差错的焊接过程。
布置 - 避免将较小元件放置在较大元件的后面,这样小元件有可能受大元件焊接的影响而产生装贴问题。
组织 - 建议将所有表面贴装(SMT)元件放置在电路板的同一侧,并将所有通孔(TH)元件放置在电路板顶部,以尽量减少组装步骤。
最后还要注意的一条PCB设计指南 - 即当使用混合技术元件(通孔和表面贴装元件)时,制造商可能需要额外的工艺来组装电路板,这将增加您的总体成本。
良好的芯片元件方向(左)和不良的芯片元件方向(右)良好的元件布置(左)和不良元件布置(右)2、合适放置电源,接地和信号走线放置元件后,接下来可以放置电源,接地和信号走线,以确保您的信号具有干净无故障的通行路径。
在布局过程的这个阶段,请记住以下一些准则:1)、定位电源和接地平面层始终建议将电源和接地平面层置于电路板内部,同时保持对称和居中。
这有助于防止您的电路板弯曲,这也关系到您的元件是否正确定位。
对于给IC供电,建议为每路电源使用公共通道,确保有坚固并且稳定的走线宽度,并且避免元件到元件之间的菊花链式电源连接。
2)、信号线走线连接接下来,按照原理图中的设计情况连接信号线。
建议在元件之间始终采取尽可能短的路径和直接的路径走线。
如果您的元件需要毫无偏差地固定放置在水平方向,那么建议在电路板的元件出线的地方基本上水平走线,而出线之后再进行垂直走线。
这样在焊接的时候随着焊料的迁徙,元件会固定在水平方向。
高速电路pcb设计方法与技巧
高速电路pcb设计方法与技巧
高速电路的PCB设计是一项复杂的任务,需要考虑到信号完整性、电磁兼容性和噪声抑制等因素。
下面列出了一些高速电路PCB设计的方法和技巧:
1. 确定信号完整性要求:根据设计要求和信号频率,确定信号完整性要求,如信号的上升/下降时间、功率边缘、噪声容限等。
2. 选择适当的材料:选择适当的PCB材料,比如具有较低介电常数和损耗因子的高频层压板材料,以提高信号完整性。
3. 排布设计:在PCB布局设计中,将信号线和地线层紧密地排布在一起,以降低传输延迟。
同时,尽量避免信号线交叉和平行布线,以减小串扰干扰。
4. 使用差分信号线:对于高速信号,采用差分信号线可以减少干扰和噪声。
差分信号线需要保持匹配长度和间距,并使用差分对地层。
5. 引脚分布:将相关的信号和地线引脚布局在相邻位置,并使用直接和短的连接,以减小传输延迟。
6. 电源和地线:在PCB设计中,电源和地线是非常重要的。
为了提高电源供应的稳定性和降低噪声,采用分层设计,并保持电源和地线的低阻抗连通。
7. 规避回流路径:设计中应尽量避免信号流经大电流回流路径,以降低电磁干扰。
8. 耦合和终端阻抗:为了提高信号的传输质量,需要合理设计耦合和终端阻抗,并在设计中考虑到信号的反射和幅度损耗。
9. 电磁兼容性:在PCB设计中,应遵循电磁兼容性规范,使用恰当的屏蔽和过滤技术,以减少电磁辐射和敏感性。
10. 仿真和调试:在最终的PCB设计中,使用仿真工具来验证信号完整性和电磁兼容性,并在实际测试中进行调试和优化。
以上是一些高速电路PCB设计的方法和技巧,设计人员可以根据实际需求和设计要求来选择和应用。
高速pcb设计注意事项
高速pcb设计注意事项
1. 确定信号层之间适当的间距,以避免串扰和交叉干扰。
2. 选择合适的PCB 材料和厚度,在考虑信号完整性和散热的情况下进行权衡。
3. 尽可能地减小电路板上的回流焊盘和贴片元件之间的距离。
4. 仔细规划电源和信号地面,保证良好的接地和电流分布。
5. 在PCB 设计过程中使用模拟和数字仿真工具来确保信号完整性。
6. 使用独立的点对点连接来减少多层PCB 堆叠中的交叉干扰。
7. 尽可能避免倒角和锐角,并确保尽可能平滑的布线。
8. 做好EMI/EMC 电磁兼容设计,遵循相关国际标准。
9. 在PCB 较大时,在焊盘附近添加焊点来保持稳定连接。
10. 验证PCB 布线是否正确,并遵循相关图像制造指南。
高速PCB设计软件HyperLynx使用指南
使用指南(Tutorial)修订版序从首次接触这个软件到现在,有一段时间了。
那时由于急着使用,因此对一些认为不太重要的地方没有进行整理。
后来才发现,其实每一部分都是很有用的。
此修订,一个是将LineSim(Tutorial)与后加的Crosstalk(Tutorial)的目录统一起来,再有就是原文基础上增加了多板仿真(Tutorial)一节。
同样,对于那一时期我整理的BoardSim 、LineSim使用手册,也有同样的一个没有对一些章节进行翻译整理问题(当初认为不太重要)。
而实际上使用时,有一些东西是非常重要的,同时也顺便进行了翻译。
此外,通过使用,对该软件有了更多一些理解,显然以前只从字面翻译的东西不太好理解,等我有时间将它们重新整理后,再提供给初学的朋友。
对在学习中给予我大量无私帮助的Aming、pandajohn、lzd 等网友表示忠心的感谢。
P o q i0552002-8-202002-8-20目录使用指南(TUTORIAL ) 1 第一章 LINESIM4 1.1 在L INE S IM 里时钟信号仿真的教学演示 4 第二章 时钟网络的EMC 分析 7 2.1 对是中网络进行EMC 分析7 第三章 LINESIM'S 的干扰、差分信号以及强制约束特性 8 3.1 “受害者”和 “入侵者” 8 3.2如何定线间耦合。
8 3.3 运行仿真观察交出干扰现象9 3.4 增加线间距离减少交叉干扰(从8 MILS 到 12 MILS ) 93.5 减少绝缘层介电常数减少交叉干扰 93.6 使用差分线的例子(关于差分阻抗) 93.7仿真差分线 10第四章 BOARDSIM114.1 快速分析整板的信号完整性和EMC 问题 11 4.2 检查报告文件 11 4.3 对于时钟网络详细的仿真 11 4.4 运行详细仿真步骤: 11 4.5 时钟网络CLK 的完整性仿真 12 第五章 关于集成电路的MODELS 145.1 模型M ODELS 以及如何利用T ERMINATOR W IZARD 自动创建终接负载的方法 14 5.2 修改U3的模型设置(在EASY.MOD 库里CMOS,5V,FAST ) 14 5.3 选择模型(管脚道管脚)C HOOSING M ODELS I NTERACTIVELY (交互), P IN -BY -P IN 14 5.4 搜寻模型(F INDING M ODELS (THE "M ODEL F INDER "S PREADSHEET ) 15 5.5 例子:一个没有终接的网络 15 第六章 BOARDSIM 的干扰仿真 186.1 B OARD S IM 干扰仿真如何工作 186.3仿真的例子:在一个时钟网络上预测干扰 18 6.3.1加载本例的例题“DEMO2.HYP” 18 6.3.2A UTOMATICALLY F INDING "A GGRESSOR"N ETS 18 6.3.3为仿真设置IC模型 19 6.3.4查看在耦合区域里干扰实在什么地方产生的 19 6.3.5驱动IC压摆率影响干扰和攻击网络 20 6.3.6电气门限对比几何门限 20 6.3.7用交互式仿真"CLK2"网络 20 6.4快速仿真:对整个PCB板作出干扰强度报告 20 6.5运行详细的批模式干扰仿真 21第七章关于多板仿真237.1多板仿真例题,检查交叉在两块板子上网络的信号质量 23 7.2浏览在多板向导中查看建立多板项目的方法 24 7.3仿真一个网络A024 7.4用EBD模型仿真24HyperLynxHyperLynx是高速仿真工具,包括信号完整性(signal-integrity)、交叉干扰(crosstalk)、电磁屏蔽仿真(EMC)。
高速电路板的设计方法
高速电路板的设计方法高速电路板的设计是电子产品开发过程中至关重要的一步。
它涉及到信号传输的快速性、稳定性和可靠性等方面。
在本文中,我们将介绍高速电路板设计的基本方法,以帮助工程师们更好地应对挑战。
一、高速电路板设计概述高速电路板设计是一门复杂而重要的技术。
它主要关注数据信号的快速传输和尽可能降低信号失真。
高速电路板设计需要考虑信号的传输速度、信号完整性、噪声抑制、阻抗匹配以及电磁干扰等多个因素。
二、布局设计1. 信号与电源分离:将高速信号和电源信号分离布局,以减少信号干扰。
2. 分层布局:将电路板分为不同的层次,每层分别布置不同的信号层或电源层。
这样可以最大程度地减少信号干扰和电源电流的返流。
3. 地线设计:将地线作为信号层的一部分,提供可靠的回流路径,以降低信号失真。
4. 路由优化:根据信号传输的需求,采用最短线路和合适的拓扑结构来布置信号路由。
三、信号完整性设计1. 控制传输线长度:为了减少信号传输时的延迟和时延不一致,尽量控制传输线的长度和阻抗一致性。
2. 选择合适的信号引线:采用合适的信号引线来降低信号传输过程中的反射和耦合。
3. 选择合适的电磁屏蔽材料:采用电磁屏蔽材料来减少外部电磁干扰对信号的影响。
四、阻抗匹配设计1. 控制传输线的宽度和间距:通过控制传输线的宽度和间距来达到所需的阻抗值。
2. 添加阻抗匹配器:根据需求,可以添加阻抗匹配器以确保信号传输的稳定性和可靠性。
五、电磁兼容性设计1. 电源滤波设计:采用合适的电源滤波器来抑制高频噪声,减少对周围电路的影响。
2. 地线布局:合理布置地线以减少电磁辐射和接收。
3. 接地设计:良好地接地可以减少电磁噪声。
六、其他设计考虑因素1. 热管理:高速电路板在工作过程中会产生一定的热量,因此需要合理布局散热器和散热孔。
2. 维护性设计:设计应该考虑到电路板的维护和检修,易于更换故障部件。
3. ESD保护:添加静电放电保护措施来保护电路板免受静电干扰。
高速PCB布线设计的最佳实践
高速PCB布线设计的最佳实践在进行高速PCB布线设计时,采用最佳实践是至关重要的。
随着电子设备的发展,高速信号传输的需求越来越重要,因此,我们必须遵循一些规范和原则来确保电路板的性能和可靠性。
本文将介绍一些高速PCB布线设计的最佳实践,以帮助工程师们更好地应对这一挑战。
一、信号完整性的考虑在高速PCB布线设计中,信号完整性是至关重要的。
信号完整性指的是保持信号的稳定性和准确性,防止信号失真。
以下是一些考虑信号完整性的最佳实践:1. 短而直的走线:为了降低信号的传输延迟和损耗,应尽量采用短而直的走线。
避免使用过长的走线或过多的拐弯。
2. 控制阻抗:控制阻抗是确保信号传输稳定的重要因素。
在设计过程中,应根据信号特性选择合适的线宽和间距,以获得所需的阻抗。
3. 地线和电源线的布局:良好的地线和电源线布局对于信号完整性非常重要。
应尽量减小地线和电源线的回路面积,避免与高速信号走线交叉。
4. 终端匹配:为了减少信号的反射和干扰,需要对高速信号的发射和接收端进行匹配。
可以使用电阻、电容、电感等元件来实现匹配。
5. 绕线规则:在布线时,应尽量遵循绕线规则。
例如,将高速信号与低速信号分开布线,避免平行走线。
二、电磁兼容性的考虑电磁兼容性是高速PCB布线设计中另一个重要的方面。
电路板上的信号可能会产生电磁干扰,并且也容易受到外部电磁干扰的影响。
以下是一些考虑电磁兼容性的最佳实践:1. 地平面设计:良好的地平面设计可以起到屏蔽和引流作用,减少信号的辐射和接收到的外界干扰。
应尽量增加地平面的面积,并保持地网的连续性。
2. 屏蔽:对于一些特别敏感的信号,可以考虑使用屏蔽罩或屏蔽层来保护其不受干扰。
3. 波形整形:对于高速信号,可以使用波形整形器或滤波器来减少信号的波形畸变和噪音。
4. 分离模拟与数字信号:在高速PCB布线设计中,应尽量将模拟信号和数字信号分开布线,以减少相互之间的干扰。
5. 引入电磁兼容性测试:在设计完成后,应进行电磁兼容性测试,以确保电路板符合相关的电磁兼容性标准。
高速PCB设计指南之一
高速PCB 设计指南之一第一篇 PCB 布线在PCB 设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的, 在整个PCB 中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB 布线有单面布线、 双面布线及多层布线。
布线的方式也有两种:自动布线及交互式布线,在自动布线之前, 可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行免相邻平行,, 以免产生反射干扰以免产生反射干扰。
必要时应加地线隔离必要时应加地线隔离,,两相邻层的布线要互相垂直两相邻层的布线要互相垂直,,平行容易产生寄生耦合行容易产生寄生耦合。
自动布线的布通率,依赖于良好的布局,布线规则可以预先设定, 包括走线的弯曲次数、导通孔的数目、步进的数目等。
一般先进行探索式布经线,快速地把短线连通, 然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。
并试着重新再布线,以改进总体效果。
对目前高密度的PCB 设计已感觉到贯通孔不太适应了, 它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用, 还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会, 才能得到其中的真谛。
1 电源电源、、地线的处理既使在整个PCB 板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。
所以对电、 地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述:(1)、众所周知的是在电源、地线之间加上去耦电容。
(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB 可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)(3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。
Altium Designer 21 PCB设计官方指南(高
6.10 PCB布线
6.10.1 创建Class及颜色显示 6.10.2 规则设置 6.10.3 布线规划及连接 6.10.4 电源平面分割 6.10.5 走线优化 6.10.6 放置回流地过孔 6.10.7 添加泪滴及整板铺铜
6.11 PCB后期处理
6.11.1 DRC检查 6.11.2 器件位号及注释的调整
2.1 铺铜高级连接 方式
2.2 高级间距规则
2.3 高级线宽规则 2.4 区域规则设置
1
2.5 阻焊规 则设置
2
2.6 内电层 的规则设置
3
2.7 Return Path的设置
4 2.8 Query语
句的设置及应 用
5
2.9 规则的 导入和导出
3.1 叠层的添 加及应用
3.2 阻抗控制
3.1 叠层的添加及应用
6.1 PCB设计的总 体流程
6.2 实例简介
6.3 创建工程文件
6.4 位号标注及封 装匹配
01
6.5 原理 图的编译及 导入
02
6.6 板框 绘制
03
6.7 电路 模块化设计
04
6.8 器件 模块化布局
06
6.10 PCB布线
05
6.9 PCB 叠层设置
6.12 生产文件的 输出
6.11 PБайду номын сангаасB后期处 理
1.4 PCB后期处理
1.4.1 Output job设计数据输出 1.4.2 Draftsman的应用 1.4.3 新的Pick and Place生成器 1.4.4 3D PDF的输出 1.4.5 制作PCB 3D视频 1.4.6 导出钻孔图表的方法 1.4.7 邮票孔的设置 1.4.8 Gerber文件转换成PCB文件
高速电路pcb设计方法与技巧
高速电路pcb设计方法与技巧
高速电路 PCB 设计是非常重要的,因为它可能会对电路性能和信号完整性产生重要影响。
以下是一些高速电路 PCB 设计方法和技巧:
1. 布局规划:确保在 PCB 上正确布局各个电路模块,尽量减少信号路径长度和电流回路,避免交叉干扰和干扰耦合。
2. 地线规划:准确规划地线,减少回流路径和地回流阻抗,以确保信号完整性和抑制噪声。
3. 信号层分离:将信号层和电源层分离,减少干扰和耦合。
在有需要的地方使用地层分离。
4. 绕线规则:使用最短的路径和尽可能直线的路径连接信号源和接收器。
避免锐角和过于绕曲的路径,以减少信号损耗和延迟。
5. 信号完整性:在设计中使用适当的终端电阻、差分线、缓冲器和阻抗匹配等技术,以保持信号完整性和抑制回波和反射。
6. 电源和地线:确保电源和地线的良好连接和分配,减少电源噪声和地回流。
7. 绝缘:在高速电路附近使用绝缘层,以隔离高速信号和其他信号。
8. 过滤和抑制:在输入和输出端口使用合适的滤波器和抑制电路,以减少噪声和干扰。
9. EMI 和 RFI:在设计中采取一些措施来减少电磁干扰和无线干扰,如使用屏蔽层和地平面。
10. 模拟和数字信号分离:将模拟信号和数字信号分离,以减
少干扰和串扰。
总结来说,高速电路PCB 设计需要考虑布局规划、地线规划、信号层分离、绕线规则、信号完整性、电源和地线、绝缘、过滤和抑制、EMI 和 RFI、以及模拟和数字信号分离等因素。
这些方法和技巧可以帮助确保高速电路性能和信号完整性。
PCB小常识23——高速信号PCB布线技巧
PCB小常识23——高速信号PCB布线技巧高速信号布线的时候,需要用到传输线理论,布线过程中,有些方法和传统的一般信号布线也有所不同,下面大致给出了一些高频信号线的布线技巧。
1.多层布线高速信号布线电路往往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。
合理选择层数能大幅度降低印板尺寸,能充分利用中间层来设置屏蔽,能更好地实现就近接地,能有效地降低寄生电感,能有效缩短信号的传输长度,能大幅度地降低信号间的交叉干扰等等,所有这些都对高速电路的可靠二工作有利。
有资料显示,同种材料时,四层板要比双面板的噪声低20dB。
但是,板层数越高,制造工艺越复杂,成本越高。
2.引线弯折越少越好高速电路器件管脚间的引线弯折越少越好。
高速信号布线电路布线的引线最好采用全直线,需要转折,可用45°折线或圆弧转折(如图1所示),这种要求在低频电路中仅仅用于提高钢箔的固着强度,而在高速电路中,满足这一要求却可以减少高速信号对外的发射和相互间的耦合,减少信号的辐射和反射。
图1 布线的转折方式3.引线越短越好高速信号布线电路器件管脚间的引线越短越好。
引线越长,带来的分布电感和分布电容值越大,对系统的高频信号的通过产生很多的影响,同时也会改变电路的特性阻抗,导致系统发生反射、振荡等。
这些我们要避免的问题。
4.引线层间交替越少越好高速电路器件管脚间的引线层间交替越少越好。
所谓“引线的层间交替越少越好”,是指元件连接过程中所用的过孔越少越好。
据测,一个过孔可带来约0.5pf的分布电容,导致电路的延时明显增加,减少过孔数能显着提高速度。
这个在后面的过孔的高频特性中将详细说明。
5.注意平行交叉干扰高速信号布线电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅度减少干扰。
同一·层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。
高速PCB板的电源布线设计
杭州电子工业学院学报第22卷第1期JOURNAL OF HANGZHOU INSTITUTE OF Vol.22,No.1 2002年2月ELECTRONIC ENGINEERING Feb.2002高速PCB板的电源布线设计金环衣,胡建萍,陈显萼(杭州电子工业学院CAE所,浙江杭州310037)摘要:本文分析讨论了高速PCB板上由于高频信号的干扰和走线宽度的减小而产生的电源噪声和压降,并提出了高速PCB的电源模型,采用电源总线网络布线,选取合适的滤波电容,模拟数字地分开等几个简单有效的方法来解决高速PCB板的噪声和压降问题。
关键词:高速电路板;电源网络总线;模拟数字地中图分类号:Tm135文献标识码:A文章编号:1001-9146(2002)01-0036-040引言随着集成电路工艺和集成度的不断提高,集成电路的工作电压越来越低,速度越来越快。
进入新世纪后,CPU和网络都迈入了GHZ的时代,这对于PCB板的设计提出了更高的要求。
本文正是基于这种背景下,对高速PCB设计中最重要的环节之一———电源的合理布局布线进行分析和探讨。
1电源模型分析通常,在进行理论上的分析和计算时,都是把电源进行理想化,即电源无内阻,也无寄生阻抗。
如果用一个3.3V的电压源对PCB上的元件供电,那么无论距离电源的远近,各个元件都应工作在3.3V,且没有噪声。
然而在实际的设计工作中,由于PCB上的IC和输入输出的信号都工作在高频下,电场和磁场的相互转化,必不可免的给电源引入了噪声,如图1、图2所示。
同时由于PCB板上的走线非常的细,又产生了由于线路阻抗引起的压降,使远离电压源的器件工作电压小于电源电压。
因而高速PCB的电源布线存在两个关键的问题:电源噪声和压降。
2电源线的合理布局设计高速PCB板的关键之一就是要尽可能的减小由于线路阻抗引起的压降和高频电磁场转换而引入的各种噪声。
通常用两种方法来解决上述问题。
一是电源总线技术(POWER BUS),另一种方法就是采用一个单独的电源层进行供电。
高速电路pcb设计方法与技巧
高速电路pcb设计方法与技巧高速电路的PCB设计方法和技巧包括以下几个方面:1. 布局设计:将高速信号的传输路径尽量短,减少信号的传播延迟和损耗。
较重要的信号路径应尽量接近直线,减少信号的反射和串扰。
同时,将高速信号路径与低速信号路径、电源路径和地线路径分开布局,减少干扰。
将容易产生电磁干扰的元件,如发射器和接收器,与其他元件远离。
2. 信号线的走线规则:高速信号线应遵循尽量短、尽量宽、尽量平行的原则。
信号线的走线应尽量避免拐弯和角度过多,减少信号的反射和串扰。
信号线之间应保持一定的间距,避免互相干扰。
对于差分信号线,应保持差分对的长度一致,减少时钟抖动。
3. 地线规划:地线是高速电路中非常重要的一部分,对于信号的传输和干扰抑制起着至关重要的作用。
地线的设计应尽量短、宽,减小地电阻和电感。
可以使用填充地方式减小地回流路径。
对于多层PCB,应设计好地引脚和地面的连接方式。
4. 耦合电容与电感:在高速电路中,耦合电容和电感起着衰减高频噪声和滤波的作用。
需要合理选择耦合电容和电感的数值,以满足高速信号的传输需求。
电容和电感的布局也需要注意,尽量靠近需要耦合或滤波的信号线。
5. 电源规划:电源线是高速电路中非常重要的一部分,对于信号的传输和干扰抑制同样起着至关重要的作用。
电源线的设计应尽量短、宽,减小电源电阻和电感。
可以使用填充电源方式减小电源回流路径。
对于多层PCB,应设计好电源引脚和电源面的连接方式。
6. 综合考虑:在PCB设计中,需要考虑到信号的传输需求、干扰抑制、布局和走线的规则等多个方面。
综合考虑这些因素,可以在高速电路的PCB设计中取得较好的效果。
总的来说,高速电路的PCB设计需要充分考虑信号的传输需求和干扰抑制,合理的布局和走线规则是必不可少的。
此外,还需要综合考虑其他因素,如地线规划、耦合电容和电感、电源规划等,以确保高速电路的正常工作。
PCB Layout PCB布线设计指南
4.1 确定电源连接关系。
4.2 数字信号布线区域中,用10uF电解电容或钽电容与0.1uF瓷片电容并联後接在电源/地之间.在PCB板电源入口端和最远端各放置一处,以防电源尖峰脉冲引发的噪声干扰。
4.3 对双面板,在用电电路相同层面中,用两边线宽为 200mil的电源走线环绕该电路。(另一面须用数字地做相同处理)
3.10 高频信号走线应减少使用过孔连接。
3.11 所有信号走线远离晶振电路。
3.12 对高频信号走线应采用单一连续走线,避免出现从一点延伸出几段走线的情况。
3.13 DAA电路中,穿孔周围(所有层面)留出至少60mil的空间。
3.14 清除地线环路,以防意外电流回馈影响电源。
PCB Layout指南(下)
2.3 初步划分完毕後,从Connector和Jack开始放置元器件:
a) Connector和Jack周围留出插件的位置;
b) 元器件周围留出电源和地走线的空间;
c) Socket周围留出相应插件的位置。
2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):
a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;
3.4 并行总线接口信号走线线宽>10mil(一般为12-15mil),如/HCS、/HRD、/HWT、/RESET。
3.5 模拟信号走线线宽>10mil(一般为12-15mil),如MICM、MICV、SPKV、VC、VREF、TXA1、TXA2、RXA、TELIN、TELOUT。
3.6 所有其它信号走线尽量宽,线宽>5mil(一般为 10mil),元器件间走线尽量短(放置器件时应预先考虑)。
PCB设计高速走线原则
高速走线指南(Creating High-speed Traces)PADS Router 包含的高速走线功能模块可以使你对高速部分的设计做很好的规划和控制。
在该课程中·控制走线长度·蛇形走线·差分走线·导航窗口的图形回馈·等长线规则·设置元件高级规则限制:该指南需要动态走线编辑(Dynamic Route Editing),扩展规则(Extended Rules)和基本编辑功能(General Editing),高速走线(High-speed Routing) 和走线安全模块(Route Security) ,你可以通过Help>Installed Options来查看你是否有这些模块可以操作。
准备在PADS 安装路径下的Samples 目录中打开preview.pcb文件。
控制走线长度(Trace Length Monitor)走线长度控制器用来帮助你控制走线的长度。
当你将走线长度控制器打开后,走线长度信息成为走线时光标的一部分显示出来,这样可以很好的控制走线的长度。
有两种方式可以用来控制走线长度,一种是不通过走线规则来控制长度,另一种就是通过走线规则来控制。
该课程中我们将学习在走线规则打开状态下对走线长度进行控制。
打开走线规则选项>General在Option>General 中选择Length monitor或快捷键Ctrl+L打开长度控制器。
打开长度控制器1、Pointer setting 中选择Length monitor打开长度控制器。
2、在高亮对象显示区域,区分高亮目录下选择Turning off highlighting3、OK完成设置。
置走线规则在你使用长度控制器之前,要先设置一个走线规则,该课程中,你将学习在对象浏览器中的对象查看窗口(Object View) 进行走线规则设置。
1、在对象浏览器中选中Object View。
高速PCB设计指南之三
高速PCB设计指南之三引言高速PCB设计是现代电子领域中非常重要的一环。
随着数字电子设备的快速发展,高速信号传输已经成为现代电路设计的常态。
为了确保高速信号的稳定性和可靠性,需要遵循一系列设计准则和技巧。
本文将介绍高速PCB设计中的一些关键指南,帮助读者轻松应对高速PCB设计挑战。
1. PCB布局准则高速PCB布局是确保信号完整性的第一步。
下面是一些常见的布局准则:1.1 信号和地平面分层为了减小信号回路面积,降低信号耦合和EMI,应采用分层布局。
将信号层与地层尽可能分开,并通过适当的细分来减小共模电流。
1.2 信号走线长度匹配对于多个高速信号,需要确保它们的走线长度相等,以避免信号传输延迟差异带来的问题。
可以通过布局规划和走线路径规划来实现长度匹配。
1.3 规避回流路径避免信号回流路径通过高速区域,可以减小信号回路面积和互相干扰的机会。
可以通过合理的布局规划和分层技术来实现。
1.4 分离噪声敏感区将噪声敏感区域与高速信号路径分离开来,可以降低噪声对高速信号的干扰。
例如,可以将时钟信号路径与噪声源分离,以减小时钟抖动的影响。
2. 信号走线准则高速信号的走线是确保信号完整性的关键。
下面是一些常见的信号走线准则:2.1 适当的层次规划根据设计需求,选择适当的层次进行走线。
比如,对于差分信号,可以选择内层信号层进行走线,以减小差分对的引脚间距。
2.2 管理引脚引导对于高速信号,需要避免引脚的过长引导,以减小信号的传输延迟。
可以通过按照信号走线的顺序安排引脚,减小信号走线的路径长度。
2.3 路由宽度控制根据信号的需求和设计规范,合理控制信号的走线宽度。
对于高速信号,需要适当增加走线宽度,以降低传输的串扰。
2.4 信号间距和地线间距为了减小信号间的串扰,需要适当增加信号间的距离。
对于差分信号,还需要注意地线间的距离,并保持一致。
3. PCB布线技巧除了布局和信号走线的准则外,还有一些布线技巧可以提高高速PCB设计的性能和可靠性:3.1 时钟布线对于时钟信号,需要特别注意布线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速PCB设计指南之一第一篇PCB布线在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB布线有单面布线、双面布线及多层布线。
布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。
必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。
一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。
并试着重新再布线,以改进总体效果。
对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。
1 电源、地线的处理既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。
所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。
对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:(1)、众所周知的是在电源、地线之间加上去耦电容。
(2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)(3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。
或是做成多层板,电源,地线各占用一层。
2 数字电路与模拟电路的共地处理现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。
因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。
数字地与模拟地有一点短接,请注意,只有一个连接点。
也有在PCB上不共地的,这由系统设计来决定。
3 信号线布在电(地)层上在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。
首先应考虑用电源层,其次才是地层。
因为最好是保留地层的完整性。
4 大面积导体中连接腿的处理在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。
②容易造成虚焊点。
所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。
多层板的接电(地)层腿的处理相同。
5 布线中网络系统的作用在许多CAD系统中,布线是依据网络系统决定的。
网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。
而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。
网格过疏,通路太少对布通率的影响极大。
所以要有一个疏密合理的网格系统来支持布线的进行。
标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。
6 设计规则检查(DRC)布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:(1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。
(2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB 中是否还有能让地线加宽的地方。
(3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。
(4)、模拟电路和数字电路部分,是否有各自独立的地线。
(5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。
(6)对一些不理想的线形进行修改。
(7)、在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。
(8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。
第二篇PCB布局在设计中,布局是一个重要的环节。
布局结果的好坏将直接影响布线的效果,因此可以这样认为,合理的布局是PCB设计成功的第一步。
布局的方式分两种,一种是交互式布局,另一种是自动布局,一般是在自动布局的基础上用交互式布局进行调整,在布局时还可根据走线的情况对门电路进行再分配,将两个门电路进行交换,使其成为便于布线的最佳布局。
在布局完成后,还可对设计文件及有关信息进行返回标注于原理图,使得PCB板中的有关信息与原理图相一致,以便在今后的建档、更改设计能同步起来, 同时对模拟的有关信息进行更新,使得能对电路的电气性能及功能进行板级验证。
--考虑整体美观一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是成功的。
在一个PCB板上,元件的布局要求要均衡,疏密有序,不能头重脚轻或一头沉。
--布局的检查印制板尺寸是否与加工图纸尺寸相符?能否符合PCB制造工艺要求?有无定位标记?元件在二维、三维空间上有无冲突?元件布局是否疏密有序,排列整齐?是否全部布完?需经常更换的元件能否方便的更换?插件板插入设备是否方便?热敏元件与发热元件之间是否有适当的距离?调整可调元件是否方便?在需要散热的地方,装了散热器没有?空气流是否通畅?信号流程是否顺畅且互连最短?插头、插座等与机械设计是否矛盾?线路的干扰问题是否有所考虑?第三篇高速PCB设计(一)、电子系统设计所面临的挑战随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。
目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。
当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。
因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。
只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
(二)、什么是高速电路通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。
因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。
信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。
反之,反射信号将在信号改变状态之后到达驱动端。
如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
(三)、高速信号的确定上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间?一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。
下图为信号上升时间和允许的布线长度(延时)的对应关系。
PCB 板上每单位英寸的延时为 0.167ns.。
但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。
通常高速逻辑器件的信号上升时间大约为0.2ns。
如果板上有GaAs 芯片,则最大布线长度为7.62mm。
设Tr 为信号上升时间, Tpd 为信号线传播延时。
如果Tr≥4Tpd,信号落在安全区域。
如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。
如果Tr≤2Tpd,信号落在问题区域。
对于落在不确定区域及问题区域的信号,应该使用高速布线方法。
(四)、什么是传输线PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。
串联电阻的典型值0.25-0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高。
将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的最终阻抗称为特征阻抗Zo。
线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。
如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号最终的稳定状态将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来。
随着能量的减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定。
这种效应被称为振荡,信号的振荡在信号的上升沿和下降沿经常可以看到。
(五)、传输线效应基于上述定义的传输线模型,归纳起来,传输线会对整个电路设计带来以下效应。
· 反射信号Reflected signals· 延时和时序错误Delay & Timing errors· 多次跨越逻辑电平门限错误False Switching· 过冲与下冲Overshoot/Undershoot· 串扰Induced Noise (or crosstalk)· 电磁辐射EMI radiation5.1 反射信号如果一根走线没有被正确终结(终端匹配),那么来自于驱动端的信号脉冲在接收端被反射,从而引发不预期效应,使信号轮廓失真。