2019年全国高中数学联赛江西省预赛试题及答案
2019年全国高中数学联赛试题及答案

说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)如图,在锐角ABC D 中,M 是BC 边的中点.点P 在ABC D 内,使得AP 平分BAC .直线MP 与,ABP ACP D D 的外接圆分别相交于不同于点P 的两点,D E .证明:若DE MP =,则2BC BP =.证明:延长PM 到点F ,使得MF ME =.连接,,BF BD CE .由条件可知BDP BAPCEP CEM === = . ………………10分 因为BM CM =且EM FM =,所以BF CE =且//BF CE .于是F CEM = = ,进而BD BF =. ………………20分 又DE MP =,故DP EM FM ==.于是在等腰BDF D 中,由对称性得BP BM =.从而22BC BM BP ==. ………………40分二、(本题满分40分)设整数122019,,,a a a 满足122019199a a a =£££=.记22212201913243520172019()()f a a a a a a a a a a a =+++-++++.求f 的最小值0f .并确定使0f f =成立的数组122019(,,,)a a a 的个数. 解:由条件知2017222221220182019212()i i i f a a aaa a +==++++-å.①由于12,a a 及2(1,2,,2016)i i a a i +-=均为非负整数,故有221122,a a a a ³³,且222()(1,2,,2016)i i i i a a a a i ++-³-=.于是201620162221221222017201811()()i i i i i i a a a a a a a a a a ++==++-³++-=+åå.②………………10分参考答案及评分标准 2019年全国高中数学联合竞赛加试(A 卷)由①、②得2222017201820192017201820192()f a a a a a a ³++-++, 结合201999a =及201820170a a ³>,可知()22220172017201712(99)992f a a a ³+-++22017(49)74007400a =-+³.③………………20分另一方面,令1219201920211920220191,(1,2,,49),99k k a a a a a k k a +-+========, 此时验证知上述所有不等式均取到等号,从而f 的最小值07400f =.………………30分以下考虑③的取等条件.此时2017201849a a ==,且②中的不等式均取等,即121a a ==,2{0,1}(1,2,,2016)i i a a i +-Î=.因此122018149a a a =£££=,且对每个(149)k k ££122018,,,a a a 中至少有两项等于k .易验证知这也是③取等的充分条件对每个(149)k k ££,设122018,,,a a a 中等于k 1k n +,则k n 为正整数,且1249(1)(1)(1)2018n n n ++++++=124n n n +++=该方程的正整数解1249(,,,)n n n 的组数为1968,且每组解唯一对应一个使④取等的数组122019(,,,)a a a ,故使0f f =立的数组122019(,,,)a a a 有481968C 个.………………40分三、(本题满分50分)设m 为整数,2m ||³.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n均有21n n n a a ma ++=-.证明:若存在整数,r s (2)r s >³使得1r s a a a ==,则r s m ||-³.证明:不妨设12,a a 互素(否则,若12(,)1a a d =>,则1a d 与2ad互素,并且用123,,,a a a d d d代替123,,,a a a ,条件与结论均不改变). 由数列递推关系知234(mod )a a a m || ººº.① 以下证明:对任意整数3n ³,有2212((3))(mod )n a a a n a m m º-+-.②………………10分事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有212(mod )k ma ma m -º,结合归纳假设知112122((3))k k k a a ma a a k a m ma +-=-º-+--2212((2))(mod )a a k a m º-+-,即1n k =+时②也成立.因此②对任意整数3n ³均成立. ………………20分注意,当12a a =时,②对2n =也成立.设整数,(2)r s r s >³,满足1r s a a a ==. 若12a a =,由②对2n ³均成立,可知2212212((3))((3))(mod )r s a a r a m a a a a s a m m -+-º=º-+-,即1212(3)(3)(mod )a r a a s a m ||+-º+-,即2()0(mod )r s a m ||-º.③若12a a ¹,则12r s a a a a ==¹,故3r s >³.此时由于②对3n ³均成立,故类似可知③仍成立. ………………30分我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为234,,,a a a 的公因子,而12,a a 互素,故p 1a ,这与1r s a a a ==矛盾.因此,由③得0(mod )r s m ||-º.又r s >,所以r s m ||-³.………………50分四、(本题满分50分)设V 是空间中2019个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E 为这些线段构成的集合.试求最小的正整数n ,满足条件:若E 至少有n 个元素,则E 一定含有908个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.解:为了叙述方便,称一个图中的两条相邻的边构成一个“角”.先证明一个引理:设(,)G V E =是一个简单图,且G 是连通的,则G 含有||2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]a 表示实数a 的整数部分). 引理的证明:对E 的元素个数E 归纳证明.当0,1,2,3E =时,结论显然成立.下面假设4E ≥,并且结论在E 较小时均成立.只需证明,在G 中可以选取两条边,a b 构成一个角,在G 中删去,a b 这两条边后,剩下的图含有一个连通分支包含||2E -条边.对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v ,其中21,,,k v v v 是互不相同的顶点.因为G 连通,故3k ≥.情形1:1deg()2v ≥.由于P 是最长路,1v 的邻点均在2,,k v v 中,设1i v v E ∈,其中3i k ≤≤.则121{,}i v v v v 是一个角,在E 中删去这两条边.若1v 处还有第三条边,则剩下的图是连通的;若1v 处仅有被删去的两条边,则1v 成为孤立点,其余顶点仍互相连通.总之在剩下的图中有一个连通分支含有2E -条边.情形2:1deg()1v =,2deg()2v =.则1223{,}v v v v 是一个角,在G 中删去这两条边后,12,v v 都成为孤立点,其余的点互相连通,因此有一个连通分支含有2E -条边.情形3:1deg()1v =,2deg()3v ≥,且2v 与4,,k v v 中某个点相邻.则1223{,}v v v v是一个角,在G 中删去这两条边后,1v 成为孤立点,其余点互相连通,因此有一个连通分支含有2E -条边.情形4:1deg()1v =,2deg()3v ≥,且2v 与某个13{,,,}k u v v v ∈/ 相邻.由于P 是最长路,故u 的邻点均在2,,k v v 之中.因122{,}v v v u 是一个角,在G 中删去这两条边,则1v 是孤立点.若u 处仅有边2uv ,则删去所述边后u 也是孤立点,而其余点互相连通.若u 处还有其他边i uv ,3i k ≤≤,则删去所述边后,除1v 外其余点互相连通.总之,剩下的图中有一个连通分支含有2E -条边.引理获证. ………………20分 回到原题,题中的V 和E 可看作一个图(,)G V E =.首先证明2795n ≥.设122019{,,,}V v v v = .在1261,,,v v v 中,首先两两连边,再删去其中15条边(例如1311216,,,v v v v v v ),共连了26115C 1815-=条边,则这61个点构成的图是连通图.再将剩余的2019611958-=个点配成979对,每对两点之间连一条边,则图G 中一共连了181********+=条线段.由上述构造可见,G 中的任何一个角必须使用1261,,,v v v 相连的边,因此至多有18159072⎡⎤⎢=⎥⎣⎦个两两无公共边的角.故满足要求的n 不小于2795. ………………30分另一方面,若2795E ≥,可任意删去若干条边,只考虑2795E =的情形.设G 有k 个连通分支,分别有1,,k m m 个点,及1,,k e e 条边.下面证明1,,k e e 中至多有979个奇数.反证法,假设1,,k e e 中有至少980个奇数,由于12795k e e ++= 是奇数,故1,,k e e 中至少有981个奇数,故981k ≥.不妨设12981,,,e e e 都是奇数,显然12981,,,2m m m ≥ .令9812k m m m =++≥ ,则有2C 1980)(i m i e i ≥≤≤,2981C m k e e ≥++ ,故98022112795C C imk i i i m e ===≤+∑∑. ① 利用组合数的凸性,即对3x y ≥≥,有222211C C C C x y x y +-+≤+,可知当1980,,,m m m 由980个2以及一个59构成时,980221C C imm i =+∑取得最大值.于是 98022225921C C C 980C 26912795imm i =≤=<++∑, 这与①矛盾.从而1,,k e e 中至多有979个奇数. ………………40分对每个连通分支应用引理,可知G 中含有N 个两两无公共边的角,其中1111979(2795979)908222kki i i i e N e ==⎛⎫⎡⎤=≥-=-= ⎪⎢⎥⎣⎦⎝⎭∑∑.综上,所求最小的n 是2795. ………………50分2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 已知正实数a 满足8(9)a a a a =,则log (3)a a 的值为 .答案:916.解:由条件知189a a =,故9163a a ==,所以9log (3)16a a =.2. 若实数集合{1,2,3,}x 之和,则x 的值为 .答案:32-.解:假如0x ³,则最大、最小元素之差不超过max{3,}x ,而所有元素之和大于max{3,}x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-.3. 平面直角坐标系中,e 是单位向量,向量a 满足2a e⋅=,且25a a te£+对任意实数t 成立,则a的取值范围是 .答案:.解:不妨设(1,0)e .由于2a e ⋅=,可设(2,)a s=,则对任意实数t ,有2245s a a te +=£+= 这等价于245s s +£,解得[1,4]s Î,即2[1,16]s Î.于是a=Î.4. 设,A B 为椭圆G 的长轴顶点,,E F 为G 的两个焦点,4,AB =2AF =P 为G 上一点,满足2PE PF ⋅=,则PEF D 的面积为 . 答案:1.解:不妨设平面直角坐标系中G 的标准方程为22221(0)x y a b a b +=>>.根据条件得24,2a AB a AF ====可知2,1a b ==,且EF ==由椭圆定义知24PE PF a +==,结合2PE PF ⋅=得()2222212PE PF PE PF PE PF EF +=+-⋅==,所以EPF 为直角,进而112PEF S PE PF D =⋅⋅=.5. 在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10 ----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100.解:数组(,)a b 共有210100=种等概率的选法.考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(,)a b 有239=组.若a 不被3整除,则21(mod3)a º,从而1(mod3)b º-.此时a 有7种选法,b 有4种选法,这样的(,)a b 有7428´=组.因此92837N =+=.于是所求概率为37100.6. 对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值.若正数a 满足[0,][,2]2a a a M M =,则a 的值为 .答案:56p 或1312p .解:假如02a p<£,则由正弦函数图像性质得[0,][,2]0sin a a a M a M <=£,与条件不符.因此2a p >,此时[0,]1a M =,故[,2]12a a M =.于是存在非负整数k ,使得51322266k a a k p p p p +£<£+, ①且①中两处“£”至少有处取到等号.当0k =时,得56a p =或1326a p =.经检验,513,612a p p =均满足条件. 当1k ³时,由于13522266k k p p p p æö÷ç+<+÷ç÷çèø,故不存在满足①的a . 综上,a 的值为56p 或1312p .7. 如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF 的值为 .答案.解:记a 为截面所在平面.延长,AK BF 交于点P ,则P在a 上,故直线CP 是a 与平面BCGF 的交线.设CP 与FG 交于点L ,则四边形AKLC 为截面.因平面ABC 平行于平面KFL ,且,,AK BF CL 共点P ,故ABC KFL -为棱台.不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFL -的体积14V =.设PF h =,则1KF FL PF h AB BC PB h ===+.注意到,PB PF 分别是棱锥P ABC -与棱锥P KFL -的高,于是111466P ABC P KFL V V V AB BC PB KF FL PF --==-=⋅⋅-⋅⋅ 3221331(1)1616(1)h h h h h h æöæö++÷ç÷ç÷ç=+-=÷÷çç÷ç÷èø÷ç++èø. 化简得231h =,故h =1EK AE KF PF h ===. 8. 将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:498.解:将2,0,1,9,20,19的首位不为0的排列的全体记为A .易知55!600A =´=(这里及以下,X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知4!B =,5!B C +=,44!B D +=´,即24,96,72B C D ===. 由B 中排列产生的每个8位数,恰对应B 中的224´=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换).类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列.因此满足条件的8位数的个数为\()42B C DA B C D +++3600184836498422B C DA =---=---=.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC D 中,,,BC a CA b AB c ===.若b 是a 与c 的等比中项,且sin A 是sin()B A -与sin C 的等差中项,求cos B 的值.解:因b 是,a c 的等比中项,故存在0q >,满足2,b qa c q a ==. ①因sin A 是sin(),sin B A C -的等差中项,故2sin sin()sin sin()sin()2sin cos A B A C B A B A B A =-+=-++=.…………………4分结合正、余弦定理,得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. …………………8分αLD F B K将①代入并化简,可知24212q q q +-=,即421q q =+,所以212q =. …………………12分 进而2224222111cos 222c a b q q B ac q q +-+-====. …………………16分10. (本题满分20分) 在平面直角坐标系xOy 中,圆W 与抛物线2:4y x G =恰有一个公共点,且圆W 与x 轴相切于G 的焦点F .求圆W 的半径.解:易知G 的焦点F 的坐标为(1,0).设圆W 的半径为(0)r r >.由对称性,不妨设W 在x 轴上方与x 轴相切于F ,故W 的方程为222(1)()x y r r -+-=. ①将24y x =代入①并化简,得2221204y y ry æö÷ç÷-+-=ç÷÷çèø.显然0y >,故222221(4)12432y y r y y y æöæö÷+ç÷ç÷ç÷=-+=÷çç÷÷ç÷ç÷èøçèø. ② …………………5分根据条件,②恰有一个正数解y ,该y 值对应W 与G 的唯一公共点.考虑22(4)()(0)32y f y y y+=>的最小值.由平均值不等式知2244444333y y +=+++³,从而1()329f y y ³⋅=. 当且仅当243y =,即3y =时,()f y取到最小值9. ………………15分由②有解可知9r ³.又假如9r >,因()f y 随y 连续变化,且0y +及y +¥时()f y 均可任意大,故②在0,3æççççèø及3æö÷ç÷+¥ç÷ç÷çèø上均有解,与解的唯一性矛盾.综上,仅有9r =满足条件(此时1,33æ÷ç÷ç÷ç÷çèø是W 与G 的唯一公共点). …………………20分11. (本题满分20分)称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++³.解:考虑有趣的复数数列{}n z .归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n nz z n z z N ++æöæö÷÷çç÷÷++=Îçç÷÷ç÷÷çèøèø,解得*11()4N n n z n z +-=Î.因此1112n n n n z z z z ++===,故 *11111()22N n n n z z n --=⋅=Î.①…………………5分进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②记*12()N m m T z z z m =+++Î. 当*2()N m s s =Î时,利用②可得122122sm k k k T z z z z -=³+-+å21222k k k z z ¥-=>-+å212223k k ¥-==-=å.…………………10分 当*21()N m s s =+Î时,由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故12212212s m k k s k T z z z z z -+=æö÷ç³+-+-÷ç÷çèøå212223k k k z z ¥-=>-+=å. 当1m =时,1113T z ==>.以上表明3C =满足要求. …………………15分另一方面,当*1221221111,,()22N k k k k z z z k ++--===Î时,易验证知{}n z 为有趣的数列.此时2112211lim lim ()ss k k s s k T z z z ++ ¥¥==++å134lim 11833ss k ¥=-=+=+⋅=, 这表明C不能大于3. 综上,所求的C为3. …………………20分。
2019江西省预赛试题解答5-26

π 13
⎛⎜⎝
cos
2π 13
+
cos
4π 13
+
cos
6π 13
+
cos
8π 13
+
cos 10π 13
+
cos 12π 13
⎞⎟⎠
=
⎛⎜⎝ sin
3π 13
− sin
π 13
⎞⎟⎠
+
⎛⎜⎝ sin
5π 13
− sin
3π 13
⎞⎟⎠
+
⎛⎜⎝ sin
7π 13
− sin
5π 13
⎞⎟⎠
+
⎛⎜⎝ sin
3 、设 x > 0 ,且 x2 + 1 = 7 ,则 x5 + 1 =
.
x2
x5
答案:123 .
解:⎛⎜⎝
x
+
1 x
⎞⎟⎠2
=
x2
+
1 x2
+
2
=
9 ,所以
x
+
1 x
=
3 ,由
49
=
⎛⎜⎝
x2
+
1 x2
⎞⎟⎠2
=
x4
+
1 x4
+
2
,
则
x4
+
1 x4
= 47 ,所以
x5
+
1 x5
= ⎛⎜⎝ x +
1 x
2−
12 + 22 +! + 192
⎤ ⎦⎥
= 1 [36100 − 2470] =16815.
2019年全国高中数学联赛江西赛区预赛试卷及答案

2019年全国高中数学联赛江西省预赛试题解答(5月26日上午9:30−−12:00)一、填空题 (每小题7分,共56分)1、将集合1,2,!,19{}中每两个互异的数作乘积,所有这种乘积的和为 . 答案:16815. 解:所求的和为121+2+!+19()2−12+22+!+192()⎡⎣⎢⎤⎦⎥[]1361002470168152=−=. 2、公差为d ,各项皆为正整数的等差数列{}n a ,若11919,1949,2019m n a a a ===, 则正整数m n +的最小值是 .答案:15.解:设公差为d ,则()194919191m d =+−,()201919191n d =+−, 显然有1,1m n >>,301d m =−,以及1001d n =−,消去d 得:1037m n −=, 其通解为13110m t n t =+⎧⎨=+⎩,为使1,1m n >>且d 为正整数,则正整数t 只能在{}1,2,5,10中取值,当1t =时,4,11m n ==为最小,此时15m n +=.3、设0x >,且2217x x +=,则551x x+= . 答案:123. 解:2221129x x x x ⎛⎞+=++=⎜⎟⎝⎠,所以13x x +=,由2242411492x x x x ⎛⎞=+=++⎜⎟⎝⎠,则44147x x +=,所以54325234111111x x x x x x x x x x x x ⎛⎞⎛⎞+=+−⋅+⋅−⋅+⎜⎟⎜⎟⎝⎠⎝⎠ ()4242111134771123x x x x x x ⎡⎤⎛⎞⎛⎞⎛⎞=++−++=−+=⎜⎟⎜⎟⎜⎟⎢⎥⎝⎠⎝⎠⎝⎠⎣⎦. 4、、若OAB Δ的垂心恰是抛物线24y x =的焦点,其中O 是原点,,A B 在抛物线上,则OAB Δ的面积S = .答案:解:抛物线的焦点为(1,0)F ,因F 为OAB Δ的垂心,则OF AB ⊥,故可设,A B 的坐标为22(,2),(,2)A a a B a a −,()0a >;于是OA 的方程为2ay x =,2OA K a=, BF 的斜率221BF a K a −=−,据1BF OA K K ⋅=−,得a =,因此AB =25h a ==,所以OAB S Δ=5、,,a b c 是互异正整数,使得{}{}222,,,(1),(2)a b b c c a n n n +++=++,其中n 为正整数,则222a b c ++的最小值是 .答案:1297.解:设a b c >>,由于()()()2()a b b c c a a b c +++++=++为偶数,所以三个连续平方数{}222,(1),(2)n n n ++中有两个奇平方数,一个偶平方数,于是n 为奇数,而1b c +>, 则1n >;若3n =,则{}{}222222,(1),(2)3,4,5n n n ++=,且因222503452()a b c =++=++,则25a b c ++=,另一方面,最大平方数25a b +=,导致0c =,不合;若5n =,据{}{}222222,(1),(2)5,6,7n n n ++=,解得30,19,6a b c ===,因此222222301961297a b c ++=++=.6、P 是正四棱锥V ABCD −的高VH 的中点,若点P 到侧面的距离为3,到底面的距离为5,则该正四棱锥的体积为 .答案:750.解:如图,PF VBC ⊥面,5,10VP VH ==,4VF ===,而PHMF 共圆,VP VH VF VM ⋅=⋅,所以252VM =;152HM ==;则15AB =, 所以棱锥体积217503V VH AB =⋅⋅=. 7、ABC Δ的三个内角,,A B C 满足39A B C ==,则cos cos cos cos cos cos A B B C C A ++= . 答案:14−. 解:设3,9C B A θθθ===,,由39θθθπ++=,得13πθ=,cos cos cos cos cos cos S A B B C C A =++9339cos cos cos cos cos cos 131313131313ππππππ=++112642108cos cos cos cos cos cos 2131313131313ππππππ⎡⎤⎛⎞⎛⎞⎛⎞=+++++⎜⎟⎜⎟⎜⎟⎢⎥⎝⎠⎝⎠⎝⎠⎣⎦ .注意括号中的诸角度构成公差为213π的等差数列,两边通乘4sin 13π,得到 246810124sin 2sin cos cos cos cos cos cos 1313131313131313S ππππππππ⎛⎞⋅=+++++⎜⎟⎝⎠ 3537597sin sin sin sin sin sin sin sin 1313131313131313ππππππππ⎛⎞⎛⎞⎛⎞⎛⎞=−+−+−+−⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠+sin 11π13−sin 9π13⎛⎝⎜⎞⎠⎟+sin 13π13−sin 11π13⎛⎝⎜⎞⎠⎟=−sin π13. 所以14S =−. 8、数列{}n a 满足:0a =[]{}11n n n a a a +=+,(其中[]n a 和{}n a 分别表示实数n a 的整数部分与小数部分),则2019a = .答案:130292−+. 解:)011a =+,11122a −=+=+,)22341a ===+31452a −=+=+.归纳易得)2211311,322k k a k a k +−=++=++, 因此2019130292a =+. 二、解答题 (满分共64分)9、(本题14分)设椭圆C 的两焦点为12,F F ,两准线为12,l l ,过椭圆上的一点P ,作平行于12F F 的直线,分别交12,l l 于12,M M ,直线11M F 与22M F 交于点Q .证明:12,,,P F Q F 四点共圆. 证:设椭圆方程为22221,(0)x y a b a b+=>>,据对称 性知,点Q 在Y 轴上(如图);记12QF QF m ==,11221122,,,PF r PF r PQ t M F M F k =====,则有:1121,2PF e r r a PM =+=,为证12,,,P F Q F 四点共圆,据托勒密定理,只要证, 1212mr mr t F F +=⋅,即22m a t c ⋅=⋅,也即m c e t a == ……………① 由1111QF OF QM HM =,即222m c c e a m k a c⎛⎞===⎜⎟+⎝⎠,所以21k e m k =−+, 在1PM Q Δ中,由斯特瓦特定理,22211m k PF PM PQ mk m k m k =⋅+⋅−++ …………………………② 即222222112(1)(1)r m e r e t e m e e −⎛⎞=⋅+−−⋅⎜⎟⎝⎠………………………③ 因为210e −≠,由③得,222m e t =,即m e t =,故①成立,因此12,,,P F Q F 四点共圆. (也可不用托勒密定理证:由②得2()PQ m m k =+,则1PQF Δ∽1M QP Δ,于是11221QPF M M QF F ∠=∠=∠=∠,因此12,,,P F Q F 四点共圆.)10、(本题15分)将正整数数列1,2,3,!!中凡是被4整除以及被4除余1的项全部删去,剩下的数按自小到大的顺序排成数列a 1,a 2,a 3,! ,再将数列{}n a 中,凡是下标被4整除以及被4除余1的项全部删去,剩下的项按自小到大的顺序排成数列b 1,b 2,b 3,!;证明:每个大于1的奇平方数,都是数列{}n b 中的两个相邻项的和.证:易知a 2n −1=4n −2,a 2n =4n −1,n =1,2,3,!,因此,∀n ∈N ,a 4n +1=8n +2,a 4n +2=8n +3,a 4n +3=8n +6,a 4n +4=8n +7;在将{}n a 中的项4n a 及41n a +删去之后,所得到的数列{}n b ,其通项为:b 2n +1=8n +3,b 2n +2=8n +6,n =0,1,2,!;即数列{}n b 的项为:3,6,11,14,19,22,27,32,35,38,43,!,观察易知,222212346710113,5,7,9b b b b b b b b =+=+=+=+,……; 若记(1)2k k k r += ,我们来证明,一般地有:21(21)k k r r k b b ++=+,1,2,3,k = …. 由于r 4m =8m 2+2m ,r 4m +1=8m 2+6m +1,r 4m +2=8m 2+10m +3,r 4m +3=8m 2+14m +6;所以[]44212(4)1,m m r r b b m ++=+ []4141212(41)1,m m r r b b m ++++=++[]4242212(42)1,m m r r b b m ++++=++ []4343212(43)1,m m r r b b m ++++=++ 合并以上四式得,对于每个正整数k ,21(21)k k r r b b k ++=+.其中(1)2k k k r +=.11、(本题15分)试求所有由互异正奇数构成的三元集{},,a b c ,使其满足:222=2019a b c ++.解:据对称性,不妨设a b c <<,由于奇平方数的末位数字只具有1,5,9形式,于是222,,a b c 的末位数字,要么是5,5,9形式,要么是1,9,9形式;又知,如果正整数n 是3的倍数,那么2n 必是9的倍数;如果n 不是3的倍数,那么2n 被3除余1.由于2019是3的倍数,但不是9的倍数,因此奇数,,a b c 皆不是3的倍数.注意44c ≤=,即奇数43c ≤,而222232019c a b c >++=,即2667c >,且c 不是3的倍数,故奇数29c ≥. 因此奇数{}29,31,35,37,41,43c ∈;注意如下事实:如果奇数22N x y =+为两个正整数的平方和,那么偶数2N 必可表为两个互异正奇数的平方和.这是由于,222222()()()Nx y x y x y =+=−++; 若43c =,方程化为:()2222221702852672(29)a b +==×=+=+,因此:2222170113711=+=+.于是得两解:{}{},,1,13,43a b c =,以及{}{},,7,11,43a b c =;若41c =,方程化为()22222223382132512717a b +==×=+=+;由此得:{}{},,7,17,41a b c =; 若37c =,方程化为22222222222226502135=2(2+3)(3+4)=2(1+18)=2(6+17)=2(10+15)a b +==××, 因此,22222265017191123525=+=+=+,得到三个解:{}{}{}{},,17,19,37,11,23,37,5,25,37a b c =.若35c =,方程化为:227942397a b +==×,而397是一个41N +形状的质数,HQP NMF E C BA 它可唯一地表为两平方和:22397619=+,所以2222222(619)1325a b +=+=+, 得到一个解:{}{},,13,25,35a b c =.若31c =,方程化为:22211582529223a b +==×=×,而23是41N −形状的质数,它不能表为两个正整数的平方和;若29c =,方程化为:22117821931a b +==××,它含有41N −形状的单质因子,故不能表为两平方和;综合以上讨论,本题共有七个满足条件的解{},,a b c ,即为:1,13,43{},7,11,43{},13,25,35{},5,25,37{},11,23,37{},17,19,37{},7,17,41{}.12、(本题20分),BE CF 分别是锐角三角形ABC Δ的两条高,以AB 为直径的圆与直线CF 相交于点,M N ,以AC 为直径的圆与直线BE 相交于点,P Q . 证明:,,,M N P Q 四点共圆.证:如图设三角形ABC Δ的垂心为H ,则()()MH HN MF HF NF HF ⋅=−+ 22()()MF HF MF HF MF HF =−+=−222()AF FB AH AF AF AB AH =⋅−−=⋅−同理有,2PH HQ AE AC AH ⋅=⋅− 因BCEF 四点共圆,知AF AB AE AC ⋅=⋅, 故由以上两式得MH HN PH HQ ⋅=⋅,所以,,,M N P Q 四点共圆.。
2019年江西高中数学竞赛试题(2019.5.26)

2019年江西高中数学竞赛试题(2019.5.26)
一、填空题(7*8=56分)
1.集全{1,2,...,19}中每两互异的数作乘积,所有这种乘积的各为 .
2.公差为d ,各项均为正整数的等差数列{}n a ,11919,1949,2019m n a a a ===,
则正整数m n +的最小值是 .
3. 设220,7,x x x ->+=则55x x -+的值为 .
4. 三角形ABC 的 垂心恰是抛物线24y x = 的焦点,其中O 是原点,A,B 在抛物线上,则三角形OAB
的面积是 .
5. ,,a b c 是互异的正整数,使得222
{,,}{,(1),(2)}a b a c b c n n n +++=++其中n 是正整数,则222a b c ++的最小值是 .
6. 已知P 是 正四棱锥V ABCD -的高VH 的中点,若P 到侧面的距离为3,到底面的距离是5,则重心,则正四棱锥V ABCD -的体积是 .
7. 三角形ABC 中满足39A B C ==.则cos cos cos cos cos cos A B B C C A ++= .
8. 数列{}n a 满足02112,[]{}
n n n a a a a a +===+
(其中 [],{}n n a a 分别代表实数n a 的整数部分与小数部分),则2019a = . 二、解答题:。
2019年全国高中数学联赛模拟试题(一)参考答案

中;
……18 '
若 x 672 ,假若 x y ,只有 y 2x ,这种数 y 也已悉数被挖去,即 y X ,因此 X 不
是好集,这种 a 也不合要求. 综上所述, a 的最大值为 671 .
…… 20 '
将 AN 方程与椭圆方程联立,得 b2 a2k 2 x2 2a3k 2 x k 2a2 a2b2 0
xA
xN
2a3k 2 b2 a2k2
, xN
ab2 a3k 2 b2 a2k2
yN
2kab2 b2 a2k2
,
AM
a
1 k 2
…… 9 ' ……12 '
AN
ab2 a3k 2 b2 a2k2
若 X 中存在 x y, x y ,因 x 672 , y 2016 ,则 y 3x ;
若 x 672 ,如果 x y , x y ,只有 y 2x 或者 y 3x ,此时 y 的取值只能是:
y 2 672 1344 , 或 者 y 3 672 2016 ; 由 于
1344 2(672 0), 2016 2(672 336) , 这 说 明 , 这 两 个 数 已 被 挖 去 , 不 在 集 合 X
, AM
a cos
( ) ,…… 6 ' 2
因此
AM
AN
2a2b2 b2 cos2 a2 sin2
,…… 9 '
又据 AN ∥ CD ,则点 C, D 坐标为: C( OD cos, OD sin ) ,
D( OD cos, OD sin ) ,……12'
因为 C, D 在椭圆上,则
点 A, N 的坐标为 A(a, 0), N (a cos , b sin ) ,则直线 AN 方程为
2019年全国高中数学联合竞赛试题及解析(AB合版)

=
1 6
AB ⋅ BC
⋅ PB -
1 6
KF
⋅ FL ⋅ PF
=
1 6
(h
+1)èæçççç1-æçççè
h
+h 1öø÷÷÷3÷÷÷÷÷øö
=
3h2 + 3h +1 6(h +1)2
.
A
D C
B
化简得 3h2 =1,故 h = 1 .从而 EK = AE = 1 = 3 .
3
KF PF h
8. 将 6 个数 2, 0, 1, 9, 20, 19 按任意次序排成一行,拼成一个 8 位数(首位不
3- ¥
2
k=2
z2k-1 + z2k =
3. 3
当 m = 1时, T1 =
z1 = 1>
3. 3
以上表明 C =
①
因 sin A 是 sin(B - A), sin C 的等差中项,故
2sin A = sin(B - A) + sin C = sin(B - A) + sin(B + A) = 2sin B cos A .
结合正、余弦定理,得
a = sin A = cos A = b2 + c2 - a2 ,
b sin B
2bc
即 b2 + c2 - a2 = 2ac .
…………………4 分 …………………8 分
3
将①代入并化简,可知 q2 + q4 -1 = 2q2 ,即 q4 = q2 +1,所以
q2 = 5 +1 . 2
…………………12 分
进而
cos B
2019全国高中数学联赛试题(含答案)4

一一、填空题(本题共 10 小小题,每小小题 7 分,共 70 分.要求直接将答案写在横线上.)
1.已知集合 A={x|x2-3x+2≥0},B={ x| x-a≥1},且 A∩ B={x|x≥3},则实数
a 的值是
.
答案:2.
解:A={x|x≥2 或 x≤1},B={ x| x≥a+1}.又又 A∩ B={x|x≥3},故 a+1=3,
.
673
答案:1512.
解:由 f(n+4)-f(n)≤2(n+1),得
f(n+12)-f(n)≤f(n+12)-f(n+8)+f(n+8)-f(n+4)+f(n+4)-f(n)
≤2[(n+9)+(n+5)+(n+1)]=6(n+5).
又又 f(n+12)-f(n)≥6(n+5),
所以 f(n+12)-f(n)=6(n+5),故 f(n+4)-f(n)=2(n+1).
A1 B1
E
D1
C1
所以体积
=
.
又又 A1E=2ED1,DF=2FC,所以 CG=1ED1=1, 39
所以
=
=1×1×10×1×1= 5 .
32 9
27
D A
F
B
CG
7.设 f(x)是定义在 Z 上的函数,且对于任意的整数 n,满足足 f(n+4)-f(n)≤2(n+1),
f(n+12)-f(n)≥6(n+5),f(-1)=-504,则 f(2019) 的值是
8
8
10.设 f(x)=2x3+8x2+5x+9,g(x)=2x2+8x+1.当 n∈ N*时,则 f(n) 与 g(n) 的最大大公因数
2019年全国各省高中数学竞赛预赛试题汇编(含答案) 精品

各省数学竞赛汇集高中数学联赛江苏赛区初赛试卷一、填空题(70分) 1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____.6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为____________.8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n -+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明: (1)cos cos b C c B a +=(2)22sin cos cos 2C A Ba bc+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+. (1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.2018年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国高中数学联赛江西省预赛试题一、填空题(每小题7分,共56分)1.集全{1,2,...,19}中每两互异的数作乘积,所有这种乘积的各为.2.公差为d ,各项均为正整数的等差数列{}n a ,11919,1949,2019m n a a a ===,则正整数m n +的最小值是.3.设220,7,x x x ->+=则55x x -+的值为.4.三角形ABC 的垂心恰是抛物线24y x =的焦点,其中O 是原点,A,B 在抛物线上,则三角形OAB 的面积是.5.,,a b c 是互异的正整数,使得222{,,}{,(1),(2)}a b a c b c n n n +++=++其中n 是正整数,则222a b c ++的最小值是.6.已知P 是正四棱锥V ABCD -的高VH 的中点,若P 到侧面的距离为3,到底面的距离是5,则重心,则正四棱锥V ABCD -的体积是.7.三角形ABC 中满足39A B C ==.则cos cos cos cos cos cos A B B C C A ++=.8.数列{}n a满足02112,[]{}n n n a a a a a +===+(其中[],{}n n a a 分别代表实数n a 的整数部分与小数部分),则2019a =.9、(14分)设椭圆C 的两焦点为12,F F ,两准线为12,l l ,过椭圆上的一点P ,作平行于12F F 的直线,分别交12,l l 于12,M M ,直线11M F 与22M F 交于点Q .证明:12,,,P F Q F 四点共圆.10、(15分)将正整数数列1,2,3 中凡是被4整除以及被4除余1的项全部删去,剩下的数按自小到大的顺序排成数列123,,a a a 再将数列{}n a 中,凡是下标被4整除以及被4除余1的项全部删去,剩下的项按自小到大的顺序排成数列123,,b b b 证明:每个大于1的奇平方数,都是数列{}n b 中的两个相邻项的和.11.(15分)试求所有由互异正奇数构成的三元集{},,a b c ,使其满足:2222019a b c ++=.12.(20分),BE CF 分别是锐角三角形ABC ∆的两条高(如右图),以AB 为直径的圆与直线CF 相交于点,M N ,以AC 为直径的圆与直线BE 相交于点,P Q .证明:,,,M N P Q 四点共圆.2019年全国高中数学联赛江西省预赛试题解答1.答案:16815.解:所求的和为()()()222211121912193610024701681522⎡⎤+++-+++=-=⎣⎦ 2.答案:15.解:设公差为d ,则()194919191m d =+-,()201919191n d =+-,显然有1,1m n >>,301d m =-,以及1001d n =-,消去d 得,1037m n -=,其通解为13110m t n t =+⎧⎨=+⎩,为使1,1m n >>且d 为正整数,则正整数t 只能在{}1,2,5,10中取值,当1t =时,4,11m n ==为最小,此时15m n +=.3.答案:123.解:2221129x x x x ⎛⎫+=++= ⎪⎝⎭,13x x +=,由2242411492x x x x ⎛⎫=+=++ ⎪⎝⎭,则44147x x +=,所以551x x +42421111x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()34771123=-+=4.答案:.解:抛物线的焦点为()1,0F ,因F 为OAB ∆的垂心,则OF AB ⊥,故可设,A B 的坐标为()2,2A a a ,()2,2B a a -,0a >;于是OA 的方程为2ay x =,2OA K a=,BF 的斜率221BF aK a -=-,据1OA BF K K =- ,得5a =,因此AB =,25H a ==,所以OAB S ∆= 5.答案:1297.解:设a b c >>,由于()()()()2a b b c c a a b c +++++=++为偶数,所以三个连续平方数()(){}222,1,2n n n ++中有两个奇平方数,一个偶平方数,于是n 为奇数,而1b c +>,则1n >;若3n =,则()(){}{}222222,1,2=3,4,5n n n ++,且因22250345=++()2a b c =++,则25a b c ++=,另一方面,最大平方数25a b +=,导致0c =,不合;若5n =,据()(){}{}222222,1,2=5,6,7n n n ++,解得30,19,6a b c ===,因此.222222301961297a b c ++=++=.6.答案:750.解:如图,PF VBC ⊥平面,5,10,VP VH ==4VF ===,而PHMFPHMF 共圆,,VP VH VF VM =所以2515,22VM HM ===;则15AB =,所以棱锥体积217503V VH AB == .7.答案:14-.,3,9,39,,13C B A πθθθθθθπθ===++==解:设由得9339cos cos cos cos cos cos cos cos cos cos cos cos131313131313S A B B C C A ππππππ=++=++112642108cos cos cos cos cos cos 2131313131313ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦注意括号中的诸角度构成公差为213π的等差数列,两边通乘4sin 13π,得到246810124sin 2sin cos cos cos cos cos cos 1313131313131313S ππππππππ⎛⎫=+++++ ⎪⎝⎭ 3537597sin sin sin sin sin sin sin sin 1313131313131313ππππππππ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1191311sin sin sin sin sin 1313131313πππππ⎛⎫⎛⎫+-+-=- ⎪ ⎪⎝⎭⎝⎭,所以14S =-.8.答案:3130292-+.解:()0131,a =+-113112,231a -=+=+-()2233431,31a =+=+=+--33145.231a -=+=+-归纳易得()23131,k a k =++-213132,2k a k +-=++因此20193130292a -=+.9.证:设椭圆方程为()22221,0x ya b a b+=>>,据对称性知,点Q在Y轴上(如图);记12,QF QF m ==1122,,PF r PF r ==PQ t=,12,MF MF k ==则有:1121,2,PF e r r a PM =+=为证12,,,P F Q F 四点共圆,据托勒密定理,只要证,1212,mr mr t F F += 22,m c m a t c e t a=== 即也即……………①由1111,QF OF QM HM =即222,m c c e a m k a c⎛⎫=== ⎪+⎝⎭所以21,k e m k=-+在1PM Q ∆中,由斯特瓦特定理,22211m kPF PM PQ mk m k m k=+-++…………………………②即()()22222211211m e r r e t e me e -⎛⎫=+-- ⎪⎝⎭………………………③因为210e -≠,由③得,222,,m me e t t==即故①成立,因此12,,,P F Q F 四点共圆.(也可不用托勒密定理证:由②得()2PQ m m k =+,则11PQF M QP ∆∆ ,于是11221QPF M M QF F ∠=∠=∠=∠,因此12,,,P F Q F 四点共圆.)10.证:易知2142n a n -=-,241n a n =-,1,2,3n = ,因此,41,82,n n N a n +∀∈=+42434483,86,87n n n a n a n a n +++=+=+=+;在将{}n a 中的项4n a 及41n a +删去之后,所得到的数列{}n b ,其通项为:212283,86n n b n b n ++=+=+,1,2,3n = ;即数列{}n b 的项为:3,6,11,14,19,22,27,32,35,38,43 ,观察易知,222212346710113,5,7,9,b b b b b b b b =+=+=+=+……;若记()12k k k r +=,我们来证明,一般地有:()2121k k r r k b b ++=+,1,2,3k = .由于2222441424382,861,8103,8146;m m m m r m m r m m r m m r m m +++=+=++=++=++所以()()4444122111241,2411,m m m m r r r r b b m b b m +++++=++=++⎡⎤⎡⎤⎣⎦⎣⎦()()42424343221112421,2431,m m m m r r r r b b m b b m ++++++++=+++=++⎡⎤⎡⎤⎣⎦⎣⎦合并以上四式得,对于每个正整数k ,()2121k k r r b b k ++=+.其中()12k k k r +=.11.解:据对称性,不妨设a b c <<,由于奇平方数的末位数字只具有1,5,9形式,于是222,,a b c 的末位数字,要么是5,5,9形式,要么是1,9,9形式;又知,如果正整数n 是3的倍数,那么2n 必是9的倍数;如果n 不是3的倍数,那么2n 被3除余1.由于2019是3的倍数,但不是9的倍数,因此奇数,,a b c 皆不是3的倍数.注意201944c ⎡⎤≤=⎣⎦,即奇数43c ≤,而222232019c a b c >++=,即2667c >,且c 不是3的倍数,故奇数29c ≥.因此奇数{}29,31,35,37,41,43c ∈;注意如下事实:如果奇数22=N x y +为两个正整数的平方和,那么偶数2N 必可表为两个互异正奇数的平方和.这是由于,()()()222222N x yx y x y =+=-++;若43c =,方程化为:()()222222170285267229a b +==⨯=+=+,因此:2222170113711=+=+.于是得两解:{}{},,1,13,43a b c =,以及{}{},,7,11,43a b c =;若41c =,方程化为:()22222223382132512717a b +==⨯=+=+,由此得:{}{},,7,17,41a b c =;若37c =,方程化为:()()2222222650213522334a b +==⨯⨯=++()()()2222222118261721015=+=+=+因此:22222265017191123525=+=+=+.得到三个解:{}{}{}{},,17,19,37,11,23,37,5,25,37a b c =.若35c =,方程化为:227942397a b +==⨯,而397是一个41N +形状的质数,它可唯一地表为两平方和:22397619=+,所以()22222226191325a b +=+=+,得到一个解:{}{},,13,25,35a b c =.若31c =,方程化为:2211582529a b +==⨯,而23是41N -形状的质数,它不能表为两个正整数的平方和;若29c =,方程化为:22117821931a b +==⨯⨯,而23是41N -形状的质数,它不能表为两个正整数的平方和;综合以上讨论,本题共有七个满足条件的解{},,a b c ,即为:{}{}{}{}{}{}{}1,13,43,7,11,43,13,25,35,5,25,37,11,23,37,17,19,37,7,17,41.12.证:如图设三角形ABC ∆的垂心为H ,则()()MH HN MF HF NF HF =-+ ()()()22222MF HF MF HF MF HF AF FB AH AF AF AB AH =-+=-=--=- 同理有,2PH HQ AE AC AH =- 因BCEF 四点共圆,知AF AB AE AC = ,故由以上两式得MH HN PH HQ = ,所以,,,M N P Q 四点共圆.。