初中数学竞赛——圆4.四点共圆

合集下载

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解知识点、重点、难点四点共圆就是圆得基本内容,它广泛应用于解与圆有关得问题.与圆有关得问题变化多,解法灵活,综合性强,题型广泛,因而历来就是数学竞赛得热点内容。

在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆得有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。

因此,掌握四点共圆得方法很重要。

判定四点共圆最基本得方法就是圆得定义:如果A、B、C、D四个点到定点O得距离相等,即OA=OB=OC =OD,那么A、B、C、D四点共圆.由此,我们立即可以得出1、如果两个直角三角形具有公共斜边,那么这两个直角三角形得四个顶点共圆。

将上述判定推广到一般情况,得:2、如果四边形得对角互补,那么这个四边形得四个顶点共圆。

3、如果四边形得外角等于它得内对角,那么这个四边形得四个顶点共圆。

4、如果两个三角形有公共底边,且在公共底边同侧又有相等得顶角,那么这两个三角形得四个顶点共圆。

运用这些判定四点共圆得方法,立即可以推出:正方形、矩形、等腰梯形得四个顶点共圆。

其实,在与圆有关得定理中,一些定理得逆定理也就是成立得,它们为我们提供了另一些证明四点共圆得方法.这就就是:1、相交弦定理得逆定理:若两线段AB与CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。

2.割线定理得逆定理:若相交于点P得两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。

3、托勒密定理得逆定理:若四边形ABCD中,AB·CD+BC·DA=AC·BD,则ABCD就是圆内接四边形。

另外,证多点共圆往往就是以四点共圆为基础实现得一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际就是同一个圆。

例题精讲例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。

数学初中竞赛大题训练:几何专题(包含答案)

数学初中竞赛大题训练:几何专题(包含答案)

数学初中竞赛大题训练:几何专题1.阅读理解:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆.(1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°;(2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长;(3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长.解:(1)∵∠ADB=∠ACB=60°,∴A,B,C,D四点共圆,∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°,故答案为:55°;(2)在线段CA取一点F,使得CF=CD,如图2所示:∵∠C=90°,CF=CD,AC=CB,∴AF=DB,∠CFD=∠CDF=45°,∴∠AFD=135°,∵BE⊥AB,∠ABC=45°,∴∠ABE=90°,∠DBE=135°,∴∠AFD=∠DBE,∵AD⊥DE,∴∠ADE=90°,∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°,∴∠FAD=∠BDE,在△ADF和△DEB中,,∴△ADF≌△DEB(ASA),∴AD=DE,∵∠ADE=90°,∴△ADE是等腰直角三角形,∴AE=AD=2;(3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°,∴E、K、G、B和E、K、F、A分别四点共圆,∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°,∴△ABK是等边三角形,∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点,∴KM=AK•sin60°=2,∵AE=3,AM=AB=2,∴ME=3﹣2=1,∴EK===,∴EF===.2.问题再现:如图1:△ABC 中,AF 为BC 边上的中线,则S △ABF =S △ACP =S △ABC由这个结论解答下列问题:问题解决:问题1:如图2,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,则S △BOC =S 四边形ADOE .分析:△ABC 中,CD 为AB 边上的中线,则S △BCD =S △ABC ,BE 为AC 边上的中线,则S △ABE =S △ABC∴S △BCD =S △ABE∴S △BCD ﹣S △BOD =S △ABE ﹣S △BOD又∵S △BOC =S △BCD ﹣S △BOD ,S 四边形ADOE =S △ABE ﹣S △BOD即S △BOC =S 四边形ADOE问题2:如图3,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,AF 为BC 边上的中线.(1)S △BOD =S △COE 吗?请说明理由.(2)请直接写出△BOD 的面积与△ABC 的面积之间的数量关系:S △BOD =S △ABC .问题拓广:(1)如图4,E 、F 分别为四边形ABCD 的边AD 、BC 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴= S 四边形ABCD . (2)如图5,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴= S 四边形ABCD .(3)如图6,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点,若S △AME =1、S △BNG =1.5、S △CQF =2、S △DPH =2.5,则S 阴= 7 .解:问题2:S △BOD =S △COE 成立,理由:∵△ABC 中,CD 为AB 边上的中线,∴S △BCD =S △ABC ,∵BE 为AC 边上的中线,∴S △CBE =S △ABC∴S △BCD =S △CBE∵S △BCD =S △BOD +S △BOC ,S △CBE =S △COE +S △BOC∴S △BOD =S △COE(2)由(1)有S △BOD =S △COE ,同(1)方法得,S △BOD =S △AOD ,S △COE =S △AOE ,S △BOF =S △COF ,∴S △BOD =S △COE =S △AOE =S △AOD ,∵点O 是三角形三条中线的交点,∴OA =2OF ,∴S △AOC =2S △COF =S △AOE +S △COE =2S △COE ,∴S △COF =S △COE ,∴S △BOD =S △COE =S △AOE =S △AOD =S △BOF =S △COF ,∴S △BOD =S △ABC ,故答案为问题拓广:(1)如图4:连接BD,由问题再现:S△BDE =S△ABD,S△BDF =S△BCD,∴S阴影=S四边形ABCD,故答案为,(2)如图5:连接BD,由问题解决:S△BMD =S△ABD,S△BDN=S△BCD,∴S阴影=S四边形ABCD,故答案为;(3)如图6,设四边形的空白区域分别为a,b,c,d,∵S△AME =1、S△BNG=1.5、S△CQF=2、S△DPH=2.5,由(1)得出:a+1+2.5=a+3.5=S△ACD①,c+1.5+2=c+3.5=S△ACB②,b +1+1.5=b +2.5=S △ABD ③,d +2+2.5=d +4.5=S △BCD ④,①+②+③+④得,a +3.5+c +3.5+b +2.5+d +4.5=a +b +c +d +14=S 四边形ABCD ⑤而S 四边形ABCD =a +b +c +d +7+S 阴影⑥∴S 阴影=7,故答案为7.3.如图,在△ABC 中,AB >AC ,内切圆⊙I 与边BC 切于点D ,AD 与⊙I 的另一个交点为E ,⊙I 的切线EP 与BC 的延长线交于点P ,CF ∥PE 且与AD 交于点F ,直线BF 与⊙I 交于点M 、N ,M 在线段BF 上,线段PM 与⊙I 交于另一点Q .证明:∠ENP =∠ENQ .证明:如图,设⊙I 与AC 、AB 分别切于点S 、T ,连接ST 、AI 、IT ,设ST 与AI 交于点G .则IE ⊥PE ,ID ⊥PD ,故I 、E 、P 、D 四点共圆,∵AS 2=AE •AD =AG •AI ,∵∠EAG =∠DAI ,∴△AEG ∽△AID ,∴∠AGE=∠AID,∴E,G,D,I四点共圆,∴I、G、E、P、D五点共圆,∴∠IGP=∠IEP=90°,即IG⊥PG,∴P、S、T三点共线,对直线PST截△ABC,由梅涅劳斯定理知,∵AS=AT,CS=CD,BT=BD,∴,设BN的延长线与PE交于点H,对直线BFH截△PDE,由梅涅劳斯定理知,∵CF∥BE,∴,∴,∴PH=HE,∴PH2=HE2=HM•HN,∴,∴△PHN∽△MHP,∴∠HPN=∠HMP=∠NEQ,∵∠PEN=∠EQN,∴∠ENP=∠ENQ.4.如图,△ABC的垂心为H,AD⊥BC于D,点E在△ABC的外接圆上,且满足,直线ED交外接圆于点M.求证:∠AMH=90°.证明:作高BP,CQ.连结MB、MC、MP、MQ、PQ.===•①=•=•②由①②得:=,又∵∠MBA=∠MCA,∴△MBQ∽△MCP,∴点M、A、P、Q四点共圆,即点M、A、P、Q、H五点共圆,又AH为直径,∴∠AMH=90°.5.如图,△ABC中,O为外心,三条高AD、BE、CF交于点H,直线ED和AB交于点M,FD 和AC交于点N.求证:OH⊥MN.证明:∵A 、C 、D 、F 四点共圆,∴∠BDF =∠BAC又∵∠OBC =(180°﹣∠BOC )=90°﹣∠BAC ,∴OB ⊥DF .∵CF ⊥MA ,∴MC 2﹣MH 2=AC 2﹣AH 2(①)∵BE ⊥NA ,∴NB 2﹣NH 2=AB 2﹣AH 2 (②)∵DA ⊥BC ,∴BD 2﹣CD 2=BA 2﹣AC 2 (③)∵OB ⊥DF ,∴BN 2﹣BD 2=ON 2﹣OD 2 (④)∵OC ⊥DE ,∴CM 2﹣CD 2=OM 2﹣OD 2,①﹣②+③+④﹣⑤,得NH 2﹣MH 2=ON 2﹣OM 2 MO 2﹣MH 2=NO 2﹣NH 2∴OH ⊥MN .6.在图1到图4中,已知△ABC 的面积为m .(1)如图1,延长△ABC 的边BC 到点D 使CD =BC ,连接DA ,若△ACD 的面积为S 1,则S 1= m .(用含m 的式子表示)(2)如图2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连接DE .若△DEC 的面积为S 2,则S 2= 2m .(用含a 的代数式表示)(3)如图3,在图2的基础上延长AB 到点F ,使BF =AB ,连接FD 于E ,得到△DEF ,若阴影部分的面积为S 3,则S 3= 6m .(用含a 的代数式表示)(4)可以发现将△ABC 各边均顺次延长一倍,连接所得端点,得到△DEF ,如图3,此时,我们称△ABC 向外扩展了一次.可以发现扩展一次后得到的△DEF 的面积是原来△ABC 面积的 7 倍.(5)应用上面的结论解答下面问题:去年在面积为15平方面的△ABC 空地上栽种了各种花卉,今年准备扩大种植规模,把△ABC 内外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH ,如图4,求这两次扩展的区域(即阴影部分)面积共为多少平方米?解:(1)∵CD =BC ,∴△ABC 和△ACD 的面积相等(等底同高),故得出结论S 1=m .(2)连接AD ,,∵AE =CA ,∴△DEC 的面积S 2为△ACD 的面积S 1的2倍,故得出结论S 2=2m .(3)结合(1)(2)得出阴影部分的面积为△DEC 面积的3倍, 故得出结论则S 3=6m .(4)S △DEF =S 阴影+S △ABC=S 3+S △ABC=6m +m=7m=7S △ABC故得出结论扩展一次后得到的△DEF 的面积是原来△ABC 面积的7倍.(5)根据(4)结论可得两次扩展的区域(即阴影部分)面积共为(7×7﹣1)×15=720(平方米),答:求这两次扩展的区域(即阴影部分)面积共为720平方米. 7.(1)如图①,AD 是△ABC 的中线,△ABD 与△ACD 的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S ,例如:△ABC 的面积记为S △ABC ,如图②,已知S △ABC =1,△ABC 的中线AD 、CE 相交于点O ,求四边形BDOE 的面积.小华利用(1)的结论,解决了上述问题,解法如下:连接BO ,设S △BEO =x ,S △BDO =y ,由(1)结论可得:S,S △BCO =2S △BDO =2y ,S △BAO =2S △BEO =2x . 则有,即.所以.请仿照上面的方法,解决下列问题: ①如图③,已知S △ABC =1,D 、E 是BC 边上的三等分点,F 、G 是AB 边上的三等分点,AD 、CF 交于点O ,求四边形BDOF 的面积.②如图④,已知S △ABC =1,D 、E 、F 是BC 边上的四等分点,G 、H 、I 是AB 边上的四等分点,AD 、CG 交于点O ,则四边形BDOG 的面积为 .解:(1)S △ABD =S △ACD .∵AD 是△ABC 的中线,∴BD =CD ,又∵△ABD 与△ACD 高相等,∴S △ABD =S △ACD .(2)①如图3,连接BO ,设S △BFO =x ,S △BDO =y ,S △BCF =S △ABD =S △ABC =S △BCO =3S △BDO =3y ,S △BAO =3S △BFO =3x .则有,即,所以x +y =,即四边形BDOF 的面积为;②如图,连接BO ,设S △BDO =x ,S △BGO =y ,S△BCG =S△ABD=S△ABC=,S△BCO =4S△BDO=4x,S△BAO =4S△BGO=4y.则有,即,所以x+y=,即四边形BDOG的面积为,故答案为:.8.我们初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式.【提出问题】如何用表示几何图形面积的方法推证:13+23=32?【解决问题】A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=32【递进探究】请仿用上面的表示几何图形面积的方法探究:13+23+33=62.要求:自己构造图形并写出详细的解题过程.【推广探究】请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(参考公式:)注意:只需填空并画出图形即可,不必写出解题过程.【提炼运用】如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,如图(1)中,共有1个小立方体,其中1个看的见,0个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8个看不见;求:从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数.解:【递进探究】如图,A表示一个1×1的正方形,即:1×1×1=13,B、C、D表示2个2×2的正方形,即:2×2×2=23,E、F、G表示3个3×3的正方形,即:3×3×3=33,而A、B、C、D、E、F、G恰好可以拼成一个大正方形,边长为:1+2+3=6,,∵S A+S B+S C+S D+S E+S F+S G=S大正方形∴13+23+33=62;【推广探究】由上面表示几何图形的面积探究知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=,∴13+23+33+…+n3=()2=.【提炼运用】图(1)中,共有1个小立方体,其中1个看的见,0=(1﹣1)3个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1=(2﹣1)3个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8=(3﹣1)3个看不见;…,从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数为:(1﹣1)3+(2﹣1)3+(3﹣1)3+…+(101﹣1)3=03+13+23+…+1003=50502=25502500.故一切看不见的棱长为1的小立方体的总个数为25502500.故答案为:62;.9.问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC 与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.解:问题引入:∵在△ABC中,D是BC上一点,AE=AD,∴,,∴==;尝试探究:∵AE=AD,∴=,∵AF⊥BC,EG⊥BC,∴AF∥EG,∴△EDG∽△ADB,∴=;∵===,∴=1﹣=;故答案为:,,;类比延伸:=,∵E为AD上的一点,∴=,=,∴==;拓展应用:∵==,同理:=,=,∴==2.10.如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过点C、D作边BC、AD 的垂线,设两条垂线的交点为P,过点P作PQ⊥AB于Q,求证:∠PQC=∠PQD.证明:连接AP、BP,取AP的中点E,取BP的中点F,连接DE、ME、QE、CF、QF、MF,如图.∵E为AP的中点,F为BP的中点,M为AB的中点,∴EM∥BP,EM=BP,MF∥AP,MF=AP.∵E为AP的中点,F为BP的中点,∠ADP=∠BCP=90°,∴DE=AE=EP=AP,FC=PF=BF=BP,∴DE=MF,EM=FC.在△DEM和△MFC中,,∴△DEM≌△MFC(SSS),∴∠DEM=∠MFC.∵EM∥BP,MF∥AP,∴四边形PEMF是平行四边形,∴∠PEM=∠PFM.又∵∠DEM=∠MFC,∴∠DEP=∠CFP.∵DE=AE,FC=BF,∴∠DAE=∠ADE=∠DEP,∠FBC=∠FCB=∠CFP,∴∠DAE=∠FBC,即∠DAP=∠PBC.∵∠ADP=∠AQP=90°,E为AP中点,∴ED=EA=EQ=EP=AP,∴D、A、Q、P四点共圆,∴∠PQD=∠DAP.同理可得:∠PQC=∠PBC,∴∠PQD=∠PQC.11.如图:D是以AB为直径的圆O上任意一点,且不与点A、B重合,点C是弧BD的中点,作CE∥AB,交AD或其延长线于E,连接BE交AC与G,AE=CE,过C作CM⊥AD交AD延长线于点M,MC与⊙O相切,CE=7,CD=6,求EG的长.解:连接OC,如图.∵MC与⊙O相切,∴OC⊥MC.∵CM⊥AD,∴OC∥AM.∵CE∥AB,∴四边形AOCE是平行四边形,∴OA=CE=7,∴AB=14.∵点C是弧BD的中点,∴BC=CD=6.∵AB是⊙O的直径,∴∠ACB=90°,∴AC===4.∵CE∥AB,∴△CGE∽△AGB,∴===,∴AG=AC=.在Rt△ACB中,cos∠BAC===.∵点C是弧BD的中点,∴∠BAC=∠CAD,即∠BAC=∠EAG,∴cos∠EAG=.在△EAG中,cos∠EAG=.∴=.∵AG=,AE=CE=7,∴=.整理得:GE2=.∵GE>0,∴GE=.∴EG的长为.12.如图,圆内接四边形ABCD的边AB、DC的延长线交于E,AD、BC延长线交于F,EF中点为G,AG与圆交于K.求证:C、E、F、K四点共圆.证明:延长AG到H,使得GH=AG,连接EH、FH、CK,如图所示.∵GH=AG,EG=FG,∴四边形AEHF是平行四边形,∴∠EAG=∠GHF,∠GAF=∠GHE.∵A、B、C、K四点共圆,∴∠KCF=∠EAG,∴∠KCF=∠GHF,∴K、C、H、F四点共圆.∵K、C、A、D四点共圆,∴∠KCD=∠KAF,∴∠KCD=∠GHE,∴K、C、E、H四点共圆,∴K、C、E、H、F五点共圆,∴C、E、F、K四点共圆.13.在半圆O中,AB为直径,一直线交半圆周于C、D,交AB延长线于M(MB<MA,AC<MD),设K是△AOC与△DOB的外接圆除点O外的另一个交点,求证:∠MKO=90°.证明:连接CK,BK,BC,如图所示.∵AB是⊙O直径,∴∠ACB=90°,∴∠OAC+∠ABC=90°.∵A、B、C、D四点共圆,∴∠BDC=∠BAC.∵A、O、C、K四点共圆,∴∠CKO=∠OAC.∵D、O、B、K四点共圆,∴∠BKO=∠BDO.∴∠BKC=∠BKO﹣∠CKO=∠BDO﹣∠OAC.∵OB=OD,∴∠ABD=∠BDO.∴∠BMC=∠ABD﹣∠BDC=∠BDO﹣∠BAC=∠BKC.∴B、C、K、M四点共圆.∴∠ABC=∠MKC.∴∠MKO=∠MKC+∠CKO=∠ABC+∠OAC=90°.14.已知,在△ABC中,AC>AB,BC边的垂直平分线与∠BAC的外角∠PAC的平分线相交于E,与BC相交点D,DE与AC相交于点F.(1)如图1,当∠ABC=3∠ACB时,求证:AB=AE;(2)如图2,当∠BAC=90°,∠ABC=2∠ACB,过点D作AC的垂线,垂足为点H,并延是点D关于直线AC的对长DH交射线AE于点M,过点E作BP的垂线,垂足为点G,点D1称点,试探究AG和MD之间的数量关系,并证明你的结论.1解:(1)证明:连接BF,如图1.设∠A CB=x,则∠ABC=3x,∵FD垂直平分BC,∴FB=FC,∴∠FBC=∠FCB=x,∴∠ABF=∠AFB=2x,∴AB=AF,∠PAC=4x.∵AE平分∠PAC,∴∠EAC=2x.∵∠AFE=∠DFC=90°﹣x,∴∠AEF=180°﹣∠EAF﹣∠AFE=180°﹣2x﹣(90°﹣x)=90°﹣x,∴∠AEF=∠AFE,∴AE=AF,∴AB=AE..(2)AG=MD1证明:作EN⊥AC于N,取EC中点O,、NM、MC、MO、NO、EB、EC,如图2.连接AD1∵AE平分∠PAC,EN⊥AC,EG⊥AP,∴EG=EN,∠EGA=∠ENA=90°.∵∠BAC=90°,∴∠EGA=∠ENA=∠BAC=90°,∴四边形EGAN是矩形.∵EG=EN,∴矩形EGAN是正方形,∴AG=AN,∠EAN=45°,∠GEN=90°.∵ED垂直平分BC,∴EB=EC.在Rt△BEG和Rt△CEN中,,∴Rt△BEG≌Rt△CEN(HL),∴∠GBE=∠NCE,∠GEB=∠NEC,∴∠GEN=∠BEC=90°∵EB=EC,∴∠ECB=∠EBC=45°.∵∠BAC=90°,∠ABC=2∠ACB,∴∠ABC=60°,∠ACB=30°,∴∠ABE=∠ACE=15°.∵∠BAC=90°,点D为BC中点,∴AD=CD,∴∠DAC=∠DCA=30°.∵点D与点D关于AC对称,1AC=∠DAC=30°,∴∠D1=45°﹣30°=15°.∴∠MAD1∵DA=DC,DM⊥AC,∴DM垂直平分AC,∴MA=MC,∴∠CMH=∠AMH=90°﹣45°=45°,∴∠AMC=90°,∴∠ENC=∠AMC=90°.∵点O为EC中点,∴ON=OM=OE=OC=EC,∴E、N、C、M四点共圆,∴∠EMN=∠ECN=15°,∴∠MAD=∠EMN=15°,1中,在△AMN和△MAD1,,∴△AMN≌△MAD1,∴AN=MD1.∴AG=MD115.在平面直角坐标系中,已知A(2,2),AB⊥y轴于B,AC⊥x轴于C.(1)如图1,E为线段OB上一点,连接AE,过A作AF⊥AE交x轴于F,连EF,ED平分∠OEF交OA于D,过D作DG⊥EF于G,求DG+EF的值;(2)如图2,D为x轴上一点,AC=CD,E为线段OB上一动点,连接DA、CE、F是线段CE的中点,若BF⊥FK交AD于K,请问∠KBF的大小是否变化?若不变,求其值;若改变,求其变化范围.解:(1)∵AB⊥y轴于B,AC⊥x轴于C,∴∠ABO=∠ACO=90°.∵∠BOC=90°,∴四边形ABOC是正方形,∴AB=AC=BO=CO=2,OA平分∠BOC,∠BAC=90°.∵AF⊥AE,∴∠EAF=90°,∴∠BAC=∠EAF,∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,BE=CF.设BE=CF=t,OE=2﹣t,OF=2+t.∵ED平分∠OEF,∴点D是△OEF的内心.如图1,作DM⊥OB于M,作DH⊥OF于H,且DG⊥EF于G,∴DG=DM=DH,∴四边形MOHD是正方形,∴MO=HO=DM=DG.设DG=MO=x,∴x=,∴x=,∴EF=4﹣2x,∴WF=2﹣x.∴DG+EF=x+2﹣x=2.即DG+EF的值为2;(2)∠KBF的大小不变,∠KBF=45°如图2,延长BF交AC于G,连接KG,作KM⊥AB于M,KN⊥AC于N,∵四边形ABOC是正方形,∴O B∥AC.∴∠EBF=∠CGF,∠BEF=∠GCF.∵F是CE的中点,∴EF=CF.在△BEF和△GCF中,,∴△BEF≌△GCF(AAS),∴BF=GF.∵BF⊥FK,∴∠BFK=∠GFK=90°.在△BFK和△GFK中,,∴△BFK≌△GFK(SAS)∴BK=GK.∵AC=CD,∠ACD=90°,∴△ACD是等腰直角三角形,∴∠CAD=45°.∵KN⊥AC,∴∠ANK=90°,∴∠AKN=45°,∴AN=KN.∵KM⊥AB,∴四边形AMKN是正方形,∴KM=KN.∠M=∠GNK=90°AM∥KN.在Rt△BKM和Rt△GKN中,,∴Rt△BKM≌Rt△GKN(HL),∴∠MBK=∠NGK.∠GKN=∠BKM.∵AM∥KN,∴∠BKN=∠MBK.∵∠BKM+∠BKN=90°,∴∠GKN+∠BKN=90°,即∠BKG=90°.∵BK=GK,∴△BKG是等腰直角三角形.∴∠KBF=45°,∴∠KBF的大小不变,∠KBF=45°.16.如图,已知⊙O1与⊙O2相交于A,B两点,直线MN⊥AB于A,且分别与⊙O1,⊙O2交于M、N,P为线段MN的中点,又∠AO1Q1=∠AO2Q2,求证:PQ1=PQ2.解:连接MQ1、BQ1、BQ2、NQ2,过点P作PH⊥Q1B于H,如图所示.则由圆内接四边形的性质可得:∠Q1MA+∠ABQ1=180°,∠ABQ2+∠ANQ2=180°,∠MAB=∠BQ2N.由圆周角定理可得:∠ABQ 1=∠AO 1Q 1,∠ANQ 2=∠AO 2Q 2. ∵∠AO 1Q 1=∠AO 2Q 2,∴∠ABQ 1=∠ANQ 2,∴∠ABQ 2+∠ABQ 1=∠ABQ 2+∠ANQ 2=180°, ∴Q 1、B 、Q 2三点共线.由圆内接四边形的性质可得:∠ABQ 1=∠ANQ 2, ∴∠Q 1MA +∠ANQ 2=∠Q 1MA +∠ABQ 1=180°, ∴MQ 1∥NQ 2.∵AB ⊥MN ,∴∠MAB =90°,∴∠Q 1Q 2N =∠MAB =90°.∵PH ⊥Q 1B ,即∠Q 1HP =90°,∴∠Q 1HP =∠Q 1Q 2N ,∴PH ∥NQ 2,∴MQ 1∥PH ∥NQ 2.∵P 为线段MN 的中点,∴H 为线段Q 1Q 2的中点,∴PH 垂直平分Q 1Q 2,∴PQ 1=PQ 2.。

初中数学竞赛:四点共圆问题

初中数学竞赛:四点共圆问题

初中数学竞赛:四点共圆问题初中数学竞赛:四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.1“四点共圆”作为证题目的例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明AP =AM ,从而有AB ′2+PB ′2=AC ′2+MC ′2. 故MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-K B ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆. 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1?O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM=∠CBK .求证:∠DMA =∠CKB .分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠ADC=180°,∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆?∠CMD =∠DKC .A B C K M N P Q B ′C ′A B C O O O O 123A B C DK M··但已证∠AMB =∠BKA ,∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°?C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ? OC =OK ?∠OMC =∠OMK . 但∠GMC =∠BMK ,故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D . 试证:I A I B I C I D 是矩形.分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B ?A ,B ,I D ,I C 四点共圆.同理,A ,D ,I B ,I C 四点共圆.此时∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形.(4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°.A BO K N CMG故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB . (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆?∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大.例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ . 分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称?MQ ′=MQ . 又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径( ∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ .练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.) 3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD . (提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)A BC D E F KG ······5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B 引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

初中数学竞赛 知识点和真题 第18讲 四点共圆

初中数学竞赛 知识点和真题 第18讲 四点共圆

第18讲 四点共圆……对数学之美的感觉,对数与形之和谐的感觉,对几何学之优雅的感觉。

这是一种所有数学家都深知的真正的美感。

而这就是一种敏感性。

——庞加莱知识方法扫描“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.证明四点共圆常常利用以下一些方法思考:(1) 要证明四点共圆,可证明以这点为顶点的四边形的对角互补,或证某两点视另两点所连线段的视角相等.特别是先设法发现其中以某两点为端点的线段恰为一直径,然后证明其他点对这条线段的视角均为直角;此外若四边形一个外角等于其内对角,则四边形的四顶点共圆.(2) 若两线段AB ,CD 相交于E 点,且AE·EB=CE·ED ,则A ,B ,C ,D 四点共圆;若相交直线PA ,PB 上各有一点C ,D ,且PA·PC=PB·PD ,则A ,B ,C ,D 四点共圆.共圆点问题不但是几何中的重要问题,而且也是直线形和圆之间度量关系或位置关系相互转化的媒介.经典例题解析例1.在锐角△ABC 中,以BC 为直径作圆与BC 边上的高AD 及其延长线交于M ,N 。

以AB 为直径作圆与AB 边上的高CF 及其延长线交于P ,Q 。

求证:M ,P ,N ,Q 四点共圆。

证明 连接BM ,MC ,在Rt △BMC 中,∠BMC =90°,MD ⊥BC ,故BM 2=BD ·BC 。

即 BM =BN =BC BD ⋅,同理 BP =BQ =BA BF ⋅.因为∠AFC =∠ADC =90°,故A ,F ,D ,C 四点共圆。

由割线定理,得 BD ·BC =BF ·BA 。

故BM =BN =BP =BQ 。

于是,M ,N ,P ,Q 四点同在以B 为圆心、BM 为半径的圆上,即M ,N ,P ,Q 四点共圆。

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解知识点、重点、难点四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。

在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。

因此,掌握四点共圆的方法很重要。

判定四点共圆最基本的方法是圆的定义:如果A、B、C、D四个点到定点O的距离相等,即OA=OB=OC=OD,那么A、B、C、D四点共圆.由此,我们立即可以得出1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。

将上述判定推广到一般情况,得:2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。

3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。

4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。

运用这些判定四点共圆的方法,立即可以推出:正方形、矩形、等腰梯形的四个顶点共圆。

其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是:1.相交弦定理的逆定理:若两线段AB和CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。

2.割线定理的逆定理:若相交于点P的两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。

3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA=AC·BD,则ABCD是圆内接四边形。

另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。

例题精讲例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。

初中数学竞赛:四点共圆问题

初中数学竞赛:四点共圆问题

初中数学竞赛:四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.1“四点共圆”作为证题目的 例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆. 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1⇒O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM=∠CBK .求证:∠DMA =∠CKB .分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠ADC=180°,∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆⇒∠CMD =∠DKC .A B C K M N P Q B ′C ′A B C O O O O 123??A B C DK M··但已证∠AMB =∠BKA , ∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ⇒ OC =OK ⇒∠OMC =∠OMK . 但∠GMC =∠BMK , 故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D . 试证:I A I B I C I D 是矩形.分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B ⇒A ,B ,I D ,I C 四点 共圆.同理,A ,D ,I B ,I C 四点共圆.此时∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°.A BO K N CMG故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB . (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆⇒∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大.例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ . 分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ . 又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ .练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.) 3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD . (提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)A BC D E F KG ······5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

中考数学圆中的重要模型四点共圆模型

中考数学圆中的重要模型四点共圆模型

圆中的重要模型-四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。

相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。

本文主要介绍四点共圆的四种重要模型。

四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。

这也是圆的基本定义,到定点的距离等于定长点的集合。

条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。

例1、(2023•连云港期中)如图,点O为线段BC的中点,点A、C、D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是.例2.(2022秋·江西赣州·九年级校联考期中)如图,点O为线段AB的中点,点B,C,D到点O的距离相等,连接AC,BD.则下面结论不一定成立的是()A.∠ACB=90°B.∠BDC=∠BAC C.AC平分∠BAD D.∠BCD+∠BAD=180°例3.(2021·湖北随州·统考中考真题)如图,在R t A B C中,90∠A C B∠=︒,O为A B的中点,O D平分A O COF例4.(2022·北京·清华附中九年级阶段练习)如图,四边形A B C D 中,D A D B D C==,72BD C ∠=︒,则B A C∠的度数为______.模型2、定边对双直角共圆模型同侧型 异侧型 1)定边对双直角模型(同侧型)条件:若平面上A 、B 、C 、D 四个点满足90A B DA C D ∠=∠=︒,结论:A 、B 、C 、D 四点共圆,其中AD 为直径。

初中数学竞赛第十四讲 圆内接四边形与四点共圆

初中数学竞赛第十四讲 圆内接四边形与四点共圆

第十四讲 圆内接四边形与四点共圆【趣题引路】著名的“九点圆”是由欧拉于1765年了解到的.后来又由年仅22岁的费尔巴赫(1800-1834)于1822年重新发现,并称之为九点圆,这九个点是(如图)•:•三角形ABC 的三条边的中点A ′、B ′、C ′,E 、C ′、A ′、B ′与F 、C ′、A ′、B ′.••故A ′、B ′、C ′、D 、E 、F 六点共圆. 在△HBC,△HCA 和△HAB 中,同理可证L 、M 、N 也同圆于上面六个点所共的圆.•因此,A ′、B ′、C ′、D 、E 、F 、L 、M 、N 九点共圆.我们知道,任何三角形都有内切圆、外接圆、旁切圆等,•还有鲜为人知的五点圆、第二莱莫恩六点圆、泰劳(Taylor)六点圆,七点圆、富曼八点圆等等。

【知识延伸】圆内接四边形和四点共圆之间有着非常密切的联系,•这是因为顺次连结共圆四点就成为圆内接四边形.实际上,在许多题目的已知条件中,并没有给出圆,有时需要通过证明四点共圆,把实际存在的圆找出来,然后再借助圆的性质得到要证明的结论.确定四点共圆的办法主要有:1.诸点到某定点的距离相等,则诸点在同一圆周上.2.若四边形对角互补或有一个外角等于它的内对角,则这四点共圆.3.同底同侧的等角的三角形的各顶点共圆;同斜边的直角三角形的各顶点共圆.4.若直线AB 与CD 相交于P,而且PA ·PB=PC ·PD,则A 、B 、C 、D 共圆. 要证多点共圆,一般根据题目条件先证四点共圆,再证其他点也在这个圆上. 例1 已知,四边形ABCD 内接于圆,连对角线AC 、BD.求证:AC ·BD=AB ·CD+AD ·BC.证明 作ABK=∠CBD,BK 交AC 于点K,(如图). 由于∠BAK=∠BDC,∴△BAK ∽△BDC, ∴AB DBAK CD即AB ·CD=AK ·BD ① ∵∠BCK=∠BDA,∠CBK=∠CBD+∠DBK=∠KBA+∠DBK=∠DBA∴△CBK∽△DBA.∴BC DB CK AD=即BC·AD=BD·CK. ②①+②,得AB·CD+BC·AD=BD(CK+AK)=BD·AC.点评此题就是著名的托勒密(Ptole-my)定理,•即“圆内接四边形两条对角线的乘积等于两组对边乘积的和”.它综合运用圆和相似形的知识,证明线段的积、差,•也揭示了圆内接四边形的一个独特的性质.更推广一些,便可得到:对于任何凸四边形ABCD,都有AB·CD+BC·AD≥AC·BD,其中等号当且仅当四边形内接于圆时成立.托勒密定理的逆命题也成立,•即“在凸四边形两对角线的乘积等于它的两组对边乘积之和时,此四边形内接于圆.”你能证明吗?例2 已知:如图,设四边形ABCD满足条件AB·CD+AD·BC=AC·BD.求证:A、B、C、D四点共圆.证明作∠ECD=∠ACB,∠EBC=∠CAD,于是△BEC∽△ADC,∴BE BCAD AC=,即BE.AC=AD.BC,•①BC ECAC DC=. ②∵∠1=∠2,∴△ACB∽△DCE,∴∠3=∠4, AB ACDE DC=,即DE·AC=AB·DC,③①+③,得(BE+DE)AC=AD·BC+AB·DC.∵AC·BD=AB·CD+AD·BC(已知条件)∴BE+DE=BD,∴E在BD上,∠3与∠BDC重合.∴∠BDC=∠BAC,∴A、B、C、D四点共圆.点评这个逆定理也是证明四点共圆的重要依据.例3已知,如图,P是△ABC的外接圆上一点,由P 向各边BC、CA、AB•引垂线PD、PE、PF.求证:三个垂足D、E、F共线.证明连结DE、DF、PB、PC.∵PD⊥BC,PE⊥AC,∴∠PDC=∠PEC=90°,∴P 、D 、C 、E 四点共圆, ∴∠PDE=∠PCE,∵∠PDB=∠PFB=90°, ∴P 、D 、F 、B 四点共圆. ∴∠PDF+∠PBF=180°. ∵A 、B 、P 、C 四点共圆, ∴∠PBF=∠PCE,∴∠PDF+∠PDE=∠PDF+∠PCE=∠PDF+∠PBF=180°. ∴DE ·DF 成一条直线,即D 、E 、F 三点共线. 点评此题就是“西摩松线”,即从△ABC 外接圆上任一点P•到三边所作垂线的垂足在同一条直线上,简称“西摩松定理”.它的逆命题也成立.即:从一点P 向△ABC 的三边(或它们的延长线)作垂线,若三个垂足L 、M 、N 在同一条直线上,则点P 在△ABC•的外接圆上,证明如下:如图∵∠BNP 和∠PLB 都是直角, ∴N 、B 、L 、P 四点共圆. ∴∠NBP=∠NLP,①∵∠PLC 和∠PMC 都是直角, ∴P 、L 、M 、C 四点共圆, ∴∠NLP=∠MCP, ②由①、②,得∠NBP=∠MCP,故A 、B 、P 、C 四点共圆,即P 在△ABC 的外接圆上. 例4 已知:四边形ABCD 内接于⊙O,对角线AC 与BD 相交于M,如图,求证:AB AD AMCB CD CM=。

四点共圆问题

四点共圆问题

四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P 89定理和P 93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.1 “四点共圆”作为证题目的例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N.以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q.求证:M ,N ,P ,Q 四点共圆. (第19届美国数学奥林匹克)分析:设PQ ,MN 交于K 点,连接AP ,AM. 欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′) =(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆.(第27届莫斯科数学奥林匹克)分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA.观察△OBC 及其外接圆,立得∠OO 2O 1=21∠OO 2B=∠OCB.观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA.由∠OO 2O 1=∠OO 3O 1 O ,O 1,O 2,O 3共圆.A B CK MNP Q B ′C ′A B C O O O O 123??利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证.2 以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK.求证:∠DMA =∠CKB.(第二届袓冲之杯初中竞赛)分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK.∵∠DAB +∠ADC =180°, ∴∠CMK +∠KDC =180°.故C ,D ,K ,M 四点共圆⇒∠CMD =∠DKC. 但已证∠AMB =∠BKA , ∴∠DMA =∠CKB.(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC外接圆和△BKN 外接圆相交于B 和 M.求证:∠BMO =90°. (第26届IMO 第五题)分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的.连接OC ,OK ,MC ,MK ,延长BM 到G.易得∠GMC =∠BAC =∠BNK =∠BMK.而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ⇒ OC OK ⇒∠OMC =∠OMK. 但∠GMC =∠BMK , 故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D .A B C DK M··A BO K N CMG试证:I A I B I C I D 是矩形.(第一届数学奥林匹克国家集训选拔试题)分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B A ,B ,I D ,I C 四点共圆.同理,A ,D ,I B ,I C 四点共圆.此时 ∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ (1989,全国初中联赛) 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB.易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°. 故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB.(5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断). (1978,全国高中联赛)分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上.A BC D I C I DA I IB ··P O A BC D作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆⇒∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大. 例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS 交AB 于R ,PM 的延长线交⊙O 于Q.求证:RS >MQ.(1991,江苏省初中竞赛)分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ.根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ.又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ.练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.)3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.A BC DEF KG ······4.在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.(提示:证B,Q,E,P和B,D,E,P分别共圆)5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B 引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

竞赛讲座 四 点 共 园

竞赛讲座   四 点 共 园

第13讲 四 点 共 圆知识方法扫描经典例题解析例1 在△ABC 中,AD 是BC 的高线,D 在BC 上,自D 作DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:B 、C 、F 、E 四点共圆.例2 三角形的三个顶点、三条高线的垂足与垂心中,有六组四点共圆.例3 设⊙O 1,⊙O 2,⊙O 3两两外切,Y 是⊙O 1与⊙O 2的切点,R ,S 分别是⊙O 1、⊙O 2与⊙O 3的切点,连心线O 1O 2交⊙O 1于点P ,交⊙O 2于点Q .求证:P 、Q 、R 、S 四点共圆.,例4 (四川初中竞赛)如图,P 是⊙O 外一点,PA 与⊙O 切于点A ,PBC 是⊙O 的割线,AD ⊥PO 于点D .求证:PB :BD=PC :CD .例5 在△ABC 的两边AB ,AC 上分别取点Q ,P ,使得A QCB PBC ∠=∠=∠21.求证:BQ=CP .D C BP AOF E D C B AQ PPQCBA例6已知P 为正三角形ABC 外BAC ∠内,且PA=PB+PC .求证:A 、B 、C 、P 四点共圆.例7 如图,已知⊙A 与⊙B 相交于,C D 两点,延长AC 交⊙B 于E ,延长BC 交⊙A 于F .求证:C 是DEF ∆的内心.例8 如图,PA 、PB 分别切⊙O 于点A 、B ,OP 交AB 于点C ,弦EF 过点C . 求证:BPF APE ∠=∠.例9 如图,△ABC 的内切圆 分别切AB 、AC 于点E 、F ,D 是BC 的中点,B ∠、C ∠的平分线与直线EF 交于点N 、M .求证:DM=DN .PCBA INM FECBA。

初中数学竞赛——圆4.四点共圆

初中数学竞赛——圆4.四点共圆

第1讲四点共圆典型例题一■.根底练习【例1】如图,P为4ABC内一点,D、E、F分别在BC、CA、AB上.P、D、C、E四点共圆,P、E、A、 F四点共圆,求证:B、D、P、F四点共圆.【例2】如图7-55,在梯形ABCD中,AD // BC,过B、C两点作一圆,AB、CD的延长线交该圆于点E、F.求证:A、D、E、F四点共圆.【例3】如图,0.1、..2相交于八、B两点,P是BA延长线上一点,割线PCD交..于C、D,割线PEF交GO?于E、F ,求证:C、D、E、F四点共圆.D(X[例4 ]如图7-56,在△ ABC中,AD=AE, BE与CD交于点P, DP = EP,求证:B、C、E、D四点共圆.[例5 ]如图, △ ABC是..的内接三角形,O O的直径BD交AC于E, AF BD于F ,延长2 _ _AF 交BC 于G ,求证:AB BG BC .[例6 ]如图7— 63,在口ABCD的对角线上,任取一点P,过点P作AB、CD的公垂线EG ,又作AD、BC的公垂线FM ,求证:EF//GM .[例7 ]如图7-66,四边形ABCD是..的内接四边形,DE^AC, AFLBD,点E、F是垂足.求证:EF//BC.A图26【例8】 如图7-60,△ ABC, AB 、AC 的垂直平分线交 AC 、AB 的延长线于点 F 、E.求证:E 、F 、C 、B 四点共圆..综合提升【例11]如图7-62,在△ ABC 中,/BAC 为直角,AB=AC, BM = MC,过M 、C 任作一圆,与 AC 交于点E, BE 与圆交于F 点,求证:AFXBE.【例9】如图,:ABDACD 60o , ADB 90o1 3十 —BDC .求证: 2△ ABC 是等腰三角形.【例10]如图7-61 ,在.O 中,AB // CD,点P 是AB 的中点, CP 的延长线交. .于点F,又点E 为弧BD 上任一点,连EF 交AB 于点G.求证:P 、G 、E 、D 四点共圆.图7-M图 7-61【例12]如图7—64, P为△ ABC外接圆一任意一点,点P到△ ABC三边的垂足分别为D、E、F三点成一直线.图7-hi【例13 ]如图7-65,在口ABCD中,过D、B两点作一圆,交平行四边形四条边〔或它们的延长线〕于点E、F、G、H.求证:EF//GH.【例14 ]如图7-67, AB为半圆的直径,弦AC、BD相交于点H, HPXAB.求证:/ 1 = 7 2.图7-6/【例15 ]如图7—68,四边形ABCD是正方形,点E为BC上的任一点,AEXEF, EF交/ BCD的外角平分线于点 F.求证:EA=EF.图7-68AD 交于点P ,求证:CP AD .DA 的对称点共圆.【例18】证实:三角形的三条高交于一点.在凸五边形ABCDE 中, BAE 3 , BC CD DE ,且 BCD CDE 180 2 ,求证: BAC CAD DAE .【例16】在等边三角形ABC 中,D 、E 分别是边 BC 、AC 上的点,且有 BD1CE -CD ,连结 BE 、 2【例17】 设凸四边形ABCD 的对角线AC 、BD 互相垂直,垂足为E,证实:点E 关于 AB 、BC 、CD 、【例19】【例20]如下图,设N是正九变形,O为其外接圆的圆心, PQ和QR是N的两相邻边,A为PQ的中点,而B为垂直于QR的圆半径的中点,试求AO与AB的夹角.【例21]如图,4ABC内接于OO , AD、BD为.O的切线,作DE // BC ,交AC于E ,连结EO并延长交BC于F ,求证:BF FC .【例22】如图,在凸四边形ABCD的BC边上取E和F 〔点E比F更靠近点B 〕. BAE CDF 及EAF FDE ,证实:FAC EDB .【例23]如图,在平行四边形ABCD中, BAD为钝角,且AE BC , AF(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N .求证:BM ND .【例24】正方形ABCD的中央为O,面积为2021, P为正方形内的一点,且【例25]如图,4ABC中,AH是高, AT是角平分线,且TD AB,求证:(1) AHD AHE ; (2) BH CHBD CEOPB 45 , PA: PB 4:5 ,TE AC .ABAC 60°, H为AC、AB上高BD、CE的交点,在BD 【例26]如图,.O为△ ABC的外接圆,上取点M ,使BM CH .连结OM、OH ,求证:OM OH .【例27]如图,CD是e O的直径,弦AE交CD于点Q,点B是弧D E上一点,BC和DE交于点F . AB CD ,垂足为M ,求证:QF // AB .【例28]如图,四边形ABCD中,AB AC AD ,假设CAD76 , BDC 13 ,那么CBDBAC【例29】凸四边形ABCD, BAC 2 BDC , CAD 2 CBD ,求证:AB AC AD.思维飞跃【例30]如图,直线AB和AC与.0分别相切于B、C, P为圆上一点, P到AR AC得距离分别为4、9,试求P到BC的距离.【例31]如图,4ABC中,ACB 90o, AB边上的高线CH与4ABC的两条内角平分线AM、BN分别交于P、Q两点.PM、QN的中点分别为E、F .求证: EF / /AB .C M【例32]如图,P是正4ABC外接圆的弧BC上的任一点.求证:PA2 AC2 PB PC . 【例33]如图,PA、PB切圆.于A和B , PO交AB于M,过M任作一弦CD,求证:APC BPD .【例34】如图, AB为..的直径,P为..外一点,过P引圆O的两条切线,切点分别为C、D, AD 与BC交于点E ,求证:EP AP .作业在锐角^ ABC 中,三条高 AD 、BE 、CF 相交于点H.求证:点 H 是△ DEF 的内心.AB 是圆的直径,AD 为圆的切线, FB 和DB 是圆的割线,分别交圆于 E 、C,求证:BE BF BC BD .4ABC 中,AB AC, AD 是高,P 为AC 上任一点,PC 的中垂线RQ 交AD 于R ,求证: RPB DAC .1. 2. 3.D4.如图,设四边形 ABCD 的两组对边 AB 、DC 及AD 、BC 的交点分别为 E 、F.假设 E 、 F 的平 分线互相垂直,那么 A 、B 、C 、D 四点共圆.过圆外一点P 作圆的两条切线和一条割线, 切点为A 、B,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦上取一点 Q ,使 DAQ PBC .求证: DBQ PAC .Q 5. 如图,PA 、PB 切.O 于A 、B 两点,过P 作割线交..于C 、 交PD 于M ,求证:M 为DC 的中点. BE // CD ,连结AE6.。

初中数学重点梳理:四点共圆

初中数学重点梳理:四点共圆

四点共圆知识定位圆在初中几何或者竞赛中占据非常大的地位,它的有关知识如圆与正多边形的关系,圆心角、三角形外接圆、弧、弦、弦心距间的关系,垂径定理,圆内接四边形的性质和判定,点、直线、圆和圆的位置关系是今后我们学习综合题目的重要基础,必须熟练掌握。

本节我们通过一些实例的求解,旨在介绍数学竞赛中圆的内接四边形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。

知识梳理1、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。

2、判定定理:方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。

(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)3、托勒密定理:若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么AB*DC+BC*AD=AC*BD。

托勒密定理逆定理:对于任意一个凸四边形ABCD,总有AB*CD+AD*BC≥AC*BD,等号成立的条件是ABCD四点共圆。

4、证明方法:(1)从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆(2)被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

几何描述:四边形ABCD中,∠BAC=∠BDC,则ABCD四点共圆。

证明:过ABC作一个圆,明显D一定在圆上。

四点共圆问题 (数学竞赛)

四点共圆问题 (数学竞赛)

P四点共圆问题四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式: (1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆; (2) 通过某四点共圆得到一些重要结论,进而解决问题 下面给出与四点共圆有关的一些基本知识(1) 若干个点与某定点的距离相等,则这些点在一个圆上;(2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆; (3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆;(4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆; (5) 若线段AB CD 、交于E 点,且AE EB CE ED =,则A B C D 、、、四点共圆;(6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =,则A B C D 、、、四点共圆。

四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。

例1、已知PQRS 是圆内接四边形,090PSR ∠=,过点Q 作PR PS 、的垂线,垂足分别为点H K 、求证:HK 平分QS例2、给定锐角ABC ,以AB 为直径的圆与边AB 上的高线'CC 及其延长线交于点M N 、,以AC 为直径的圆与AC 上的高线'BB 及其延长线交于点P Q 、。

证明:M P N Q 、、、四点共圆。

例3、在等腰ABC 中,P 为底边BC 上任意一点,过点P 做两腰的平行线分别与AB AC 、交于点Q R 、,又点'P 是点P 关于直线QR 的对称点。

求证:点'P 在ABC 分析:C P'C G 例4、ABCD 是圆内接四边形,AC 是圆的直径,BD AC ⊥,AC 与BD 的交点为E ,点F 在DA 的延长线上,连结BF ,点G 在BA 的延长线上,使得//DG BF ,点H 在GF 的延长线上,GF . 证明:B E F H 、、、四点共圆。

最新四点共圆问题-(数学竞赛)

最新四点共圆问题-(数学竞赛)

P四点共圆问题四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式: (1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆; (2) 通过某四点共圆得到一些重要结论,进而解决问题 下面给出与四点共圆有关的一些基本知识(1) 若干个点与某定点的距离相等,则这些点在一个圆上;(2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆; (3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆;(4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆; (5) 若线段AB CD 、交于E 点,且AE EB CE ED =,则A B C D 、、、四点共圆;(6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =,则A B C D 、、、四点共圆。

四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。

例1、已知PQRS 是圆内接四边形,090PSR ∠=,过点Q 作PR PS 、的垂线,垂足分别为点H K 、求证:HK 平分QS例2、给定锐角ABC ,以AB 为直径的圆与边AB 上的高线'CC 及其延长线交于点M N 、,以AC 为直径的圆与AC 上的高线'BB 及其延长线交于点P Q 、。

证明:M P N Q 、、、四点共圆。

例3、在等腰ABC 中,P 为底边BC 上任意一点,过点P 做两腰的平行线分别与AB AC 、交于点Q R 、,又点'P 是点P 关于直线QR 的对称点。

求证:点'P 在ABC 分析:C P'例4、ABCD 是圆内接四边形,AC 是圆的直径,BD AC ⊥,AC 与BD 的交点为E ,点F 在DA 的延长线上,连结BF ,点G 在BA 的延长线上,使得//DG BF ,点H 在GF GF . 证明:B E F H 、、、四点共圆。

第四讲 四点共圆问题

第四讲  四点共圆问题

第四讲 四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P 89定理和P 93例3),由这两种基本方法推导出来的其他判别方法也可相机采用. 1 “四点共圆”作为证题目的例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.(第19届美国数学奥林匹克)分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证 MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′) =(PB ′-KB ′)·(PB ′+KB ′)或MC ′2-KC ′2=PB ′2-KB ′2 . ①不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2ABCK M NPQ B ′C ′=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC , △OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆.(第27届莫斯科数学奥林匹克)分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC 及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1 O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证.2 以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK .A BCOO O O 123??求证:∠DMA =∠CKB .(第二届袓冲之杯初中竞赛)分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠ADC =180°,∴∠CMK +∠KDC =180°.故C ,D ,K ,M 四点共圆 ∠CMD =∠DKC . 但已证∠AMB =∠BKA , ∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB , BC 交于K ,N (K 与N 不同).△ABC 外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. (第26届IMO 第五题)分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC +A BC D K M ··ABO K N CMG∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ⇒ OC =OK ⇒∠OMC =∠OMK . 但∠GMC =∠BMK , 故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC的内心依次记为I A ,I B ,I C ,I D .试证:I A I B I C I D 是矩形.(第一届数学奥林匹克国家集训选拔试题) 分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21 ∠ACB =∠AI D B ⇒A ,B ,I D ,I C 四点 共圆.同理,A ,D ,I B ,I C 四点共圆.此时 ∠AI C I D =180°-∠ABI D =180°-21∠ABC , ∠AI C I B =180°-∠ADI B =180°-21∠ADC , ABCDI C I DAI I B∴∠AI C I D +∠AI C I B =360°-21(∠ABC +∠ADC ) =360°-21×180°=270°. 故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,P A :PB =5:14.则PB =__________ (1989,全国初中联赛)分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B四点共圆,有∠APB =∠AOB =90°. 故P A 2+PB 2=AB 2=1989. 由于P A :PB =5:14,可求PB . (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).··P OA BCD(1978,全国高中联赛)分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆⇒∠KDE =∠KGE =60°.同 理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点.又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大. 例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS 交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ .(1991,江苏省初中竞赛)分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ .A BCDEF KG ······又易证M,S,Q′,R四点共圆,且RS是这个圆的直径(∠RMS=90°),MQ′是一条弦(∠MSQ′<90°),故RS >MQ′.但MQ=MQ′,所以,RS>MQ.练习题1.⊙O1交⊙O2于A,B两点,射线O1A交⊙O2于C点,射线O2A交⊙O1于D点.求证:点A是△BCD的内心.(提示:设法证明C,D,O1,B四点共圆,再证C,D,B,O2四点共圆,从而知C,D,O1,B,O2五点共圆.)2.△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.(提示:设法证∠ABA1与∠ACA1互补造成A,B,A1,C四点共圆;再证A,A2,B,C四点共圆,从而知A1,A2都是△ABC的外接圆上,并注意∠A1AA2=90°.)3.设点M在正三角形三条高线上的射影分别是M1,M2,M3(互不重合).求证:△M1M2M3也是正三角形.4.在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A 点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.(提示:证B,Q,E,P和B,D,E,P分别共圆)5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

九年级数学奥数知识点专题精讲---四点共圆

九年级数学奥数知识点专题精讲---四点共圆

知识点、重点、难点四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。

在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。

因此,掌握四点共圆的方法很重要。

判定四点共圆最基本的方法是圆的定义:如果A、B、C、D四个点到定点O的距离相等,即OA=OB=OC=OD,那么A、B、C、D四点共圆.由此,我们立即可以得出1.如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。

将上述判定推广到一般情况,得:2.如果四边形的对角互补,那么这个四边形的四个顶点共圆。

3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。

4.如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。

运用这些判定四点共圆的方法,立即可以推出:正方形、矩形、等腰梯形的四个顶点共圆。

其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是:1.相交弦定理的逆定理:若两线段AB和CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。

2.割线定理的逆定理:若相交于点P的两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。

3.托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD是圆内接四边形。

另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。

例题精讲例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 四点共圆
典型例题
一. 基础练习
【例1】 如图,P 为ABC △内一点,D 、E 、F 分别在BC 、CA 、AB 上.已知P 、D 、C 、E 四
点共圆,P 、E 、A 、F 四点共圆,求证:B 、D 、P 、F 四点共圆.
【例2】 如图7-55,在梯形ABCD 中,AD ∥BC ,过B 、C 两点作一圆,AB 、CD 的延长线交该圆于点
E 、
F .求证:A 、D 、E 、F 四点共圆.
【例3】 如图,⊙1O 、⊙2O 相交于A 、B 两点,P 是BA 延长线上一点,割线PCD 交⊙1O 于C 、D ,
割线PEF 交⊙2O 于E 、F ,求证:C 、D 、E 、F 四点共圆.
P E C
B A
D
F
P
F
D
C
B A
E
【例4】 如图7-56,在△ABC 中,AD =AE ,BE 与CD 交于点P ,DP =EP ,求证:B 、C 、E 、D 四点共
圆.
【例5】 如图,已知ABC △是⊙O 的内接三角形,⊙O 的直径BD 交AC 于E ,AF BD ⊥于F ,延长
AF 交BC 于G ,求证:2AB BG BC =⋅.
【例6】 如图7-63,在ABCD □的对角线上,任取一点P ,过点P 作AB 、CD 的公垂线EG ,又作AD 、
BC 的公垂线FM .求证:EF //GM .
【例7】 如图7-66,四边形ABCD 是⊙O 的内接四边形,DE ⊥AC ,AF ⊥BD ,点E 、F 是垂足.求证:
EF //BC .
O G
F E
C
D B
A
【例8】 如图7-60,已知△ABC ,AB 、AC 的垂直平分线交AC 、AB 的延长线于点F 、E .求证:E 、F 、
C 、B 四点共圆.
【例9】 如图,已知:60ABD ACD ∠=∠=o ,
1
902
ADB BDC ∠=∠-∠o .求证:ABC △是等腰三角形.
二. 综合提高
【例10】 如图7-61,在⊙O 中,AB ∥CD ,点P 是AB 的中点,CP 的延长线交⊙O 于点F ,又点E 为弧
BD 上任一点,连EF 交AB 于点G .求证:P 、G 、E 、D 四点共圆.
【例11】 如图7-62,在△ABC 中,∠BAC 为直角,AB =AC ,BM =MC ,过M 、C 任作一圆,与AC 交于
点E ,BE 与圆交于F 点,求证:AF ⊥BE .
C
D
B
A
【例12】如图7-64,P为△ABC外接圆一任意一点,点P到△ABC三边的垂足分别为D、E、F三点成一直线.
□中,过D、B两点作一圆,交平行四边形四条边(或它们的延长线)于点【例13】如图7-65,在ABCD
E、F、G、H.求证:EF//GH.
【例14】如图7-67,AB为半圆的直径,弦AC、BD相交于点H,HP⊥AB.求证:∠1=∠2.
【例15】如图7-68,四边形ABCD是正方形,点E为BC上的任一点,AE⊥EF,EF交∠BCD的外角平分线于点F.求证:EA=EF.
【例16】 在等边三角形ABC 中,D 、E 分别是边BC 、AC 上的点,且有1
2
BD CE CD ==,连结BE 、
AD 交于点P ,求证:CP AD ⊥.
【例17】 设凸四边形ABCD 的对角线AC 、BD 互相垂直,垂足为E ,证明:点E 关于AB 、BC 、CD 、
DA 的对称点共圆.
【例18】 证明:三角形的三条高交于一点.
【例19】 已知在凸五边形ABCDE 中,3BAE BC CD DE α∠===,,且1802BCD CDE α︒∠=∠=-,求
证:BAC CAD DAE ∠=∠=∠.
E
D
C B A
E
C B
A
D
P
【例20】 如图所示,设N 是正九变形,O 为其外接圆的圆心,PQ 和QR 是N 的两相邻边,A 为PQ 的
中点,而B 为垂直于QR 的圆半径的中点,试求AO 与AB 的夹角.
【例21】 如图,已知ABC △内接于O ⊙,AD 、BD 为O ⊙的切线,作DE BC ∥,交AC 于E ,连结EO
并延长交BC 于F ,求证:BF FC =.
【例22】 如图,在凸四边形ABCD 的BC 边上取E 和F (点E 比F 更靠近点B ).已知BAE CDF
∠=∠及EAF FDE ∠=∠,证明:FAC EDB ∠=∠.
O
F
E
D
C
B
A O
A C R
Q P B
F
E
C
B
D
A
【例23】 如图,在平行四边形ABCD 中,BAD ∠为钝角,且AE BC AF CD ⊥⊥,.
(1)求证:A E C F 、、、四点共圆;
(2)设线段BD 与(1)中的圆交于M N 、.求证:BM ND =.
【例24】 正方形ABCD 的中心为O ,面积为2009,P 为正方形内的一点,且45OPB ∠=︒,:4:5PA PB =,
求PB .
【例25】 如图,已知ABC △中,AH 是高,AT 是角平分线,且TD AB TE AC ⊥⊥,.
求证:(1)AHD AHE ∠=∠;(2)
BH CH
BD CE
=

N
M F E
B
D
A
C P
O D
C
B
A T
H
E
D
C
B
A
【例26】 如图,⊙O 为ABC △的外接圆,60BAC ∠=o ,H 为AC 、AB 上高BD 、CE 的交点,在BD
上取点M ,使BM CH =.连结OM OH 、,求证:OM OH =.
【例27】 如图,CD 是O e 的直径,弦AE 交CD 于点Q ,点B 是弧»DE
上一点,BC 和DE 交于点F .AB CD ⊥,垂足为M ,求证:QF AB ∥.
三. 过三点的圆
【例28】 如图,四边形ABCD 中,AB AC AD ==,若76CAD ︒∠=,13BDC ︒∠=,则CBD ∠=_______,
BAC ∠=__________.
N M Q
O
F E D
C
B A
D
C
B
A
O H M
E D
C
B
A
【例29】 已知凸四边形ABCD ,2BAC BDC ∠=∠,2CAD CBD ∠=∠,求证:AB AC AD ==.
思维飞跃
【例30】 如图,直线AB 和AC 与O ⊙分别相切于B C 、,P 为圆上一点,P 到AB AC 、得距离分别为
49、,试求P 到BC 的距离.
【例31】 如图,ABC △中,90ACB ∠=o ,AB 边上的高线CH 与ABC △的两条内角平分线AM 、BN 分
别交于P 、Q 两点.PM 、QN 的中点分别为E 、F .求证://EF AB .
O
P
F
E
D
C B
A
D
C
B
A
M
N
P
H
B
A
C
E Q F
【例32】 如图,已知P 是正ABC △外接圆的弧BC 上的任一点.求证:22PA AC PB PC =+⋅.
【例33】 如图,PA 、PB 切圆O 于A 和B ,
PO 交AB 于M ,过M 任作一弦CD ,求证:APC BPD ∠=∠.
【例34】 如图,AB 为⊙O 的直径,P 为⊙O 外一点,过P 引圆O 的两条切线,切点分别为C 、D ,AD
与BC 交于点E ,求证:EP AP ⊥.
O
A
B
D
C F P O
D C
P
B
A
M P
B
C
A
作业
1. 在锐角△ABC 中,三条高AD 、BE 、CF 相交于点H .求证:点H 是△DEF 的内心.
2. 已知AB 是圆的直径,AD 为圆的切线,FB 和DB 是圆的割线,分别交圆于E 、C ,求证:
BE BF BC BD ⋅=⋅.
3. 已知ABC △中,AB AC =,AD 是高,P 为AC 上任一点,PC 的中垂线RQ 交AD 于R ,求证:
RPB DAC ∠=∠.
F
E C D
A
B
R
D
C
B
A Q
P
4. 如图,设四边形ABCD 的两组对边AB 、DC 及AD 、BC 的交点分别为E 、F .若E ∠、F ∠的平
分线互相垂直,则A 、B 、C 、D 四点共圆.
5. 如图,PA 、PB 切⊙O 于A 、B 两点,过P 作割线交⊙O 于C 、D ,过B 作BE CD ∥,连结AE
交PD 于M ,求证:M 为DC 的中点.
6. 过圆外一点P 作圆的两条切线和一条割线,切点为A B 、,所作割线交圆于C D 、两点,C 在P D
、之间.在弦上取一点Q ,使DAQ PBC ∠=∠.求证:DBQ PAC ∠=∠.
Q
P
D
C
B
A
O
A D
B
E
M C
P
A
F
E
D
C
B
M。

相关文档
最新文档