光纤通信技术

合集下载

光纤通信技术介绍

光纤通信技术介绍

光纤通信技术介绍光纤通信是一种利用光信号来传输信息的通信技术。

与传统的电信通信相比,光纤通信具有更高的传输速度、更大的带宽和更低的信号损耗。

在光纤通信系统中,光信号是通过光纤传输的,光纤是一种由细长的玻璃或塑料制成的柔软光导体,能够将光信号迅速、高效地传输到目标地点。

光纤通信技术的原理是利用光的全内反射性质,在光纤内部不断地反射和折射,使光信号能够沿着光纤传输。

光纤中的光信号是通过光的强弱调制来表示信息的,光的强弱变化被光纤接收器解读为二进制码,从而实现信息的传递。

光纤通信系统由光纤传输系统和光纤网络系统两个主要部分组成。

光纤传输系统是光纤通信系统的基础,它由光纤传输设备、光纤接头和光纤传输线组成。

光纤传输设备主要包括光纤传输器和光纤接收器,它们负责将电信号转换为光信号,并通过光纤发送和接收光信号。

光纤接头是将不同的光纤连接在一起的装置,通过光纤接头可以将多段光纤连接成一个完整的光纤线路。

光纤传输线是将光信号传输到不同地点的光纤线路,它具有高强度、低损耗和较大的带宽,能够满足高速、大容量的光信号传输需求。

光纤网络系统是光纤通信系统的重要组成部分,它由光纤交换机和光纤路由器组成。

光纤交换机是将光信号从一个节点传输到另一个节点的设备,它能够根据需要选择传输路径,并将光信号切换到相应的路径上。

光纤路由器是管理和控制光纤网络的设备,它根据网络拓扑结构和路由策略,将光信号从源节点通过一系列的光纤传输到目标节点。

光纤通信技术的优势主要表现在三个方面。

首先,光纤通信具有高速传输的特点,光信号的传输速度可达到光的速度,可以满足大量数据的传输需求。

其次,光纤通信具有大带宽的特点,光纤的频率范围较宽,可以支持更多的频率和信号,使得网络能够同时传输多种类型的信号。

最后,光纤通信具有低信号损耗的特点,光信号在光纤中的传输距离可以达到几十公里,而且信号损耗非常低,可以减少信号的失真和衰减,提高通信质量和可靠性。

光纤通信技术在现代通信领域中得到了广泛的应用。

光纤通信技术

光纤通信技术

光纤通信技术.
光纤通信技术是一种使用光纤作为传输介质的通信技术。

它利用光的传输特性,将信息以光脉冲的形式通过光纤传输。

光纤通信技术的基本原理是利用光纤的高速传输和高带宽特性,将电子信号转换为光信号,在光纤中传输,并在接收端将光信号重新转换为电子信号。

光纤通信技术主要包括光纤的制备和光纤传输系统的设计与实现两个方面。

光纤的制备主要涉及纤芯和包层的材料选择和制备工艺,以及光纤的拉制和光纤连接技术等。

光纤的核心部分是非常纯净的玻璃或塑料纤芯,外面包裹着折射率较低的材料,形成了光纤的结构。

制备过程中需要控制光纤的损耗、色散和非线性等特性。

光纤传输系统的设计与实现主要包括光纤传输器件的选择和光纤传输系统的搭建与调试等。

光纤传输器件包括光源、调制器、光纤耦合器、光纤放大器和光接收器等。

光源产生稳定的光信号,调制器控制光信号的强度或频率,光纤耦合器将光信号输入或输出到光纤中,光纤放大器放大光信号,光接收器将光信号转换为电信号。

光纤通信技术具有传输速度快、带宽大、抗干扰能力强等优点,广泛应用于互联网、电信、数据中心、电视传输等领域。

随着技术的不断进步,光纤通信技术也在不断发展,传输速度和带宽等性能得到了进一步提升。

光纤通信新技术

光纤通信新技术
总结词
光网络智能化技术
THANKS
感谢观看
新型光网络技术
05
总结词
光传送网(OTN)是一种新型的光网络技术,它通过使用数字封装技术将客户信号封装在光层进行传输,具有高带宽利用率、低延迟、高可靠性等优点。
详细描述
OTN通过将客户信号封装在数字容器中,实现了对客户信号的透明传输,同时提供了强大的故障恢复和保护能力。此外,OTN还支持多播和广播功能,能够实现灵活的带宽管理和调度。
软件定义光网络(SDON)
未来展望
06
随着数据流量的快速增长,超高速光传输技术成为光纤通信领域的研究重点。
超高速光传输技术通过提高信号传输速率,实现更大容量的数据传输。目前已经实现了Tbps级别的传输速率,未来还有望进一步提高。
超高速光传输技术
详细描述
总结词
超长距离光传输技术
总结词
超长距离光传输技术是实现跨洲际、跨大洋光传输的关键技术。
详细描述
自动交换光网络(ASON)
总结词
软件定义光网络(SDON)是一种基于软件的光网络技术,它通过使用软件编程的方式实现光网络的配置和控制。
详细描述
SDON通过将光网络的配置和控制功能抽象化,使得网络管理员可以通过软件编程的方式实现光网络的配置和管理。这大大提高了网络的灵活性和可扩展性,同时也降低了运营成本。此外,SDON还支持多种协议和标准,能够与其他网络技术进行无缝集成。
详细描述
通过采用先进的信号处理技术和新型的光纤材料,超长距离光传输技术能够实现数千公里甚至上万公里的光信号传输,为全球通信网络的建设提供有力支持。
VS
光网络智能化技术是实现光网络高效运维和智能控制的重要发展方向。
详细描述

光纤通信技术

光纤通信技术

光纤通信技术标题:光纤通信技术:现代通信领域的巨大突破引言:在信息时代的高速发展中,光纤通信技术作为现代通信中最具前沿和重要的一项技术,正发挥着越来越重要的作用。

本文将从光纤通信技术的原理、应用和未来发展等方面进行详细介绍,以展示光纤通信技术在通信领域带来的巨大突破。

第一部分:光纤通信技术的原理光纤通信技术是一种利用光传输信息的通信方式。

其原理基于光波在光纤中的传播。

光纤是一种由光学玻璃或塑料制成的细长光导纤维,其核心是光的传播通道。

当光波射入光纤时,根据全反射原理,光波将沿着光纤内部的核心进行传播,损耗极小。

而光信号的传输速度非常快,甚至接近光速,因此可以实现高速、大容量的信号传输。

此外,光纤通信技术还通过采用不同波长的光信号来实现多路复用,进一步提高了通信效率。

第二部分:光纤通信技术的应用光纤通信技术在现代通信领域有着广泛的应用。

首先,在长距离通信方面,光纤通信技术能够实现高速、低损耗的信息传输,比传统的电信号传输方式更加可靠。

无论是陆地通信还是海底光缆,光纤通信技术的应用都可以大大提高通信质量和速度。

其次,在数据中心和互联网领域,光纤通信技术的大容量和高速度使得数据传输更加稳定,能够满足日益增长的网络数据需求。

此外,光纤通信技术还应用于医疗设备、航天技术和军事通信等领域,为这些领域的发展提供了关键的支持。

第三部分:光纤通信技术的未来发展光纤通信技术在过去几十年中取得了巨大的进步,但其发展潜力远未到达极限。

未来,随着信息技术的不断发展,光纤通信技术将继续迎来新的突破。

首先,随着光纤材料的研究进展,将会出现更高效的光纤材料,降低传输损耗,提高传输容量。

其次,随着纳米技术和量子技术的进一步研究,有望实现光量子通信,从而进一步提高通信的安全性和速度。

此外,人们还在研究如何将光纤通信技术应用于无线通信领域,以实现更快速、更广覆盖的无线通信。

结论:光纤通信技术作为现代通信领域的重要技术,通过其高速、大容量和低损耗的特点,极大地改变了人们的通信方式和生活方式。

通信工程中的光纤通信技术资料

通信工程中的光纤通信技术资料

通信工程中的光纤通信技术资料光纤通信技术在通信工程中扮演着至关重要的角色,其广泛应用于电信、互联网、有线电视等领域。

本文将对光纤通信技术的原理、分类、应用以及未来发展进行详细介绍。

一、光纤通信技术的原理光纤通信技术是在光纤中传输光信号来实现信息传输的方法。

其基本原理是利用光纤中的光波导特性,将发光器发出的光信号转变为光脉冲,并通过光纤中的全反射作用将光信号传输到接收器处,再将光信号转变为电信号进行解码。

光纤通信技术相较于传统的电缆传输技术具有传输距离远、传输速度快、传输带宽大等优势。

二、光纤通信技术的分类根据光纤的结构和传输方式的不同,光纤通信技术可分为单模光纤通信和多模光纤通信两大类。

1. 单模光纤通信单模光纤通信是指在光纤中只有一条主模式传输的方式。

其光纤核心较细,能够保证光信号在内部只有一个主要的有效传输路径,从而降低传输损耗。

由于单模光纤的传输特性能使其在长距离传输时信号衰减较小,传输质量较高,广泛应用于电话通信、广域网等领域。

2. 多模光纤通信多模光纤通信是指在光纤中存在多个模式传输的方式。

其光纤核心较大,能够同时传输多个光信号,但随着传输距离的增加,多模光纤的色散效应会导致信号失真,传输质量下降。

多模光纤通信适用于短距离通信,广泛应用于数据中心、局域网等场景。

三、光纤通信技术的应用随着光纤通信技术的不断发展,其在各个领域得到了广泛的应用。

1. 电信领域光纤通信技术是实现宽带接入的重要方式,其在电信领域中被广泛应用于电话通信、宽带接入、光纤到户等方面。

通过利用光纤通信技术,可以提供更高的传输速度和更稳定的网络连接,满足用户对通信质量和速度的需求。

2. 互联网领域光纤通信技术是实现互联网高速传输的关键支撑技术。

通过光纤网络,互联网用户可以享受到更快的上网速度和更稳定的网络连接,实现大规模数据传输和多媒体内容的高效传输。

3. 有线电视领域光纤通信技术在有线电视领域中也有重要应用。

传统的有线电视网络采用同轴电缆进行信号传输,而光纤通信技术的应用可以实现更高的信号质量和更大的频宽,提供更清晰、稳定的电视信号。

光纤通信技术

光纤通信技术

光的全反射与光纤的导光原理
光的全反射
当光线从一种介质射入另一种介质时,如果入射角大于某一临界角,光波将在第二种介质表面发生全 反射,即所有的光线都将被反射回第一种介质,而不会进入第二种介质。全反射是光纤导光的物理基 础。
光纤的导光原理
光线在光纤中传播时,由于光的全反射作用,光波被限制在光纤的纤芯中传播,从而实现光的定向传 输。光纤的导光原理是光纤通信中的核心技术之一。
光子集成电路与光子晶体光纤
总结词
光子集成电路和光子晶体光纤是光纤通信技术的两个重 要发展方向。
详细描述
光子集成电路是一种集成了多种光器件的光子回路,具 有高度集成、低能耗、高速传输等优点。而光子晶体光 纤则是一种新型的光纤结构,具有高非线性、高色散等 特性,为光通信带来了新的可能性。
光纤网络的可靠性、稳定性与安全性
光检测器与光接收机
光检测器
光检测器是光纤通信系统的接收端,用于将光信号转换为电信号。常用的光检 测器有光电二极管和雪崩光电二极管。
光接收机
光接收机是将光信号转换为电信号的设备,它包括光检测器、信号处理电路和 放大器等。
光纤与光缆
光纤
光纤是光纤通信系统的传输介质,用于传输光信号。光纤由纤芯和包层组成,纤 芯负责传输光信号,包层则起到保护和折射的作用。
物联网与智能交通
实时数据传输
光纤通信技术能够为智能 交通系统提供实时、可靠 的数据传输服务,支持交 通流量的监控和调度。
车辆安全与控制
光纤通信技术可以用于实 现车辆之间的信息交互, 提高车辆行驶的安全性和 控制精度。
智能停车系统
光纤通信技术可以支持智 能停车系统的建设,实现 车位信息的实时更新和车 辆快速定位。
光纤通信技术的发展历程

光纤通信相关技术

光纤通信相关技术

光纤通信是一种利用光纤传输信息的通信技术。

以下是一些与光纤通信相关的技术:
光纤传输技术:光纤传输技术是将信息信号转换为光信号,并通过光纤进行传输。

主要包括光源、光纤传输介质和光接收器等组成部分。

常见的光源包括激光器和发光二极管,光接收器则是将接收到的光信号转换为电信号。

光纤放大器技术:光纤放大器用于增强光信号的强度,以延长光信号在光纤中传输的距离。

常见的光纤放大器包括掺铒光纤放大器(EDFA)、掺镱光纤放大器(YDFA)等。

光纤耦合技术:光纤耦合技术用于将光信号从光源耦合到光纤中,或从光纤中耦合出来。

常见的光纤耦合技术包括插入式耦合和光纤末端面耦合。

光纤分波复用技术:光纤分波复用技术(WDM)用于在光纤中同时传输多个不同波长的光信号,以实现多路复用和提高传输容量。

常见的WDM技术包括密集波分复用(DWDM)和波分分复用(CWDM)等。

光纤传感技术:光纤传感技术利用光纤的特性实现对物理量或化学量的测量和监测。

常见的光纤传感技术包括光纤布拉格光栅传感、光纤干涉仪传感和光纤拉曼散射传感等。

光纤网络技术:光纤网络技术用于构建高速、大容量的通信网络。

常见的光纤网络技术包括光纤局域网(LAN)、光纤城域网(MAN)和光纤广域网(WAN)等。

这些技术共同构成了现代光纤通信系统的基础,使得光纤通信具有高速、大容量、低损耗和抗干扰等优势,广泛应用于电信、互联网和数据通信等领域。

光纤通信技术介绍

光纤通信技术介绍

光纤通信技术介绍光纤通信技术是一种利用光信号传输信息的通信方式。

相比传统的电信号传输方式,光纤通信技术具有更高的传输速率、更远的传输距离和更低的信号损耗,因此在现代通信领域得到广泛应用。

光纤通信的基本原理是利用光纤作为传输介质,通过光的全反射现象将光信号在光纤内部传输。

光纤由一个或多个纤芯和包围纤芯的折射率较低的包层组成。

当光信号从光纤的一端进入时,由于光的折射现象,光信号会沿着光纤内壁一直传输到另一端,实现信号的传输。

光纤通信技术的发展离不开光源、光纤和光探测器三个关键部件的支持。

光源是产生和发射光信号的设备,常用的光源包括激光器和发光二极管。

光纤则是光信号传输的介质,一般采用石英玻璃或塑料光纤。

光探测器负责接收和转换光信号,常见的光探测器包括光电二极管和光电倍增管。

光纤通信技术具有许多优势。

首先,光纤通信的传输速率非常高,目前已经达到了数百Gbps甚至Tbps的级别。

其次,光纤通信可以实现较远的传输距离,一般可以达到几十公里甚至上百公里。

此外,光纤通信还具有抗电磁干扰、保密性好等特点。

相比之下,传统的电信号传输方式存在传输速率低、信号衰减大等问题。

光纤通信技术的应用非常广泛。

首先,它在互联网领域起到了至关重要的作用。

如今,全球互联网的骨干网络基本上都采用了光纤通信技术。

其次,光纤通信技术也广泛应用于电信、有线电视、移动通信等领域。

此外,光纤通信还在医疗、军事、交通等领域得到了应用。

光纤通信技术虽然有很多优势,但也存在一些挑战和限制。

首先,光纤通信的建设成本相对较高,需要投入大量的资金和人力资源。

其次,光纤通信的维护和管理也需要专业的技术人员进行。

此外,光纤通信在遇到自然灾害等情况时也容易受到影响。

光纤通信技术是一种高效、可靠的通信方式,具有广阔的应用前景。

随着科技的不断发展,光纤通信技术也将不断创新和完善,为人们的通信需求提供更好的解决方案。

光纤通信技术概述

光纤通信技术概述

光纤通信技术概述光纤通信技术近年来在电信行业取得了巨大的突破和应用,成为现代通信领域中最重要的信息传输手段之一。

本文将对光纤通信技术进行概述,介绍其原理、构成以及应用前景。

一、光纤通信技术的原理光纤通信技术是利用光在光纤中的传输来实现信息传输的一种技术。

其原理基于光的全反射现象,即当光束斜射入光纤中时,由于光密度差的存在,光束会在光纤内部一直发生全反射,从而沿光纤传输。

基于这一原理,光纤通信技术可以实现高速、大容量的信息传输。

二、光纤通信技术的构成光纤通信技术主要由光纤、光源、光检测器和光电转换器等组成。

1. 光纤:光纤是光电信号传输的载体,通常采用以二氧化硅或塑料等为基材的细长光导纤维。

光纤具有高折射率和低损耗的特点,因此能够实现长距离的传输。

2. 光源:光源是产生并发射光信号的装置,常用的光源有激光器和发光二极管等。

光源发射的光经由调制器调制成数字信号,之后通过光纤传输。

3. 光检测器:光检测器是将光信号转换成电信号的装置,能够对光信号的强度、频率和相位等进行解析与提取。

4. 光电转换器:光电转换器将光信号转换成电信号或将电信号转换成光信号的装置,常用的光电转换器有光电二极管、光电倍增管和光电晶体管等。

三、光纤通信技术的应用前景光纤通信技术在现代通信行业中具有广泛的应用前景,主要体现在以下几个方面:1. 高速传输:光纤通信技术具有高带宽和大容量的特点,可以实现高速、远距离的信息传输。

与传统的铜缆传输相比,光纤传输速度更快、传输距离更远,能够满足现代社会对于高速、大容量通信的需求。

2. 抗干扰性强:由于光在传输过程中不受外界电磁信号的影响,光纤通信技术对于电磁干扰具有较强的抗干扰性能,能够保证信息传输的可靠性和稳定性。

3. 安全性高:光纤通信技术采用了光信号传输,不易被窃听和干扰,相比传统的电信号传输更具安全性。

这使得光纤通信技术在军事通信、金融交易等领域有着广泛的应用。

4. 节能环保:相比铜缆传输,光纤通信技术的传输损耗更低,能够节省大量的能源资源。

光纤通信技术介绍

光纤通信技术介绍

光纤通信技术介绍光纤通信技术是一种利用光纤作为传输介质的通信方式,它利用光的传输速度快、带宽大、抗干扰性强等优势,已经成为现代通信领域的主流技术之一。

本文将从光纤通信的基本原理、光纤的结构与制造、光纤通信的应用以及未来发展趋势等方面进行介绍。

光纤通信的基本原理是利用光的全内反射特性传输信号。

光纤由一个或多个纤芯(Core)和包围纤芯的光纤包层(Cladding)组成,纤芯与光纤包层之间的折射率差使得从纤芯内部发出的光线在光纤内部一直发生全内反射,从而实现信号的传输。

光纤通信的信号调制方法主要有直接调制和外调制两种方式,其中外调制方式一般应用于长距离通信。

光纤的结构与制造也是光纤通信技术的重要组成部分。

光纤由石英玻璃或塑料等材料制成,具有高抗拉强度和抗腐蚀性。

制造光纤的过程主要包括拉制、拉伸和涂覆等步骤,其中拉制是将纤芯和光纤包层的材料加热并拉伸成细丝的过程,拉伸则是将细丝拉长并形成光纤的过程,涂覆是在光纤表面覆盖保护层以提高光纤的强度和耐用性。

光纤通信技术在各个领域都有广泛的应用。

在长距离通信方面,光纤通信已经取代了传统的铜缆通信,成为主要的通信手段。

光纤通信具有传输速度快、带宽大、抗干扰性强等优势,可以实现高清视频、高清音频等大容量数据的传输。

此外,光纤通信还广泛应用于计算机网络、有线电视、移动通信等领域,为人们的生活带来了便利。

光纤通信技术在未来的发展中有着广阔的前景。

随着信息化时代的到来,对通信速度和带宽的需求将越来越大,而光纤通信技术的高速传输能力正好满足了这一需求。

未来的发展趋势可能包括光纤通信技术的更高速度、更大容量的传输能力,以及更加灵活和智能的网络架构。

同时,光纤通信技术也将与其他技术相结合,如5G通信、物联网等,共同推动信息社会的发展。

总结而言,光纤通信技术是一种利用光纤作为传输介质的高速通信方式。

通过光纤的全内反射特性,光纤通信实现了信号的传输。

光纤通信具有传输速度快、带宽大、抗干扰性强等优势,被广泛应用于各个领域。

光纤通信技术与设备

光纤通信技术与设备
光接收机
光接收机是用于接收和放大光信号的设备,它包括光检测器、前置放大器和主放大器等组件。
光检测器与光接收机
光纤是光纤通信系统中的传输媒介,用于传输光信号。光纤由纤芯和包层组成,纤芯负责传输光信号,包层则起到保护作用。
光纤
光缆是由多根光纤组成的集合体,外面通常有加强筋和保护层。光缆用于将光信号从一个地方传输到另一个地方。
衡量光放大器性能的指标包括增益、噪声系数、带宽等,这些指标直接影响光纤通信系统的传输距离和容量。
光放大器广泛应用于长距离、大容量光纤通信系统,如骨干网、海底光缆等,为光纤通信网络提供可靠的光信号放大功能。
光分路器与光耦合器
光分路器概述:光分路器是一种无源光器件,用于实现光的分路和合路功能,常用于光纤接入网络和数据中心等领域。
波分复用技术
光纤非线性效应是指光纤中的光信号与光纤介质相互作用时产生的一种非线性光学现象。
光纤非线性效应包括非线性折射、非线性吸收、光克尔效应等,这些效应会导致光信号的失真和畸变,影响光纤通信系统的性能。
在光纤通信系统中,需要采取措施减小光纤非线性效应的影响,如采用低非线性系数的光纤、优化光信号的功率和脉冲宽度等。
光纤通信技术与设备
CATALOGUE
目录
光纤通信技术概述 光纤通信系统组成 光纤通信关键技术 光纤通信设备与器件 光纤通信网络架构 光纤通信发展趋势与挑战
01
光纤通信技术概述
光纤通信是一种利用光波在光纤中传输信息的技术。
定义
传输损耗低、传输容量大、抗电磁干扰能力强、保密性好、耐腐蚀、重量轻等。
多业务支持
城域光纤网络具有高可用性,能够保证城市关键信息基础设施的可靠运行。
高可用性
城域光纤网络

浅谈光纤通信技术

浅谈光纤通信技术

浅谈光纤通信技术光纤通信技术是一种利用光纤作为传输介质的通信技术。

与传统的铜线通信相比,光纤通信具有更高的传输速度、更远的传输距离和更大的带宽。

光纤通信的原理是利用光的全反射现象,在光纤的内部传输光信号。

光纤通信系统主要包括光源、调制器、光纤传输线路、解调器和接收器五个主要部分。

光源产生光信号,经过调制器进行调制后,通过光纤传输线路传输到目的地,并在目的地通过解调器解调,最后由接收器接收。

光纤通信技术相比于传统的铜线通信技术,有以下几个显著的优点。

光纤通信传输速度快。

光信号在光纤中传输的速度接近光速,比传统的电信号在铜线中传输的速度要快得多。

这使得光纤通信系统能够实现更高的传输速率,更高的数据容量。

光纤通信传输距离远。

相比于铜线通信,光纤具有更低的损耗和更小的衰减。

光纤通信系统在传输过程中的信号衰减非常小,因此能够实现更长的传输距离。

光纤通信系统的传输距离可以达到几百公里甚至更远,比铜线通信系统要远得多。

光纤通信带宽大。

由于光信号的频率范围广,光纤通信系统能够提供更大的数据传输带宽。

与传统的铜线通信相比,光纤通信系统能够实现更高的数据传输速率,更好地满足人们对高速宽带通信的需求。

光纤通信抗干扰能力强。

由于光信号在光纤中传输,不容易受到电磁干扰的影响,因此光纤通信系统能够提供更可靠的通信质量。

光纤通信系统能够抵御多种干扰信号,如电磁干扰、雷电干扰等,使得通信质量更加稳定和可靠。

光纤通信技术是一种颇具发展潜力的通信技术。

其快速、远距离、大带宽和强抗干扰的特点,使得光纤通信技术成为现代通信领域中最主要的传输方式之一。

随着科技的不断进步,相信光纤通信技术在未来会有更广泛的应用和更大的发展空间。

光纤通信原理 第三章 光纤通信技术

光纤通信原理 第三章 光纤通信技术

图 双纤单向WDM传输
(2) 单纤双向传输。 双向WDM传输是指光通路在一根光 纤上同时向两个不同的方向传输。如图7.8所示,所用波长相 互分开, 以实现双向全双工的通信。
1 光发射机 1
光接机 1


n 光发射机 n 1′ 光接收机
复用/解复用器

n′ 光接收机
1…n
光纤 放大器
n+1…2n
光接收机 n
在接收端通过光解复用器将不同波长的信号分开,完成多路光信号 传输的任务。
反方向通过另一根光纤传输的原理与此相同。
1 光发射机
1

复用器
n 光发射机 n
1′ 光接收机 n′ 光接收机

解复用器
光纤放大器 1…n
光纤放大器 1…n
解复用器
光接收机
1

光接收机 n
复用器
1 光发射机
1′

n 光发射机
n′
如果一个区域内所有的光纤传输链路都升级为WDM传输, 我们就可以在这些WDM链路的交叉(结点)处设置以波长为单位 对光信号进行交叉连接的光交叉连接设备(OXC),或进行光上下 路的光分插复用器(OADM),则在原来由光纤链路组成的物理层 上面就会形成一个新的光层。
在这个光层中,相邻光纤链路中的波长通道可以连接起来, 形成一个跨越多个OXC和OADM的光通路,完成端到端的信息 传送,并且这种光通路可以根据需要灵活、动态地建立和释放, 这就是目前引人注目的、 新一代的WDM全光网络。
复用/解复用器 n+1
光发射机
1′

2n 光发射机
n′
图 单纤双向WDM传输
双向WDM系统在设计和应用时必须要考虑几个关键的系 统因素:

光纤通信技术

光纤通信技术

光纤通信技术一、光纤通信技术概述光纤即为光导纤维的简称。

光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。

从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。

光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。

传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。

二、光纤通信技术特点光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。

光导纤维通信简称光纤通信。

可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。

实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。

光纤通信具有以下特点:1、通信容量大、传输距离远。

2、信号串扰小、保密性能好;3、抗电磁干扰、传输质量佳。

4、光纤尺寸小、重量轻,便于敷设和运输;5、材料来源丰富,环境保护好,有利于节约有色金属铜;6、无辐射,难于窃听;7、光缆适应性强,寿命长;三、光纤通信技术的发展趋势1、向超高速系统的发展;2、向超大容量WDM系统的演进;3、实现光联网。

上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想;4、新一代的光纤。

近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础;5、光接入网。

过去几年间,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都已更新了好几代。

不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络;四、光纤通信技术对测量领域意义任何外界的干扰都有可能影响测量的数据,只是有些干扰不会影响测量的结果,而有些干扰对测量的结果会产生颠覆性的作用。

第5章-光纤通信技术

第5章-光纤通信技术

5.1 光纤基本知识
5.1.4 光纤的制造
制造光纤的方法很多,目前主要有:改进化 学汽相沉积法(MCVD)、等离子体化学汽相沉 积法(PCVD)、管外汽相沉积法(OVD)和轴向汽 相沉积法(VAD)。但不论用哪一种方法,都要 先在高温下做成预制棒,然后在高温炉中加温 软化,拉成长丝,再进行涂覆、套塑,成为光 纤芯线。
引言
光纤通信系统是目 前世界通信系统的主要 模式,比以前的电缆通 信系统无论从性能还是 成本上都有极大优势。 正是光纤用于现代通信 系统,才使得我们能够 成功构建今天高速、多 元化的信息社会
本章内容
5.1 光纤基本知识
5.2 光在光纤波导中的传播
5.3 光纤的损耗与色散
5.4 光通信器件
5.1 光纤基本知识
阶跃折射率光纤(SIF)
n1 , 0 r a n n2 , r a
渐变折射率光纤(GIF)
n1 1 2r / a n(r ) n2 ,r a
(n1 n2 ) / n1
5.1 光纤基本知识
5.2 光在光纤波导中的传播
5.2.1光纤原理的几何光学描述
如果有太多不同角度的光线在光纤中传播,由于 不同光线走的路径不一样,而纤芯折射率又处处相同 ,这会导致不同角度入射的光线传播到终点的时间不 一致,这就造成了输入光脉冲的展宽,这就是多模光 纤的模间色散。如果光脉冲被展宽,相邻光脉冲之间 就会产生交叠,在交叠区会发生干涉。一旦交叠区较 大,干涉效应会使得相邻的两个脉冲不可分辨,这样 信号就会发生失真。
5.1 光纤基本知识
5.1.4 光纤的制造
改进化学汽相沉积法(MCVD)
5.1 光纤基本知识
5.1.4 光纤的制造
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤通信技术层次:十队中职班姓名:刘智磊许揽光纤通信技术一、光纤通信光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。

在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。

光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的新问题。

二、光纤通信技术的特点(1) 频带极宽,通信容量大。

光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。

(2) 损耗低,中继距离长。

目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;(3) 抗电磁干扰能力强。

光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。

(4)无串音干扰,保密性好。

光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。

由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

三、光纤通信技术的发展及现状光纤通信的诞生与发展是电信史上的一次重要革命。

光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。

20世纪90年代以来,我国光通信产业发展极其迅速,非凡是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。

广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。

可以采用 SDH +光纤或ATM+光纤组成宽带数字传输系统。

该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。

对光纤通信而言,超高速度、超大容量、超长距离一直都是人们追求的目标,光纤到户和全光网络也是人们追求的梦想。

现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。

因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。

(一)光纤到户现在移动通信发展速度惊人,因其带宽有限,终端体积不可能太大,显示屏幕受限等因素,人们依然追求陸能相对占优的固定终端,希望实现光纤到户。

光纤到户的魅力在于它有极大的带宽,它是解决从互联网主干网到用户桌面的“最后一公里”瓶颈现象的最佳方案。

随着技术的更新换代,光纤到户的成本大大降低,不久可降到与DSL和HFC网相当,这使FITH的实用化成为可能。

在我国,光纤到户也是势在必行,光纤到户的实验网已在武汉、成都等市开展,预计2012年前后,我国从沿海到内地将兴起光纤到户建设高潮。

可以说光纤到户是光纤通信的一个亮点,伴随着相应技术的成熟与实用化,成本降低到能承受的水平时,FTTH的大趋势是不可阻挡的。

(二)全光网络传统的光网络实现了节点间的全光化,但在网络结点处仍用电器件,限制了目前通信网干线总容量的提高,因此真正的全光网络成为非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。

当然全光网络的发展并不可能独立于众多通信技术,它必须要与因特网、ATM网、移动通信网等相融合。

目前全光网络的发展仍处于初期阶段,但已显示出良好的发展前景。

从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

四、光纤通信技术的趋势及展望目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。

(一)向超高速系统的发展目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。

但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。

它的比较现实的出路是转向光的复用方式。

光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

(二)向超大容量WDM系统的演进采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。

如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。

基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。

目前全球实际铺设的WDM 系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。

实验室的最高水平则已达到2.6Tbps(13×20Gbps)。

预计不久的将来,实用化系统的容量即可达到1Tbps的水平。

[来源:论文天下论文网 lunwentianxia(三)实现光联网上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。

如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。

根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。

由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。

光联网已经成为继SDH电联网以后的又一新的光通信发展高潮。

建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

(四)开发新代的光纤传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。

目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。

其中,全波光纤将是以后开发的重点,也是现在研究的热点。

从长远来看,BPON 技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。

(五)IPoverSDH与IpoverOptical以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。

目前,ATM和SDH 均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。

但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。

三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。

但从面向未来的视角看。

IPoverOptical将是最具长远生命力的技术。

特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。

(六)解决全网瓶颈的手段一光接入网近几年,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都己更新了好几代。

不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络,而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。

两者在技术上存在巨大的反差,制约全网的进一步发展。

为了能从根本上彻底解决这一问题,必须大力发展光接入网技术。

因为光接入网有以下几个优点:(1)减少维护管理费用和故障率;(2)配合本地网络结构的调整,减少节点,扩大覆盖;(3)充分利用光纤化所带来的一系列好处;(4)建设透明光网络,迎接多媒体时代。

四、结束语光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。

在国内各研发机构、科研院所、大学的科研人员的共同努力下,我国已研制开发了一些具有自主知识产权的光通信高技术产品,取得了一批重要的研究与应用成果。

这些研究工作和突出成果为O-TIME(光时代)计划的实施奠定了坚实的基础,为我国的信息基础设施建设做出贡献。

相关文档
最新文档