最新国家开放大学经济数学基础形考4-1答案
2022年国家开放大学《高等数学基础》形考1-4答案
2022年国家开放大学《高等数学基础》形考1.4答案以下是个题库,从题库中査找,仅供参考。
形考任务1(一)单项选择题下列各函数对史"(.)中的两个函数相等. 正确答案也/(对=(扳),,g (X )=X 函数y=3cosx 的值域是().正确答案是:[-3, 3]函数y=x2+2x-7在区冋(4 4)内满足( 正确答案是:先单调卜降再单调上升 下列函数中为柔函数的是(). 正确答案是:下列函数在区间上单调递增的是( ).正确答案是:A3设函数/(X )的定义域为(TO,m ),则函数/(X )-六-力的图形关于 < )对称. 正确答案是:坐标原点下列函数中为奇函数的是( ).正确答案是:y=x+x^卜冽极限计算不正确的是().fan xsin — = 0 x — x变量()是无穷小量. xsin — 着函数/"(x )在点X 。
满足(),则/Xx )在点X 。
连续.” fan /(x ) = /(x 0)下列各函数对中,()中的两个函数相等.正确答案是:/W = hx 3, g (x )=3bx 函数y=2sinx 的值域是( ). 正确答案圣:[-2, 2]函数y=x2-x+l 在区间(-2,2)内满足( ).正确答案是:先单调卜降再单调上升 下列函数中为暴函数的是(). 一正确笞■案足:下列函数在区间(-g+X )上单调递减的是().正确答案是:—A3 设函数/(X )的定义域为(-00,+<X )),则函数/(X ) + /(-X )的图形关于()对称. 正确答案是:y 轴 下列函数中为奇函数是(). 正确答案是:>=XCOSX下列极限计算正确的是().正确答案是: 当时r->0, 正确答案是:fan -X- = l正确答案是:X—X +2在下列指定的变化过程中,()是无穷小量.xsin—(x^O)正确答案是:x若函数/(X)在点互满足(),则/(对在点X。
2022年国开电大《经济学基础形考 》形考任务1-4测验答案形考任务4
形考任务4(第十四章至第十七章)任务说明:本次形考任务包含填空题(21道,共20分),选择题(15道,共20分),判断题(15道,共20分),计算题(3道,共10分),问答题(3道,共30分)。
任务要求:下载任务附件,作答后再上传,由教师评分。
任务成绩:本次形考任务成绩占形成性考核成绩的30%,任务附件中题目是百分制。
教师在平台中录入的成绩=百分制成绩*30%一、填空题(21道,共20分)1.某银行吸收存款1000万元,按规定应留200万元作为准备金,这时的法定准备率为 20% ;通过银行的信贷活动,可以创造出的货币额为 5000 万元。
2.银行所创造的货币量与最初存款的比例称为简单货币乘数,货币供给量与基础货币两者之间的比例是货币乘数。
3.中央银行控制货币供给量的工具主要是:公布市场活动、贴现政策以及准备率政策。
4.LM曲线向右下方倾斜,表明在货币市场上国内生产总值与利率成同方向变动。
5.长期中存在的失业称为自然失业,短期中存在的失业是周期性失业。
7.如果把1995年作为基期,物价指数为100,200l年作为现期,物价指数为115,则从1995年到200l年期间的通货膨胀率为 15% 。
8.紧缩性缺口引起周期性失业,膨胀性缺口引起需求拉动的通货膨胀。
9.市场上具有垄断地位的企业为了增加利润而提高价格所引起的通货膨胀称为利润推动的通货膨胀。
10.菲利普斯曲线是用来表示失业和通货膨胀之间交替关系的曲线。
11.顶峰是繁荣的最高点,谷底是萧条的最低点。
12.在宏观经济政策工具中,常用的有需求治理、供给治理以及国际经济政策。
13.财政政策是通过政府支出和税收来调节经济的政策。
14.货币筹资是把债券卖给中央银行,债务筹资是把债券买给中央银行之外的其他人。
15.简单规则的货币政策就是根据经济增长的需要,按一固定比率增加货币供给需求。
16.反馈规则与固定规则之争的实质是要不要国家干预经济。
17.贸易赤字是指出口小于入口。
国开【形考】《经济数学基础》形考任务1-4答案
国开【形考】《经济数学基础》形考任务1-4答案形考任务一题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:形考任务二题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:题目2:若,则().答案:题目2:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则(). 答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:(). 答案:0题目10:().答案:0题目10:(). 答案:题目11:设,则(). 答案:题目11:设,则().答案:题目11:设,则(). 答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:形考任务三题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则()答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则()答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1 题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().:答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组()答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解形考任务四一、计算题(每题6分,共60分) 1.解:y ′=(e −x 2)′+(cos 2x)′=(−x 2)′·e −x 2−2sin 2x =−2xe −x 2−2sin 2x综上所述,y ′=−2xe −x 2−2sin 2x2.解:方程两边关于x 求导:2x +2yy ′−y −xy ′+3=0 (2y −x)y ′=y −2x −3 , dy =y−3−2x 2y−xdx3.解:原式=∫√2+x 2d(12x 2)=12∫√2+x 2d(2+x 2)=13(2+x 2)32+c 。
【经济数学基础】形考作业参考答案
【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x 答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题1. 函数+∞→x ,下列变量为无穷小量是( D ) A .)1(x In + B .1/2+x xC .21xe - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .1/ 2xB .-1/2xC .x 1D .x1- (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
电大经济数学基础形成性考核册及参考答案
电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D ) A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln 10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x 2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x (3)2111lim-=--→x x x 原式=)11()11)(11(lim 0+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31(5)535sin 3sin lim0=→x x x原式=xx x x x 55sin 33sin lim530→ =53(6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续. 解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f (0)f (x )lim 10x ====→有时,b a(2).1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续.3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x,求y '答案:2ln 12ln 22x x y x++=' (2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+=' (3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y axsin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'=' ∴dx bx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin x xe xx-+-∴dx xe xxdy x )22sin (2-+-= (8)nx x y nsin sin +=,求y '答案:nx n x x n y n cos cos sin1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='- 4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导: 0322=+'--'⋅+y x y y y x32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导: 4)()1)(cos(='+⋅+'++y x y e y y x xyxy xy ye y x y xe y x -+-='++)cos(4])[cos(所以 xyxyxey x ye y x y ++-+-=')cos()cos(4 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y '' 答案: (1) 212x xy +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2) 212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ).A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x x x =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ).A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sin D .⎰+x x xd 124. 下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x(三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x xx +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 2cos2x - (+) 0 2sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln( =⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=- (3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d x x x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x x (+)0 cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=-- (5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=440)(x x x e xe dx xe =154+--e故:原式=455--e作业三(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵. A .42⨯ B .24⨯ C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). ` A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
电大经济数学基础形成性考核册及参考答案[1]
电大经济数学基础形成性考核册及参考答案[1]关建字摘要:答案,矩阵,下列,百台,产量,成本,利润,求解,未知量,对称竭诚为您提供优质文档,本文为收集整理修正,共13页,请先行预览,如有帮助感谢下载支持经济数学基础形成性考核册及参考答案作业(一)(三)解答题1.计算极限x 2-3x +21(x -2)(x -1)x -2(1)lim==-=lim lim 2x →1x →1x →12x -1(x -1)(x +1)(x +1)x 2-5x +61(x -2)(x -3)x -3(2)lim 2=lim =lim =x →2x -6x +8x →2(x -2)(x -4)x →2(x -4)2(1-x -1)(1-x +1)1-x -1lim (3)lim=x →0x →0x x (1-x +1)=limx →0-x -11=lim=-2x (1-x +1)x →0(1-x +1)351-+2x 2-3x +5x x =1lim (4)lim =x →∞x →∞3x 2+2x +42433++2x x (5)lim5x sin 3x 33sin 3x==lim x →03x sin 5x 55x →0sin 5xx 2-4(x -2)(x +2)(6)lim=lim =4x →2sin(x -2)x →2sin(x -2)1⎧x sin +b ,x <0⎪x ⎪2.设函数f (x )=⎨a ,x =0,⎪sin xx >0⎪x ⎩问:(1)当a ,b 为何值时,f (x )在x =0处有极限存在?(2)当a ,b 为何值时,f (x )在x =0处连续.答案:(1)当b =1,a 任意时,f (x )在x =0处有极限存在;(2)当a =b =1时,f (x )在x =0处连续。
3.计算下列函数的导数或微分:(1)y =x +2+log 2x -2,求y '答案:y '=2x +2ln 2+x 2x 21x ln 2(2)y =ax +b,求y 'cx +d答案:y '=a (cx +d )-c (ax +b )ad -cb=22(cx +d )(cx +d )13x -513x -5,求y '12(3)y =答案:y ==(3x -5)-y '=-32(3x -5)3(4)y =答案:y '=x -x e x ,求y '12xax -(x +1)e x(5)y =e sin bx ,求d y答案:y '=(e )'sin bx +e (sin bx )'ax ax =a e ax sin bx +e ax cos bx ⋅b=e ax (a sin bx +b cos bx )dy =e ax (a sin bx +b cos bx )dx(6)y =e +x x ,求d y1x311答案:d y =(x -2e x )d x 2x (7)y =cos x -e -x ,求d y 答案:d y =(2x e -x -n 22sin x 2x)d x(8)y =sin x +sin nx ,求y '答案:y '=n sin n -1x cos x +cos nxn =n (sin n -1x cos x +cos nx )(9)y =ln(x +1+x 2),求y '答案:1-1x 1122'=y '=(x +1+x )=(1+)=(1+(1+x )2x )2x +1+x 2x +1+x 21+x 21+x 2x +1+x 2121(10)y =2cot 1x+1+3x 2-2xx,求y 'ln 21-21-6-x +x 答案:y '=126x 2sinx4.下列各方程中y 是x 的隐函数,试求y '或d y (1)x 2+y 2-xy +3x =1,求d y 答案:解:方程两边关于X 求导:2x2cot 1x 35+2yy '-y -xy '+3=0y -3-2xd x2y -x(2y -x )y '=y -2x -3,d y =(2)sin(x +y )+e xy =4x ,求y '答案:解:方程两边关于X 求导cos(x +y )(1+y ')+e xy (y +xy ')=4(cos(x +y )+e xy x )y '=4-ye xy -cos(x +y )4-y e xy -cos(x +y )y '=xy x e +cos(x +y )5.求下列函数的二阶导数:(1)y =ln(1+x ),求y ''22-2x 2答案:y ''=22(1+x )(2)y =1-x x,求y ''及y ''(1)3-1-答案:y ''=x 2+x 2,y ''(1)=14453作业(二)(三)解答题1.计算下列不定积分3x (1)⎰xd xe3xx 3x 3xe 答案:⎰xd x =⎰()d x =+c 3e e ln e(2)⎰(1+x )2xd x113-(1+x )2(1+2x +x 2)答案:⎰d x =⎰d x =⎰(x 2+2x 2+x 2)d x x x42=2x +x 2+x 2+c35x2-4d x (3)⎰x +21x2-4d x =⎰(x -2)d x =x 2-2x +c答案:⎰2x +2(4)351⎰1-2xd x 答案:1111d x -ln1-2x +c ==-d(1-2x )⎰1-2x ⎰221-2x2(5)x 2+x d x 3211222答案:⎰x2+x d x =⎰2+x d(2+x )=(2+x )+c 322⎰(6)⎰sinx xd x答案:⎰sinx xd x =2⎰sin xd x =-2cos x +c(7)x sin⎰xd x 2答案:x sin ⎰x xd x =-2⎰xdco s d x 22x x x x +2⎰co s d x =-2x cos +4sin +c 2222=-2x cos (8)ln(x +1)d x 答案:ln(x +1)d x ==(x +1)ln(x +1)-2.计算下列定积分(1)⎰⎰⎰ln(x +1)d(x +1)⎰(x +1)dln(x +1)=(x +1)ln(x +1)-x +c⎰2-11-x d x答案:⎰12-11-x d x =1x21211252+==(x -x )+(x -x )(1-x )d x (x -1)d x -11⎰-1⎰12221(2)⎰2ed x x 22答案:⎰1121e x x -e d x ==-e d ⎰1x x21x1121=e -e(3)⎰e 31x 1+ln xd xe 311d(1+ln x )=2(1+ln x )21+ln x答案:⎰e 31x 1+ln x1d x =⎰1e 31=2π(4)⎰20x cos 2x d x ππππ111122--sin 2xdx 答案:⎰2x cos 2x d x =⎰2xd sin 2x =x sin 2x 0=⎰0002222(5)⎰e1x ln x d xe答案:⎰01x ln x d x =e 21e12122e (e +1)==ln x d x x ln x -x d ln x 1⎰⎰11422(6)⎰4(1+x e-x)d x40答案:⎰(1+x e)d x =x -⎰xd e =3-xe -x414-x -x4+⎰0e -x d x =5+5e -44作业三三、解答题1.计算(1)⎢⎡-21⎤⎡01⎤⎡1-2⎤=⎢⎥⎢⎥⎥⎣53⎦⎣10⎦⎣35⎦⎡02⎤⎡11⎤⎡00⎤(2)⎢⎥⎢00⎥=⎢00⎥0-3⎦⎣⎦⎣⎦⎣⎡3⎤⎢0⎥(3)[-1254]⎢⎥=[0]⎢-1⎥⎢⎥⎣2⎦23⎤⎡-124⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥02.计算-122143-61⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦23⎤⎡-124⎤⎡245⎤⎡7197⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥=⎢7120⎥-⎢610⎥0解-122143-61⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦⎢⎣0-4-7⎥⎦⎢⎣3-27⎥⎦⎡515=⎢⎢111⎢⎣-3-2⎡23-1⎤⎡123⎤3.设矩阵A =⎢⎢111⎥,B =⎢112⎥,求AB 。
国家开放大学经济数学基础期末试题及参考答案
经济数学基础课程形成性考核册学校名称:学生姓名:学生学号:班级:一、单项选择题(每小题5分,共30分)1.下列各函数对中,( )中的两个函数是相等的.A .11)(2--=x x x f ,1)(+=x x g B .2)(x x f =,x x g =)( C .2ln )(x x f =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g2.设函数⎪⎩⎪⎨⎧=≠+=0,10,2sin )(x x k x x x f 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .23. 函数x x f ln )(=在1=x 处的切线方程是( ).A .1=-y xB . 1-=-y xC . 1=+y xD . 1-=+y x4.下列函数在区间(,)-∞+∞上单调减少的是( ).A .x sinB .2 xC .x 2D .3 - x5.若c x F x x f +=⎰)(d )(,则x x xf d )1(2⎰-=( ).A. c x F +-)1(212B. c x F +--)1(212 C. c x F +-)1(22 D. c x F +--)1(226.下列等式中正确的是( ).A . )cos d(d sin x x x = B. )1d(d ln xx x =C. )d(ln 1d x x a a x a =D. )d(d 1x x x =二、填空题(每小题5分,共15分)1.若函数54)2(2++=+x x x f ,则=)(x f .2.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性为E p = .3.=⎰x x c d os d .三、极限与微分计算题(每小题10分,共20分)1.)3sin(32lim 23+-+-→x x x x2.设函数)(x y y =由方程222e e =++xy y x 确定,求)(x y '.四、积分计算题(每小题10分,共20分)1.x x x d 2cos 20⎰π2.求微分方程12+=+'x x y y 的通解.七、应用题(15分)1.设生产某商品每天的固定成本是20元,边际成本函数为24.0)(+='q q C (元/单位),求总成本函数)(q C 。
2023国家开放大学《经济学基础》形考任务1-4参考答案
形考任务1(第一章至第五章)任务说明:本次形考任务包含填空题(22道,共20分),选择题(15道,共20分),判断题(15道,共20分),计算题(3道,共10分),问答题(3道,共30分)。
任务要求:下载任务附件,作答后再上传,由教师评分。
任务成绩:本次形考任务成绩占形成性考核成绩的20%,任务附件中题目是百分制。
教师在平台中录入的成绩=百分制成绩*20%一、填空题(20分)1.“生产什么”、“如何生产”和“为谁生产”是人类社会所必须解决的基本问题,这三个问题被称为资源配置问题。
2.市场经济与计划经济的差别主要表现在三个基本问题上,一是决策机制不同,二是协调机制不同,三是激励机制不同。
3.微观经济学解决的问题是资源配置,宏观经济学解决的问题是资源利用。
4.是否以一定的价值判断为依据,是实证方法与规范方法的重要区别之一。
5.两种互补商品之间价格与需求成反方向变动,两种替代商品之间价格与需求成同方向变动。
6.需求定理表明的商品价格与需求量反方向变动的关系是__替代_效应和__收入效应共同作用的结果。
7.在供给与供给量的变动中,价格变动引起供给量变动,而生产技术的变动引起供给的变动。
8.需求的变动引起均衡价格与均衡数量同方向变动。
9.市场经济就是一种用价格机制来决定资源配置的经济体制。
10.当某商品的价格上升5%,而需求量减少8%时,该商品属于需求富有弹性。
当某商品的价格下降5%而需求量增加2%时,该商品属于需求缺乏弹性。
11.如果交叉弹性为负值,则两种商品为互补关系。
12.能够做到薄利多销的商品是需求富有弹性的商品。
13.如果某种商品需求缺乏弹性而供给富有弹性,则税收就主要落在消费者身上。
14.基数效用论采用的是边际效用分析法,序数效用论采用的是无差异曲线分析法。
15.如果把无差异曲线与消费可能线合在一个图上,那么消费可能线必定与无数条无差异曲线中的一条相切于一点,在这个切点上就实现了消费者均衡。
16.消费者愿意对某种物品所支付的价格与他实际支付的价格的差额称为消费者剩余。
最新国家开放大学经济数学基础形考4-1答案
1.设,求. 解:2.已知,求. 解:方程两边关于求导:,3.计算不定积分.解:将积分变量x 变为22x +, =⎰++)2(22122x d x =c x ++232)2(31 4.计算不定积分. 解:设2sin,x v x u ='=, 则2cos 2,x v dx du -==, 所以原式=C x x x x d x x x dx x x x ++-=+-=---⎰⎰2sin 42cos 222cos 42cos 22cos 22cos 25.计算定积分解:原式=2121211211)(1d e e e e e e x x x -=--=-=-⎰6.计算定积分解:设x v x u ='=,ln ,则221,1x v dx x du ==, 原式=41)4141(21141021211ln 212222212+=--=--=-⎰e e e e x e xdx e x x e7.设 ,求.解:[](1,2);(2,3)013100105010105010120001120001013100I A I ⎡⎤⎡⎤⎢⎥⎢⎥+=−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦(3)2(2)(2)(1)1(2)1105010105010025001025001013100001200⋅++⨯-⋅-⎡⎤⎡⎤⎢⎥⎢⎥−−−−→--−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以110101()502200I A --⎡⎤⎢⎥⎢⎥+=--⎢⎥⎢⎥⎣⎦。
8.设矩阵 , , 求解矩阵方程.解: → →→→ 由XA=B,所以9.求齐次线性方程组 的一般解.解:原方程的系数矩阵变形过程为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-⨯++000011101201111011101201351223111201)2(②③①③①②A由于秩(A )=2<n=4,所以原方程有无穷多解,其一般解为:⎩⎨⎧-=+-=4324312x x x x x x (其中43x x ,为自由未知量)。
经济数学基础形考答案
电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 25.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x xf =)1(,则=')(x f ( B ). A .21x B .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。
它包括:⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。
2020年最新电大《经济数学基础》考试题及答案 完整版
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设,则( ).答案:BA .B .C .D .4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
国家开放大学《金融基础知识》形成性考核1-4参考答案
国家开放大学《金融基础知识》形成性考核1-4参考答案
国家开放大学《金融基础知识》形成性考核1-4参考答案
形成性考核1
(╳)1、名义利率高于通货膨胀率时,实际利率为负利率
(╳)2、按市场组织形态,金融市场可以分为发行市场和流通市场(╳)3、在本金和期限都相同时,以单利计息的收益大于以复利计息的收益
(╳)4、货币不具有商品的属性
(╳)5、我们在超市看到的价格标签,如1斤大米5元,此时货币执行流通手段的职能
(╳)6、货币与普通商品本质是相同的
(√)7、金融市场主体与媒体的划分并不是绝对的
(╳)8、按金融市场的交易标的划分,金融市场可以分为货币市场和资本市场
(╳)9、商业银行等金融机构之间短期的资金借贷市场被称为回购市场
(╳)10、资本市场的流动性和变现性相对较强
11、某公司以延期付款方式销售给某商场一批商品,则该商场到期偿还欠款时,货币执行()职能
A. 贮藏手段
B. 购买手段
C. 流通手段
D. 支付手段
12、实际利率即名义利率剔除了()
A. 市场利率
B. 物价变动
C. 通货膨胀率
D. 价格变动
13、在一国货币制度中,()是具有无限法偿能力的货币
A. 主币
B. 辅币
C. 都不是
D. 本位币
14、消费信用是企业或银行向()提供的信用
A. 工商企业
B. 消费者
C. 社会团体
D. 本国政府
15、预存话费属于下列哪种信用活动
A. 商业信用
B. 国家信用
C. 消费信用
D. 银行信用
16、交易期限在1年以下的短期金融工具的市场是()。
最新国开电大《经济数学基础12》形考作业一至四、学习活动一至四答案
形考作业一至四、学习活动一至四题目随机抽题,可用快捷方式Ctrl+F查询,查询技巧:以“中文字”作为关键字查询,公式符号无法查询复制(Ctrl+C)题目,粘贴(Ctrl+V)形考作业一题目1函数的定义域为().选择一项:A.B.C.D.正确答案是:函数的定义域为().选择一项:A.B.C.D.反馈正确答案是:函数的定义域为().选择一项:A.B.C.D.反馈正确答案是:下列函数在指定区间上单调增加的是().选择一项:A.B.C.D.反馈正确答案是:下列函数在指定区间上单调增加的是().选择一项:A.B.C.D.反馈正确答案是:下列函数在指定区间上单调减少的是().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则=().选择一项:A.B.C.D.反馈正确答案是:当时,下列变量为无穷小量的是().选择一项:A.B.C.D.反馈正确答案是:当时,下列变量为无穷小量的是().选择一项:A.B.C.D.反馈正确答案是:下列极限计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列极限计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列极限计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列极限计算正确的是().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A. 0B. -1C. 1D. 2反馈正确答案是:-1().选择一项:A. 2B. 1C. 0D. -1反馈正确答案是:1().选择一项:A. 2B.C. -2D.反馈正确答案是:().选择一项:A. 5B.C.D. -5反馈正确答案是:().选择一项:A. -1B. -2C. 1D. 2反馈正确答案是:-1().选择一项:A.B.C. 0D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B. 0C.D.反馈正确答案是:().选择一项:A. 1B. 4C. 2D. 0反馈正确答案是:4().选择一项:A. 0B. -4C. 1D. 4反馈正确答案是:-4().选择一项:A. 0B. 1C. -2D. 2反馈正确答案是:2设在处连续,则().选择一项:A. -1B. 1C. 0D.反馈正确答案是:1设在处连续,则().选择一项:A. 1B. -1C.D. 0反馈正确答案是:1设在处连续,则().选择一项:A. 1B. 2C. 0D. -2反馈正确答案是:2当(),()时,函数在处连续.选择一项:A.B.C.D.反馈正确答案是:当(),()时,函数在处连续.选择一项:A.B.C.D.反馈正确答案是:(),()时,函数在处连续.选择一项:A.B.C.D.反馈正确答案是:曲线在点的切线方程是().选择一项:A.B.C.D.反馈正确答案是:曲线在点的切线方程是().选择一项:A.B.C.D.反馈正确答案是:曲线在点的切线方程是().选择一项:A.B.C.D.反馈正确答案是:若函数在点处可导,则()是错误的.选择一项:A. ,但B. 函数在点处可微C. 函数在点处连续D. 函数在点处有定义反馈正确答案是:,但若函数在点处可微,则()是错误的.选择一项:A. ,但B. 函数在点处连续C. 函数在点处可导D. 函数在点处有定义反馈正确答案是:,但若函数在点处连续,则()是正确的.选择一项:A. 函数在点处可微B. 函数在点处有定义C. ,但D. 函数在点处可导反馈正确答案是:函数在点处有定义若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C. 1D. -1反馈正确答案是:1若,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设函数,则().选择一项:A.B.C.D.反馈正确答案是:设函数,则().选择一项:A.B.C.D.反馈正确答案是:设函数,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C. 2D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,方程两边对求导,可得().选择一项:A.B.C.D.反馈正确答案是:设,方程两边对求导,可得().选择一项:A.B.C.D.反馈正确答案是:设,方程两边对求导,可得().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B. -1C.D. 1反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C. -2D. -1反馈正确答案是:-2函数的驻点是().选择一项:A.B.C.D.反馈正确答案是:函数的驻点是().选择一项:A.B.C.D.反馈正确答案是:函数的驻点是().选择一项:A.B.C.D.反馈正确答案是:设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.反馈正确答案是:设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.反馈正确答案是:设某商品的需求函数为,则需求弹性().选择一项:A.B.C.D.反馈正确答案是:形考作业二下列函数中,()是的一个原函数.选择一项:A.B.C.D.反馈正确答案是:下列函数中,()是的一个原函数.选择一项:A.B.C.D.反馈正确答案是:下列函数中,()是的一个原函数.选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:下列等式成立的是().选择一项:A.B.C.D.反馈正确答案是:下列等式成立的是().选择一项:A.B.C.D.反馈正确答案是:下列等式成立的是().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:若,则().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:下列不定积分中,常用分部积分法计算的是().选择一项:A.B.C.D.反馈正确答案是:下列不定积分中,常用分部积分法计算的是().选择一项:A.B.C.D.反馈正确答案是:下列不定积分中,常用分部积分法计算的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求不定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A. 1B.C.D. 0反馈正确答案是:0().选择一项:A. 1B.C. 0D.反馈正确答案是:0().选择一项:A.B.C.D.反馈正确答案是:设,则().选择一项:A.B.C. 0D.反馈正确答案是:设,则().选择一项:A.B. 0C.D.反馈正确答案是:设,则().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.反馈正确答案是:下列定积分计算正确的是().选择一项:A.B.C.D.计算定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:().选择一项:A.B.C. 1D.反馈正确答案是:().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用第一换元法求定积分,则下列步骤中正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求定积分,则下列步骤正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求定积分,则下列步骤正确的是().选择一项:A.B.C.D.反馈正确答案是:用分部积分法求定积分,则下列步骤正确的是().选择一项:A.B.C.D.反馈正确答案是:下列无穷积分中收敛的是().选择一项:A.B.C.D.反馈正确答案是:下列无穷积分中收敛的是().选择一项:A.B.C.D.反馈正确答案是:下列无穷积分中收敛的是().选择一项:A.B.C.D.反馈正确答案是:求解可分离变量的微分方程,分离变量后可得().选择一项:A.B.C.D.反馈正确答案是:求解可分离变量的微分方程,分离变量后可得().选择一项:A.B.C.D.反馈正确答案是:求解可分离变量的微分方程,分离变量后可得().选择一项:A.B.C.D.反馈正确答案是:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().选择一项:A.B.C.D.反馈正确答案是:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().选择一项:A.B.C.D.反馈正确答案是:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().选择一项:A.B.C.D.反馈正确答案是:微分方程满足的特解为().选择一项:A.B.C.D.反馈正确答案是:微分方程满足的特解为().选择一项:A.B.C.D.反馈正确答案是:微分方程满足的特解为().选择一项:A.B.C.D.反馈。
经济数学基础形成性考核册及参考答案作业(四)
经济数学基础形成性考核册及参考答案作业(四)(一)填空题 1.函数xx x f 1)(+=在区间___________________内是单调减少的.答案:)1,0()0,1(⋃-2. 函数2)1(3-=x y 的驻点是________,极值点是 ,它是极 值点.答案:1,1==x x ,小3.设某商品的需求函数为2e10)(p p q -=,则需求弹性=p E .答案:p 2-4.行列式____________111111111=---=D .答案:45. 设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→0123106111t A ,则__________t 时,方程组有唯一解.答案:1-≠(二)单项选择题1. 下列函数在指定区间(,)-∞+∞上单调增加的是().A .sin xB .e xC .x 2D .3 – x答案:B2. 已知需求函数p p q 4.02100)(-⨯=,当10=p 时,需求弹性为( ). A .2ln 244p -⨯ B .2ln 4 C .2ln 4- D .2ln 24-4p -⨯ 答案:C3. 下列积分计算正确的是( ).A .⎰--=-110d 2ee x xx B .⎰--=+110d 2ee x xxC .0d sin 11=⎰x x x - D .0)d (3112=+⎰x x x -答案:A4. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( ).A .m A r A r <=)()(B .n A r <)(C .n m <D .n A r A r <=)()( 答案:D5. 设线性方程组⎪⎩⎪⎨⎧=++=+=+33212321212ax x x a x x a x x ,则方程组有解的充分必要条件是( ).A .0321=++a a aB .0321=+-a a aC .0321=-+a a aD .0321=++-a a a 答案:C三、解答题1.求解下列可分离变量的微分方程:(1) yx y +='eyx yx yxedy e dx edy e dx ee c ---= =-=+⎰⎰解:答案:c x y +=--e e (2)23e d d yx xy x =223:33xx x x x x xy dy xe dx y dy xe dx y xde xe e dx xe e c = = ==-=-+⎰⎰⎰⎰解 答案:c x y x x +-=e e 32. 求解下列一阶线性微分方程: (1)3)1(12+=+-'x y x y 解: P(x)= 21x -+ Q(x)=(x+1)322()()2ln(1)3ln(1)23222242(())2()()2ln(1)ln(1)11((1))(1)((1))(1)11(1)((1))(1)[(1)](1)(1)22P x dx P x dxx x y e x e c P x dx dx x x x y ex e dx c x x dx c x x x dx c x x c x c x -+-+⎰⎰=+=-=-+=-++∴=++=++++=+++=+++=+++⎰⎰⎰⎰⎰⎰Q2221(1)((1))(1)()2x x dx c x x x c =+++=+++⎰或 答案:)21()1(22c x x x y +++= 或y=421(1)(1)2x c x +++(2)x x xy y 2sin 2=-' 解: P(x) 1x=- Q(x)=2xsin2x()()ln ln (())1()()ln (2sin 2)(2sin 2)(cos 2)P x dx P x dx xxy e x e c P x dx dx xxy ex xe dx c x xdx c x x c --⎰⎰=+=-=-∴=+=+=-+⎰⎰⎰⎰⎰Q3.求解下列微分方程的初值问题:(1) yx y -='2e ,0)0(=y222012110,0,22yxyx yxe dy e dx e dy e dx e ecx y e e c c = ==+== =+ =⎰⎰解:代入上式所以方程的特解为 21e 21e+=xy(2)0e =-+'xy y x ,0)1(=y11:11()()xxy y ex xP x x xx+===解 Q e()()ln ln (())1()ln 111()()()P x dx P x dxxx xxxy e x e c P x dx dx xx y e e edx c e dx c e c xxx--⎰⎰=+==∴=+=+=+⎰⎰⎰⎰⎰Q将x=1,y=0代入上式, 得 0=(e+c) c=-e 所以 e)e (1-=xxy4.求解下列线性方程组的一般解: (1)⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x102110211021:1132011101112153011100A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦解 所以,方程的一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中34,x x 是自由未知量) (2)⎪⎩⎪⎨⎧=+-+=+-+=++-5114724212432143214321x x x x x x x x x x x x211111214212142:121422111105373174115174115053731641055537301555000A ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→-→--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎛⎫ ⎪ ⎪ ⎪→- ⎪ ⎪ ⎪ ⎪⎝⎭解所以,方程的一般解为⎪⎩⎪⎨⎧+-=+--=535753545651432431x x x x x x (其中34,x x 是自由未知量) 5.当λ为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+--=-+-=+--λ43214321432143211095733223132245x x x x x x x x x x x x x x x x 有解,并求一般解。
【经济数学基础】形考作业参考答案
【经济数学基础】形考作业一答案:(一)填空题 1、___________________sin lim=-→xxx x 答案:0 2、设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k 、答案:1 3、曲线x y =在)1,1(的切线方程就是 、答案:2121+=x y 4、设函数52)1(2++=+x x x f ,则____________)(='x f 、答案:x 25、设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题1、 函数+∞→x ,下列变量为无穷小量就是( D ) A.)1(x In + B.1/2+x xC.21x e - D.xxsin2、 下列极限计算正确的就是( B ) A 、1lim=→xx x B 、1lim 0=+→xx xC 、11sinlim 0=→x x x D 、1sin lim =∞→xx x3、 设y x =lg2,则d y =( B ). A.12d x x B.1d x x ln10 C.ln10x x d D.1d xx 4、 若函数f (x )在点x 0处可导,则( B )就是错误的.A.函数f (x )在点x 0处有定义B.A x f x x =→)(lim 0,但)(0x f A ≠C.函数f (x )在点x 0处连续D.函数f (x )在点x 0处可微5、若x xf =)1(,则()('=x f B )A.1/ 2xB.-1/2xC.x 1D.x1-(三)解答题 1.计算极限(1)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续、答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形考作业参考完整答案
【经济数学基础】形考作业一答案:(一)填空题1. 答案:02.设,在处连续,则.答案:13.曲线在地切线方程是 .答案:4.设函数,则.答案:5.设,则(二)单项选择题1. 函数,下列变量为无穷小量是( D )A. B.C. D.2. 下列极限计算正确地是( B )A. B.C. D.3. 设,则( B ).A. B. C. D.4. 若函数f (x)在点x0处可导,则( B )是错误地.A.函数f (x)在点x0处有定义 B.,但C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微5.若,则 B )A.1/ B.-1/ C. D.(三)解答题1.计算极限(1)(2)(3)(4)(5)(6)2.设函数,问:(1)当为何值时,在处有极限存在?(2)当为何值时,在处连续.答案:(1)当,任意时,在处有极限存在;(2)当时,在处连续.3.计算下列函数地导数或微分:(1),求答案:(2),求答案:(3),求答案:(4),求答案:(5),求答案:(6),求答案:(7),求答案:(8),求答案:(9),求答案:(10),求答案:4.下列各方程中是地隐函数,试求或(1),求答案:(2),求答案:5.求下列函数地二阶导数:(1),求答案:(2),求及答案:,【经济数学基础】形考作业二答案:(一)填空题1.若,则.答案:2. .答案:3. 若,则 .答案:4.设函数.答案:05. 若,则.答案:(二)单项选择题1. 下列函数中,( D )是x sin x2地原函数.A.cos x2 B.2cos x2 C.-2cos x2 D.-cos x2 2. 下列等式成立地是( C ).A. B.C. D.3. 下列不定积分中,常用分部积分法计算地是( C ).A., B. C. D.4. 下列定积分计算正确地是( D ).A. B.C. D.5. 下列无穷积分中收敛地是( B ).A. B. C. D.(三)解答题1.计算下列不定积分(1)=(2)=(3)=(4)=(5)=(6)=(7)=(8)=2.计算下列定积分(1)=(2)=(3)=2 (4)=(5)=(6)=【经济数学基础】形考作业三答案:(一)填空题1.设矩阵,则地元素.答案:32.设均为3阶矩阵,且,则=. 答案:3. 设均为阶矩阵,则等式成立地充分必要条件是 .答案:4. 设均为阶矩阵,可逆,则矩阵地解.答案:5. 设矩阵,则.答案:(二)单项选择题1. 以下结论或等式正确地是( C ).A.若均为零矩阵,则有B.若,且,则C.对角矩阵是对称矩阵D.若,则2. 设为矩阵,为矩阵,且乘积矩阵有意义,则为( A )矩阵.A. B.C. D.3. 设均为阶可逆矩阵,则下列等式成立地是( C ). ` A., B.C. D.4. 下列矩阵可逆地是( A ).A. B.C. D.5. 矩阵地秩是( B ).A.0 B.1 C.2 D.3三、解答题1.计算(1)=(2)(3)=2.计算解= 3.设矩阵,求.解因为所以4.设矩阵,确定地值,使最小.解:→→∴时,达到最小值.5.求矩阵地秩.解:∴.6.求下列矩阵地逆矩阵:(1)解:∵∴(2)A =.解:∵∴7.设矩阵,求解矩阵方程.解:∴X =四、证明题1.试证:若都与可交换,则,也与可交换.证明:(1)∵∴与可交换.(2)∵∴也与可交换.2.试证:对于任意方阵,,是对称矩阵.证明:(1)∵∴是对称矩阵.(2)∵∴是对称矩阵.(3)∵∴是对称矩阵.3.设均为阶对称矩阵,则对称地充分必要条件是:.证明:充分性:∵∴∴对称必要性:∵对称,∴∴对称地充分必要条件是:.4.设为阶对称矩阵,为阶可逆矩阵,且,证明是对称矩阵.证明:∵为阶对称矩阵为阶可逆矩阵∴=∴是对称矩阵.【经济数学基础】形考作业四答案:(一)填空题1.函数地定义域为(1,2)∪(2,4]2. 函数地驻点是 x=1 ,极值点是 x=1 ,它是极小值点.3.设某商品地需求函数为,则需求弹性 .答案:4.行列式.答案:45. 设线性方程组,且,则时,方程组有唯一解.答案:(二)单项选择题1. 下列函数在指定区间上单调增加地是( B ).A.sin x B.e x C.x 2 D.3 –x 2. 设,则( C ).A.1/x B.1/ x 2 C.x D.x 23. 下列积分计算正确地是( A ).A.B.C. D.4. 设线性方程组有无穷多解地充分必要条件是( D ).A. B. C. D.5. 设线性方程组,则方程组有解地充分必要条件是( C ).A. B.C. D.三、解答题1.求解下列可分离变量地微分方程:(1)解:∴原微分方程地通解为:(2)解:∴原微分方程地通解为:2. 求解下列一阶线性微分方程:(1)解:∴∴∴y=(2)解:两端分别积分:∴3.求解下列微分方程地初值问题:(1) ,解:两端积分:∵y(0)=0 ∴c=∴(2),解:两端积分:∵∴C=-e∴4.求解下列线性方程组地一般解:(1)解:所以,方程地一般解为(其中是自由未知量)(2)解:∴(其中是自由未知量)5.当为何值时,线性方程组有解,并求一般解.解:→当λ=8时,方程组有解,其一般解为:(其中是自由未知量)6.为何值时,方程组有唯一解、无穷多解或无解.解:→→当且时,方程组无解;当时,方程组有唯一解;当且时,方程组无穷多解.7.求解下列经济应用问题:(1)设生产某种产品个单位时地成本函数为:(万元),求:①当时地总成本、平均成本和边际成本;②当产量为多少时,平均成本最小?解:①(万元)(万元/单位)(万元/单位)当时地总成本、平均成本和边际成本分别为185(万元);18.5(万元/单位);11(万元/单位).②=16当产量q=20个单位时可使平均成本达到最低16(万元/单位).(2).某厂生产某种产品件时地总成本函数为(元),单位销售价格为(元/件),问产量为多少时可使利润达到最大?最大利润是多少.解:L(q)=pq-c(q)=(14-0.01q)q-(20+4q+)=14q--20-4q-=-+10q-20当时,q=250针对此这实际问题可知,当产量为250个单位时可使利润达到最大,且最大利润为(元).(3)投产某产品地固定成本为36(万元),且边际成本为(万元/百台).试求产量由4百台增至6百台时总成本地增量,及产量为多少时,可使平均成本达到最低.解:先求成本函数 c(x)= ∵x=0时,c=36(万元)∴c(x)= C(4)=212(万元) C(6)=312(万元) 当产量由4百台增至6百台时,总成本地增量为100(万元)∴当(百台)时可使平均成本达到最低为52(万元/百台).(4)已知某产品地边际成本=2(元/件),固定成本为0,边际收益,求:①产量为多少时利润最大?②在最大利润产量地基础上再生产50件,利润将会发生什么变化?解:①当时,x=500针对此实际问题知道,当产量x=500件时,利润最大.②即利润将减少25元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设,求. 解:
2.已知,求. 解:方程两边关于求导:
,
3.计算不定积分
.
解:将积分变量x 变为22x +, =⎰++)2(22
122x d x =c x ++232)2(3
1 4.计算不定积分. 解:设2sin
,x v x u ='=, 则2cos 2,x v dx du -==, 所以原式
=C x x x x d x x x dx x x x ++-=+-=---⎰⎰2
sin 42cos 222cos 42cos 22cos 22cos
2
5.计算定积分
解:原式=2121211211)(1d e e e e e e x x x -=--=-=-
⎰
6.计算定积分
解:设x v x u ='=,ln ,
则22
1,1x v dx x du ==, 原式=4
1)4141(21141021211ln 212222212+=--=--=-⎰e e e e x e xdx e x x e
7.设 ,求
.
解:[](1,2);(2,3)013100105010105010120001120001013100I A I ⎡⎤⎡⎤⎢⎥⎢⎥+=−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦
(3)2(2)(2)(1)1(2)1105010105010025001025001013100001200⋅++⨯-⋅-⎡⎤⎡⎤⎢⎥⎢⎥−−−−→--−−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
所以110101()502200I A --⎡⎤⎢⎥⎢⎥+=--⎢⎥⎢⎥⎣⎦。
8.设矩阵 , , 求解矩阵方程
.
解: → →
→→
由XA=B,所以
9.求齐次线性方程组 的一般解.
解:原方程的系数矩阵变形过程为:
⎥⎥⎥⎦⎤⎢⎢
⎢⎣⎡--−−→
−⎥⎥⎥⎦⎤⎢⎢
⎢⎣⎡----−−−→−⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡-----=+-⨯++0000
1110
1201
111011101201351223111201)2(②③①③①②A
由于秩(A )=2<n=4,所以原方程有无穷多解,其一般解为:
⎩⎨⎧-=+-=4
324
312x x x x x x (其中43x x ,为自由未知量)。
10.求为何值时,线性方程组
解:将方程组的增广矩阵化为阶梯形
→→
由此可知当时,方程组无解。
当时,方程组有解。
且方程组的一般解为(其中为自由未知量)。