1.2.1排列(第一课时)课件

合集下载

1.2 第一课时 排列与排列数公式 课件(北师大选修2-3)

1.2 第一课时  排列与排列数公式 课件(北师大选修2-3)

特征,第一取出的元素无重复性,第二选出的元素必须与 顺序有关才是排列问题.元素相同且排列顺序相同才是相 同的排列.元素有序还是无序是判定是否为排列问题的关
键.
返回
1.下列命题,
①abc和bac是两个不同的排列;②从甲、乙、丙三人
中选两人站成一排,所有的站法有6种;③过不共线的 三点中的任两点所作直线的条数为6. 其中为真命题的是 A.①② C.②③ 答案:A 返回 B.①③ D.①②③ ( )
-1 n-m Am · A n-1! - n 1 n-m (3) = · (n-m)!· -1 An [ n - 1 - m - 1 ] ! n-1
1 =1. n-1!
(12 分)
返回
[一点通]
m (1)排列数的第一个公式 An =n(n-1)…(n-
m+1)适用于具体计算以及解当 m 较小时的含有排列数的方 程和不等式.在运用该公式时要注意它的特点:从 n 起连续 写出 m 个数的乘积即可. (2)排列数的第二个公式 Am n= n! 适用于与排列数 n-m!
顺序 排成一列, 叫作 从n个不同的元素中任意取出m个
元素 的一个排列.
返回
已知数字1,2,3,4,5,6. 问题1:从1,2,3,4,5,6中选出两个数字,能构成多少个
没有重复数字的两位数?
提示:有6×5=30个. 问题2:从1,2,3,4,5,6中选出三个数字,能构成多少个 没有重复数字的三位数? 提示:有6×5×4=120个. 返回
返回
4.A,B,C,D四名同学排成一行照相,要求自左向右,
A不排第一,B不排第四,试写出所有排列方法.
解:因为A不排第一,排第一位的情况有3类(可以B,C, D中任选一人排),而此时兼顾分析B的排法,列树形图 如图.

1.2.1排列(1)

1.2.1排列(1)

“一个排列”是指:从n 个不同元素中,任取 m 个元素 一个排列”是指: 一个排列 个不同元素中, 按照一定的顺序排成一列,不是数; 按照一定的顺序排成一列,不是数; “排列数”是指从n 个不同元素中,任取 m 个元素的 排列数” 个不同元素中, 排列数 m 所有排列的个数,是一个数; 所有排列的个数,是一个数;所以符号 An 只表示 排列数,而不表示具体的排列。 排列数,而不表示具体的排列。
有关排列数的计算与证明
n n!
2
2
3
6
4
24
5
120
6
720
4 (3 ) 6
2、排列数: 、排列数: 从n个不同的元素中取出m(m≤n)个元素 个不同的元素中取出m(m≤n)个元素 m(m≤n) 的所有排列的个数,叫做从n 的所有排列的个数,叫做从n个不同的元素中 m 取出m个元素的排列数。 表示。 取出m个元素的排列数。用符号 A 表示。 n “排列”和“排列数”有什么区别和联 排列” 排列 排列数” 系?
1.2.1
排列(1) 排列(1)
分类加法计数原理: 分类加法计数原理: 完成一件事, 类不同方案, 完成一件事,有n类不同方案,在第 类方案 类不同方案 在第1类方案 中有m 种不同的方法,在第 类方案中有m 在第2类方案中有 中有 1种不同的方法 在第 类方案中有 2种不同 在第n类方案中有 的方法 ……在第 类方案中有 n种不同的方法 那 在第 类方案中有m 种不同的方法.那 么完成这件事共有 N = m + m2 +L+ mn 种 1 不同的方法. 不同的方法 分步乘法计数原理: 分步乘法计数原理: 完成一件事,需要分成n个步骤 做第1步有 个步骤, 完成一件事,需要分成 个步骤,做第 步有 m1种不同的方法 做第 步有 2种不同的方法 种不同的方法,做第 步有m 种不同的方法……, 做第2步有 , 做第n步有 种不同的方法.那么完成这件事共 步有m 做第 步有 n种不同的方法 那么完成这件事共 种不同的方法. 有 N = m × m2 ×L× mn 种不同的方法 1

高二化学《物质结构与性质》精品课件2:1.2.1基态原子的核外电子排布

高二化学《物质结构与性质》精品课件2:1.2.1基态原子的核外电子排布
第2节 原子结构与元素周期表 第1课时 基态原子的核外电子排布
一 基态原子的核外电子排布原则
1.能量最低原则 (1)核外电子的排布轨按道能量由低 到 高 ,由 里 到 外 依次排列,使整个原子处于 最低 的能量状态。 (2)基态原子核外电子在原子轨道上的排列顺序为 1s,2s,2p,3s, 3p,4s, 3d,4p,5s,4d,5p,6s ,适用于大多数基态原子 的核外电子排布。
(2)根据轨道能量高低顺序可知E4s<E3d,对于21Sc来说, 最后3个电子应先排满4s,再排3d,应为 1s22s22p63s23p63d14s2,违反了能量最低原则。
(3)对于22Ti来说,3p共有3个轨道,最多可以排6个电 子,如果排10个电子,则违反了泡利不相容原理。
[答案] (1)洪特规则 (2)能量最低原则 (3)泡利不相 容原理
(2)洪特通过分析光谱实验的结果进一步指出,能量相同 的原子轨道在 全充满 (d10)、半充满 (d5)和 全空 (d0)状态时,
体系能量低,原子较稳定。
归纳总结
(1)泡利原理可叙述成:在同一原子中,不可能有两个 电子处于完全相同的状态,或者说,一个原子中不会存在四 个量子数(n、l、m、ms)完全相同的两个电子。
2.泡利不相容原理 (1)每个原子轨道上最多容纳 两个 电子,且一个原子轨 道上的电子自旋方向必须 相反 。
(2)在原子中,每个电子层最多能容纳2n2个电子,每个
能级最多能容纳2(2l+1)个电子。
3.洪特规则 (1)对于基态原子,电子在 能量相同 的轨道上排布时, 应尽可能分占 不同 的轨道并且自旋方向 相同 。
[答案] D
二 基态原子电子排布的表达方式
[例3] 已知锰的核电荷数为25,以下是一些同学绘制的

第1章-1.2-1.2.1-第1课时 排列与排列数公式

第1章-1.2-1.2.1-第1课时 排列与排列数公式

A.6 个
【解析】 符合题意的商有 A2 4=4×3=12. 【答案】 C
3.某段铁路所有车站共发行 132 种普通车票,那么这段 铁路共有的车站数是( A.8 B.12 ) C.16 D.24
【解】 设车站数为 n,则 A2 n=132,n(n-1)=132,∴n =12.
【答案】 B
4.写出下列问题的所有排列. (1)甲、乙、丙、丁四名同学站成一排; (2)从编号为 1,2,3,4,5 的五名同学中选出两名同学任正、 副班长.
沿途有四个车站,求这四个车 要确定一种车票,即是从四个车站中任意选出 2 个车站,按起点站在前、终点站在后进行排列,共有 A2 4种 不同的排法,即共有 A2 4 种不同的车票,由排列数公式可得 A2 4=4×3=12.
树形图法在解决简单排列问题中的应用 (12 分)从 0,1,2,3 这四个数字中,每次取出三个 不同的数字排成一个三位数. (1)能组成多少个不同的三位数,并写出这些三位数. (2)若组成这些三位数中,1 不能在百位,2 不能在十位, 3 不能在个位,则这样的三位数共有多少个,并写出这些三 位数.
【提示】 不是.
排列的概念 一般地,从 n 个不同元素中取出 m( 按照 一定的顺序
m≤n )个元素,
排成一列, 叫做从 n 个不同元素中取
出 m 个元素的一个排列.
排列数及排列数公式
【问题导思】 两个同学从写有数字 1,2,3,4 的卡片中选取卡片进行组数 字游戏.
1. 从这 4 个数字中选出两个能构成多少个无重复数字的 两位数?
【解】 (1)四名同学站成一排, 共有 A4 4=24 个不同的排 列,它们是: 甲乙丙丁,甲丙乙丁,甲丁乙丙,甲乙丁丙,甲丙丁乙, 甲丁丙乙; 乙甲丙丁,乙甲丁丙,乙丙甲丁,乙丙丁甲,乙丁甲丙, 乙丁丙甲;

高中数学— 排列与组合

高中数学— 排列与组合

Amn
= =
n(n-1)(n (n-nm! )!.

-
m
+
1)
(n (n
-
m)(n m)(n
-
m m
-1)3 -1)3
21 21
Amn
=
(n
n! - m)!
例(补充).
求证:
Akn+1
=
n
n+1 +1-
k
Akn
(k
n).
证明:
左边
Akn+1
=
(n + 1)! (n+1- k)!
(n+1)n! =
(n+1-k)(n-k)!
=
n
n+1 +1- k
Akn
= 右边.
练习: (课本20页) 第 3、4 题.
练习: (课本20页)
3. 用计算器计算下表中的阶乘数, 并填入表中:
n 234 5 6 7
8
n! 2 6 24 120 720 5040 40320
4. 求证:
(1) Amn = nAmn--11 ; (2) A88 - 8A77 + 7A66 = A77 .
元素相同, 顺序也相同, 则是同一个排列.
【课时小结】
2. 排列方法 从右到左依次替换元素. 如: 从元素 1, 2, 3, 4, 5, 6 中取 3 个元素
的排列.
1, 2 排头, 换第三位 123, 124, 125, 126;
1, 3 排头, 换第三位 132, 134, 135, 136; ……
abc 与 abd 不同. 元素相同, 顺序不同, 也是不同的排列.

1[1].2.1排列第1课时 排列与排列数公式 课件(人教A版选修2-3)

1[1].2.1排列第1课时 排列与排列数公式 课件(人教A版选修2-3)
1.2
排列与组合
1.2.1 排 列
第1课时 排列与排列数公式
【课标要求】 1.了解排列、排列数的定义. 2.掌握排列数公式的推导方法. 3.能用排列数公式解决简单的排列问题.
【核心扫描】
1. 排列概念的理解.(难点) 2. 排列的简单应用.(重点) 3. 排列与排列数的区别.(易混点)
自学导引
1.排列的定义
【题后反思】
(1)题属于求排列数问题;(2)题不属于求
排列数问题,应注意它们的区别,区分的关键看“事件”是 否符合排列定义,排列的特点是先取后排,特点是序性.
【变式4】 用一颗骰子连掷三次,投掷出的数字顺序排成一个 三位数,此时: (1)各位数字互不相同的三位数有多少个? (2)可以排出多少个不同的数? (3)恰好有两个相同数字的三位数共有多少个?
题型四
排列的简单应用
【例4】 (1)有5个不同的科研小课题,从中选3个由高二(3)班
的3个学习兴趣小组进行研究,每组一个课题,共有多少
种不同的安排方法? (2)有5个不同的科研课题,高二(3)班的3个学习兴趣小组 报名参加,每组限报一项,共有多少种不同的安排方法? 审题指导 根据排列和计数原理的概念解题.
1 (3)性质:An=n!规定 A0=__,0!=1. n n
试 一 试 : 如 果 A m = 17×16×15×…×5×4 , 则 n = n ________,m=________.
提示
因为最大数为17,是17-4+1=14个数的积,
∴n=17,m=14.
名师点睛
1.对排列定义的理解 (1)排列的定义中包括两个基本内容,一是“取出元素”, 二是“按一定的顺序排列”. (2)排列的一个重要特征是每一个排列不仅与选取的元素 有关,而且与这些元素的排列顺序有关,选取的元素不同

12排列与组合121排列第一课时排列的概念及排列数公式

12排列与组合121排列第一课时排列的概念及排列数公式

2.从1,2,3,4中任取两个数字组成平面直角坐标系中一个点的 坐标,则组成不同点的个数为( ) 答案:C
A.2
B.4
C.12
D.24
栏目 导引
第一章 计数原理
3.全排列 (1)定义:n 个不同元素全部取出的2)×…×3×2×1=n!. (3)阶乘:正整数 1 到 n 的连乘积. (4)规定:0!=1.
是全排列数的一半. 【解】 (1)五名同学站成一排,不同的排列对应不同的站法,
故站法种数为 A55=5×4×3×2×1=120. (2)五名同学站好后,甲位于乙右侧或左侧必属其一,故这时的站
法种数为A255=60.
栏目 导引
第一章 计数原理
【名师点评】 有关基本排列问题的解法:
(1)明确选出的元素有无顺序要求;
第一章 计数原理
解:1!+2·2!+3·3!+…+n·n!
=(2!-1!)+(3!-2!)+(4!-3!)+…+[(n+1)!-n!]
=(n+1)!-1.
2.证明:Ann++11=Ann+1=(n+1)Ann.
证明:∵Ann++11=(n+1)·n·(n-1)…3·2·1,
Ann+1=(n+1)·n(n-1)…3·2·1,
【名师点评】 判定是不是排列问题,要抓住排列的本质特征,
第一取出的元素无重复性,第二选出的元素必须与顺序有关才
是排列问题.元素相同且排列顺序相同才是相同的排列.元素有
序还是无序是判定是否是排列的关键.
栏目 导引
变式训练 1.判断下列问题是否为排列问题.
第一章 计数原理
(1)从五名同学中选两人分别担任正、副组长;
个排列. (2)两个排列相同,当且仅当两个排列的元素__完__全__相__同__,且元素的 __排__列__顺__序__也相同.

1.2.1排列(1) 优质课件

1.2.1排列(1) 优质课件
上午 下午
乙 甲 丙 甲 乙 丙 甲 相应的排法 甲乙
甲丙
乙甲 乙丙 丙甲 丙乙
对象排列有先后


把上面问题中被取的对象叫做元素,于是问 题1就可以叙述为:
从3个不同的元素a,b,c中任取2个,然后按照一定 的顺序排成一列,一共有多少种不同的排列方法?
ab, ac, ba, bc, ca, cb
问题2:从1,2,3,4这4个数中,每次取出3个排成 一个三位数,共可得到多少个不同的三位数?
2
1 3
4
1
2 3
4
3
1
2
3 2
4
3 42 42 3
3 41 41
41 4 1 2
3 1 2 3 1 3 1 2
4 2
有此可列举写出所有的三位数:
123,124,132,134,142,143; 213,214,231,234,241,243,
312,314,321,324,341,342; 412,413,421,423,431,432。
能力提升:
n! A 证明: n m !
m n
例2.
(1)从5本不同的书中选3本送给3名同学,每人各1本, 共有多少种不同的送法? A 3 = 60
5
(2)从5种不同的书中买3本送给3名同学,每人各1本, 共有多少种不同的送法?
5 = 125
3
课堂小结:
1.判断一件事是否为排列关键有两个要素,一是取 出的元素要考虑顺序,二是事件中没有重复元素,否则 就不能按排列原理求方法数. 2.排列与排列数是两个不同的概念,前者是指按照 一定顺序排成的一列元素,后者是指所有排列的个数, 它可以用排列数公式进行计算.

高中数学第一章计数原理1.2排列与组合1.2.1第1课时排列与排列数公式a23a高二23数学

高中数学第一章计数原理1.2排列与组合1.2.1第1课时排列与排列数公式a23a高二23数学

义及表示 叫做从n个不同元素中取出m个元素的排列数,用符号Amn 表示
全排列的概念
n个不同元素__全__部__(q_uá_nb_ù_)取_的出一个排列
阶乘的概念
把_n_·(_n_-__1_)_·…__·_2_·_1记作n!,读作:n的阶乘
Anm=___n_(_n_-__1_)…__(_n_-__m__+__1_) ____
2021/12/12
第十五页,共三十六页。
[跟踪训练] 1.判断下列问题是否是排列问题 (1)同宿舍4人,每两人互通一封信,问他们一共写了多少封信? (2)同宿舍4人,每两人通一次电话,问他们一共通了几次电话?
[解] (1)是一个排列问题,相当于从4个人中任取两个人,并且按顺序 排好.有多少个排列就有多少封信,共有A24=12封信.
题.
()
2021/12/12
第八页,共三十六页。
[解析] (1)× 因为相同的两个排列不仅元素相同,而且元素的排列顺 序也相同.
(2)√ 因为三名学生参赛的科目不同为不同的选法,每种选法与“顺 序”有关,属于排列问题.
(3)× 因为分组之后,各组与顺序无关,故不属于排列问题. (4)√ 因为任取的两个数进行指数运算,底数不同、指数不同结果不 同.结果与顺序有关,故属于排列问题. (5)√ 因为纵、横坐标不同,表示不同的点,故属于排列问题.
第二页,共三十六页。
[自 主 预 习·探 新 知]
1.排列的概念 从n个不同元素中取出m(m≤n)个元素,按照_一__定_(_yī_dì_ng_)_的_顺排序成一列,叫 做从n个不同元素中取出m个元素的一个排列. 2.相同排列的两个条件 (1)_元__素__(_yu相án s同ù) . (2)_顺__序__(s_hù相nxù同) . 思考:如何理解排列的定义?

2019-2020年人教A版高中数学选修2-3:1.2排列与组合1.2.1排列课件 (共29张PPT)

2019-2020年人教A版高中数学选修2-3:1.2排列与组合1.2.1排列课件 (共29张PPT)
课时作业
[自主梳理] 1.排列的有关概念 (1)定义:一般地,从 n 个 不同 元素中取出 m(m≤n)个元素,按照一定的顺序 排成一列,叫作从 n 个 不同 元素中取出 m 个元素的一个排列. (2)相同排列:两个排列相同,当且仅当两个排列的元素 完全相同 ,且元素的 排列顺序 也相同.
2.排列数与排列数公式
后面,则他可选的密码个数共有( )
A.A66
B.A68
C.A35+A33
D.A35·A33
解析:分两步.第一步选 3 个数字安排在后三位,有 A35种方法,第二步把 3 个字母
安排在前三位,有 A33种方法,故共有 A35·A33个密码.
答案:D
探究三 “在”与“不在”的问题 [典例 3] 7 位同学站成一排. (1)若甲站在中间的位置,则共有多少种不同的排法? (2)甲、乙只能站在两端的排法共有多少种? (3)甲、乙不能站在排头和排尾的排法共有多少种? (4)甲不能站排头、乙不能站排尾的排法共有多少种? [解析] (1)先考虑甲站在中间,有 1 种排法,再在余下的 6 个位置排另外 6 位同学, 共 A66=720 种排法. (2)先考虑甲、乙站在两端,有 A22种排法,再在余下的 5 个位置排另外 5 位同学,有 A55种排法,共 A22A55=240 种排法.
1.2 排列与组合 1.2.1 排 列重点:排列的概念;排列数公
2.了解排列数的概念.
式;用排列知识解决简单的实
3.掌握排列数公式的推导方法.
际问题.
4.能用排列知识解决简单的实际问题. 难点:排列数公式的推导方法.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要 表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法 主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.

选修2-3课件1.2.1排列(一)

选修2-3课件1.2.1排列(一)

研究一个排列问题,往往只需知道所有排列的个数而无需一一 写出所有的排列,那么能否不通过一一写出所有的排列而直接 “得”出所有排列的个数呢?这一节课我们将来共同探讨这个 问题:排列数及其公式.
问题1 从甲、乙、丙3名同学中选出2名 参加某天的一项活动,其中1名参 加上午的活动,1名参加下午的活动, 有哪些不同的排法?
练习:
1. 下面几个问题属于排列的是( A,D )(多选)
A)由1、2、3三个数字组成无重复数字的三位数, B)从40人中选5人组成篮球队,C)8个人进行单循环乒 乓球比赛,D)从40人中选5人担任班长,团支部,副班长, 学习委员,体育委员。 2. 下列问题不属于排列问题的是( D )
A)三人互相敬酒,B)三人互相送礼,C)三人互相问好, D)三人互相握手。
b
b d a d a b
b c a c a b
c
acd bcd cbd dbc
adb adc bda bdc 问题2 从甲、乙、丙3名同学中选出2名 从a,b,c,d这4个字母中,每次 参加某天的一项活动,其中1名参 取出3个按顺序排成一列, 加上午的活动,1名参加下午的活动, 写出所有不同的排法. 有哪些不同的排法? 原问题即:从3名同学中,任取2名, 原问题即:从4个不同的字母中, 按参加上午的活动在前,下午的 任取3个,按照左边,中间,右边 活动在后的顺序排成一列, 有哪 的 顺序排成一列,写出所有不 些不同的排法? 同的排法. 实质是:从3个不同的元素中,任 实质是:从4个不同的元素中, 取2个,按一定的顺序排成一列, 任取3个,按照一定的顺序排成 有哪些不同的排法? 一列,写出所有不同的排法.
b c d a c d abc bac cab dab c d b d b c c d a d a c abd bad cad dac acb bca cba dba a c b d a d b

【全程复习方略】高中数学 1.2.1.1 排列的概念及简单排列问题课件 新人教A版选修2-3

【全程复习方略】高中数学 1.2.1.1 排列的概念及简单排列问题课件 新人教A版选修2-3

列出这6种分法,如下:

玫瑰花

月季花

莲花
玫瑰花
月季花 月季花 莲花 莲花
莲花
玫瑰花 莲花 玫瑰花 月季花
月季花
莲花 玫瑰花 月季花 玫瑰花
【补偿训练】从0,1,2,3这四个数字中,每次取出三个不同 数字排成一个三位数,若组成的这些三位数中,1不在百位,2 不在十位,3不在个位.则这样的三位数共有多少个?并写出这 些三位数.
2.做一做(请把正确的答案写在横线上) (1)从5个人中选取甲、乙2个人去完成某项工作,这_______排 列问题.(填“是”或“不是”) (2)从1,2,3中任取两个数字可组成不同的两位数有______个. (3)从3,5,7中任选两个数相减,可得到________个不同的结果.
【解析】(1)甲和乙与乙和甲去完成这项工作是同一种方法, 故不是排列问题. 答案:不是 (2)12,13,21,23,31,32,共6个. 答案:6 (3)从3,5,7中任选两个数相减的所有情况是3-5=-2,3-7=-4, 5-7=-2,5-3=2,7-3=4,7-5=2,故共有4个不同的结果.
然后再按树形图写出排列.
【变式训练】将玫瑰花、月季花、莲花各一束分别送给甲、乙、 丙三人,每人一束,共有多少种不同的分法?请将它们列出来 .
【解析】按分步乘法计数原理的步骤: 第一步,分给甲,有3种分法; 第二步,分给乙,有2种分法; 第三步,分给丙,有1种分法. 故共有3×2×1=6种不同的分法.
不同的选法是一个排列问题.( )
【解析】(1)错误.排列与元素的顺序有关, 所以1,2,3与3,2,1不是同一排列. (2)正确.由定义易知,取出的元素各不相同, 因此不能重复出现同一元素. (3)错误.由排列的定义知,取出元素后,再按顺序排成一列才 组成一个排列,只取不排不是排列 . (4)正确.选出的两个同学参加竞赛的学科不同,所以是排列问 题. 答案:(1)×(2)√(3)×(4) √

教学设计4:1.2.1 排列 第一课时

教学设计4:1.2.1 排列 第一课时

1.2.1 排列第一课时教学目标:知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想并能运用排列数公式进行计算.过程与方法:能运用所学的排列知识,正确地解决的实际问题情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列、排列数的概念教学难点:排列数公式的推导授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.一、讲解新课:1.问题:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步,确定参加上午活动的同学,从3 人中任选 1 人,有3 种方法;第2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有2 种方法.根据分步乘法计数原理,在 3 名同学中选出2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有3×2=6 种,如图所示.把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素a , b,中任取2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是ab,ac,ba,bc,ca, cb,共有3×2=6种.问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有4种方法;第二步确定中间的数,从余下的3个数中取,有3种方法;第三步确定右边的数,从余下的2个数中取,有2种方法由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法显然,从4 个数字中,每次取出3 个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这4个数字中任取1个,有4种方法; 第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的3 个数字中去取,有3种方法;第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的 2 个数字中去取,有 2 种方法.根据分步乘法计数原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有4×3×2=24种不同的排法, 因而共可得到24个不同的三位数,如图所示.由此可写出所有的三位数: 123,124, 132, 134, 142, 143, 213,214, 231, 234, 241, 243, 312,314, 321, 324, 341, 342, 412,413, 421, 423, 431, 432. 同样,问题 2 可以归结为:从4个不同的元素a , b , c ,d 中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?所有不同排列是abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd, bda, bdc, cab, cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, dcb. 共有4×3×2=24种. 2.排列的概念:从n 个不同元素中,任取m (m n )个元素(这里的被取元素各不相同)按照一定..的顺序...排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 3.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号A mn 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号A mn 只表示排列数,而不表示具体的排列 4.排列数公式及其推导:由2A n 的意义:假定有排好顺序的2个空位,从n 个元素12,,n a a a 中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列,反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数2A n .由分步计数原理完成上述填空共有(1)n n -种填法,∴2A n =(1)n n -由此,求3A n 可以按依次填3个空位来考虑,∴3A n =(1)(2)n n n --, 求A mn 以按依次填m 个空位来考虑A (1)(2)(1)=---+mn n n n n m ,排列数公式:A (1)(2)(1)=---+m n n n n n m(,,*∈≤N m n m n )说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个 少1,最后一个因数是1n m -+,共有m 个因数;(2)全排列:当n m =时即n 个不同元素全部取出的一个排列 全排列数:A (1)(2)21!=--⋅=nn n n n n (叫做n 的阶乘)另外,我们规定 0! =1 . 二、例题讲解例1.用计算器计算: (1)410A ; (2)518A ; (3)18131813A A ÷.解:用计算器可得:由(2)(3)我们看到,51813181813A A A =÷.那么,这个结果有没有一般性呢?即A !A A ()!--==-n m n nn mn m n n m . 排列数的另一个计算公式:A (1)(2)(1)=---+m n n n n n m(1)(2)(1)()321()(1)321n n n n m n m n m n m ---+-⋅⋅=---⋅⋅=!()!n n m -=A A --n n n mn m. 即A mn =!()!n n m -例2.解方程:33221A 2A 6A +=+x x x .解:由排列数公式得:3(1)(2)2(1)6(1)x x x x x x x --=++-,∵3x ≥,∴ 3(1)(2)2(1)6(1)x x x x --=++-,即2317100x x -+=, 解得 5x =或23x =,∵3x ≥,且*∈N x ,∴原方程的解为5x =. 例3.解不等式:299A 6A ->xx .解:原不等式即9!9!6(9)!(11)!x x >⋅--,也就是16(9)!(11)(10)(9)!x x x x >--⋅-⋅-,化简得:2211040x x -+>,解得8x <或13x >,又∵29x ≤≤,且*∈N x , 所以,原不等式的解集为{}2,3,4,5,6,7. 例4.求证:(1)A A A --=⋅nmn mn n n m ;(2)(2)!135(21)2!n n n n =⋅⋅-⋅.证明:(1)!A A ()!!()!--⋅=-=-mn m n n m n n m n n m A =n n ,∴原式成立(2)(2)!2(21)(22)43212!2!n n n n n n n n ⋅-⋅-⋅⋅⋅=⋅⋅2(1)21(21)(23)312!n n n n n n n ⋅-⋅⋅--⋅=⋅!13(23)(21)!n n n n ⋅⋅--==135(21)n ⋅⋅-=右边∴原式成立说明:(1)解含排列数的方程和不等式时要注意排列数A m n 中,,*∈N m n 且m n ≤这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;(2)公式A (1)(2)(1)=---+mn n n n n m 常用来求值,特别是,m n 均为已知时,公式A mn =!()!n n m -,常用来证明或化简例5.化简:⑴12312!3!4!!n n -++++;⑵11!22!33!!n n ⨯+⨯+⨯++⨯⑴解:原式11111111!2!2!3!3!4!(1)!!n n =-+-+-++-=-11!n -⑵提示:由()()1!1!!!n n n n n n +=+=⨯+,得()!1!!n n n n ⨯=+-, 原式()1!1n =+- 说明:111!(1)!!n n n n -=--. 例6.(课本例2).某年全国足球甲级(A 组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解:任意两队间进行1次主场比赛与 1 次客场比赛,对应于从14个元素中任取2个元素的一个排列.因此,比赛的总场次是214A =14×13=182.例7.(课本例3).(1)从5本不同的书中选 3 本送给 3 名同学,每人各 1 本,共有多少种不同的送法?(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法? 解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取 3 个元素的一个排列,因此不同送法的种数是35A =5×4×3=60.(2)由于有5种不同的书,送给每个同学的1本书都有 5 种不同的选购方法,因此送给 3 名同学每人各 1 本书的不同方法种数是5×5×5=125. 三、课堂练习: 1.若!3!n x =,则x = ( ) 3A.A n 3B.A -n n 3C.A n 33D.A -n2.与37107A A ⋅不等的是 ( )910A.A 88B.81A 99C.10A 1010D.A3.若53A 2A =m m ,则m 的值为 ( )A.5B.3C.6D.74.计算:56996102A 3A 9!A +=- ; 11(1)!A ()!---=⋅-n m m m n . 5.若11(1)!242A --+<≤m m m ,则m 的解集是 . 6.(1)已知10A 1095=⨯⨯⨯m,那么m = ;(2)已知9!362880=,那么79A = ; (3)已知2A 56=n ,那么n = ; (4)已知224A 7A -=n n ,那么n = .7.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?8.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?2,3,4,5,6答案:1. B 2. B 3. A 4. 1,1 5. {}6. (1) 6 (2) 181440 (3) 8 (4) 57. 16808. 24教学反思:排列的特征:一个是“取出元素”;二是“按照一定顺序排列” ,“一定顺序”就是与位置有关,这也是判断一个问题是不是排列问题的重要标志.根据排列的定义,两个排列相同,且仅当两个排列的元素完全相同,而且元素的排列顺序也相同. 了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算.对于较复杂的问题,一般都有两个方向的列式途径,一个是“正面凑”,一个是“反过来剔”.前者指,按照要求,一点点选出符合要求的方案;后者指,先按全局性的要求,选出方案,再把不符合其他要求的方案剔出去.了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算.。

课件1:1.2.1 排列

课件1:1.2.1 排列
位数,共可得多少个不同的三位数?
4× 3×2=24种
4种 3种
2种
问题探究
问题3 从n个不同元素中取出2个元素,排成一列,共有多少种
排列方法?
问题4 从n个不同元素中取出3个元素,排成一列,共有多少种 排列方法?
n种 (n-1)种 (n-2)种
n种 (n-1)种 n (n-1) 种
n (n-1)(n-2) 种
算.
n Am
理论迁移
例2 某年全国足球甲级(A组)联赛共有14个队参加, 每队要与其余各队在主、客场分别比赛一次,求总共要进
行多少场比赛.
A 14 13 182
2 14
理论迁移
例3(1)从5本不同的书中选3本送给3名同学,每人各1本,共有
பைடு நூலகம்
多少种不同的送法?
3 ( 种 ) 5 (2)从5种不同的书中选3本送给3名同学,每人各1本,共有多少
A
= 60
种不同的送法?
5 = 125 (种)
3
典型例题
题型一 数字排列的问题 例1.用0,1,2,…,9十个数字可组成多少个满足以下条 件的且没有重复数字的数: (1)五位奇数; (2)大于30 000的五位偶数.
解 (1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有5种取
法;取定末位数字后,首位就有除这个数字和0之外的8种不同取法;首末 两位取定后,十个数字还有八个数字可供中间的十位、百位与千位三个数
用的方法有直接法和间接法,直接法又有分步法和分类法两
种.
课堂小结
1.判断一件事是否为排列关键有两个要素,一是取出的元素要考 虑顺序,二是事件中没有重复元素,否则就不能按排列原理求方 法数. n Am 2.排列与排列数是两个不同的概念,前者是指按照一定顺序排成的

数学:1.2.1《排列》课件(新人教A版选修2-3)

数学:1.2.1《排列》课件(新人教A版选修2-3)
1 2
2
百位
十位
个位
A 9个
1
A 9个
2
图 1 .2 5
百位 十位
个位
解法 2
第1 , 确定百位上的数字, 在1 2,3,4这4个数字中任 步 , 取1 , 有4种方法; 个 第2步, 确定十位上的数字,当百位上的数字确定后,
十位上的数字只能从余下的 3 个数字中去取, 有 3 种方法;
第3步, 确定个位上的数字,当百位、十位上的数 字确定后, 个位上的数字只能从余下的 2 个数字 中去取, 有 2种方法; 根据分步乘法计数原理, 从1 2,3,4这4个不同的数 ,
, 可以从这
n 个元
第 2 步 , 填第 2 个位置的元素
ቤተ መጻሕፍቲ ባይዱ
, 可以从剩下的
n
1 个元素中任选
1个 , 有 n 1 种方法 .
根据分步乘法计数原理 数为 A n n n 1.
2
,2 个空位的填法种
同理 , 求排列数
3
A 可依次填
3 n
3 个空位来考虑
,
有 A n n n 1n 2 .
, 从 3 人中任选
确定参加下午活动的同 学确定后
学 , 当参加上午活动的同 能从余下的
上午 下午
, 参加下午活动的同学只
2人
甲乙
甲丙
中去选 , 于是有 2 种方法 .
相应的排法
根据分步乘法计数原理 在 3 名同学中选出 照参加上午活动在前 加下 午活动在后的顺序 排列的不同方法共有
,




2名,按 ,参
问题 2
从1 2,3,4这 4个数字中 每次取出 个排成 , , 3

排列(优秀课件) PPT

排列(优秀课件) PPT

所有排列的个数,是一个数;所以符号
A
m n
只表示
问题1中是求从3个不同元素中取出2个元素的排列数,
记为 A32 ,
A32 326
问题2中是求从4个不同元素中取出3个元素的排列数, 记为 A43 ,已经算出
A4343224
探究:从n个不同元素中取出2个元素的排列数
A
2 n
是多少?
A
3 n

Anm(nm) 又各是多少?
§ 1.2.1 排列
问题1
(1)从甲、乙、丙三名同学中选出两名参加一项活动, 有多少种选法?
(2)从甲、乙、丙三名同学中选出两名参加一项活动, 共中1名同学参加上午的活动,另1名参加下午的活动,有 多少种选法?
问题2
(1)从1,2,3,4中任意选出3个不同的数组成一个集合, 这样的集合有多少个?
(2)从1,2,3,4中任意选出3个组成一个三位数,共可得到 多少个三位数?
Ann n!
另外,我们规定 0!=1
问 题 : 请 比 较 A m 和 A n 的 差 异 , 并 思 考 这 两 者 有 何 关 系 ? nn
A m n (n 1 )(n 2 ) (n m 1 ) n
A n n n ( n 1 ) ( n 2 ) ( n m 1 ) ( n m )3 2 1
[解] (1)所有两位数是 12,21,13,31,14,41,23,32,24,42,34,43, 共有 12 个不同的两位数.
(2)画出树形图,如图所示.
由上面的树形图知,所有的四位数为: 1 234,1 243,1 324,1 342,1 423,1 432,2 134,2 143,2 314,2 341,2 413,2 431,3 124,3 142,3 214,3 241,3 412,3 421,4 123,4 132,4 213,4 231,4 312,4 321,共 24 个没有重复数字的四位数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(n-m+1)种
归纳类比
形成系统
排列数:从n个不同元素中取出m(m≤n)个元素的所有 排列的个数,叫做从n个不同元素中取出m个元素的排列 m 数,记作 (m、n∈N*)。 n

排列数公式:

m n
=n (n-1) (n-2) … (n-m+1)种
注1.排列与排列数的区别与联系; 2.排列数公式的特征: (1)等号右侧有m项相乘; (2)等号右侧从左至右依次呈公差为-1 的等差数列。
理论迁移
例1 判断下列“事情”是否为排列: (1)5人站成一排照相; 是 (2)从全班50名同学中挑选4人表演一 否 个小品节目; (3)从某6人中选取4人参加4×100m接 是 力赛; (4)将3本不同的书分发给3个人. 是
例2 某年全国足球甲级(A组)联赛 共有14个队参加,每队要与其余各队在 主、客场分别比赛一次,求总共要进行 多少场比赛.
成一列,共有多少种排列方法?
问题4 从n个不同元素中取出3个元素,排
成一列,共有多少种排列方法?
n种 (n-1)种
n种 (n-1)种 (n-2)种 n (n-1)(n-2) 种
n (n-1) 种
合作交流
互动探究
问题5 从n个不同元素中取出m个元素,排
成一列,共有多少种排列方法?
…… n种 (n-1)种 (n-2)种 (n-m+1)种
m A 3. n 是表示排列数的符号,解题时要利用排列数公
式算出其具体数值.
思考6:代数式(55-n)(56-n)„(69-n) 用排列数符号怎样表示?
A
15 69- n
5 n- 1
思考7:排列数A (n ³ 6) , A 等于什么? 5 An - 1 = (n - 1)(n - 2)(n - 3)(n - 4)(n - 5)
n- 2 分别 n+1
A
n- 2 n+1
= (n + 1)n (n - 1) L 5 ?4
A
2 4
12
总结作业
悬念结尾
悬念问题:
(1) A 表示什么意义,它又如何计算? (2)从n个不同元素中取出m个元素合成一组 共有多少种方法?
n n
作业:
P20
练习2
P27 习题1
课堂小结:
1.判断一件事是否为排列关键有两个要素,一是取 出的元素要考虑顺序,二是事件中没有重复元素,否则 就不能按排列原理求方法数. 2.排列与排列数是两个不同的概念,前者是指按照 一定顺序排成的一列元素,后者是指所有排列的个数, 它可以用排列数公式进行计算.
1.2 排列(一)
问题引导
开门见山
问题 1
问题2
从甲、乙、丙 3 名同学中选出 2 名参加某天 的一项活动,其中 1 名同学参加上午的活动, 1 名 同学参加下午的活动,有多少种不同的方法?
从1、2、3、4这四个数字中,取出3个数 字排成一个三位数,共可得多少个不同的三位数?
一般地,从n个不同元素中取出m(m≤n)个元素,按照一 定的顺序排成一列,叫做从n个不同元素中取出m个元素的 一个排列。 注1. 两个排列相同,当且仅当这两个排列的元 素完全相同,而且元素的排列顺序也完全相同; 2.排列包括两步:取→排。
合作交流
互动探究









合作交流
互动探究 2 1 3 4 3 1 2 4 4
1 2 3 4
34 2423
1 2 3
23 1312
34 1413
24 1412
合作交流
互动探究
3种 2种
3×2=6种
4种 3种 2种
4× 3×2=24种
合作交流
互动探究
问题3 从n个不同元素中取出2个元素,排
A = 14 ? 13
2 14
182(场)
例3(1)从5本不同的书中选3本送给 3名同学,每人各1本,共有多少种不同 3 的送法? A = 60(种)
5
(2)从5种不同的书中买3本送给3名同 学,每人各1本,共有多少种不同的送法?
5 = 125 (种)
3
练习提高
巩固成果
练习1:写出从a、b、c、d四个元素中任取2 个元素的所有排列,并计算其排列数。 练习2: m (1)若 An 17 16 15 5 4,则n= 17 , m= 14 。 (2)若 (55 n)(56 n)(68 n)(69 n) (n∈N* )则用排列数 15 符号表示为 A69-n 。
相关文档
最新文档