Bi-Sn 二元金属相图的绘制(热电势法)实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sn—Bi二元金属相图的绘制(热电势法)
一、实验目的
1、用热电偶—电位差计测定Bi—Sn体系的步冷曲线,绘制相图;
2、掌握热电势法测定金属相图的方法;
3、掌握热电偶温度计的使用,学习双元相图的绘制;
二、实验原理
研究多相体系的状态随浓度、温度、压力等变量的改变而发生变化的规律,并用图形来表示体系状态的变化,这种图形就称为相图或称为状态图。用热分析法可绘制相图,测绘一系列不同组成的金属混合物的步冷线,然后把各步冷曲线上物态变化的温度绘在温度--组成图上,即把图中各步冷曲线的转折点和水平段所对应的温度用。表示在温度--组成图中,即得到该体系的相图。液相完全互溶的二组分体系,在凝固时有的能完全互溶成为固溶体,有的仅部分互溶,如本实验的Bi--Sn体系。
本实验用热电偶作为感温元件,自动平衡电位差计测量各样品冷却过程中的热电势,作出电位—时间曲线(步冷曲线),再由热电偶的工作曲线找出相变温度,从而作出Bi-Sn体系的相图。
三、实验仪器和试剂
坩埚电炉(含控温仪);自动平衡电位差计;冷却保温装置;样品管;杜瓦瓶;镍铬---镍铝(或含其他材料);热电偶.
锡(AR)232;铋(AR)271
四、实验步骤
1、准备工作
在杜瓦瓶中装入室温水,按图连接路线并检查线路。热电偶调零:在测温热电偶为室温温度时开启记录仪开关,调量程为10mV,走纸温度为0,调节零旋纽使记录笔位于记录纸左边零线处。这时位置所指温度热电势为0,代表温度为室温。
2、测量
(1)加热试样:
置纯Sn样品坩埚于管式电炉中,置电热偶温度计于坩埚中细玻璃管内,并插入底部.调调压器使加热电压为150mV,加热至坩埚中细玻璃管能动则说明试样已
熔化,停止加热。
(2)测量步冷曲线
当发现记录笔开始向左移动(降温)时,放下记录笔,调走纸速度为4mm/min,开始测量。当平台出现后一会抬起记录笔并调节走纸速度为0。
同上步骤,依次测量含Bi 30%,58% 的混合物。
五、实验数据记录及处理
1.测纯Sn的各样品电势变化
各样品的步冷曲线如下: 纯Sn :
024681012
3.5
4.0
4.5
5.0
5.5
6.0
电势(m v )
时间(m in )
30%Bi :
58%Bi :
5
10
15
20
25
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
电势(m v )
时间(m in)
5
10
15
20
25
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
电势(m v )
时间(m in )
量程为10mV ,加热电压为150mV 时热电偶的工作曲线为:
2、测纯Bi的各样品电势变化
各样品的步冷曲线如下: 1.纯Bi :
-1
1
2
3
4
5
6
7
8
10
11
12
13
14
15
电势(m v )
时间(min)
2、58%Bi :
-50510152025303540
4
5
6
7
8
9
10
电势(m v )
时间(min)
3、80%Bi :
-5
5
10
15
20
25
30
35
24
6
8
10
12
14
电势(m v )
时间(min)
量程为20mV
由以上两组样品的相变温度的 Sn —Bi 二元金属的相图如下:
Bi
s n
温度(℃)
组分(%)
由图可知:合金的最低共熔温度是145℃,即含58% Bi 时,此点为三相点。
六、注意事项
1、注意整个测量过程中热电偶只调一次零;
2、在试剂加热后的冷凝过程中注意不要使玻璃管触壁。
3、热电偶的端点应插在样品的中央部位,否则因受环境的影响,步冷曲线的“平台”将不明显。
六、思考题
1、对于不同成分的混合物的步冷曲线,其水平段有什么不同?
答:纯物质的步冷曲线在其熔点处出现水平段,混合物在共熔点时出现水平段。 2、解释一个经典的步冷曲线的每一部分的含义?
答:对于简单的低共熔混合物,当将体系缓慢而均匀的冷却时如果体系内不发生相的变化,则温度将随时间而线性的改变,当其中一种物质的晶体开始析出时,由于相变热的出现,步冷曲线出现转折点,直到另一种晶体开始析出,此时两种物质同时析出,二者同时放出凝固热,步冷曲线上出现水平段。
3、对于含有粗略相等的两组分混合物,步冷曲线上的每一个拐点将很难确定,而其低共熔温度却可以准确测定.相反,对于一个组分含量很少的样品,第一个拐点将可以确定,而第二个拐点则难以确定测定.为什么?
答:固体析出时放出凝固热,使步冷曲线发生折变,折变是否明显决定于放出的凝固热能抵消多少的散失热量,若放出的凝固热能抵消散失热量的大部分,折变就明显,否则就不明显。对于含有粗略相等的两组分混合物,当有一种组分析出时,其凝固热难以抵消另一种组分及其自身的散失热量,所以第一个拐点很难测定,但由于其两组分含量相当,两种晶体同时析出时,受前一种析出的晶体放出