轮胎路面噪声及其测量

轮胎路面噪声及其测量
轮胎路面噪声及其测量

收稿日期!"###$#%$#"&修订日期!"###$#’$#"作者简介!俞悟周()*+"$,-

女-博士-讲师.文章编号!)###$%/%#("###,#"$*#$#0

轮胎1路面噪声及其测量

俞悟周-毛东兴-王佐民

(同济大学声学研究所-上海"###*",

摘要!轮胎1路面噪声是道路交通噪声的重要噪声源-其产生的机理相当复杂-影响的因素也很

多.本文介绍了产生轮胎1

路面噪声的主要机理及影响因素-同时介绍了目前轮胎1路面噪声几种主要的测量方法-及各自的特点.关键词!轮胎1路面噪声&声学测量

中图分类号!230%%4

"文献标识码!5

678918:;<=:7>9;=<7?>@9;>A 89@9=?

B C DE $F G H E -I5J K H L M $N O L M -D5P Q R E H $S O L

(T L U V O V E V W H X 5Y H E U V O Y U -2H L M Z O C L O [W \U O V ]-^G _L M G _O "###*"-‘G O L _

,a b >?8;c ?!Q W L W \_V O H LS W Y G _L O U S H X V O \W 1\H _dL H O U W -e G O Y GO U H L WH X V G WS H U V O S f H \V _L V Y H L V \O g E V H \H X V \_X X O Y L H O U W -O U [W \]Y H S f h W N i 2G W \W W N O U V h H V U H X X _Y V H \U O L X h E W L Y O L MV O \W 1\H _dL H O U W i T LV G O U f _f W \-S _O LU H E \Y W U _L d _X X W Y V O L MX _Y V H \U H X V O \W 1\H _dL H O U W _\W f \W U W L V W d i IW _L e G O h W -V G W _E V G H \_h U HW N f h _O L U V G W S _O LS W _U E \W S W L V

S W V G H d U H X V O \W 1\H _dL H O U W i 5d [_L V _M W U _L dd O U _d [_L V _M W U H X V G W S W V G H d U _\W Y H S f _\W d i j 9kl :8<>!V O \W 1\H _dL H O U W &_Y H E U V O Y _h S W _U E \W S W L V

)引

许多民意调查表明-城市中的道路交通噪声是困扰人们生活的主要环境污染源之一-在各种交通噪声中-汽车噪声问题最为显著.轮胎1

路面噪声是汽车噪声的三大噪声源之一-尤其是对中速行驶的轿车(/0m S 1G $)##m S 1G ,-轮胎1路面噪声的贡献最大.随着各国环境保护立法机构对车辆辐射噪声的规定日趋严格-轮胎1路面噪声的降低在近"#年里越来越受到汽车制造商及轮胎生产厂家的重视-投入大量人力物力-采用了各种先进的测试手段进行探索研究-如激光n 多普勒振动测量仪及多种相关分析等-以寻求降低轮胎噪声的途径.

尽管有一些文献报道利用各种模型和计算方法进行轮胎1路面噪声的预测-但由于其机理的复杂性-目前还难以对轮胎1路面噪声进行准确的定量估计-实测是研究轮胎噪声

特性的重要手段.

"轮胎1

路面噪声的形成机理o i p 产生机理

一般认为-轮胎1路面噪声的产生主要有以下几个途径!

(),轮胎振动

当运动的轮胎与路面接触时-一方面外胎结构的不均匀性及路面的粗糙性引起轮胎振动&另一方面-轮胎和路面的接触区产生切向力-部分切向力导致轮胎在路面上的滑移.

引起轮胎外胎形变的摩擦粘滞力以及外胎的

滑移导致轮胎表面的振动-从而产生可听声.

轮胎振动主要包括外胎面和轮胎侧壁的振动-这两部分区域振动的幅度q 频率及产生

原因并不一样-由此辐射的噪声也不同.图)

(_,为某轮胎在"##m r _的轮胎气压下的振

动实验结果s )t

-

激振源位于外胎中心.在0##u F $v ##u F 频率范围内-轮胎侧壁的振动比外胎面稍强-而在v ##u F 以上的频率范围内-外胎面的振动远强于侧壁的振动.而且在

n

#*n )*卷"期("###,

轮胎和路面接触区的前!后缘外胎面中心部

位产生"目状#振动区$如图%&’(所示)轮胎

外胎面和轮胎侧壁见图*)

研究表明+%!*,$轮胎振动$尤其是外胎面

的振动是产生轮胎-路面噪声最重要的原因)

图轮胎周围的气流

腔体共振!在接触区内"外胎花纹间的沟槽与路面形成充气的管道腔体#该腔体的共振会产生选择性放大作用#腔体共振没有号筒效应显著"但在光滑路面上"在$%&’()* +’()的频率范围内"放大作用约能达到,$-./01#

亥姆赫兹共振!当外胎沟槽离开接触区的瞬间"沟槽内腔与喷口形成亥姆赫兹共振腔"在较窄的频率范围内产生共振#亥姆赫兹共振的放大作用也具有较强的频率选择性# 234远场

轮胎与路面相互作用后产生的噪声向远场2路边4传播后"频谱特性并不保持一致#向远场的传播与噪声源的方向性5路面的吸声特性等有密切关系#如果轮胎噪声的频谱特性正好与路面的吸声特性相适应"则在远场的噪声级将会明显降低#

+轮胎6路面噪声的主要影响因素

表,为与轮胎5路面5汽车5环境等有关的5影响轮胎6路面噪声的重要参量#

表7轮胎6路面噪声的重要参量

轮胎路面汽车环境

轮胎结构路面结构车速周围环境温度轮胎橡胶材料路面材料发动机功率路况

外胎图案粘结剂驱动力矩风速

外胎单元组成沙砾粗糙度传动装置风向

沟槽深度空隙率荷载背景噪声

轮胎尺寸路面湿度操作工况

轮胎气压

轮胎旋转方向

其中最重要的影响参量是外胎花纹图案5外胎材料特性5车速5路面材料5孔隙率5垂直荷载5驱动力矩5轮胎气压等#

花纹图案对轮胎噪声有比较明显的影响#不同外胎花纹的轮胎在路面上运动时"轮胎的振动情况和空气泵噪声都有所不同#轮胎噪声的纯音成分产生的原因是轮胎结构的周期性5规则性#对于交错横沟外胎花纹"应尽量使沟槽间距无规变化"若间距在平均值的3$8范围内随机变化"声能将分布在足够宽的频带范围内"降低或消除纯音成分/019对于块状花纹图案"应尽量在相邻的行中采用不相关的块序列#一般地"由于块状花纹图案有较多的空气逃逸路径"故空气泵噪声较低#轮胎的材料特性对轮胎噪声也有比较大的影响#图0为具有高5低弹性模量的外胎和侧壁的轮胎在车速为:$’;6<和,$$’;6<时的轮胎6路面噪声转鼓实验结果#图中横坐标表示传声器位置#结果表明"外胎面弹性模量的影响强于侧壁弹性模量"不同弹性模量的外胎"轮胎

6路面噪声级差值可达到3-. 2=4>?-.2=4"而侧壁的影响则为,-.2=4> +-.2=4/:1#

很光滑的路面上共振的放大作用较明显!而且轮胎的切向运动较为剧烈"

相对于滑行法!拖车法受环境"气候的影响较小!所需测试轮胎数目较少#因为拖车法是在实际路面上测量!所得结果与滑行法有良好的可比性#拖车法的缺陷在于$与滑行法一样!需要有专门的测试路段%另外还需要有专门设计的拖车!并能调节荷载%牵引车的噪声至少要比牵引车和拖车一起在路面上行驶时低&’(%由于近场轮胎噪声有一定的方向性!传声器的放置位置会对测量结果有一定的影响!有学者认为!传声器与轮胎中心的连线和轮胎前进方向成)*+或,&*+为最佳位置-./%此外!测量结果为近场噪声!与轮胎噪声向外部远场辐射的噪声情况不一定一致# 0&1转鼓法

转鼓法测量的也是近场结果#在转鼓实验室0消声室1中!待测轮胎按预定的转速在已安装有模拟路面的转鼓上滚动!记录噪声级或频谱#传声器的放置与拖车法相同#转鼓测量法在室内进行!不受气候"场地"环境等条件的影响!测量时间也较短#而且!转鼓测量中可结合声强法等寻找噪声产生的区域!有利于轮胎的开发研究工作#转鼓法的不足之处是$需要转鼓装置和消声室%转鼓装置的噪声会影响测量结果%与拖车法一样!只能得到近场结果%模拟路面的选择对结果影响较大!因此影响了结果的可靠性及与其他两种方法的可比性#

关于转鼓法和滑行法的可比较性!基于各自的比较实验结果!有两种截然不同的看法#部分研究结果认为!通过选择合适的两种模拟路面0光滑路面和粗糙路面1!由转鼓法得到的2声级和,3&倍频程声压级与滑行法结果吻合良好-./#另一观点认为转鼓法和滑行法毫不相关!没有可比较性!这表现在一是由这两种方法得到的轮胎3路面噪声级相差悬殊!二是这两种方法对不同轮胎的噪声排序不一致-4/#*总结

轮胎3路面噪声的产生主要是行驶中的轮胎与路面相互作用!在接触区前"后缘的外胎面振动经过号筒效应向外辐射声能#另一主要原因是接触区前"后缘空气被突然挤出和吸入而形成的单极子噪声源#影响轮胎3路面噪声的主要因素有$车速"路面特性"轮胎材料"外胎花纹等#由于目前对轮胎噪声作准确预测还比较困难!对轮胎3路面噪声特性的了解大多仍通过测量手段获得!主要的测量方法有滑行法"拖车法和转鼓法#滑行法的结果与实际最为接近!拖车法和转鼓法得到的是近场轮胎噪声特性#这三种方法都有各自的局限性!应根据要求和相应的条件选择合适的方法#

参考文献$

-,/5678’9:;<<’6=<::>?@:98<@A9-B/6C D D= =E F<:E?<:>:9G<:?H.)6I J J K L&L*M,N H&!

,H4,6

-N/O9@P@:<8 ?R9T9Q R E8@A T

D9Z@9;!,H H[!,.$,&4M,))6

-&/J>9’D62R T9’6\]<;M@8’W Q9’8<@A9X:

8W T9:@Q E]A@T W]E?@<8-_/6J

@8^A Q@98Q9!&*?R288W E]?9Q R8@Q E]T99?@8^!

‘E A R@8^?<8!,H H46

-)/56a9Q V9]6C@:98<@A9^989:E?@<8-B/6‘9E:!

,H4[!,,&$,*.M,.L6

-*/565W?R W V:@A R8E86Y X X9Q?A

-[/B9:U>26Y P A T<8?E8’7]X J E8’F9:^6I8X]W98Q9 <8?@:93:Z9R@Q]9A

X9:98?Q<8A?:W Q?@<8-B/6b C I D E G G<:?6I J J K

L&).6[L&L6

-./7]X J E8’F9:^6c9Z9]

Q!?:E@]9:E8’]E F<:E?<:>’:W T-B/6

K<@A9Q<8?:<]98^@899:@8^P

,H4[6

-4/a6e6\@8^9:R W?6f8G:

-_/6I59Q R Y_&4H3&).6

g

)

H

g,H卷N期0N L L L1

轮胎/路面噪声及其测量

作者:俞悟周, 毛东兴, 王佐民, YU Wu-zhou, MAO Dong-xing, WANG Zuo-min 作者单位:同济大学声学研究所,上海200092

刊名:

声学技术

英文刊名:TECHNICAL ACOUSTICS

年,卷(期):2000,19(2)

被引用次数:15次

参考文献(8条)

1.M Underwood Lorry tire noise 1981

2.Keijiro Iwao.Ichiro Yamazaki A study on the mechanism of tire/road noise 1996

3.Syed R Ahmed Flow-induced noise from ground vehicles-problems and prospects of numerical simulation 1998

4.M Heckel Tire noise generation 1986

5.M Muthukrishnan Effects of material properties in tire noise

6.Jerzy A Ejsmont and Ulf Sandberg.Influence on tire/road noise emission by vehicles of different construction

7.Ulf Sandberg Development of three methods for measurement of tire/road noise emission-coast-by,trailer and laboratory drum 1986

8.H P Fingerhut On problems with tire/road noise on trucks with high engineering rate

相似文献(1条)

1.期刊论文李阳.刘洋浅析交通噪声危害及声强法检测的应用-中小企业管理与科技2010(25)

现代工业、交通运输业的飞速发展和人们对周围生活环境的日加关注,使得振动噪声控制引起人们的广泛重视.降低交通噪声不仅可以改善人们的工作生活环境,而且可以减少机器的磨损、节约功耗、延长机器的使用寿命.噪声和振动控制离不开声学测量.通过测量,可以了解振动噪声的源头,变化规律和传播特性等,从而可以找到降低噪声的有效途径.本文对声强法检测轮胎/路面噪声进行了阐述.

引证文献(14条)

1.赵洪志.司正军.张玉红多孔性沥青路面的降噪机理及评价方法[期刊论文]-交通标准化

2009(6)

2.朱琨琨.刘黎萍.陈长.孙立军上海逸仙高架NovaChip(R)超薄磨耗层降噪效果实测与分析[期刊论文]-公路工程 2009(3)

3.赵洪志.曹卫东.张玉红SMA路面降噪机理分析[期刊论文]-公路与汽运 2009(1)

4.董毛华.李明.闫芳轿车子午线轮胎噪声探讨[期刊论文]-轮胎工业 2009(1)

5.郭知涛.韩森水泥混凝土路面刻槽对轮胎/路面噪声影响分析[期刊论文]-公路 2008(11)

6.王万英.靳晓雄.彭为.华春雷.张强轿车轮胎噪声测试与评价方法研究[期刊论文]-汽车技术2008(9)

7.彭彬.黄晓明微表处路面噪音调查与研究[期刊论文]-中外公路 2008(4)

8.谭伟.张崇高.曹卫东.崔新壮轮胎/路面噪声机理与降噪路面[期刊论文]-公路与汽运 2008(4)

9.王万英.靳晓雄汽车整车轮胎噪声研究[期刊论文]-上海汽车 2008(7)

10.陈理君.张兰红.陈弘.肖旺新.陈霞轮胎/路面噪声的测定及分析方法[期刊论文]-轮胎工业2008(6)

11.李绍杰.魏东沥青玛蹄脂碎石路面的降噪机理探讨[期刊论文]-山东交通科技 2007(4)

12.仲华惟.贺华.陈海峰露石水泥混凝土路面在西藏嘎拉山隧道中的应用[期刊论文]-西部探矿工程 2006(4)

13.张涛.李兵.夏源明FEM/BEM在轮胎振动和噪声特性分析中的应用[期刊论文]-汽车技术

2005(9)

14.张涛轮胎模态和振动噪声的数值分析[学位论文]硕士 2005

本文链接:https://www.360docs.net/doc/364890368.html,/Periodical_sxjs200002012.aspx

授权使用:武汉科技大学(whkjdx),授权号:b38d0905-0e56-4720-8132-9e6900fef724

下载时间:2011年1月12日

关于噪音实验报告模板.doc

关于噪音实验报告模板 篇一:建筑物理环境噪声测量实验报告 课程名称: 学生学号: 所属院部: (理工类) 专业班级: 学生姓名: 指导教师: 20xx——20xx学年第x学期 xx学院教务处制 实验项目名称:环境噪声测量实验实验学时: 4 同组学生姓名:实验地点: 实验日期:实验成绩:批改教师:批改时间: 一、实验目的和要求 (1)掌握噪声测量的方法,对噪声的大小有一个主观的认识 (2)学会使用声级计; (3)分析噪声的大小与来源,得知建筑是否符合规定。 二、实验仪器和设备 HS5633型声级计 三、实验过程

(1)测点的选择:建筑物外1m处,高1.2m; (2)检查声级计的电池电力并采用校准器对其进行校准; (3)测量应在无风雪、无雷电天气,风速5m/s以下进行。大风时应停止测量; (4)记录声级计读数值,保持声级计在L档,每隔5秒读一个数值,共记录200个数。 四、实验结果与分析 原理:将记录的200个数从大到小的顺序排列,第20个数值就是L10,L10反映交通噪声的峰值;第100个数值就是L50,第180个数值就是L90,L90反映背景噪声值。等效声级反映了在测量的时间内声能的平均分布情况。计算公式:Leq=L50+d/60其中d=L10-L90 测量得出数据(单位:db): 依据测量的的数据得出: L10(在10%时最大噪音峰值)=58.9db L50(在200个数据中最大平均值)=52.4 db L90(背景噪声)=47.5 Leq(等效声级)=52.59 (Leq=L50+d/60d=L10-L90) 分析:对照《城市区域环境噪声标准》的校园1类的昼间等效声级 Leq<=55db,所以符合标准。 篇二:噪声测量实验报告 一、前言 随着城市人口的增长,城市建设、交通工具、现代化工业的发展,各种机器设备和交通工具数量急剧增加,以工业和交通

轮胎路面噪声及其测量

收稿日期!"###$#%$#"&修订日期!"###$#’$#"作者简介!俞悟周()*+"$,- 女-博士-讲师.文章编号!)###$%/%#("###,#"$*#$#0 轮胎1路面噪声及其测量 俞悟周-毛东兴-王佐民 (同济大学声学研究所-上海"###*", 摘要!轮胎1路面噪声是道路交通噪声的重要噪声源-其产生的机理相当复杂-影响的因素也很 多.本文介绍了产生轮胎1 路面噪声的主要机理及影响因素-同时介绍了目前轮胎1路面噪声几种主要的测量方法-及各自的特点.关键词!轮胎1路面噪声&声学测量 中图分类号!230%%4 "文献标识码!5 678918:;<=:7>9;=<7?>@9;>A 89@9=? B C DE $F G H E -I5J K H L M $N O L M -D5P Q R E H $S O L (T L U V O V E V W H X 5Y H E U V O Y U -2H L M Z O C L O [W \U O V ]-^G _L M G _O "###*"-‘G O L _ ,a b >?8;c ?!Q W L W \_V O H LS W Y G _L O U S H X V O \W 1\H _dL H O U W -e G O Y GO U H L WH X V G WS H U V O S f H \V _L V Y H L V \O g E V H \H X V \_X X O Y L H O U W -O U [W \]Y H S f h W N i 2G W \W W N O U V h H V U H X X _Y V H \U O L X h E W L Y O L MV O \W 1\H _dL H O U W i T LV G O U f _f W \-S _O LU H E \Y W U _L d _X X W Y V O L MX _Y V H \U H X V O \W 1\H _dL H O U W _\W f \W U W L V W d i IW _L e G O h W -V G W _E V G H \_h U HW N f h _O L U V G W S _O LS W _U E \W S W L V S W V G H d U H X V O \W 1\H _dL H O U W i 5d [_L V _M W U _L dd O U _d [_L V _M W U H X V G W S W V G H d U _\W Y H S f _\W d i j 9kl :8<>!V O \W 1\H _dL H O U W &_Y H E U V O Y _h S W _U E \W S W L V )引 言 许多民意调查表明-城市中的道路交通噪声是困扰人们生活的主要环境污染源之一-在各种交通噪声中-汽车噪声问题最为显著.轮胎1 路面噪声是汽车噪声的三大噪声源之一-尤其是对中速行驶的轿车(/0m S 1G $)##m S 1G ,-轮胎1路面噪声的贡献最大.随着各国环境保护立法机构对车辆辐射噪声的规定日趋严格-轮胎1路面噪声的降低在近"#年里越来越受到汽车制造商及轮胎生产厂家的重视-投入大量人力物力-采用了各种先进的测试手段进行探索研究-如激光n 多普勒振动测量仪及多种相关分析等-以寻求降低轮胎噪声的途径. 尽管有一些文献报道利用各种模型和计算方法进行轮胎1路面噪声的预测-但由于其机理的复杂性-目前还难以对轮胎1路面噪声进行准确的定量估计-实测是研究轮胎噪声 特性的重要手段. "轮胎1 路面噪声的形成机理o i p 产生机理 一般认为-轮胎1路面噪声的产生主要有以下几个途径! (),轮胎振动 当运动的轮胎与路面接触时-一方面外胎结构的不均匀性及路面的粗糙性引起轮胎振动&另一方面-轮胎和路面的接触区产生切向力-部分切向力导致轮胎在路面上的滑移. 引起轮胎外胎形变的摩擦粘滞力以及外胎的 滑移导致轮胎表面的振动-从而产生可听声. 轮胎振动主要包括外胎面和轮胎侧壁的振动-这两部分区域振动的幅度q 频率及产生 原因并不一样-由此辐射的噪声也不同.图) (_,为某轮胎在"##m r _的轮胎气压下的振 动实验结果s )t - 激振源位于外胎中心.在0##u F $v ##u F 频率范围内-轮胎侧壁的振动比外胎面稍强-而在v ##u F 以上的频率范围内-外胎面的振动远强于侧壁的振动.而且在 n #*n )*卷"期("###,

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

发动机结构振动及噪声预测

发动机结构振动及噪声预测 作者:奇瑞发动机工程研究邓晓龙 发动机是影响汽车NVH性能的最主要的因素,在发动机的设计阶段就深入进行振动噪声性能的预测与优化,已经成为发动机开发的基本流程,是发动机自主研发过程中的重要工作。 国内外对发动机结构噪声的预测做了大量研究,中低频结构噪声预测方法已趋成熟。结构振动响应与辐射噪声之间的关系非常复杂,目前根据强迫振动响应计算辐射噪声的计算方法主要有平板理想化法、有限元法和边界元法等。噪声预测技术的发展使得发动机在设计阶段进行噪声评价成为可能。 本文探讨了适于进行动力总成振动及结构噪声预测的方法;建立了动力总成各主要部件的有限元模型,通过AVL EXCITE软件进行了动力学分析,并计算发动机的振动响应。进行NVH的性能提升的最重要的就是首先要找到主要振动及噪声源,并开展有针对性的工作。为了更明确发动机的主要声源,采用自编软件,根据表面振动速度结果进行了主要表面的辐射声功率排序,最后进行结构噪声预测。 发动机结构振动预测 进行发动机结构振动及噪声预测,涉及到大量的研究工作,主要工作包括各部件有限元建模、子结构模态提取,EXCITE模型搭建,主要激励计算,动力学分析,振动响应计算,表面辐射声源排序,声边界元建模和空间声场预测等工作。 1. 动力总成有限元模型 动力总成有限元模型包括缸体、框架、缸盖、油底壳、缸套、进气歧管、排气歧管、气门室罩盖、4个悬置支架、变速器壳体、变速器传动轴及齿轮等。由于研究的动力总成的4个悬置支架中有3个是安装在变速器上,所以加入变速器壳体的有限元模型,这样可以更准确地模拟动力总成的振动情况,特别是怠速工况下的振动。图1所示为动力总成的有限元网格。同样需建立曲轴组件的有限元网格,曲轴组件包括曲轴、飞轮、扭转减振器、皮带轮和正时齿轮等部件。

环境监测噪声实验报告(用)

校园环境噪声监测 一、目的要求 (1)掌握环境噪声的监测方法; (2)熟悉声级计的使用; (3)掌握对非稳态的无规则噪声监测数据的处理方法; 二、仪器设备:声级计(GM 1357)、GPS定位器 三、测量点位:6 经纬度:N:33°38.236′ E:117°04.243′ 四、测量条件 (1)天气条件要求在无雨无雪的时间,声级计应保持传声器膜片清洁,风力在三级以上必须加风罩(以避免风噪声干扰),四级以上大风应停止测量。 (2)使用仪器是声级计。 (3)手持仪器测量,传声器要求距离地面1.2m。 五、测定步骤 (1)将学校划分4×5的网格,共20个测点。测量点选在每个网格的交点,若交点位置不宜测量,可移到旁边能够测量的位置。 (2)每组3人配置一台声级计,每2组共用一台GPS定位器。 (3)读数方式用快档,每隔10秒读一个瞬时A声级,连续读取200个数据。读数同时要判断和记录附近主要噪声来源(如交通噪声、施工噪声、工厂或车间噪声、锅炉噪声…)和天气条件。 六、数据处理 环境噪声是随时间而起伏的无规律噪声,因此测量结果一般用统计值或等效声级来表示,本实验用等效声级表示。 (1)将各测点每一次的测量数据(200个)顺序排列找出L10、L50、L90,求出各测点等效声级Leq。 ①②③④⑤⑥⑦⑧⑨⑩ 88.5 71.5 69.6 67.5 66 64.6 63.1 62.1 60.5 58.2 88.4 71.5 69.5 67.5 65.9 64.6 63 62 60.5 57.7

80.4 71.4 69.4 67.3 65.9 64.5 62.9 62 60.5 57.6 76.7 71.1 69.4 67.1 65.8 64.4 62.9 61.7 60 57.3 76.7 71.1 69.3 67.1 65.8 64.3 62.8 61.6 60 57 76.5 71.1 69.1 67.1 65.8 64.3 62.8 61.5 60 56.6 76 71 69 67 65.5 64.1 62.8 61.4 59.8 56.6 75.1 70.9 69 67 65.5 64 62.7 61.4 59.8 56.6 74 70.8 68.9 67 65.5 64 62.7 61.2 59.6 56.5 73.9 70.7 68.9 66.8 65.5 63.8 62.7 61.2 59.5 56.4 73.7 70.6 68.8 66.7 65.5 63.7 62.7 61.2 59.4 56 73.5 70.5 68.8 66.7 65.4 63.7 62.5 61.2 59.1 55.9 73.4 70.5 68.6 66.7 65.3 63.6 62.3 61.1 58.9 55.9 72.6 70.4 68.3 66.6 65.2 63.6 62.3 61.1 58.8 55.8 72.5 70.4 68.3 66.5 65 63.5 62.2 61 58.6 55.8 72.4 70.3 67.9 66.4 64.9 63.4 62.2 61 58.6 55.2 72.2 70.3 67.9 66.4 64.9 63.4 62.1 60.9 58.6 54.8 72.1 69.8 67.7 66.3 64.9 63.3 62.1 60.8 58.5 53.6 71.7 69.7 67.5 66.2 64.8 63.3 62.1 60.8 58.3 52.1 71.5 69.6 67.5 66.1 64.6 63.2 62.1 60.8 58.3 52.1 (2)结果计算 如:1号点位,根据数据,算得等效连续A声级用Leq1表示。

发动机噪声与振动

发动机运转时,燃烧噪声,机械噪声和空气动力噪声是主要噪声源。 通常把燃烧时气缸压力通过活塞、连杆、曲轴、主轴承传至机体,以及通过气缸盖等引起发动机结构表面振动而辐射出来的这部分噪声,称为燃烧噪声。发动机的燃烧噪声,是在气缸中产生的。燃烧过程中,气缸内的压力波冲击燃烧室壁,气体自身产生的振动,这种振动及辐射噪声呈高频特性。气缸内压力在一个工作循环内呈周期变化,激起气缸内部机件的振动,其频率与发动机转速有关,通过发动机机体向外辐射噪声,这种振动及辐射噪声呈低频特性。其强弱程度,取决于压力增长率及最高压力增长率的持续时间。 发动机的机械噪声,是指在气体压力和惯性力的作用下,使运动部件产生冲击和振动而激发的噪声。主要有活塞敲击噪声、供油系噪声、配气机构噪声、正时系统噪声、辅机系统噪声、轴承噪声、不平衡惯性力引起的机体振动和噪声等。发动机工作时,由于冲击、摩擦、旋转不均匀和不平衡力作用等原因,激起零部件的机械振动而产生噪声。特别是当激振力频率与零部件的固有频率相一致时,会引起激烈的共振和噪声。发动机的机械噪声随转速的提高而迅速增加。 空气动力噪声,是气体流动(如周期性进气、排气)或物体在空气中运动,空气与物体撞击,引起空气产生的涡流,或者由于空气发生压力突变,形成空气扰动与膨胀(如高压气体向空气中喷射)等而产生的噪声。一般说来,空气动力噪声是直接向大气辐射的。主要分成进气噪声、排气噪声和风扇噪声。 汽车噪音改善材料和方法: 1、发动机噪,路噪,胎噪都属于结构噪音,它的主要产生是震动,最合理的解决办法就是制震。加入减振板配合吸音垫,能很好解决路噪和胎噪。弓I擎噪这个问题我们应理性去看待,引擎声的大小随发动机转速的不同而产生程度不同的噪音,它没有一个恒定的标准,但是,引擎的转速是由车辆行驶状态和驾驶人员操控的。对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,具体施工部分如下:(1)引 擎盖的施工能延缓前盖板因温度过高而掉漆,并能减少发动机噪音通过上盖传出的噪音。(2)挡火墙内外部分施工可改善引擎发动后低频音的传入。施工后引擎声变得更加纯净,驾驶人员会有更好的操纵感。如果要引擎声有较明显的改善,施工部分是比较复杂的,具有一定高难度的作业,具体施工部分与步骤有以下几点:①拆开仪表台,完全处理挡火墙内部②卸下发动机,完全处理档火墙外部这个施工对引擎噪音的减少 效果是比较明显的,但是施工过程可能会对车体原有设备造成改变和影响,笔者一般不建议对此部分进行施工操作,对于引擎声应理性善待,不应过分追求引擎声的控制,让引擎发挥它应有的动力感。 2、路噪和胎噪是因为轮胎和路面摩擦产生震动和噪音,所以减震是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面施工可以从减震、吸音、隔音三个源头改善胎噪和路噪。 3、风噪是因为风的压力超过车门的密封抗阻力而形成,所以加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。

噪声测量实验报告

噪声测量实验报告 学院: 专业班级: 组长: 组员: 组员: 组员: 实施时间:

噪声测量实验 ——周围环境与声学现象对人体主、客观评价室内声环境的影响 时间:2014.06.15 10:00—11:30 地点:湖南大学德智学生公寓5-6栋 一、前言 随着城市人口的增长,城市建设、交通工具、现代化工业的发展,各种机器设备和交通工具数量急剧增加,以工业和交通噪声为主的噪声污染日趋严重,甚至形成了公害,它严重破坏了人们生活的安宁,危害人们的身心健康,影响人们的正常工作与生活。 众所周知,高校的宿舍是大学生在校内学习和生活的环境,良好的环境可促进学生的生长发育,增进健康,使学生有充沛的精力学习和研究。然而近年来,随着我国经济的高速发展,各地区院校的发展进程也不断加快,与此同时,也导致越来越多的校园噪声,声级也越来越高。 二、实验目的与原理 噪声级为30~40分贝是比较安静的正常环境;超过50分贝就会影响睡眠和休息。由于休息不足,疲劳不能消除,正常生理功能会受到一定的影响;70分贝以上干扰谈话,造成心烦意乱,精神不集中,影响工作效率,甚至发生事故;长期工作或生活在90分贝以上的噪声环境,会严重影响听力和导致其他疾病的发生。 学生公寓是学生在校园的一个家,是学生平时休息的场所,所以需要一个较为安静的环境,但是,同学们常常会抱怨宿舍不够安静,外界太吵闹,墙体隔音效果不好等等。为了降低宿舍内噪声,减少噪声的干扰和危害,保证同学们良好的学习和生活环境,充分了解宿舍的噪声污染情况是非常有必要的,为此,我们小组选择了湖南大学德智公寓进行了噪声测量实验,明确其中的噪声污染源,从而提出适当的措施,以便减少噪声。通过噪声测量,能让我们良好地掌握噪声计的使用方法和测量环境噪声技术。

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

车用发动机设备噪声形成原因及控制措施(新编版)

车用发动机设备噪声形成原因及控制措施(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0038

车用发动机设备噪声形成原因及控制措施 (新编版) 1.噪声的主要危害 噪声污染不仅对人们的自我感觉和工作能力产生消极的影响,而且能导致健康严重失调、疲劳、早期失聪、高血压、神经疾病等。 2.车用发动机噪声的形成与对策 发动机噪声主要包括燃烧噪声、机械噪声、进排气噪声、冷却风扇及其他部件发出的噪声。燃烧噪声是在可燃混合气体燃烧时,因气缸内气体压力急剧上升冲击发动机各部件,使之振动而产生的噪声。柴油中的十六烷值不合适或喷油时间过于提前,会引起发动机工作粗暴,使噪声急剧增大。汽油机由于过热、汽油品质不良和点火提前角过大等原因造成高频爆炸声、敲缸。 发动机内部的燃烧过程和结构振动所产生的噪声,是通过发动

机外表面以及与发动机外表面刚性连接结构的振动向大气辐射的,因此称为发动机表面噪声。根据发动机表面噪声产生的机理,又可分为燃烧噪声和机械噪声。燃烧噪声主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关;机械噪声是发动机工作时各运动件之间及运动件与固定件之间作用的周期性变化的力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般来说,低转速时,燃烧噪声占主导地位,高转速时,机械噪声占主导地位。 降低燃烧噪声,需改善燃烧条件,提高燃烧质量,以达到圆滑的压力波形。采用合理布置火花塞和气门以及采用合适的燃烧室型式和冷却方式即可以达到最有效的燃烧。在燃油方面,汽油的辛烷值越高,点火质量及抗爆振性能越好;对柴油机来说,要选择合适的十六烷值的柴油,如果达不到,可加入点火加速剂,提高点火质量,这样可有效地防治因燃油燃烧引起的噪声。 机械噪声包括活塞敲击声、气门机构冲击声、正时齿轮运转声等。减小活塞敲击声,可采取减小活塞与缸壁之间的间隙和使活塞

轮胎噪声的研究现状

轮胎噪声的研究现状 李论 2012级车辆1班 222012322220013 摘要:从当前国内轮胎噪声研究的现状来说。轮胎噪声研究从最初的单纯测试发展到建立了泵浦噪声、气柱共鸣、共振、模态分析等噪声研究理论;轮胎噪声测试方法有通过噪声法、拖车法和实验室转鼓法,通过轮胎声学模型和软件系统可对不同花纹轮胎噪声进行模拟和预测。随着社会对环境噪声的重视,汽车噪声的控制标准越来越严格。 关键词:噪声污染;轮胎噪声;噪声测试;花纹;研究现状 0、引言 汽车行驶噪声是交通噪声的主要来源之一, 随着我国汽车工业的迅猛发展和城市道路的不断扩张, 城市车流量持续增加,噪声污染日益严重。交通噪声不仅影响人们的正常生活和工作,甚至会危害人们的身心健康。随着生活质量的不断提高,人们对降低交通噪声提出了越来越高的要求。 试验表明, 轮胎噪声是构成汽车行驶噪声的主要因素之一, 当汽车行驶速度大于 50 km h- 1时, 轮胎噪声逐渐显现; 当车速超过 80 km h- 1时, 轮胎噪声则成为汽车行驶噪声的主要成分。车速越快、负荷越大, 轮胎噪声的能量级就越高, 在汽车行驶噪声中所占比例也就越大。轮胎作为车辆与地面接触的唯一部件,其噪声辐射及振动特性直接影响汽车的乘坐舒适性和平稳。因此国内外各大汽车公司纷纷开展轮胎噪声方面的研究, 对配套轮胎的噪声提出了更苛刻的要求。因此, 开展轮胎噪声研究、了解轮胎噪声的产生机理、开发低噪声轮胎已是当务之急。 1、国外轮胎噪声研究进展 20 世纪初期, 轮胎噪声的研究只停留在单纯测试阶段, 缺乏对噪声机理的理论分析。20 世纪70 年代后, 人们才开始从理论上对轮胎噪声进行研究, 并提出模拟计算的理念。 1971 年, H ayden J R E 首先提出空气泵浦原理是轮胎主要噪声机理。他将简单轮胎花纹沟槽视作一个单极子源, 并得出花纹沟声压级的半经验公式。但是用该公式进行轮胎花纹噪声预测仍然存在诸多困难。 1985 年, 通用汽车研究实验室的 Law rence J 等在横向花纹沟槽研究的基础上得出气柱共鸣与泵浦作用是横向花纹沟槽噪声的两大机理。当气柱的固有频率与花纹间距频率一致时, 就会发生气柱共鸣现象, 使轮胎噪声加剧。 20 世纪 80 年代后, 随着物理学和振动理论的发展, 人们对轮胎噪声的研究进入试验测试与模拟研究相结合的阶段。根据流体结构相互作用原理可以得出以下结论: 若已知轮胎的振动方式, 结合辐射边界条件, 可以用克希霍夫亥姆霍兹积分公式计算出轮胎振动噪声。因此, 80 年代末, 许多学者相继建立起轮胎动态特性模型, 开始了轮胎动态特性的理论研究。 1992 年, Nakajim用有限元、边界元和模态分析相结合的方法对轮胎的振动和噪声进行了预测。有限元和边界元法在中低频段可以较准确地预测轮胎噪声; 但在高频段, 由于计算量大大增加, 使结果误差增大, 于是人们开始用统计能量法对高频段的轮胎噪声进行分析计算。Hiroshi Y 等[研究了轮胎内部空腔的共鸣声, 认为汽车内部噪声在250 H z 左右的峰值主要是轮胎内部空腔的共振噪

发动机表面结构振动与辐射噪声的关系

第3章发动机表面振动与辐射噪声关系的系统研究 所谓发动机噪声除了进、排气噪声和风扇噪声外,主要是指由发动机外表面辐射出来的噪声,而辐射噪声与发动机表面结构振动有着密切的关系。系统地研究发动机表面振动与辐射噪声之间的关系,对于发动机噪声源预测和降低辐射噪声有着极其重要的意义。 3.1内燃机的表面振动 结构的表面振动和辐射噪声之间的关系非常复杂,通常无法确定。通过对噪声和单源振动测定的比较研究可知,大约有50%没有确切的关系。声场环境的影响、声的传播方向、结构振动的频率和相位的不均匀性,以及精确的数学模型极为复杂等因素导致精确的解析分析不可能实现。随机因素的影响和影响因素的随机性使得研究人员转而采用统计分析的方法来完成对振动和噪声辐射之间关系的研究[77-81]。 发动机结构振动可用其模态振型来表示,发动机结构振动的模态振型是由发动机设计所决定的,发动机质量分布、刚度和阻尼决定了其模态频率及其各阶模态之间的频率间隔。 柴油机是一种结构复杂、变工况运行的动力机械。柴油机的表面振动特性决定了其辐射噪声特性。为此,作者对一典型的直列柴油机-CY6102BZQ型柴油机的表面振动进行了实验测试与研究。实验框图如下:

实验仪器如下: 测点布置如下:

图3-1 发动机表面法向振动速度测点布置图测试结果如下:

图3-2机体表面各层法向平均振动速度均方根值 图3-3其它附件表面平均法向振动速度均方根值 图3-4 不同工况下全部测点总的平均振动速度均方根值 由以上试验结果可知,发动机表面各部位的平均振动速度的模式比例基本保持相同,但其振幅随发动机转速升高而增大。这说明,发动机外表面各部位的振动功率大小比例分布基本保持恒定,如果知道了各部位(部件)的表面积,就可预测发动机表面各部件对幅射噪声贡献的大小。这也是表面振动速度法进行噪声源识别的基本原理。

发动机噪声与振动

汽车噪声与振动 ——理论与应用 汽车噪声的传递有固体波动和气体波动两种传播形式。通常500Hz以下的低、中频率噪声主要以固体波动形式传播,而在较高的频带则以空气传播为主。 第十章发动机的振动 第十一章发动机的噪声 在相同条件下,柴油机的排气噪声要比汽油机的排气噪声大,二冲程燃机的排气噪声要比四冲程的大。柴油机的排气声呈明显的低频性,能量主要集中在基频及其倍频的频率围;中频围主要是排气管气柱振荡的固有音;高频围主要包括燃烧声和气流高速通过气口的空气动力噪声。 发动机两种噪声:纯音和混杂音。纯音是窄频带的,用抗性消音器;混杂音是宽频带的,用阻性消声器。 抗性消声器:将能量反射回声源,从而抑制声音。 阻性消声器:声能被吸声材料吸收并转化成热能,从而消声。

发动机噪声估算: 1、柴油机声功率级 )lg( 30)lg(1057b b b W n n P n L ++≈ (dBA ) 式中:W L ——柴油机声功率级; b P ——柴油机标定功率(kW ); b n ——柴油机标定转速(r/min ); n ——柴油机实际转速(r/min )。 2、柴油机机体表面辐射声功率级的近似公式 柴油机机体表面辐射的31倍频程声功率级近似计算公式如下: )lg(2010001000) 1(lg 1052)(b b b b W n n f f m P P n f L +? ?????+++≈ 式中:f ——31倍频程中心频率(Hz ); m ——柴油机质量(kg )。 3、汽油机声功率级估算 )lg( 50)lg(1057b b b W n n P n L ++≈ (dBA ) 以上公式只是估算,公式已显旧。 机体结构特性: 结构特性主要指振型、固有频率和传递函数。 燃烧噪声:由于气缸燃烧,将活塞对缸套的压力振动通过缸盖—活塞—连杆—曲柄—机体向外辐射的噪声称为燃烧噪声。 机械噪声:活塞对缸套的撞击、正时齿轮、配气机构、喷油系统、辅助皮带、正时皮带等运动件之间的机械撞击所产生的振动激发的噪声称为机械噪声。

轮胎噪声影响因素及低噪声轮胎设计方法_赵书凯

轮胎噪声影响因素及低噪声轮胎设计方法 赵书凯,邓世涛,丁海峰,姜晓辉 (三角轮胎股份有限公司,山东威海 264200 ) 摘要: 分析轮胎噪声影响因素,提出低噪声轮胎设计方法。胎面花纹形状、节距及排列、胎面胶配方以及轮胎均匀性等都对轮胎噪声有一定影响; 采用尽可能多的节距数,减小花纹沟深度和宽度,适当降低胎面胶硬度,减小胎冠和胎侧刚度, 提高轮胎均匀性等均有利于减小轮胎噪声。 关键词: 轮胎;噪声;影响因素;胎面花纹;均匀性 中图分类号:TQ336.1;TB533+.2 文献标志码:A 文章编号:1006-8171(2014)02-0076- 05作者简介:赵书凯(1975—),男,山东威海人,三角轮胎股份有限公司工程师,学士,主要从事轮胎结构设计工作。 随着高速公路的迅速发展,汽车速度大大提高,交通噪声对人体健康的影响也日益严重,汽车噪声不仅增加驾乘人员的疲劳, 而且影响汽车行驶安全。欧盟779号指令要求进口欧盟的轮胎要标注轮胎燃料级别、湿地抓着性能和滚动噪声,并要求欧盟各成员国自2012年11月1日起实施。轮胎噪声已经成为衡量汽车质量的重要指标之一。近年来,高性能、低噪声轮胎在轮胎行业中占有明显优势, 许多整车厂选择配套轮胎都已经将轮胎噪声作为考核的主要性能参数。当汽车行驶速度超过50km·h-1时, 轮胎噪声就成为行驶车辆噪声的主要成分[1] ;车速越快、负荷越大,轮胎噪声的能量级越高,在汽车行驶噪声中所占比例也越大。作为汽车乘坐舒适性的重要评价指标,汽车噪声也在很大程度上反映出生产厂家的设计和工艺水平。 本工作分析轮胎噪声产生机理、测试方法和影响因素, 并提出低噪声花纹轮胎的设计方法。1 轮胎噪声分类及产生机理 1.1 分类 轮胎噪声分为直接噪声和间接噪声,直接噪声由轮胎花纹和轮胎振动产生,间接噪声主要指因路面不平等原因导致轮胎振动,传递到悬挂系统和车身,造成内部空气振动产生的车内噪声。 1.2 产生机理 (1)空气紊流噪声。轮胎在滚动前进过程中,前方空气被分开,后方空气被吸入,造成空气紊流,引起声压变化,产生噪声。 (2 )花纹槽泵浦噪声。轮胎滚动时,花纹槽被压缩与释放, 槽内气体随之高速地在前沿区挤压、后沿区膨胀,前后沿产生的压差形成空气涡流,从而产生泵浦噪声( 沟槽空气泵噪声)。(3 )空气柱共鸣噪声。在轮胎花纹与路面接触时,胎面花纹沟槽与路面组成类似管状的结构。管内空气柱振动发声的频率与花纹沟固有频率相同, 二者形成谐振,引发共鸣现象,导致轮胎噪声在此频率处出现峰值。 (4 )轮胎弹性振动噪声。车辆行驶过程中,当前沿的胎面花纹进入接地面时,花纹块撞击路面一起激振;当后沿的胎面花纹离开接地面时,胎面花纹恢复变形产生振动也会产生噪声, 同时会产生连续打击地面的噪声。道路表面凹凸不平和轮胎内部激励因素,如轮胎动不平衡引起的操纵系统振动和行驶中轮胎的不均匀性引起的共振产生噪声。(5 )号角效应。胎面沟槽在接地面内被完全封住时其作用像一个气管, 可以产生窄频鸣叫。(6 )粘滑噪声。当轮胎接地面应力导致轮胎胎面在横向或周向发生滑移时会产生粘着 /滑移噪声。2 轮胎噪声测试方法 (1)试验车惯性滑行法。将轮胎安装在测试车辆上,测试车辆行驶到试验区时,在关闭发动机

社会生活环境噪声测量实验报告

社会生活环境噪声测量实验报告 测量仪器AWA6218B+噪声分析仪及校准器。测量仪器和校准仪器应定期检定合格,并在有效使用期限内使用;每次测量前、后必须在测量现场进行声学校准,其前、后校准示值偏差不得大于0、5dB,否则测量结果无效。测量时传声器加防风罩。测量仪器时间计权特性设为“F”档,采样时间间隔不大于1s。1、2 测量条件气象条件:测量应在无雨雪、无雷电天气,风速为5m/s 以下时进行。不得不在特殊气象条件下测量时,应采取必要措施保证测量准确性,同时注明当时所采取的措施及气象情况。测量工况:测量应在被测声源正常工作时间进行,同时注明当时的工况。1、3 测点位置1、3、1 测点布设根据社会生活噪声排放源、周围噪声敏感建筑物的布局以及毗邻的区域类别,在社会生活噪声排放源边界布设多个测点,其中包括距噪声敏感建筑物较近以及受被测声源影响大的位置。一般情况下,测点选在社会生活噪声排放源边界外1m、高度1、2m 以上、距任一反射面距离不小于1m的位置。1、3、2 测点位置其他规定当边界有围墙且周围有受影响的噪声敏感建筑物时,测点应选在边界外1m、高于围墙0、5m 以上的位置。当边界无法测量到声源的实际排放状况时(如声源位于高空、边界设有声屏障等),应按1、3、1设置测点,同时在受影响的噪声敏感建筑物户外1m 处另设测点。室内噪声测量时,室内测量点位设在距任一反射面至少0、5m以上、距地面1、

2m高度处,在受噪声影响方向的窗户开启状态下测量。社会生活噪声排放源的固定设备结构传声至噪声敏感建筑物室内,在噪声敏感建筑物室内测量时,测点应距任一反射面至少0、5m以上、距地面1、2m、距外窗1m以上,窗户关闭状态下测量。被测房间内的其他可能干扰测量的声源(如电视机、空调机、排气扇以及镇流器较响的日光灯、运转时出声的时钟等)应关闭。1、4 测量时段分别在昼间、夜间两个时段测量。夜间有频发、偶发噪声影响时同时测量最大声级。被测声源是稳态噪声,采用1min 的等效声级。被测声源是非稳态噪声,测量被测声源有代表性时段的等效声级,必要时测量被测声源整个正常工作时段的等效声级。1、5 背景噪声测量测量环境:不受被测声源影响且其他声环境与测量被测声源时保持一致。测量时段:与被测声源测量的时间长度相同。1、6 测量结果修正1、6、1 噪声测量值与背景噪声值相差大于10dB(A)时,噪声测量值不做修正。1、6、2 噪声测量值与背景噪声值相差在3dB(A)~10dB(A)之间时,噪声测量值与背景噪声值的差值取整后,按表1、6、1进行修正。1、6、3 噪声测量值与背景噪声值相差小于3dB(A)时,应采取措施降低背景噪声后,视情况按1、6、1或1、6、2执行;仍无法满足前二款要求的,应按环境噪声监测技术规范的有关规定执行。表1、6、1测量结果修正表单位为dB(A)差值34~56~10修正值-3-2- 11、7 测量结果评价各个测点的测量结果应单独评价。同一测点每天的测量结果按昼间、夜间进行评价。最大声级Lmax直接

汽车噪声来源

汽车噪音的来源 汽车是一个高速运动的复杂组合式噪声源。汽车发动机和传动系工作时产生的震动、高速行驶中汽车轮胎在地面上的滚动、车身与空气的作用,是产生汽车噪音的根本原因。 根据汽车噪音对环境的影响,可将汽车噪音分为车外噪音和车内噪音,车外噪音是指汽车各部分噪音辐射到车外空间的那部分噪音。主要包括发动机噪音、排气噪音、轮胎噪音、制动噪音和传动系噪音等。车内噪音是指车厢外的汽车各部分噪音通过各种途径传入车内的那部分噪音以及汽车各部分震动传递路径激发车身各部件的结构震动向车厢内辐射的噪音,这些噪音声波在车内空间声学特性的制约下,生成较为复杂的混响声场,从而形成车内噪音。平静汽车隔音的研发人员通过实验发现抑制车辆内部噪音,改善混响声场最有效的方式就是选择性能优异的隔音材料并利用异型吸音槽来缓冲并吸收汽车噪音,从而在止震和隔音的基础上达到最佳的吸音降噪效果。 平静隔音把汽车噪音来源简要分为以下几种:发动机噪音、排气系统噪音、风扇噪音、传动系统噪音、轮胎噪音、制动噪音、气动噪音、车身结构噪音等等,由于车辆噪音的复杂性,以上噪音源并非仅是并列关系,而从平静隔音实际研发的角度看,汽车噪音源还可以在目前的基础上做更进一步的分析。 发动机噪音

发动机噪音中,除了发动机机体发出的机械声外,还包括进气系统噪音,改装族更换“冬菇头”以后动力增大的同时发动机噪音也增加不少,就是因为对原车进气系统做了改动的原因:高速气体经空气虑清器、进气管、气门进入气缸,在流动过程中,会产生一种很强的气动噪音。降低发动机本身产生的噪音及由发动机震动引起的其它噪音有若干办法: 1 、改造发动机燃烧过程以降低燃烧爆发的冲击; 2 、降低由此冲击产生的激后力引起的发动机各部件震动; 3 、降低由活塞上下运动、曲轴转动引起的不平衡力以及降低发动机机械震动。 发动机运转的噪音主要由挡火墙和驾驶室的前底板部位传入驾驶舱,因此,平静汽车隔音通过在 U 槽、挡火墙及底板部位粘贴带异型吸音槽的吸音棉来抑制噪音。 排气系统噪音 是发动机噪音的一部分,主要包括消声器支撑架及排气管道震动辐射出的噪音,发动机震动及排气动作引起的辐射噪音,还包括由排气口出来的排气噪音。主要降噪方法: 1 、利用消声器降低排气出口噪音,在生产消声器的环节,通过提高仿真计算方法的精度,实现在不增加排气阻力的条件下改善消声效果。 2 、在排气口对排气噪音施加与其幅值大小相等,相位相反的二次声源或震动源,可自动地消除存在的震动噪声问题,实现主动降低噪音。 为降低发动机、传动系统、排气系统表面产生的辐射噪音,不仅要降低激励力,而且要改善结构的震动特性,达到即使有激励力,也不易产生噪音的效果。如:可以通过仿真计算推测发动机缸体等部位产生的辐射噪音,用震动特性优化方法,采取在轻量化基础上达到最佳效果的措施。因此,好的隔音材料和降噪效果不应该以增加车辆自重,牺牲加速性能,增加油耗为代价 风扇噪音 散热风扇通常也称为电子扇,是引擎舱内较大的噪音源。风扇噪音属于空气动力噪音,严格的说,也是构成发动机噪音的一部分。风扇运转过程中,由散热器隔栅吸入的冷却气流,经散热器风扇叶片吸入,从发动机间隙排出,气流运动的这一过程产生了旋转噪音和涡流噪音。夏季在怠速状态下开空调,风扇的运转会明显引起较大噪音。平静隔音研究人员认为风扇的噪音与以下因素密切相关: 1、风扇的外形。风扇外形决定风扇本体的阻力系数。包括叶片数量、叶片间断间隙、叶片角度及弯曲度等。 2、散热器吸入气流的紊流度。 3、风扇叶尖处及缝隙处产生的噪音。

汽车噪声与振动

汽车噪声与振动 概述:随着汽车发动机功率的不断提高,噪声与振动的问题日渐突现出来,开始成为汽车开发工程中的主要问题之一。在汽车界,人们在讨论噪声与振动时,常用的一个词就是NVH,即是噪声(Noise)、振动(Vibration)和不舒适(Harshness)三个英文单词首字母的简写。汽车噪声振动有两个特点,一是与发动机转速与汽车行驶速度有关,二是不同的噪声振动源有不同的频率范围。在低速时,发动机是主要的噪声和振动源,在中速时,轮胎与路面的摩擦是主要的噪声和振动源,而在高速时,车身与空气之间的摩擦变成了最主要的噪声和振动源。 近年来汽车噪声振动问题研究现状 行驶汽车的噪声包括发动机、底盘、车身以及汽车附件和电气系统噪声。发动机噪声是汽车的主要噪声源。在我国,车外噪声中发动机噪声约占60%左右。 1.发动机噪声 发动机噪声按其机理可分为结构振动噪声和空气动力性噪声。 1.1结构振动噪声 通过发动机外表面以及与发动机外表面刚性连接件的振动向大气辐射的噪声称为结构振动噪声或者称为表面辐射噪声。根据发动机表面噪声产生机理,结构振动噪声又可分为燃烧噪声、机械噪声以及液体动力噪声。燃烧噪声的发生机理相当复杂,主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关。机械噪声是发动机工作时各运动件之间及运动件与

固定件之间作用的周期力、冲击力、撞击力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般在低速时,燃烧噪声占主导地位;在高转速时,由于机械结构的冲击振动加剧而使机械噪声上升到主导地位。车用发动机的辐射噪声频率范围主要在500~3000Hz内,而其主要噪声辐射部件的临界频率大致在500—800Hz范围内。发动机中液体流动产生的力对发动机结构激振产生的噪声称为液体流动噪声,如冷却系中水流循环对水套冲击产生的噪声。 1.2空气动力性噪声 空气动力性噪声直接向大气辐射噪声源,即由于空气动力学的原因使空气质点振动产生的噪声。空气动力噪声包括进、排气噪声和风扇或风机噪声。排气噪声是发动机的最大声源,进气噪声次之。风扇噪声也是发动机的主要噪声源之一。排气噪声由周期性排气、涡流和空气柱共鸣噪声组成。周期性排气噪声是排气门开启时一定压力的气体急速排出而产生;涡流噪声是高速气流通过排气门和排气管道时产生的;空气柱共鸣噪声是管道中空气柱在周期性排气噪声的激发下发生共鸣而产生。 对于发动机噪声的评价,除考虑其辐射噪声能量总水平外,还应考察以下噪声特性:噪声级及其随发动机工作状态的变化关系、发动机周围空间各点噪声级数值的分布状态、空间各点的噪声频谱以及发动机工作过程各阶段的瞬时声压级。通过这些信息,不但可以比较和评价发动机辐射噪声的大小,还可以深入研究辐射声能频率的分布情况,判断发动机工作循环中辐射声最大的阶段,以便分析产生高噪声的原因,提高噪声控制措施并比较和评价这些措施的有效性和经济上的合理性。 2.底盘噪声 汽车底盘结构固体声源产生噪声主要是传动系噪声和轮胎噪声。传动系噪声频率为400—2000Hz。其中齿轮传动的机械噪声是主要部分。齿轮噪声以声波向空间传出的仅是一小部分,大部分则是变速器驱动桥的激振使各部分产生振动而变为噪声。 按声源的激励性质不同,轮胎噪声主要产生机理可分三大类: (1)气流声机理。随着轮胎的滚动,在与路面接触区,花纹沟内空气不断被吸入与挤出,由此形成“空气泵”噪声,这是横向花纹的一种主要噪声机理。此声源为起伏变化的气体,属气流噪声。 (2)机械声机理。由胎面花纹块撞击路面、轮胎结构的不均匀性以及路面的不平性等因素激发机械噪声,是光面胎及纵向花纹的主要噪声源。 (3)滤波放大机理。轮胎与路面接触处形成喇叭口几何体,对上述噪声起着滤波放大作用。另外,胎面花纹沟与路面所围管道内的空气共振以及轮胎花纹块离开路面处形成的赫姆霍兹共振效应主要为袋状沟的噪声机理。 3.车身噪声 车身噪声主要是由于汽车加速行驶时空气流过汽车表面和孑L道时产生的噪声。该噪声主要来源于气流有明显折弯的地方,在该区域内气流分离,分离区内旋涡脱落,形成噪声。

相关文档
最新文档