机械原理课件之四杆机构受力分析.共30页文档

合集下载

机械原理课件8平面连杆机构与设计说明

机械原理课件8平面连杆机构与设计说明

切向分力:
法向分力:
FFco sFsin FFcos
n
▲切向分力F ′越大,机构的传力
性能越好,法向分力 F″越大,机
构的传力性能越差
B
结论:
A
为保证机构的传力
F″
t
C γα F
F′ t
F ″ T′
D
F′
性能,压力角α不能
过大,传动角γ不能过小。
设计时要求:γmin≥50°
γmin出现的位置:
当 最小或最大时,都有可能出现
§8-2平面四杆机构的类型和应用
一. 平面四杆机构的基本形式 铰链四杆机构
双曲柄机构
曲柄摇杆机构
双摇杆机构
各铰部链名四称杆及机运构动形式 机是构架平的面基固四本定杆形的机式构件 连架杆 直接与机架相连接的杆件
连杆
B
铰曲链柄曲四柄能杆摇整机杆周构机转的构动三的种构基件本形式连为架:杆
A
摇杆 只双能曲做柄非机整构周摆动的连架杆
A
4
B
A1
2 3 C 导杆机构,动画
4
转动导杆机构 摆动导杆机构
曲柄滑块机构演化实例
B 1
A
2 3
4
C
曲柄摇块机构〔连杆作机架
B 1 A
4
2
C 3
DC
B A
自卸卡车举升机构
移动导杆机构
B BBB 11 1
222
A AA A
3333 CCC 444
B 1
A
2 3
4
C
曲柄滑块机构
B 1
A
手摇唧筒
2 3
F’ E’
C’
D’
G’

机械原理课件第5章 连杆机构设计

机械原理课件第5章 连杆机构设计

第五章 平面连杆机构及其设计 §5-1平面连杆机构的应用及传动特点§5-2平面四杆机构的类型和应用§5-3平面四杆机构的一些共性问题§5-4 平面四杆机构的设计1)低副便于加工、润滑;构件间压强小、磨损小、承载能力大、寿长;2)连杆机构型式多样,可实现转动、移动、摆动、平面复合运动等运动形式间的转换。

如:锻压机肘杆机构,单侧曲线槽导杆机构,汽车空气泵,可变行程滑块机构,等。

一、平面连杆机构的优点和应用平面连杆机构:各构件全部用低副联接而成的平面机构(低副机构).例如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、汽车刮水器、缝纫机踏板机构、仪表指示机构等。

曲柄滑块机构摆动导杆机构常见平面连杆机构:铰链四杆机构(雷达天线,飞剪,搅拌机)锻压机肘杆机构可变行程滑块机构3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘机等。

4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构,鹤式起重机等。

挖掘机搅拌机构鹤式起重机二、平面连杆机构的缺点1)运动副中的间隙会造成较大累积误差,运动精度较低。

2)多杆机构设计复杂,效率低。

3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。

多杆机构大都是四杆机构组合或扩展的结果。

本章介绍四杆机构的分析和设计。

六杆机构及六杆机构的实际应用一、 铰链四杆机构的基本型式和应用铰链四杆机构:全部用回转副联接而成的四杆机构。

连架杆——与机架相联的构件;周转副——组成转动副的两个构件作整周相对转动的转动副;曲柄1——作整周定轴回转的构件;摇杆3——作定轴摆动的构件;转动副摆转副(C、D)周转副(A、B)铰链四杆机构分为:曲柄摇杆机构、双曲柄机构和双摇杆机构。

1.曲柄摇杆机构铰链四杆机构中,若两连架杆中有一个为曲柄,另一个为摇杆,则称为曲柄摇杆机构。

实现转动和摆动的转换。

雷达天线俯仰机构缝纫机踏板机构应用(动画演示):雷达天线俯仰角调整机构,飞剪机构,搅拌机构,摄影机抓片机构、缝纫机踏板机构等。

《机械原理自由度》课件

《机械原理自由度》课件

机械故障诊断
通过运动分析诊断机械故障的原因 和位置。
控制系统设计
利用运动分析结果设计控制系统的 参数和策略。
机构运动分析的实例
平面四杆机构的运动分析
01
通过解析法计算平面四杆机构的自由度,并分析其运动特性。
凸轮机构的运动分析
02
利用实验法测量凸轮机构的位移、速度和加速度,分析其运动
规律。
机器人臂关节的运动分析
03
通过数值法模拟机器人臂关节的运动行为,优化关节的设计参
数。
04
机构动力学分析
机构动力学的基本概念
机构动力学是研究机 械系统中机构运动及 其与力的关系的学科 。
机构动力学的基本概 念包括力、力矩、加 速度、速度和位移等 。
它涉及到系统的平衡 、运动规律、动态响 应等方面的内容。
机构动力学分析的Байду номын сангаас法
空间机构自由度计算
总结词
空间机构自由度计算是机械原理中一个复杂的概念,它涉及到机构在空间中的 运动自由度数。
详细描述
空间机构的自由度计算公式为F=6n-(3PL + Ph),其中n为活动构件数,PL为低 副数,Ph为高副数。与平面机构不同,空间机构需要考虑三个方向的自由度, 因此计算更为复杂。
特殊机构自由度计算
通过建立平面连杆机构的运动学和动力学模型,分析其运动规律 和动态响应。
凸轮机构的动力学分析
研究凸轮机构的动态行为,包括从动件的运动规律和受力情况等。
齿轮机构的动力学分析
分析齿轮机构的动态特性,如振动、冲击和噪声等,以提高齿轮传 动的平稳性和可靠性。
05
机构优化设计
机构优化设计的目标和方法
目标

机械原理第三章

机械原理第三章

1 . (角)位移分析
写成复向量形式:
l1 l2 l4 l3
l1 cos 1 l2 cos 2 l3 cos 3 l4 0 l1 sin 1 l2 sin 2 l3 sin 3 0
A A2 B 2 C 2 ) 消去2后得: 3 2arctg ( B C
第四节
平面连杆机构的运动分析
l2 C
l3 3 D 4 l4 3 x
二、用解析法对平面连杆机构进行运动分析
(一)铰链四杆机构 已知:各杆长 l , l , l
求:
2 , 3 , 2 , 3 , 2 , 3 .
1
2
3
, l4及 ,
1
y 1 A
i 3
1
2 B l1 1 1
2
图 图 图 图
• 机构具有运动的连续性:当主动件连续运 动时,从动件也能连续地占据预定的各个 位置。 图
二、平面四杆机构的传力特性 1、压力角和传动角 图 压力角a:从动件所受的力与力作用点的速度方向 之间所夹的锐角。 传动角 g:压力角的余角。可以直接从图中量出。 a愈小, g 愈大,对传动愈有利。
g 设计时限制最小传动角: min 40 g min
最小传动角 g min的位置:
(一般) 50 (高速、重载)

(1)曲柄摇杆机构:曲柄与机架共线。

1)当主动件与机架重叠共线时
b 2 c 2 (d a) 2 g arccos 2bc
2)当主动件与机架拉直共线时:
b 2 c 2 (d a) 2 g 180 arccos 2bc
一、速度分析的瞬心法及其应用
1、速度瞬心的概念和类型

机械原理机构力分析

机械原理机构力分析

机械原理机构力分析在机械工程的领域中,机构力分析是一项至关重要的任务。

它不仅有助于我们理解机械系统的工作原理,还能为机构的设计、优化和性能评估提供关键的依据。

要理解机构力分析,首先得明白什么是机构。

机构是由若干个构件通过运动副连接而成的具有确定相对运动的组合体。

这些构件在力的作用下运动,而力的作用效果直接影响着机构的性能和工作效率。

机构力分析的目的主要有两个方面。

一方面是确定机构中各个构件所受的力和力矩,从而为构件的强度设计和尺寸确定提供依据。

另一方面,通过力分析可以了解机构的动力性能,比如功率消耗、速度变化等,为机构的优化和改进提供方向。

在进行机构力分析时,我们通常需要考虑几种不同类型的力。

首先是驱动力,这是使机构运动的主动力,通常由电机、内燃机等动力源提供。

然后是工作阻力,它是机构在完成工作任务时所克服的力,例如起重机吊起重物时所承受的重力。

此外,还有摩擦力,这是由于构件之间的相对运动而产生的阻力,会消耗能量并影响机构的效率。

为了进行有效的力分析,我们需要运用一些基本的力学原理和方法。

比如,牛顿第二定律告诉我们,力等于质量乘以加速度。

对于机构中的构件,我们可以通过分析其加速度来确定所受的力。

还有达朗贝尔原理,它将动力学问题转化为静力学问题,使得分析更加简便。

让我们以一个简单的四杆机构为例来看看力分析的具体过程。

假设有一个由四根杆通过铰链连接而成的四杆机构,其中一根杆作为驱动杆,通过一个旋转电机提供动力。

首先,我们需要确定机构的运动学参数,比如各个杆的长度、关节的位置以及运动的速度和加速度。

然后,根据这些参数,利用力学原理计算出各个杆所受的力和力矩。

在实际的机械系统中,机构往往更加复杂,可能包含多个运动副、多个构件以及各种复杂的力和约束条件。

这时候,我们可能需要借助计算机辅助分析软件来进行精确的计算和模拟。

机构力分析对于机械设计的重要性不言而喻。

通过准确的力分析,我们可以合理地选择材料,确保构件在工作过程中不会因为受力过大而发生破坏。

机械原理之四杆机构受力分析PPT课件

机械原理之四杆机构受力分析PPT课件

1
A
G2
1
Gx
3E D
6
取 力 比 例 尺 μF ( N / mm ) 作力多边形
由力多边形得:
FFRR6455
F F
ea de
2 Ft
R12
B
Fn R12
FI2 h2 2
S2
G2
h2
Ft R63
h1
C
3E D
Fn R63
h3 FR43
a
FR45
G5
b
Fr
FI5
c
e
FR65
d
4
F S5 5
aF
Fr
FI5
G5
FR65
FR45 F S5 5 Fr
FI5
G5
第8页/共30页
➢再分析杆组2、3
构件2:ΣMC = 0 FRt12l2 G2h2 FI2h1 0
2 Ft
R12
B
FI2 h2 2
S2
G2
h1
C
3
E h3 FR43
FRt12 (G2h2 FI2h) / l2
Fn R12
h2 Ft
R63
FR12、 FR32
第21页/共30页
FR32= - FR12= FR21
3).取构件3为分离体——其上作用有:FR23、 FR43、 M3
由力平衡条件得: FR43= - FR23= FR21
M3 = FR23L´
C
FR23
3
L
M3
ω1 1 D
FR43
第22页/共30页
例 如图所示为一曲柄滑块机构,设各构件的尺寸(包括转动副的半径)已知,各
大小——?

机械原理机械中的摩擦机械效率及自锁讲课文档

机械原理机械中的摩擦机械效率及自锁讲课文档

2f
R
p2d
r
r
第28页,共47页。
二、转动副中摩擦力:
2.轴端摩擦:
(1)新轴端, p=常数,则: pG/(R2r2)
Mf
2f
Rp2d=2fp(R3
r
3
r3)
2 3
fG(R3 R2
r3) r2
(2)跑合轴端
跑合初期: p=常数,外圈V↑→磨损快 → p↓→磨损变慢
内圈V↓→磨损慢 → p↑→磨损变快
v
Fv
αG
l
M=Fd2/2=Gd2tan(α+ψ)/2
πd2
第15页,共47页。
一、移动副中摩擦力的确定:
②反行程(求放松力矩M’):
当螺母顺着G力等速向下运动时,相当于滑块沿斜面等速下滑,于 是可求得必须加在螺纹中径处的圆周力为:
F’=Gtan(α-ψ) 而放松力矩为: M’=F’d2/2=Gd2tan(α-ψ)/2 当α>φ,则M’为正值,螺纹自动松开,其方向与螺母运动方向
第23页,共47页。
二、转动副中摩擦力:
1.轴径摩擦:
例1:如图所示一四杆机构,曲柄1为主动件,在驱动力矩Md的作用下沿
ω1方向转动,试求转动副B、C中作用力方向线的位置.图中小圆为 摩擦圆,解题时不考虑构件自重及惯性力.
B
ωM1d1 A
解:1.确定FR12、FR32 的方向。
C
由构件1的运动方向可知构
Mf
Ff21rFN21 f r
G 1f
2
r
f
Gr
fv
G FR21 Mf
FN21 Ff21
第20页,共47页。
二、转动副中摩擦力:

机械原理四连杆机构全解PPT课件

机械原理四连杆机构全解PPT课件
第37页/共87页
§4-2 铰链四杆机构的演化
一、铰链四杆机构的曲柄存在条件 铰链四杆机构中是否存在曲柄,取决于机构各杆的相对长度和机架的选
择。如图4-13所示的机构中,杆1为曲柄,杆2为连杆,杆3 为摇杆,杆4为机架, 各杆长度以l1、l2、l3、l4表示。为了保证曲柄1整周回转,曲柄1必须能顺利通过与 机架4共线的两个位置AB’和AB’’。
第51页/共87页
2.导杆机构 图4-16a)所示为曲柄滑块机构。
若取曲柄为机架,则为演变为导 杆机构,如图4-16b)所示。
若AB<BC,则杆2和杆4均可作整周回转,故称为转动导杆机构。若AB>BC,则杆4 均只能作往复摆动,故称为摆动导杆机构。
第52页/共87页
图4-17牛头刨床的摆动导杆机构
曲柄摇杆机构
双曲柄机构 双摇杆机构
第5页/共87页
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆,一个为曲柄,另一个为摇杆,则 此铰链四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的曲柄摇杆机构。曲柄1缓慢地匀速转 动,通过连杆2使摇杆3在一定的角度范围内摇动,从而调整天线俯仰角的大小。
第19页/共87页
在实际应用中,为度量方便起见,
常用压力角的余角来衡量机构传力性 能的好坏,称为传力角。显然值越大 越好,理想情况是=90。
一般机械中,=40~50。
大功率机构,min=50。
非传动机构,<40,但不能过小。
第20页/共87页
确 定 最 小 传 动 角 min 。 由 图 4-5 中
第25页/共87页
图4-6 利用死点夹紧工件的夹具
第26页/共87页
二、双曲柄机构 两连架杆均为曲柄的铰链四杆机构称为双曲柄机构。

机械原理四连杆机构分析

机械原理四连杆机构分析

图4-6 利用死点夹紧工件的夹具
二、双曲柄机构
两连架杆均为曲柄的铰链四杆机构称 为双曲柄机构。
图4-7 插床双曲柄机构
BD2=l22+l32-2l2l3cosBCD 由此可得
l l l l 2l1l 4 cos cosBCD 2l 2 l3
2 2 2 3 2 1 2 4
当=0和180时,cos=+1和-1, BCD分别最小和最大(见图4-4)。 当BCD为锐角时,传动角=BCD, 是传动角的最小值,也即BCD(min) ;
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天线俯仰角调整机构
第四章 连杆机构
平面连杆机构是将各构件用转动 副或移动副联接而成的平面机构。
最简单的平面连杆机构是由四个 构件组成的,简称平面四杆机构。它 的应用非常广泛,而且是组成多杆机 构的基础。
§4-1 铰链四杆机构的基本形式 和特性
全部用回转副组成的平面四杆机构 称为铰链四杆机构,如图4-1所示。
连杆
机架
连 架 杆
图4-1 铰链四杆机构
图中,机构的固定件4称为机架;与 机架用回转副相联接的杆1和杆3称为连 架杆;不与机架直接联接的杆2称为连杆。 另外,能做整周转动的连架杆,称为曲 柄。仅能在某一角度摆动的连架杆,称 为摇杆。
Байду номын сангаас
对于铰链四杆机构来说,机架和连杆 总是存在的,因此可按照连架杆是曲柄还 是摇杆,将铰链四杆机构分为三种基本型 式:

机械原理04机构的力分析

机械原理04机构的力分析
与构件2相对于构件1的角速度w12方向相反。
三、螺旋副中的摩擦
1. 矩形螺纹螺旋副中的摩擦 1)矩形螺纹螺旋副的简化
将螺纹沿中径d2 圆柱面展开,其螺纹将展成为一个斜 面,该斜面的升角a等于螺旋在其中径d2上的螺纹升角。 tg l zp
d2 d2 l--导程, z--螺纹头数, p--螺距
螺旋副可以化为斜面机构进行力分析。
由 Fx 0
2
由 MC 0
2
得:R12 (F2x F23x ) / sin1
得:T12 ( yC ys2 )F2x ( xS 2 xC )F2 y T2
就可以将所有解求出。
关于可变杆长二杆组的副反力的求解
由 MA 0 和 M3 0 得:
1、2
3
yC yA
yB
yC
2
进行整理得到
yC yB
yD
yC
xB xC
xC xD
R23x
R23
y
( (
yB yD
yS 2 )F2 x yS 3 )F3 x
( xS 2 ( xS 3
xB )F2 y xD )F3 y
T2 T3
求出内副C的反力后,可分别取BC、CD杆作力平衡方程 式,求得B、D两点的反力。
力开始,逐副进行,最后对含平衡力得杆件进行力分析。
一般是力矩平衡方程和导路方向的力平衡方程两种交替使用。
4.2 机构的传动角
衡量一个机构传力效果的指标: (1)输出功相同时,输入功最少。 (摩擦损失最小) (2)构件受力最小。(构件截面积小,重量轻) (3)运动副摩擦少。(运动精度高,动载荷和噪声小)
0
1、2
3
移动副的反力R12D可以由构件2对E取矩和构件1 对E 取矩求得。

四杆机构公开课图文

四杆机构公开课图文

应用领域
01
02
03
04
自动化生产线
四杆机构广泛应用于自动化生 产线中,如输送带、机械手等 ,实现物料的输送、搬运和加 工。
农业机械
在农业机械中,四杆机构常用 于拖拉机、收割机等设备的传 动系统中,实现动力传递和运 动控制。
医疗器械
在医疗器械中,四杆机构可用 于手术器械、康复设备等,实 现精确的定位和操作。
效率
优化四杆机构的设计,提高其工作效率和性能。
稳定性
保证四杆机构在使用过程中稳定可靠,不易发生 故障。
成本
在满足功能和性能要求的前提下,降低四杆机构 的设计成本。
优化设计
结构优化
运动学优化
动力学优化
对四杆机构的结构进行 优化,使其更加紧凑、
轻便。
根据实际需求,对四杆 机构的运动学特性进行 优化,提高其运动性能。
材料与热处理
根据工作负载和运动特性,选 择合适的材料和热处理方式, 以提高四杆机构的承载能力和
使用寿命。
04
四杆机构实例分析
实例一:缝纫机
总结词
缝纫机中的四杆机构主要用于实现往复直线运动,确保针头上下摆动。
详细描述
缝纫机中的四杆机构由机架、摆杆、曲柄和导杆组成。通过曲柄的旋转运动,带 动摆杆做往复摆动,再通过导杆使针头进行上下往复直线运动,完成缝纫操作。
在装配过程中,需要使用适当的装配工具和技术,如螺丝、螺母、垫圈 等,确保各部件之间的连接牢固可靠。同时,还需要注意调整各部件之 间的相对位置和运动关系,确保机构的运动精度和稳定性。
四杆机构制作与调试 材料选择与加工
测试是验证四杆机构性能的关键环节,需要对其运动学和动力学 性能进行全面检测。

机械原理四连杆机构

机械原理四连杆机构

播种机排种器
四连杆机构用于播种机排种器,通过调节连杆长度和角 度,实现排种量的精确控制。
工业机械中的应用
数控机床
四连杆机构用于数控机床的进给系统,实现高精度、 高效率的加工。
工业机器人
四连杆机构用于工业机器人的关节部位,实现机器人 的灵活运动和精确控制。
航空航天中的应用
飞机起落架
四连杆机构用于飞机起落架的收放系统,通过调节连 杆长度和角度,实现起落架的快速、稳定收放。
实验方法与步骤
1
3. 设定输入杆的长度和角度,启动实验,观察输 出杆的运动情况,记录相关数据。
2
4. 重复实验,改变输入杆的长度和角度,获取多 组数据。
3
5. 对实验数据进行整理和分析,得出结论。
实验结果与分析
实验结果
通过实验获取了四连杆机构在不同输入条件 下的运动数据,包括角度和速度的变化规律 。
机械原理四连杆机构
汇报人: 2023-12-27
目录
• 四连杆机构的概述 • 四连杆机构的工作原理 • 四连杆机构的类型与特点 • 四连杆机构的优化设计 • 四连杆机构的实验研究 • 四连杆机构的应用实例
01
四连杆机构的概述
定义与特点
定义
四连杆机构是一种由四个杆件相互连接组成的平面连杆机构,通过不同杆件的 相对运动实现特定的运动轨迹。
四连杆机构模型、测角仪、测速仪、数据采 集系统等。
实验方法与步骤
• 实验方法:采用控制变量法,通过改变输入杆的 长度和角度,观察输出杆的运动规律,并记录相 关数据。
实验方Байду номын сангаас与步骤
实验步骤 1. 搭建四连杆机构模型,确保各杆件安装正确,无卡滞现象。

机械原理考试四杆机构

机械原理考试四杆机构

四杆机构的条件:最短杆长度+最长杆长度其余两杆长度之和
组成该周转副的两杆中必有一杆为最短杆。

最短杆为连架杆,为曲柄摇杆机构,最短杆为几架时,为双曲柄机构。

死点:1)采用两组以上的相同机构组合使用,使各组机构的死点相互错开排列的方法2)采用安装飞轮加大惯性的方法,借惯性作用闯过死点。

传递功率范围大,传动效率高,传动比准确,使用寿命长,工作可靠。

分度圆直径d=mz 齿顶高ha=ha*m h*=1 c*=0.25
齿根高hf=(ha*+c*)m 齿全高h1=(2h*+c*)m
齿顶圆直径da=(z1+2h*)m 齿根圆直径Df=(z1-2h*-2c*)m
基圆直径Db=d1cosa 齿距p=πm
基圆齿距Pb=pcosa 齿厚s=πm/2
齿槽宽e=πm/2顶隙c=c*m m1=m2=m B12=-B2 a1=a2=a 标准中心距a=m(z1 +z2 )/2 节圆直径d =d
传动比i =w 1/w2 =z2 /z1 cos20 =0.9396
一次多项式:刚性冲击二次多项式:柔性冲击中速轻载
五次多项式:无刚无柔高速中载
余弦加速度:中低速重载正弦加速度:中高速度轻载
等速运动:低速轻载
机构原动件数小于机构自由度,机构运动不确定,原动件数大于机构自由度,机构的最薄弱的环节损坏
1.发生线上线段长度等于基圆上滚过的弧长
2.渐开线上任意一点恒与基圆相切
3.发生线与基圆的切点也是渐开线在K点的曲率中心
4.渐开线的形状取决于基圆的大小
5.基圆以内无渐开线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档