压电陶瓷变压器基本工作原理及特点.
压电陶瓷原理
压电陶瓷原理
压电陶瓷是一种能够产生电荷和机械位移的材料。
其基本原理是压电效应,即当施加力或压力时,压电陶瓷会发生相应的形变或机械位移,并在其表面产生电荷分布。
这种特性使得压电陶瓷可以广泛应用于传感器、电器和机械装置等领域。
压电陶瓷的压电效应是由于其晶格结构具有非对称性而产生的。
在晶格结构中,正电荷和负电荷不完全重叠,形成了一种偏离中心位置的离子位移。
当施加外力或压力时,这些偏离的离子会发生位移,并引起电荷的重新分布,产生电场。
根据压电效应的不同方向,压电陶瓷可分为三种类型:纵向压电效应、横向压电效应和体积压电效应。
纵向压电效应是指在压力作用下,压电陶瓷沿着力的方向发生机械位移和电荷分离。
横向压电效应是指在力作用方向的垂直方向上,压电陶瓷发生机械位移和电荷分离。
体积压电效应是指在外力作用下,压电陶瓷整体发生体积变化,从而导致电荷的分离。
通过控制施加的力或压力的大小和方向,可以改变压电陶瓷的形变和电荷分布情况。
这种特性被广泛应用于压电陶瓷的传感器中。
例如,当施加外力时,压电陶瓷会产生电荷分离,可以用来检测力的大小和方向。
此外,压电陶瓷还可以应用于压电陶瓷马达、压电陶瓷换能器等设备中,利用其机械位移和电荷分离特性实现机械能与电能的转换。
总之,压电陶瓷利用压电效应来实现电-机耦合效应,具有广
泛的应用前景。
通过控制施加力或压力的大小和方向,可以改
变压电陶瓷的形变和电荷分布情况,从而实现对电能和机械能的控制和转换。
压电陶瓷的工作原理
压电陶瓷的工作原理压电陶瓷是一种具有压电效应的陶瓷材料,其工作原理基于压电效应的产生和利用。
在外加电场下,压电陶瓷可以发生尺寸变化,也可以在外加力的作用下产生电荷。
压电陶瓷广泛应用于压电传感器、压电驱动器和压电换能器等领域。
压电效应是指某些物质在外加电场下发生形变或产生电荷的现象。
压电陶瓷的压电效应是由内部结构的偶极矩和电荷分布引起的。
在压电陶瓷中,存在许多微观颗粒,这些颗粒由一个个等离子团聚在一起形成晶格。
当给这些颗粒施加力或电场时,在晶格内部的偶极矩会发生排列,导致陶瓷材料的整体形变。
具体来说,压电陶瓷的工作过程包括以下几个步骤:1. 应变效应:当外力施加在压电陶瓷的表面上时,陶瓷内部的微观颗粒会受到力的作用而发生形变。
这种形变是由于应变传递到颗粒上,并导致颗粒之间的位移。
2. 极化过程:在压电陶瓷中施加电场时,颗粒内部的偶极矩会受到电场力的作用而发生排列。
这个过程称为极化过程,它将颗粒内部的正负电荷分开,形成电荷分布。
3. 电荷积累:当外力作用撤离陶瓷材料时,材料内部的偶极矩会由于弹性恢复而恢复到原状。
这时,电荷分布也会改变,由于电荷在颗粒表面的积累,导致陶瓷表面出现电荷分布,形成表面电荷。
4. 电荷输出:当外加电极连接到压电陶瓷的两端时,陶瓷表面的电荷将通过电极表面传到外部。
这个过程称为电荷输出,由于电荷的输出,可以测量到对应的电荷信号。
综上所述,压电陶瓷的工作原理是基于压电效应的产生和利用。
外加力或电场会导致压电陶瓷发生形变和电荷分布的变化,从而产生对应的压电效应。
利用这种压电效应,可以将压电陶瓷应用于压电传感器中,实现对外力的探测和测量;也可以应用于压电驱动器和压电换能器中,实现能量的转换和输出。
压电陶瓷的工作原理在许多领域中都有广泛的应用。
例如,在声波传感器中,压电陶瓷可以将声波转化为电信号,用于声波的检测和测量;在振动马达中,压电陶瓷可以将电信号转化为机械振动,用于振动的驱动和控制。
压电陶瓷
压电陶瓷压电陶瓷(Piezoelectric ceramics)是一种特殊的陶瓷材料,具有压电效应。
它具有压电效应,能够在外界施加压力或扭转时产生电荷,同时在外加电场下也能产生机械变形。
因此,压电陶瓷广泛应用于传感器、换能器、储能器、振动器等领域。
本文将介绍压电陶瓷的原理、特性以及应用领域。
首先,我们来了解一下压电陶瓷的原理。
压电现象最早是由法国物理学家庞丁(Pierre Curie)和雅克(Jacques Curie)在1880年发现的。
他们发现某些晶体,如石英和长石,在外界施加压力时会产生电荷。
这被称为正压电效应。
而如果在外加电场的作用下,这些晶体会发生机械变形,这被称为反压电效应。
接下来,我们来探讨一下压电陶瓷的特性。
压电陶瓷具有几个主要的特性。
首先,它们具有良好的压电和逆压电效应。
这使得它们成为制造传感器和换能器的理想材料。
其次,压电陶瓷还具有良好的机械强度和稳定性。
它们可以承受高压力和机械应力,并且能够在广泛的温度范围内工作。
此外,压电陶瓷具有较宽的频率范围和较高的输出功率。
这使得它们成为制造振动器和储能器的理想选择。
压电陶瓷具有广泛的应用领域。
其中一个主要应用是在传感器领域。
压电陶瓷可以用于制造压力传感器、加速度传感器、力传感器等。
这些传感器可以广泛应用于自动化、工业控制、医疗设备等领域,实现对压力、加速度、力等参数的测量和监控。
另一个主要应用是在换能器领域。
压电陶瓷可以用于制造超声换能器、声波清洗器、喇叭等。
这些换能器可以将电能转化为机械能,实现声音的放大和传播。
此外,压电陶瓷还可以应用于振动器、储能器、精密电机等领域。
总之,压电陶瓷是一种独特的陶瓷材料,具有压电效应。
它具有压电和逆压电效应、良好的机械强度和稳定性、较宽的频率范围和高输出功率等特性。
压电陶瓷在传感器、换能器、储能器、振动器等领域有广泛的应用。
它们在实际生活中发挥着重要的作用,促进了科技的发展和进步。
希望随着科技的不断发展,压电陶瓷能够在更多领域发挥重要作用,为人们的生活带来更多便利和创新。
压电陶瓷变压器
R sn oe 型单层 长 条形结 构 .如 图1 示 。 所
开始 进 入 实 用 化 。从 2 世 纪9 年 代 末 期 开 始 ,压 0 0
地 制 备 出长 条 形单 片压 电 陶瓷 变 压 器 。但 由于 这 种 单片 变压器使 用 的是 压 电性 能较 差 的B TO 陶瓷 ai
材 料 ,加 上 工艺 不 完 善 ,升 压 比很 低 ,成 本 又很 高 ,故 当时 没有 引起 人们 的 重视 。后 来 ,随着P T Z
系 、三 元 系和 四元 系等 压 电 陶瓷 材料 的 陆续 出现 ,
压
电 陶 瓷 变 压
器
山 东 临 沂 电子 研 究 所 毛 兴 武 ( 稿) 供
本 刊 编 辑 部 张 乃 国 ( 编) 改
压 电陶瓷变压 器是用 铁 电陶瓷材 料经 烧结 、高
陶 瓷 的 正 压 电效 应 工 作 的 ,给 其 加 上 机 械 压 力 , 在 点 火 棒 两 端 即有 高 压 产 生 。这 两种 器 件 的能 量 转 换 形 式 是 电能 与 机 械 能 之 间 的单 向转 换 ,而 压 电陶 瓷 变 压 器 则 是在 同 一压 电 陶瓷 上 同 时利 用 正
变 压 器 的输 入 端 时 ,只要 交 变 电 压 频率 与压 电 陶
瓷 的 谐 振 频率 一 致 ,就 会 通 过 逆 压 电效 应 使 变 压
压 电 陶瓷 材 料 是 一 种 脆 性材 料 。为 保 障 压 电
陶 瓷 变压 器 的机 械 强 度 ,陶 瓷 片不 能做 得太 长或
太 薄 ,因此 限 制 了升 压 比的 提高 。为 了提高 升 压 比 ,人 们 将 多层 片 式 电容 器 ( C )的成 熟 工艺 ML C 移植 到压 电 陶瓷 变 压 器 的制 备 中 .于 是 在2 世 纪 0 9 年代 末 ,多 层 独 石 型 和 片 式压 电 陶瓷 变 压 器陆 0
完整版压电陶瓷片的原理及特性
完整版压电陶瓷片的原理及特性压电陶瓷是一种可压电材料,当施加外力时会产生电荷累积,从而产生电压。
压电陶瓷的原理是基于压电效应,即当施加外力时,材料内部的正负电荷会重新排列,形成电荷不平衡。
这种电荷不平衡会导致材料产生电位差,即产生电压。
压电陶瓷片由于具有良好的压电性能,广泛应用于传感器、超声换能器、无线电设备、换能器、纳米位移器、振动器等领域。
它的特点和特性如下:1.高压电系数:压电陶瓷片具有较高的压电系数,能够将机械能转化为电能,并且具有较高的能量转化效率。
这使得压电陶瓷片在能量采集、传感和控制领域应用广泛。
2.宽温度范围:压电陶瓷片的工作温度范围通常较宽,可以在极端的高温或低温环境下正常工作。
这使得它在航天、航空以及极地等恶劣环境中的应用具有独特的优势。
3.频率响应范围广:压电陶瓷片能够在较宽的频率范围内工作,通常从几千赫兹到几百兆赫兹。
因此,在超声波成像、荧光光谱仪和无线电通信等领域中具有重要的应用。
4.稳定性好:压电陶瓷片的性能稳定,具有优异的机械和电学性能。
它不易受到外界环境的影响,具有较长的使用寿命。
5.易于加工与制造:压电陶瓷片可以通过多种加工方法加工成不同形状和尺寸,如切割、打孔、磨削等。
这使得它在不同应用场合下可以满足不同形状和尺寸的需求。
6.低功率消耗:压电陶瓷片的功率消耗较低,适合用于需要低功耗的场合,如无线传感、医疗设备等。
7.较高的精度和稳定性:由于压电陶瓷片的工作原理和特性,它可以实现较高的精度和稳定性。
可以采集到更加准确和稳定的电信号或实现更加精确的控制。
总而言之,压电陶瓷片具有高压电系数、宽温度范围、频率响应范围广、稳定性好、易于加工与制造、低功率消耗和较高的精度和稳定性等特点和特性。
这使得它在诸多领域中有着广泛的应用前景。
简述压电陶瓷的压电原理
简述压电陶瓷的压电原理压电陶瓷是一种特殊的陶瓷材料,拥有压电特性,即能够在受到机械压力或电场激励时发生形变,同时也能够在受到外力的作用下产生电荷。
这一特性使得压电陶瓷在许多领域具有广泛的应用,包括传感器、换能器、电子器件等。
压电陶瓷的压电效应是由于其晶胞结构的不规则性而产生的。
在压电材料中,晶胞内的离子位置存在偏移,形成了正负离子间的偏压。
当受到外力压力或电场激励时,这种偏压会发生改变,导致原子或离子发生位移,从而引起整体的形变。
具体来说,压电陶瓷的压电效应可分为直接压电效应和逆压电效应。
直接压电效应是指当施加机械压力时,压电陶瓷会产生电荷。
这是由于物质晶体内部正负电荷的位移而产生的,形成电荷极化。
这种电荷极化的大小与施加的压力大小成正比。
逆压电效应是指当施加电场时,压电陶瓷会产生形变。
压电陶瓷内部的正负离子会受到电场力的作用,发生位移,从而导致整体形变。
这种形变的大小与施加的电场强度成正比。
压电陶瓷的压电效应既能够将机械能转化为电能,也能够将电能转化为机械能,具有相互转换的特性,因此被广泛应用于能量转换和传感器领域。
压电陶瓷的优点在于具有很高的压电系数、良好的稳定性和可重复性,以及宽广的工作温度范围。
这些特性使得压电陶瓷在各种环境条件下都能够正常工作,并具备长周期稳定性。
压电陶瓷的压电原理是其内部正负离子间的位置偏移和位移能够导致电荷极化和形变。
压电效应的存在使得压电陶瓷成为一种重要的功能性材料,具备广泛的应用前景。
对于我个人而言,我认为压电陶瓷的压电原理是一种非常有趣和神奇的物理现象。
它不仅能够将机械能转化为电能,还能够将电能转化为机械能,实现相互转换。
这种能力在很多应用中都能够发挥重要的作用,比如用于能量转换、传感器等领域。
压电陶瓷的优点也使得它成为一种非常有前景的材料,可以在各种环境条件下稳定工作。
我相信随着科技的进步和应用的推广,压电陶瓷将会发展出更多新的应用,并为我们的生活带来更多便利和创新。
多层压电陶瓷变压器及其应用技术
多层压电陶瓷变压器及其应用技术关键词:压电变压器陶瓷长度谐振工艺电极单层机械能摘要:压电陶瓷变压器是一种新型的压电换能器件,它在结构与特性上和传统的线绕铁芯电磁变压器有很大的区别,本文对压电陶瓷变压器(多层)的发展历史、主要制造工艺、工作原理及应用技术作简要的讨论。
1引言压电陶瓷变压器最早于1956年由美国人C.A.Rosen提出,他根据压电理论及压电方程对压电变压器的基本工作原理进行了阐述,并制成单层压电陶瓷变压器;之后数年,人们对压电变压器理论及其应用进行了广泛的研究,得到一些实际应用,但因特性欠佳,制造工艺不完善,成本较高等,未获得广泛的应用。
因此,20世纪60年代到70年代初可以看成压电变压器发展的初级阶段,仅限于单层压电陶瓷变压器。
1980年,中国科学家首先提出采用多层技术制造压电陶瓷变压器,并且制作出第一支多层压电陶瓷变压器,可简称MPT(MultilayerPiezoelectricTransformer)。
由于多层压电变压器具有独特的优点,更适合实际应用,因而引起各国科研人员的广泛关注。
随着电子陶瓷元器件制造技术的发展,尤其是多层陶瓷器件工艺技术的出现和日趋成熟,进入20世纪90年代,电子产品要求小型化、薄型化、高效化,多层压电变压器用于液晶显示器背光电源刚好满足了这些要求,并克服了传统电磁变压器的一些缺点,因此,以日本NEC,TDK,村田,日立金属等公司为代表的电子元器件厂家在该领域开展了大量研究,20世纪90年代末将压电变压器大量用于液晶显示器背光电源,标志着压电变压器制造技术及产业化已经成熟。
从20世纪80年代到90年代单层压电变压器技术进一步成熟,在一些小型高压电源中得到实际应用,如负离子发生器、臭氧发生器、静电喷涂等。
在我国,以清华大学材料系为代表的科研院所在20世纪70年代开始压电变压器的研究与开发,在压电变压器材料、结构、理论及制造工艺上取得一定的成果。
清华大学材料系作为在国际上最早从事多层压电变压器研究开发的机构,积极推动了我国多层压电陶瓷变压器的产业化进程。
压电陶瓷的工作原理及其应用
压电陶瓷的工作原理及其应用1. 什么是压电陶瓷嘿,朋友们,今天咱们就聊聊一个神奇的材料——压电陶瓷。
乍一听这个名字,可能会让你觉得有点高大上,但其实它可比你想的要简单有趣多了!压电陶瓷是一种能够把机械压力转化为电能的陶瓷材料。
听着是不是感觉像魔法?其实,这就是科学的魅力所在!它们就像是“电力小精灵”,无论我们是用手一碰,还是给它施加点压力,它们就能乖乖地输出电流,太神奇了吧!1.1 工作原理说到工作原理,咱们就要提到“压电效应”了。
简单来说,压电效应就是那些陶瓷在受到压缩时,内部的分子结构发生了变动,从而产生电荷。
这种原理就像我们玩橡皮泥,捏捏搓搓后,形状有了变化,当然,压电陶瓷一旦受到力的作用,电流便会流动起来!所以乍一看,这可不是一个传统的电池,但说它是一个“力”的发电机,应该是无可厚非的。
同样,它也能反向运作——当施加电压时,陶瓷会发生微小的形变,变得扭来扭去,宛如小舞者一样,摸起来可是特别有趣哦。
1.2 材料构成说到这里,有人可能会好奇,压电陶瓷到底是什么“做”的呢?实际上,它们一般是由一种叫做钛酸铅或锆钛酸铅的化合物制成的。
这些材料在高温下经过特殊处理,就能形成压电特性。
嘿,这听起来是不是好像科学实验室里那些复杂的步骤?别担心,这只是为我们赠送了这些神奇小玩意的“开机”密码!而且,压电陶瓷的种类也很多,像是单晶压电材料、陶瓷复合材料等等,各种各样的人才齐上阵,因为不同的应用需求,各有所长嘛。
2. 压电陶瓷的应用说完了原理,咱们再聊聊这些压电陶瓷到底能在哪儿派上用场。
其实,咱们的日常生活中,很多地方都藏着它们的身影哦。
比如说——声纳和麦克风,这些小玩意能把声波转化成电信号,或者把电信号转化为声波,而其中的关键材料就是压电陶瓷。
是不是感觉涨知识了呢?此外,在医疗器械中,超声波诊断仪也是用得上压电陶瓷,通过振动产生声波图像,助医生“大显神通”呢!2.1 家庭中的应用你还知道吗,在咱们的家庭中,压电陶瓷其实也贡献了不少力量呢!比如常见的点火器,尤其是在烧烤的时候,叮的一声,火就起来了,这可全靠压电陶瓷的的“点石成金”之功。
压电陶瓷的工作原理
压电陶瓷的工作原理
压电陶瓷的工作原理是基于压电效应。
压电效应指的是在某些特定的晶体材料中,在波长较长的外加电场作用下,晶体内部会发生一种变形,形成一个极化电场。
这种极化电场的强度与外加电场的强度成正比。
压电陶瓷由于具有压电效应,可以应用于多种电子器件中,如压电换能器、压电加速度计、压电驱动器等等。
其中,压电换能器是最常见的应用之一。
其原理如下:
1. 应变原理:当在压电陶瓷的两个表面施加压力时,压电陶瓷会产生应变,即发生微小的形变。
2. 极化原理:在压电陶瓷中,应变导致晶体结构发生畸变,使得晶体内部的电偶极发生重新排列,形成一个极化电场。
3. 外加电场原理:在已有的极化电场的基础上,通过施加外加电场,可以加强或减弱极化电场。
4. 接触原理:当压电陶瓷处于接触或贴近受控对象时,其发出的电场可以对受控对象施加力,从而实现控制或传感。
由于压电陶瓷具有可逆性,即在去除外加电场后,其极化电场也会消失。
因此,压电陶瓷可以根据外加电场的变化来实现形变和振动转化,从而将电信号转化为机械能,或将机械能转化为电信号。
这使得压电陶瓷在各种应用中具有广泛的用途。
压电陶瓷的工作原理
压电陶瓷的工作原理
压电陶瓷是一种应用于压电器件中的材料,具有压电效应。
其工作原理是基于压电效应,也即当施加压力或拉力时,压电陶瓷会产生电荷分离和电位变化的现象。
具体来说,压电陶瓷是由多晶型铁电陶瓷组成的,具有正、负极化特性。
在压力加之前,压电陶瓷处于自由状态,晶体内部的正负离子都是随机排列的,不存在电荷分离现象。
当施加压力或拉力时,压电陶瓷晶体内部的离子结构会发生畸变,正负离子发生位移,因此会产生电荷分离。
电荷分离导致了内部电位的变化,从而形成电势差。
该电势差可以产生电场,导致电势差的变化。
通过连接外部电路,可以将产生的电势差转化为电流或电压输出。
压电陶瓷广泛应用于传感器、驱动器、声学器件等领域。
其中,压电传感器是将物理量转化为电信号的装置。
当施加力或压力到压电传感器上时,它将产生电信号输出,用于测量、检测和控制目的。
综上所述,压电陶瓷通过压电效应产生电荷分离和电位变化,进而转化为电信号输出,实现各种应用。
它的工作原理基于压电效应,具有灵敏度高、频率响应快等特点,因此成为了许多领域中重要的材料。
压电陶瓷的基本原理和应用
压电陶瓷的基本原理和应用1. 压电陶瓷的定义压电陶瓷是一种具有压电效应的陶瓷材料,能够在受到力或压力作用下产生电荷并反之也能将电荷转换为力或位移。
它是一种特殊的功能陶瓷材料,具有压电效应、热释电效应和压阻效应等特性。
2. 压电陶瓷的基本原理压电效应是压电陶瓷的基本原理,它是指在某些特殊的材料中,当受到力或压力作用时,内部原子或分子发生畸变,产生极化,并形成正负电荷的分离。
当压力消失时,电荷又会聚集在一起。
压电陶瓷的基本原理可以用以下几个方面来解释:•压电效应:当施加压力时,陶瓷会产生电荷,并导致其内部结构的畸变。
•电压效应:当施加电压时,陶瓷会发生形变。
•应变效应:当施加外力时,陶瓷会产生与力大小相等的位移。
3. 压电陶瓷的结构和组成压电陶瓷通常由钛酸锆、铅锆酸钛、硅酸铅和双碱玻璃等高温烧结材料制成。
它的结构可以分为两个部分:•基体:主要由粒子组成的陶瓷基底,具有良好的断裂性能和机械强度。
•极化层:位于基体表面的极化层,负责传递外界压力或电场对陶瓷的刺激。
4. 压电陶瓷的应用领域由于其特殊的物理性质和压电效应,压电陶瓷在许多领域都有广泛的应用。
4.1 声学器件压电陶瓷广泛应用于声学器件中,如扬声器、听筒、麦克风等。
压电陶瓷的压电效应可以将电能转换成声能,可以将声音信号转化为电信号,实现声音的放大、传输和感应。
4.2 传感器压电陶瓷的应变效应使其成为理想的传感器材料。
压电传感器可以用于测量压力、力、加速度、形变等物理量,并将其转化为电信号进行采集和分析。
4.3 振动与控制压电陶瓷的振动和控制特性使其在仪器仪表、振动传感器和控制系统中有广泛应用。
它可以用于实现精确的振动控制,如减震、精密定位和振动补偿等。
4.4 超声波技术压电陶瓷的超声波性质使其在医疗、材料研究和工业领域中得到广泛应用。
压电陶瓷可以用于制造超声波发生器和传感器,实现超声波的产生、检测和测量。
4.5 压电陶瓷电源压电陶瓷可以利用压电效应将机械能转化为电能,用于制造压电陶瓷电源。
压电陶瓷的工作原理
压电陶瓷的工作原理
压电陶瓷是一种用于从事机械生产、测试和控制的电工器材,它的原理主要是由电子驱动的机械原理。
压电陶瓷是一种高纯度电子陶瓷,它能够在电压作用下产生机械能量。
压电陶瓷最重要的特点是它能够由电场来控制,这使它成为电动化控制中非常重要的一环。
压电陶瓷的工作原理是将输入的电场能量转变为机械能量,当输入一定大小的电场时,电场能量也会因此而发生变化,从而产生新的机械能量。
同样的,当电压发生变化时,压电陶瓷也会发生变化,从而使机械能量也会随着电压的变化而发生变化。
压电陶瓷的主要原理是电场控制机械能量变化,当电场变换时,压电陶瓷也会发生变化,从而使机械能量也会随着电场变化而发生变化。
为了增强其在电场控制中的作用,一般会在表面覆盖一层薄膜,以增加电压的变化率。
压电陶瓷的应用非常广泛,最常用的应用包括驱动机械、调节温度和压力、控制振动、用于激发音响及记录信号等。
压电陶瓷用于传动电磁器件,比如电机、气动马达、脉冲调节器,可提高应用的效率和性能,因此它是机械生产中不可缺少的一部分。
压电陶瓷还可以应用于某些电子设备上,如定位和跟踪,激光冲击器等。
它们能够把电场能量转变成机械能量,从而起到控制、定位和跟踪等功能。
以上就是压电陶瓷的工作原理,它是机械生产、测试和控制中非常重要的一环,具有广泛的应用前景。
今后,压电陶瓷可以被用于更
多的电气控制,发挥更大的作用,为机械控制技术的发展和应用贡献出自己的一份力量。
压电陶瓷变压器基本工作原理及特点
独石(多层)压电陶瓷变压器基本工作原理及特点在现代,压电陶瓷制品对我们并不陌生。
正压电效应的应用主要用于燃气点火器,如燃气灶.燃气打火机等的点火系统。
基本工作原理为:由外力压缩一个弹簧,压到顶点后释放,弹簧力推动一个重锤打击压电陶瓷柱产生一数千伏的高压火花,点燃可燃气体。
逆压电效应的应用主要用于压电蜂鸣器,例如音乐贺卡、门铃.寻呼机.移动电话机振铃等。
基本工作原理为:当在压电陶瓷片上施加一交变电场时,压电陶瓷片产生一相对应的形变即振动,当振动频率在音频波段内时就会发出对应的音响。
应用此特性配合机械谐振原理还大量用于制造谐振器、选频器、延迟线、滤波器等电子组件。
压电陶瓷变压器的基本构成则是将一压电蜂鸣器的应用与一压电点火器的应用组合起来,组成压电谐振子。
在蜂鸣器的一端(称为驱动端)输入一个与压电变压器谐振频率一致的正弦交变电压,压电谐振子产生振动,传导至点火器的一端(称为发电端),产生连续的正弦波电压,视乎于压电变压器的结构特征,可以是输入低电压、输出高电压(升压型),也可以是输入高电压、输出低电压(降压型)。
若在高频驱动电压上通过调制解调器加入低频调制,则可实现信号传输。
压电陶瓷变压器的基本结构形式如图(一)所示压电陶瓷是一种脆性材料,为保障其机械强度,压电变压器必须有一定的厚度,上述变压器的驱动电压就受到了相当的限制。
为此独石(多层)压电陶瓷变压器项目应运而生。
独石(多层)压电陶瓷变压器的基本结构形式如图(二)所示。
采用了独石(多层)结构后每一单层厚度和层数均可调,驱动电压不再受到限制,因而可以使压电变压器无论处在何种驱动电压下都能工作在最佳状态。
此项目的核心技术为亚微米低温烧结压电陶瓷材料、内电极共烧技术,极化处理技术及结构设计。
独石(多层)压电陶瓷变压器制备的工艺流程为工艺流程中所采用的通用及专用设备国内均可解决。
压电陶瓷的工作原理
压电陶瓷的工作原理
压电陶瓷是一种特殊材料,具有压电效应,即当施加电场或应力时,会产生电荷分布的不平衡,从而引起材料的形变或振动。
其工作原理可以概括为压电效应和反压电效应。
压电效应是指当压电陶瓷受到外界力或应力作用时,晶格发生微小的形变,使得晶格中的正负电荷分布不再平衡。
这种不平衡的电荷分布产生了电场,从而在压电陶瓷的两端产生一个电势差。
这个电势差就可以用来进行电信号的传输和控制。
反压电效应是压电效应的逆过程。
当在压电陶瓷上施加电压时,由于电场的作用,压电陶瓷内部的正负电荷发生重新排列,导致晶格发生相应的形变。
这种形变可以用来实现机械能到电能的转换,即将压电陶瓷的振动转化为电信号,常用于传感器和声波装置中。
压电陶瓷由于其独特的压电效应和反压电效应,广泛应用于多个领域。
例如,在传感技术中,可以将压电陶瓷用于压力传感器、加速度计和应变计等设备中。
此外,压电陶瓷还可以用于谐振装置、超声波发生器和压电陶瓷马达等。
总之,压电陶瓷的工作原理是基于压电效应和反压电效应,通过施加电场或应力来引发材料的形变和电荷分布,实现电能和机械能之间的转换。
这种特性使得压电陶瓷在多个领域具有广泛的应用潜力。
压电陶瓷的工作原理及应用
压电陶瓷的工作原理及应用1. 压电陶瓷的概述压电陶瓷是一种特殊的陶瓷材料,具有压电效应和逆压电效应。
在外力的作用下,压电陶瓷可以产生电荷分布的变化,从而产生电场;反之,当施加电场时,压电陶瓷也可以发生形变。
因此,压电陶瓷被广泛应用于压力传感、振动传感、声音放大等领域。
2. 压电陶瓷的工作原理压电效应是压电陶瓷的核心工作原理。
当外界施加压力或力对压电陶瓷施加变形时,会使陶瓷内部的晶体结构发生畸变,同时会引起电极上的电荷分布发生变化,导致产生电场。
反之,施加电场时,也会引起压电陶瓷的形变。
3. 压电陶瓷的应用领域3.1 压力传感•压电陶瓷可以将压力转化为电信号,常用于压力传感器。
通过测量压电陶瓷上的电荷变化,可以精确地测量压力的大小,广泛应用于工业、医疗、航空等领域。
3.2 振动传感•压电陶瓷具有较高的频率响应和灵敏度,可以将振动转化为电信号,常被应用于振动传感器。
通过对振动信号的监测和分析,可以实现故障诊断、结构健康监测等应用。
3.3 声音放大•压电陶瓷在声音放大器中起到了关键作用。
在压电陶瓷应用于扬声器时,施加电场可以使压电陶瓷发生形变,产生声音。
此外,将声音转化为电信号,再通过压电陶瓷放大的方式,可以实现音频放大的效果。
3.4 压电陶瓷驱动器•压电陶瓷驱动器是一种将电能转化为机械能的装置。
通过施加电场,将电能转化为压电陶瓷的形变,从而驱动其他机械设备的工作。
压电陶瓷驱动器在精密控制、精密位置传动等领域具有重要应用。
3.5 医疗领域•压电陶瓷在医疗领域中也有广泛应用。
例如,压电陶瓷可以应用于超声波探头中,将电信号转化为机械振动,实现超声波检测;还可以用于体外震波碎石设备中,将电信号转化为压力波,破碎体内结石等。
4. 压电陶瓷的优势和挑战4.1 优势•高灵敏度:压电陶瓷具有较高的灵敏度,可以将微小的压力、振动等转化为电信号。
•宽频带:压电陶瓷具有宽频带特性,可以应对不同频率范围的工作要求。
•高稳定性:压电陶瓷具有较高的稳定性,长期稳定工作不易受到环境因素的影响。
压电陶瓷变压器
压电变压器直流高压电源设计摘要压电陶瓷变压器是一种新型的压电换能器件,具有尺寸小,结构简单,不可燃,耐辐射,高可靠等优点。
压电变压器在电视显像管、雷达显示管、静电复印机、静电除尘、小功率激光管、离子发生器、高压极化等设备中得到广泛的应用。
本课题是研究压电变压器设计出10kV的直流高压电源。
当在压电陶瓷变压器输入端(驱动部份)加入交变电压时,通过逆压电效应,瓷片产生沿长度方向的伸缩振动,将输入电能转变为机械能;而发电部分则通过正压电效应将机械能转换为电能从而输出电压因瓷片的长度远大于厚度,故输出端阻抗远大于输入端阻抗,输出端电压远大于输入端电压.一般输入几伏到几十伏的交变电压,可以获得几千伏以上的高压输出.关键词:压电陶瓷变压器直流高压阻抗Design of Piezoelectric Transformer DChigh voltage power supply ABSTRACTPiezoelectric ceramic transformer is a new type of piezoelectric transducer device, the size is small, simple structure, non-combustible, resistance to radiation, high reliability. Piezoelectric Transformers in a television picture tube, radar showed tube, electrostatic copier, electrostatic dust, small power laser diodes, ion generator, high voltage polarization, and other equipment was widely used.The topic is the study piezoelectric transformer design of the 10 kV DC high voltage power supply. When the piezoelectric ceramic transformer input (some drivers) by adding alternating voltage, reverse piezoelectric effect. have artifacts along the length direction of the stretching vibration, the input energy into mechanical energy; and some power is through piezoelectric effect of converting mechanical energy to electrical energy so the output voltage for artifacts than the length of thickness, Therefore, the output impedance than input impedance, the output voltage than input voltage. General Fu few to a few tens of volts of alternating voltage, available thousands of volts above the high pressure output.Keywords:Piezoelectric Ceramic Transformer DC high voltageImpedance目录第一章综述 (1)1.1压电陶瓷变压器发展概况 (1)1.2压电陶瓷变压器研究进展 (2)1.3 压电变压器的应用 (5)1.4本课题研究的意义 (7)第二章压电陶瓷变压器的工作原理和基本特性 (9)2.1 压电陶瓷变压器的结构和工作原理 (9)2.2压电陶瓷变压器的等效电路 (11)2.3压电陶瓷变压器的工作特性 (12)第三章压电陶瓷变压器高压电源设计 (18)3.1设计思想 (18)3.2压电陶瓷变压器的选取和计算 (19)3.3电路的设计 (21)3.4驱动变压器的设计与计算 (22)3.5倍压整流电路的设计 (26)第四章压电陶瓷变压器高压电源性能测试 (28)第五章结论 (30)致谢 (31)参考文献 (32)第一章综述1.1压电陶瓷变压器发展概况压电变压器是20世纪50年代后期开始研制的一种新型压电器件,最早由c.A.Rosen于1956年发明。
压电陶瓷特点
压电陶瓷特点
压电陶瓷是一种特殊的陶瓷材料,具有压电效应,即在施加或取消机械压力时会产生电荷分布的变化。
以下是压电陶瓷的一些特点:
1. 压电效应:压电陶瓷的最显著特点是具有压电效应。
当施加压力或拉伸力时,其晶格结构发生变化,导致正电荷和负电荷在陶瓷内部的分布发生变化,从而产生电荷。
这个电荷分布的变化产生的电场使得压电陶瓷呈现出电荷的极性。
2. 压电材料应用广泛:压电陶瓷广泛应用于传感器、换能器、声波器件等领域。
例如,压电陶瓷可以用于制造压电传感器,用于检测和测量压力、力、温度等物理量。
3. 高频响应:压电陶瓷具有较高的频率响应能力,因此常被应用于声波器件,如扬声器、超声波发生器等。
4. 机械刚性好:压电陶瓷具有较好的机械刚性,可以在较大的压力范围内保持其稳定性,这使得它在一些需要耐高压力环境的应用中具有优势。
5. 温度稳定性:压电陶瓷具有相对较好的温度稳定性,能够在一定温度范围内保持压电效应的稳定性。
6. 易加工:压电陶瓷易于制备和加工,可以通过陶瓷成型和烧结等工艺进行制造,使其形成不同形状和尺寸的器件。
7. 良好的电机械能换能性能:压电陶瓷具有良好的电机械能换能性能,即可以将电能转换为机械能,也可以将机械能转换为电能。
8. 耐腐蚀性:压电陶瓷具有较好的耐腐蚀性,可以在一些特殊环境下使用。
总体而言,压电陶瓷以其独特的压电性能在多个领域有广泛的应用,从传感器到声学器件等,都发挥着重要的作用。
压电陶瓷变压器及其应用
压电陶瓷变压器及其应用压电陶瓷变压器是用铁电陶瓷材料经烧结和高压极化等工艺制成的一种新型电子变压器,其结构和工作原理与电磁绕线式等传统变压器是截然不同的。
人们对压电陶瓷变压器的研究始于20世纪50年代中后期。
美国的Rosen于1956年阐述了压电陶瓷变压器的基本原理,并制备出长条形单片压电陶瓷变压器。
由于当时的这种变压器采用的是压电性能差和居里温度低的钛酸钡(BaTiO3)材料,功率太小,成本也太高,并且工艺不成熟,因而未能引起人们的重视。
在20世纪60年代到70年代初,关于压电陶瓷材料的研究取得了一些进展,在70年代压电陶瓷变压器发展成为一种新型的电子陶瓷变压器,并在80年代被推广应用到电视机、雷达终端显示器等的高压电源领域。
这一时期,人们对与压电陶瓷变压器相关的最熟悉的产品就是压电陶瓷蜂鸣器和点火棒。
进入90年代中期后,随着信息产业的迅猛发展及电子产品朝轻、薄、短、小方向发展的趋势,使得压电陶瓷变压器技术与产业得到长足进步和发展。
1、压电陶瓷变压器的结构与工作原理压电变压器的工作原理基于压电材料的压电效应。
压电效应是法国的P?Curie和J?Curie兄弟在1880年研究铁电性和晶体对称性的关系时发现的一种物理现象。
除了单晶体外,压电陶瓷多晶体和某些非晶固体等也具有压电效应。
压电效应分正和逆两种类型。
正压电效应是指在压电体上加一个机械应力时,会使压电体极化并在一定的表面形成电荷的效应。
压电陶瓷棒就是利用正压电效应工作的,给压电棒加上机械压力,在点火棒两端即有高压产生。
逆压电效应是指在压电体上有一个外加电场时,晶体会发生形变和振动,这一现象就是逆压电效应。
压电陶瓷蜂鸣器就是利用逆压电效应工作的,给压电陶瓷片加上电压信号,将会使陶瓷片振动并发出声音。
压电陶瓷变压器是利用同一压电陶瓷并同时利用正压电效应和逆压电效应来工作的,即完成电能——机械能和机械能——电能的两次能量转换。
压电陶瓷变压器所使用的压电陶瓷材料除了BaTiO3外,还有PZT系压电陶瓷、三元系压电陶瓷(如铌镁钴钛酸铅系、铌锌锆钛酸铅系、碲锰锆钛酸铅系、锑锰锆钛铅酸系等)及四元系压电陶瓷[如Pb(Sn1/3 Nb2/3)A (Zn1/3 Nb2/3)B TiCZrdO3)等]。
压电变压器工作原理
压电变压器工作原理压电变压器是一种利用压电效应来实现电能转换的装置。
它工作原理简单而又有效,被广泛应用于各种电子设备中。
压电效应是一种将压力转化为电能的现象。
当某些晶体材料(如石英、钽酸锂等)受到外界压力作用时,其内部的正负电荷分布会发生改变,从而在晶体的两个相对表面上形成电荷差。
这个电荷差会产生一个电场,并导致晶体的两端产生电压。
这个现象称为压电效应。
压电变压器利用了压电效应的这一特性。
它由压电陶瓷片和金属片交替堆叠而成。
当外界施加压力时,压电陶瓷片会发生形变,从而产生电荷差。
金属片则起到导电的作用,将电荷传递到负载上。
压电变压器的工作原理可以分为两个步骤。
首先,当外界施加压力时,压电陶瓷片会变形,使晶体内部的电荷分布发生改变。
这个变形可以是线性的,也可以是非线性的,取决于材料的特性和施加的压力。
接下来,金属片将电荷从压电陶瓷片传递到负载上。
金属片的导电性能使得电荷能够顺利地流动。
同时,压电陶瓷片和金属片之间的电荷差会产生一个电压,这个电压可以根据外界施加的压力大小来调节。
压电变压器的输出电压可以通过改变施加的压力来调节。
当施加的压力增大时,输出电压也会相应增大。
这使得压电变压器可以根据需要在一定范围内调整输出电压。
压电变压器具有很多优点。
首先,它具有快速响应的特性,可以在短时间内产生电压。
其次,压电材料具有稳定的性能,不易受到温度和湿度等环境因素的影响。
此外,压电变压器还可以实现高精度的电能转换,使其在精密仪器和电子设备中得到广泛应用。
然而,压电变压器也存在一些局限性。
首先,压电陶瓷片的形变是有限的,不能无限制地增加输出电压。
其次,压电变压器的输出电压受到外界压力的影响,容易受到振动和冲击的干扰。
此外,压电材料的制备成本较高,限制了压电变压器在大规模应用中的推广。
压电变压器是一种利用压电效应来实现电能转换的装置。
它通过施加压力使压电材料产生电荷差,并将电荷传递到负载上,从而实现电能的转换。
压电变压器具有快速响应、稳定性好和高精度等优点,但也存在形变有限、受到外界干扰和制备成本较高等局限性。
压电陶瓷片的原理及特性
压电陶瓷片的原理及特性
压电陶瓷片是一种具有压电效应的陶瓷材料,其原理基于压电效应的物理特性。
压电效应是指在某些材料中,当这些材料受到力或压力作用时,会产生电荷分离,从而产生电势差。
具体来说,压电陶瓷片由许多微小的、高度有序排列的、带电荷的晶体单元组成。
在正常情况下,这些电荷平衡分布,不存在净电荷。
当外力或压力作用于压电陶瓷片上时,晶体单元会被压缩或拉伸,导致电荷的不平衡。
这种不平衡的电荷分布产生了一个电势差,即压电效应。
压电陶瓷片具有以下特性:
1. 压电效应:压电陶瓷片可以将机械能转化为电能,或者将电能转化为机械能。
当外力施加到陶瓷片上时,它会产生电势差,可以用作传感器或驱动器件。
2. 快速响应:压电陶瓷片的响应速度很快,可以在微秒级别做出响应。
这使得它在一些需要快速反应的应用中非常有用。
3. 宽频响范围:压电陶瓷片可以在较宽的频率范围内工作,从几赫兹到几百兆赫兹。
这使得它在声波传感、振动控制等领域有广泛的应用。
4. 高机械品质因数:压电陶瓷片具有较高的机械品质因数,即能量在压电材料中的耗散程度很低。
这意味着它可以高效地转换电能和机械能,并具有良好的能量转移特性。
5. 耐高温性:压电陶瓷片具有较高的耐高温性能,可以在高温环境下使用。
这使得它在一些特殊应用场景中具备优势。
综上所述,压电陶瓷片通过压电效应将机械能转化为电能或将电能转化为机械能。
它具有快速响应、宽频响范围、高机械品质因数和耐高温性等特点,广泛应用于声学、振动控制、传感器及驱动器件等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
独石(多层)压电陶瓷变压器基本工作原理及特点
在现代,压电陶瓷
制品对我们并不陌
生。
正压电效应的应用主要用于燃气点火器,如燃气灶.燃气打火机等的点火系统。
基本工作原理为:由外力压缩一个弹簧,压到顶点后释放,弹簧力推动一个重锤打击压电陶瓷柱产生一数千伏的高压火花,点燃可燃气体。
逆压电效应的应用主要用于压电蜂鸣器,例如音乐贺卡、门铃.寻呼机.移动电话机振铃等。
基本工作原理为:当在压电陶瓷片上施加一交变电场时,压电陶瓷片产生一相对应的形变即振动,当振动频率在音频波段内时就会发出对应的音响。
应用此特性配合机械谐振原理还大量用于制造谐振器、选频器、延迟线、滤波器等电子组件。
压电陶瓷变压器的基本构成则是将一压电蜂鸣器的应用与一压电点火器的应用组合起来,组成压电谐振子。
在蜂鸣器的一端(称为驱动端)输入一个与压电变压器谐振频率一致的正弦交变电压,压电谐
振子产生振动,传导至点火器的一端(称为发电端),产生连续的正弦波电压,视乎于压电变压器的结构特征,可以是输入低电压、输出高电压(升压型),也可以是输入高电压、输出低电压(降压型)。
若在高频驱动电压上通过调制解调器加入低频调制,则可实现信号传输。
压电陶瓷变压器的基本结构形式如图(一)所示
压电陶瓷是一种脆性材料,为保障其机械强度,压电变压器必须有一定的厚度,上述变压器的驱动电压就受到了相当的限制。
为此独石(多层)压电陶瓷变压器项目应运而生。
独石(多层)压电陶瓷变压器的基本结构形式如图(二)所示。
采用了独石(多层)结构后每一单层厚度和层数均可调,驱动电压不再受到限制,因而可以使压电变压器无论处在何种驱动电压下都能工作在最佳状态。
此项目的核心技术为亚微米低温烧结压电陶瓷材料、内电极共烧技术,极化处理技术及结构设计。
独石(多层)压电陶瓷变压器制备的工艺流程为
工艺流程中所采用的通用及专用设备国内均可解决。
独石(多层)压电陶瓷变压器(MPT)是第三代电子变压器,具
有
1. 超薄:厚度一般不超过4毫米
2. 转换效率高:满载时达97%以上(电阻性负载)
3. 具有负载短路自动截止工作的自保护特性
4. 谐振变压器:可实现零电压,零电流转换
5. 对于低阻负载具有准恒流输出特性
6. 无反峰压,可靠保护功率放大电路
7. 无电磁干扰
8. 无线圈击穿、霉断
9. 抗盐雾,耐候性好尤其适于海洋性气候使用
等特点。