电力系统MATLAB仿真实训说明书——输电线路双端故障测距仿真
Matlab中的电力系统仿真方法
Matlab中的电力系统仿真方法引言:随着电力系统的迅速发展和复杂性增加,电力系统仿真成为电力工程研究和设计的重要工具。
Matlab作为一种强大的数学计算工具,为电力系统仿真提供了丰富的功能和灵活性。
本文将探讨在Matlab中进行电力系统仿真的方法和技术,以及如何利用Matlab解决电力系统设计和优化的问题。
一、概述电力系统仿真是一种模拟电力系统运行和行为的技术,能够帮助分析和解决电力系统中的各种问题。
Matlab在电力系统仿真中具有广泛的应用,提供了强大的建模和计算功能。
利用Matlab进行电力系统仿真可以有效地模拟电力系统的运行和优化算法的性能,为电力系统的设计和运行提供重要参考。
二、电力系统建模在进行电力系统仿真之前,需要对电力系统进行准确的建模。
Matlab提供了各种建模工具和函数,可以用于描述电力系统中的各种元件和拓扑结构。
例如,可以使用Matlab的电路元件库模型化发电机、变压器、线路和负荷等元件,并使用节点和支路等数据结构描述电力系统的拓扑。
同时,Matlab还提供了用于构建电力系统模型的函数和工具箱,如Power System Toolbox和Simulink Power System Blockset。
这些工具提供了模型建立、参数设定和仿真运行等功能,方便用户创建和分析电力系统模型。
三、电力系统仿真技术1. 静态潮流计算静态潮流计算是电力系统仿真中常用的一种方法,用于研究电力系统的潮流分布和电压稳定性等问题。
Matlab提供了多种求解潮流计算的方法,例如基于牛顿-拉夫逊法的Power Flow Toolbox和基于改进迭代法的Fast-Decoupled Power Flow。
这些方法可以通过Matlab编程实现,计算电力系统中各节点的电压、相角和功率等参数。
利用这些计算结果,可以评估电力系统的稳定性、检测潮流拥挤和进行电力负荷分析等。
2. 动态稳定分析动态稳定分析是研究电力系统在暂态和稳态过程中的稳定性问题。
(完整word版)电力系统线路故障分析仿真模拟实验
同步发电机、三相变压器、线路的分布参数、三相电压源、三相串联RLC负载、三相电压电流测量元件、三相短路元件以及仿真参数等的参数一律按照课本上的设置。
短路均发生在0.03s,自动重合闸发生在0.08s。
2.仿真结果:
系统图如下图所示
仿真图如下图所示
1、三相短路时的电压和电流
2、两相短路时的电压和电流
电力系统线路故障分析仿真模拟实验
一Байду номын сангаас实验目的
通过MATLAB仿真实验深刻了解电力系统线路的几种故障分析,并学习仿真的实现过程。
二、实验内容
电力系统线路故障分析仿真模拟实验
三、实验步骤
在MATLAB的command window窗口输入powerlib单击Enter键,则MATLAB软件中弹出Library:powerlib对话框(电力系统元件);再利用Start导航区启动simulink,在出现窗口中按照电路图搜索需要的仿真器件。
3、两相接地
4、单相接地短路时
四、实验心得
通过本学期的实验练习,我现在已经对MATLAB的操作有了基本的了解。在操作过程中,基本上可以顺利的将电路模型搭建完成并进行仿真,尽管前期进行的顺利,但难免会在仿真参数的设置上出一些问题,一旦出现问题,就会与周边同学讨论或向老师请教,最终把问题解决,得到应有的仿真图形。我相信在将来的工作中我会用到我所学的知识,积极投身社会建设中去的。
基于Matlab 的电力系统故障的仿真分析
基于Matlab 的电力系统故障的仿真分析计算机仿真技术已成为电力系统研究、规划、设计和运行等各个方面的重要方法和手段,由于Matlab 具有很良好的开发性、高效的数据仿真分析, 特别是信号处理和直观的图形显示功能,且Matlab/ Simulink 环境下的PSB 模型库及Simulink强大的二次开发功能和丰富的工具箱,能快速而准确地对电路及更复杂的电气系统进行仿真、计算. 因此,它已成为电力科研工作者和工程技术人员应用它来进行电力系统有关问题的仿真分析和辅助设计的理想工具.文章介绍了Matlab/ Simulink 的基本特点及应用Matlab 进行电力系统仿真分析的基本方法和步骤,探讨了综合利用其Simulink 环境、电力系统模块库和相关工具进行电力系统的控制设计和仿真分析,通过对具有同步发电机光控励磁系统的电力系统故障仿真分析,说明了Matlab 在电力系统仿真中强大的功能.1 应用Matlab/ Simulink 进行电力系统仿真分析的基本方法1. 1 Simulink 环境下仿真工具图形编辑器( Power System Blockset 以下简称PSB) 是一个图形编辑器工具,在Simulink 环境下能建立电力系统原理并进行仿真计算. PSB 库提供了电力系统仿真通用的元件和装置,包括RLC支路和负载、变压器、传输线、避雷器、电机、电力电子装置等. 只需通过点击和拖放PSB 库内的模型即可建立用户所需要的电力系统仿真原理图,并利用模型元件的对话框来设置相关参数. 使用Simulink 提供的示波器模型,可显示观测点处的仿真结果及其波形.1. 2 模型库根据电力系统各种电气设备特性,可将PSB 库内的模型分为电源、元件、电力电子器件、电机、连接器和测量等部分. 元件包括单相RLC 支路和和负载模块、变压器、互感器、π型传输线、避雷器、断路器、n 相分布参数线路模型等. 利用Simulink 二次开发功能,可方便地编辑出更复杂的元件模型和集成参数对话框. 电力电子包括通用的半导体元件,每个元件(除二极管外) 都有门极控制输入端和Simulink 输出端,可显示开关的电压和电流值. 电机包括简化的和详细的同步电机、异步电机、励磁机、永磁同步电机和涡轮机等. 每个模块有一个Simu2link 输出来显示内部变量状态值.1. 3 仿真方法和步骤Matlab 实现对电力系统的仿真和分析至少有二种独立的方法.1) 传统的编程方法,即通过大量的代码来实现电力系统的建模、稳态计算和暂态分析等等;但由于Matlab 提供了用户可以直接调用已有的高性能数值计算. 如矩阵求逆、数值微积分等等,较使用C 或Fortran 语言开发其源程序却要简洁得多,可节省大量内存空间和开发时间.2) Simulink 平台上进行仿真分析,按建模方法分为器件级仿真(又称为物理建模) 和系统仿真(又称为数学建模) . 其中器件级仿真是利用Mat2lab 的PSB 中固有元件模型构建新元件的物理模型,该方法一般适用于探讨元件的内部性能;系统仿真是利用MatlabPSimulink 中的控制模块来构建新元件的数学模型,该方法是研究元件的外部特性. 在MatlabPSimulink 平台上,借助于鼠标点击和拖放以及一些必要的参数设置即可实现对电力系统的稳态和暂态分析,并可方便地研究各种先进的控制方法对电力系统的控制效果. 实际上,在实际应用中,特别是对复杂电力系统的仿真分析,两种方法通常交替融合使用.应用Matlab 进行电力系统仿真的主要步骤为:a 系统模型的建立;b 设置仿真参数和控制算法的实现;c 进_______行动态仿真(包括稳态分析和暂态仿真) ;d 结果分析.2 仿真实例使用Matlab6. 0 的Simulink 建立单机对无穷大系统的仿真模型如图(1) 所示.单机即光控励磁图1 光控励磁同步发电机系统故障模型系统同步发电机[1 ] ;无穷大系统模型,用powerlib中inductive source with neutral 模块表示;发电机模型(synchronous machine) 、变压器模型(linear trans2formerd ,yg) 以及调速系统模( hydraulic turbineand governor 即HTG) ;系统负荷10mV;故障时间由Timer 模块控制. powergui 模块中的machine loadflow ;Bus type 为pv generator ;仿真参数如下:同步发电机容量200MW ;UAB = 15. 75kV;变压器容量240MVA;电压变比15. 75kVP230kV.其仿真结果:当Fault 模块为单相故障时,模块内部构成如图2 (a) 所示,以A 相故障为例.其中负荷为10MW, 选择SimulationPStart 按钮,开始仿真. 在t = 1s 发生故障切除后母线电流、电压波形,用Matlab6. 0 中Subplot 及Plot 命令绘出仿真结果,如图3 (a) 所示.当Fault 模块为两相接地故障时,见图2 (b) ,以A、B 两相短路,测得A 相电压、电流波形,如图3 (b) 所示.当Fault 模块为三相接地故障时,见图2 (c) ,测得A 相电压、电流波形,如图3 (c) 所示.由上述三种短路故障时的仿真波形图可看出光控励磁系统同步电机- 无穷大系统在故障过程中的动态响应过程,恢复正常运行时的电压基准值相对稳定.图2 Fault 模块故障模型图3 故障电压波形图压力锅的强度就由该部位控制. 从计算结果可以看到,当锅内压力为80KPa 时,牙边缘处的应力是88. 7MPa ,而当锅内压力达到泄压压力160KPa 时,该处的应力达到177. 4MPa. 因此,如何降低锅牙处的应力成为压力锅设计与分析的一个焦点.3) 压力锅其余部位的应力在表1 中均不大.如,当锅内压力达到160KPa 时,锅底部分的应力是34. 3MPa ,牙槽部分是47. 4MPa ,离材料的极限应力较远,具有较多的安全储备. 但若考虑到压力锅长期使用下的疲劳以及锅底受热部分在高温下材料性质的降低,则该应力也就是恰当的应力水平了.4 结论利用有限元软件ANSYS 对压力锅进行了三维应力分析,部分数据与薄壁圆桶计算结果对比,本文计算结果是可靠的. 牙体及附近是压力锅的最大应力所在部位,其最大应力在报警压力时达到177MPa ,当锅内压力进一步增大时,该应力还将增加,直至达到屈服应力和破坏应力而造成压力锅“爆锅”. 因此,在压力锅设计时,应对牙部仔细分析,以降低牙部的应力,增加压力锅的安全性.参考文献:[1 ] GB13623~2003 ,铝压力锅安全及性能要求[ S] .[2 ] 王勖成,邵敏. 有限单元法基本原理和数值方法[M] 北京:清华大学出版社. 1997. 97~98.[3 ] 刘鸿文. 材料力学[M] . 北京:高等教育出版社,1992.285~289.[4 ] 龚曙光. ANSYS 工程应用实例解析[M] 北京:机械工业出版社,2003. 103~117.(上接第47 页)结论通过对整个系统的仿真,可以得到以下结论:1)Matlab6. 0 中的PSB 是一种专门应用于电力系统动态仿真的工具箱,其中的电力系统的元件模型相当丰富,模糊逻辑控制可通过工具箱中用户界面建立的模糊推理系统FIS(Fuzzy InferenceSystem) 来实现,用户还可以利用Matlab 本身的一些工具来建立自定义模型.2) 当改变元器件本身的参数,如电机的功率、转子和定子的电阻、电感,负载的功率、变压器的容量等,就能实现对电力系统不同工况下运行过程的仿真分析,便于对不同参数和负载情况进行比较.3) 利用Matlab 可以方便地进行电力系统潮流计算、稳态分析、暂态仿真和新元件的设计及测定. 界面灵活、开放直观、互动性强等优点.4) 由于PSB 简化了开关元件的处理,认为是理想模型,在提高仿真速度、简化电路设计的同时,对系统的暂态过程描述不够精确.参考文献:[1 ] 盛义发,邓国扬,王浩宇,等. 同步发电机新型励磁系统的研究[J ] . 南华大学学报,2002 (4) :24~27.[2 ] 邓国扬,盛义发. 基于MatlabPSimulink 的电力电子系统的建模与仿真[J ] . 南华大学学报,2003 (1) :1~6.[3 ] 清源计算机工作室.Matlab6. 0 基础及应用[M] . 北京:机械工业出版社,2001.[4 ] 何仰赞,温增银,汪馥英,等. 电力系统分析[M] . 武汉:华中理工大学出版社,1996.。
基于MATLABSimulink的电力系统仿真实验
基于MATLAB/Simulink的电力系统故障分析10kv系统三相短路分析三相短路(以中性点不接地系统模型为类)模块搭建:三相短路各元件参数设置如下:三相短路仿真波形如下:如图1——a、b、c三相短路电流仿真波形图分析:正常运行时,a、b、c三相大小相等,相位相差120度。
发生三相短路时,a、b、c三相电压全如图2——线路1的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I。
如图3——线路1的零序电压分析:在没有故障时,没有零序电压,突然出现故障时,零。
序电流为故障电压的3倍,为3U如图4——线路1的故障相电压如图5——线路3的零序电流如图6——线路3的短路电流如图7——三相对称电源电压如图8——线路2的零序电流分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。
如图9——三相对称电源电流如图10——三相对称电源零序电压如图11——一相短路电流10kv系统两相短路分析仿真模块搭建同三相短路,只有三相故障模块参数改变如下:注:a、b两相短路分析:两相短路原理同三相短路,两相短路复合序网图是无零序并联网,短路两相电压相等,电流互为相反数,非故障相电流为零。
零点漂移轨迹的验证一理论分析对于以下简单的中性点不接地系统,当其发生单相接地故障时,各量之间满足以下关系:其中,分别表示A、B、C三相对O’点的导纳则用复数形式可表示为其相量关系如下图:则可得所以,可以推出中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.二matalab仿真模型搭建类似单相短路电源参数设置消弧线圈参数设置其它参数设置类似单相接地短路短路,但是接下来不知该怎么把它的参数通过图形描述出来,以此证明中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.如下图:。
电力系统MATLAB仿真实训说明书——输电线路双端故障测距仿真
电力系统MATLAB仿真实训说明书——输电线路双端故障测距仿真————————————————————————————————作者:————————————————————————————————日期:燕山大学课程设计说明书题目:输电线路双端故障测距仿真学院(系):年级专业:学号:学生姓名:指导教师:教师职称:燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:电力工程系学号学生姓名专业(班级)设计题目输电线路双端故障测距仿真设计技术参数测距方法大致分3大类:行波法、阻抗法和故障分析法,其中建立在工频电气量基础之一的阻抗算法目前得到了广泛的工程应用。
在掌握双端测距基本原理的基础上,搭建输电线路MATLAB故障测距仿真模型,分析不同的故障、故障距离、两侧电源相位差和接地过渡电阻对测距结果的影响。
具体参数见参考资料。
设计要求1.搭建输电线路MATLAB故障测距仿真模型,分析不同的故障、故障距离、两侧电源相位差和接地过渡电阻对测距结果的影响;2.遵守实训期间的纪律要求,独立完成实训任务,;3.撰写实训总结报告一份(不少于五千字),要求有理论分析和仿真结果,文字符号符合国家现行标准。
工作量1.学会使用MATLAB/SIMULINK电力系统仿真工具箱;2.独立完成仿真电路设计、连接与调试;3.参加答辩并完成实训报告。
工作计划1.学习使用MATLAB/SIMULINK电力系统仿真工具箱,下发任务书;2.完成实训内容的原理分析与电路设计;3.在MA TLAB仿真平台上进行电路连接、调试并验收。
4.参加答辩并撰写实训报告。
参考资料1.吴天明. MA TLAB电力系统设计与分析. 国防工业出版社2.毕潇, 李学农, 陈延枫, 等. 一各双端故障测距算法的仿真及现场实例分析.高电压技术, 2006, 32(3):105-1073.自查资料指导教师签字基层教学单位主任签字说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
matlab在电力系统线路故障仿真中的应用
一、概述1. 电力系统在现代社会中扮演着至关重要的角色,而线路故障是影响电力系统稳定性和可靠性的重要因素之一。
2. 仿真技术在电力系统线路故障研究中起着至关重要的作用,而matlab作为一种强大的数学工具,被广泛应用于电力系统仿真中。
二、matlab在电力系统仿真中的基本原理1. matlab作为一种数学建模与仿真工具,在电力系统仿真中可利用其强大的计算和可视化功能。
2. 电力系统仿真中的基本原理包括系统建模、参数设置、仿真算法选择等。
三、matlab在电力系统线路故障仿真中的具体应用1. matlab上线路故障模拟中的原理与方法1.1 研究线路故障对电力系统的影响需要进行故障模拟,而matlab可通过建立系统模型来模拟不同类型的线路故障。
1.2 matlab可通过编程实现故障过程中的系统参数变化、电压电流波形变化等仿真过程。
2. matlab上线路故障分析中的应用2.1 通过matlab进行线路故障仿真后,可利用其数据分析和可视化功能对故障过程进行分析,包括电压、电流、功率等参数的变化规律。
2.2 matlab可绘制出故障瞬态过程中的波形图、相量图等,为故障分析提供直观的数据支持。
3. matlab上线路故障处理与优化中的应用3.1 通过matlab仿真分析线路故障后,可对电力系统的保护装置和故障处理方案进行优化,提高系统的可靠性和稳定性。
3.2 matlab可通过仿真结果对系统的故障处理方案进行验证和优化,为现场操作提供科学依据。
四、matlab在电力系统线路故障仿真中的发展趋势1. 面向大规模电力系统的仿真1.1 matlab在电力系统仿真中的应用已经逐渐向着大规模和复杂系统发展,如超高压输电系统的仿真研究。
2. 面向多元化仿真需求2.1 随着电力系统技术的不断创新,matlab在电力系统线路故障仿真中的应用也将面临更多元化的仿真需求,如新能源系统的仿真研究。
五、结论1. matlab作为一种强大的数学工具,在电力系统线路故障仿真中发挥着重要作用。
电力电子的matlab仿真实验指导书(改)【精选文档】
“电力电子”仿真实验指导书MATLAB仿真实验主要是在simulink环境下的进行的。
Simulink是运行在MATLAB环境下,用于建模、仿真和分析动态系统的软件包。
它支持连续、离散及两者混合的线性和非线性系统。
由于它具有直观、方便、灵活的特点,已经在学术界、工业界的建模及动态系统仿真领域中得到广泛的应用。
Simulink提供的图形用户界面可使用鼠标的拖放操作来创建模型。
Simulink本身包含sources、sinks、Discrete、math、Nonlinear和continuous 等模块库。
实验主要使用Sinks、Sources、Signals & System和Power System Blockset这四个模块库中的一些模块搭建电力电子课程中的典型电路进行仿真。
在搭建成功的电路中使用scope显示模块显示仿真的波形、验证电路原理分析结果。
这些典型电路包括:1)单相半波可控整流电路(阻性负载和阻感负载)2)单相全控桥式整流电路(阻性负载和阻感负载)3)三相全控桥式整流电路(双窄脉冲阻性负载和双窄脉冲阻感负载)4)降压斩波电路、升压斩波电路5)三相半波逆变电路、三相全波逆变电路。
一、matlab、simulink基本操作多数学生在做这个实验是时候可能是第一次使用matlab中的simulink来仿真,因此下面首先介绍一下实验中要掌握得的一些基本操作(编写试验指导书时所使用的matlab6.1版本)。
若实验过程中使用matlab的版本不同这些基本操作可能会略有不同。
图0-1 matlab启动界面matlab的启动界面如图0—1所示,点击matlab左上方快捷键就可以进入simulink程序界面(在界面右侧的Command Window中输入simulink命令回车或者在Launch Pad窗口中点击simulink子菜单中Library Browser都可以进入simulink程序界面)如图0—2所示.+图0-2 simulink程序界面1。
Matlab技术在电力系统仿真中的应用指南
Matlab技术在电力系统仿真中的应用指南I. 引言电力系统仿真是电力领域中重要的研究工具之一。
它能够帮助电力工程师、研究人员和决策者分析电力系统的运行情况,评估系统的稳定性和可靠性,并进行优化和规划。
在电力系统仿真中,Matlab技术被广泛应用,本文将探讨Matlab在电力系统仿真中的具体应用指南。
II. 电力系统建模与仿真在电力系统的仿真过程中,建模是关键。
Matlab提供了一系列强大的工具和函数,用于电力系统的建模和仿真。
电力系统通常可以分为三个主要的子系统:发电系统、输电系统和配电系统。
每个子系统都有其特定的建模需求。
1. 发电系统建模发电系统的建模包括发电机、励磁系统和稳定器的建模。
Matlab提供了多种建模方法,如传递函数模型、状态空间模型和非线性模型。
用户可以根据实际情况选择合适的建模方法,并使用Matlab的仿真工具进行系统稳定性和响应性能的评估。
2. 输电系统建模输电系统建模是电力系统仿真中的一个关键环节。
Matlab提供了强大的电力网络建模工具,可以用来建立输电线路、变压器和各种网络拓扑结构。
用户可以通过Matlab的图形用户界面或脚本语言来创建并配置电力网络模型,然后进行仿真分析。
3. 配电系统建模配电系统建模是电力系统仿真的最后一个环节。
Matlab提供了用于建立配电系统的工具和函数。
用户可以使用Matlab的电力系统模块来创建配电网络模型,并进行负载流、短路分析、电能质量评估等仿真计算。
这些模型和仿真分析结果可以帮助用户评估配电系统的可靠性和效益。
III. 电力系统模拟与分析在电力系统仿真中,模拟和分析是非常重要的步骤。
Matlab提供了各种仿真和分析工具,用户可以利用这些工具来模拟电力系统的运行情况,并评估系统的性能。
1. 稳定性分析电力系统的稳定性是电力系统仿真中的一个关键指标。
Matlab提供了用于稳定性分析的工具,可以帮助用户评估电力系统的电压稳定性和频率稳定性。
第五章MATLAB在电力系统故障分析中的仿真实例.pptx
6)Transition status和Transition times用来设置转换状态和转换时间; 其中,Transition status表示故障开关的状态,通常用“1”表示闭 合, “0”表示断开;Transition times表示故障开关的动作时间; 并且每个选项都有两个数值,而且它们是一一对应的。 7)Snubbers resistance和snubbers Capacitance用来设置并联缓冲电 路中的过渡电阻和过渡电容。 8)Measurements 用来选择测量量。
图5-3 无穷大功率电源供电系统的Simulink仿真图
表5-1 图5-3仿真电路中各模块名称及提取路径
图5-4 电源模块的参数设置
图5-5 采用有名值时变压器模块的参数设置
图5-6 采用标幺值时变压器模块的参数设置
图5-7 输电线路模块的参数设置
图5-8 三相电压电流测量模块
图5-9 三相线路故障模块参数设置
5.1.3 仿真结果及分析
图5-10 变压器低压侧三相短路电流波形图
5.2 同步发电机突然短路的暂态过程仿 真
5.2.1 同步发电机突然三相短路暂态过程简介 5.2.2 同步发电机突然三相短路暂态过程的数值计算与仿真方法
无阻尼绕组同步发电机三相短路电流计算
有阻尼绕组同步发电机三相短路电流计算
第5章 MATLAB在电力系统故障分析中 的仿真实例
5.1 无穷大功率电源供电系统三相短路仿真 5.2 同步发电机突然短路的暂态过程仿真 5.3 单相短路故障仿真
5.1 无穷大功率电源供电系统三相短路 仿真
5.1.1 5.1.2 5.1.3
无穷大功率电源供电系统三相短路的暂态过程 无穷大功率电源供电系统仿真模型构建 仿真结果及分析
(完整版)电力电子技术MatLab仿真.
本文前言MATLAB的简介MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。
随着版本的升级,内容不断扩充,功能更加强大。
近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。
MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。
MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。
在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。
MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。
如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。
MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。
现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。
基于MATLAB的电力系统故障仿真与检测技术研究
基于MATLAB的电力系统故障仿真与检测技术研究电力系统是一个复杂的动态系统,在运行过程中,经常会发生故障。
本论文针对电力系统常见的4种短路故障(三相短路、单相接地、两相短路、两相短路接地)进行了理论分析,并利用MATLAB/Simulink 仿真软件搭建出了仿真模型,仿真出了4种短路故障短路点的电压与电流波形,而且,利用三相序量分析器将短路点电压与电流分解得到了A相的正序、负序和零序分量,结果表明,仿真与理论分析相一致。
通过比较不同故障短路点的电流波形可知,三相短路故障短路点电流最大,危害最严重;通过比较不同故障短路点的电压与电流序分量波形可知,单相接地短路故障和两相接地短路故障均含有正序、负序和零序分量;而两相短路故障只含有正序和负序分量。
最后介绍了常用的短路电流检测方法,重点研究了利用负序和零序分量的短路电流检测方法,研究表明:以负序分量为特征量的检测方法在各种情况下,从反应程度和快速性上来说都十分理想。
目录1引言 (2)1.1研究背景和意义 (2)1.2本论文主要工作 (3)2电力系统故障类型及理论分析 (3)2.1电力系统的构成 (3)2.2故障概述 (4)2.3各种短路故障的理论分析 (5)2.3.1三相短路故障的分析 (5)2.3.2单相接地短路故障的分析 (8)2.3.3两相短路故障的分析 (10)2.3.4两相接地短路故障的分析 (12)2.4本章小结 (14)3基于MATLAB的故障仿真分析 (15)3.1 MATLAB简介 (15)3.1.1概述 (15)3.1.2 MATLAB的电力系统工具箱介绍 (15)3.2电力系统仿真模型的建立与仿真参数设置 (16)3.2.1电力系统仿真模型的建立 (17)3.2.2仿真参数设置 (18)3.3电力系统短路故障仿真结果及分析 (22)3.3.1三相短路故障仿真分析 (22)3.3.2 A相接地短路故障仿真分析 (24)3.3.3 BC两相短路故障仿真分析 (25)3.3.4 BC两相接地短路故障仿真分析 (27)3.3.5本章小结 (29)4基于序分量的短路电流检测技术的研究 (30)4.1短路电流检测技术概述 (30)4.2序分量检测技术的原理及实现 (30)4.3本章小结 (34)5结论与展望 (36)1 引言1.1研究背景和意义电力系统运行的基本要求就是:保证可靠地持续供电;保证良好的电能质量;保证系统运行的经济性[1]。
基于Matlab的电力系统故障分析与仿真[整理]
基于Matlab的电力系统故障分析与仿真摘要:本文介绍了MATLAB软件在电力系统中的应用,以及利用动态仿真工具Simulink和电力系统工具箱PSD进行仿真的基本方法。
在仿真平台上,以单机—无穷大系统为建模对象,通过选择模块,参数设置,以及连线,对电力系统的多种故障进行仿真分析。
同时,设计一个GUI图形界面,将仿真波形清晰地显示在界面上以便比较和分析。
结果表明,仿真波形基本符合理论分析,说明了MATLAB是电力系统仿真研究的有力工具。
关键词:电力系统;仿真;故障;MATLAB;GUIAbstract:This paper introduces the applications of MATLAB in power system analysis, and the basic simulation method of taking use of Simulink and PSD. On MATLAB simulation platform, take a single machine-infinite-bus system as modeling objects, by selecting the module, parameter settings, and connecting modules to simulate and analyse various fault of power system. At the same time, in order to facilitate comparison and analysis simulation waveform, design a GUI for showing waveform clearly. The results show that the simulation waveform in line with theoretical analysis, indicates that MATLAB is a powerful tool for researching simulation of power system.Keywords:PowerSystem; Simulation; Fault; Matlab; GUI0 前言[1,2]随着电力工业的发展,电力系统规划、运行和控制的复杂性亦日益增加,电力系统的生产和研究中仿真软件的应用也越来越广泛。
基于MATLAB的输电线路故障仿真分析
本科生毕业论文(设计)题目基于MATLAB的输电线路故障仿真分析学生姓名张宏亮学号 ***********学院信息与控制学院专业电气工程及其自动化指导教师余莉二O一七年五月二十五日目录1 绪论 (2)1.1短路故障 (2)1.2论文的主要工作 (3)2 仿真软件 (3)2.1MATLAB简介 (3)2.2S IMULINK简介 (4)3电力系统故障计算的基本原理 (5)3.1短路计算的基本原则和方法 (5)3.2短路电流计算 (6)3.2.1 计算的基本步骤 (6)3.2.2 短路计算 (6)4 模型与仿真 (7)4.1算例 (7)4.2三相短路系统仿真模型及各模块参数设置 (7)4.2.1 三相电压电流测量模块 (8)4.2.2 变压器模块 (9)4.2.3 三相线路模块 (10)4.2.4 三相电源模块 (10)4.2.5 三相线路故障模块 (11)4.2.6并联RLC负荷模块 (11)4.3仿真结果与分析 (11)5设计总结 (14)参考文献 (15)致谢 (16)基于MATLAB的输电线路故障仿真分析张宏亮南京信息工程大学信息与控制学院,江苏南京 210044摘要:本文介绍了MATLAB的基本操作以及输电线路故障分析方法,对电力系统范围内的主要故障内容搭建了体系仿真模型,并且例举说明了输电线路故障问题,尤其是各种类型的短路。
在运行和参考了这些仿真案例的情况下,对仿真的结果做了深度分析,通过对仿真结果与故障计算所得的结果比较得出结论。
通过这些仿真案例验证了基于MATLAB的输电线路仿真是能够运行的,以MATLAB为基础的计算机仿真技术能够很容易的对各种短路故障进行分析。
关键词:MATLAB;仿真研究;故障Simulation analysis of transmission line fault based onMATLABZhang Hong-LiangSchool of Information and Control,NUIST,Nanjing 210044,ChinaAbstract: This paper introduces the basic MATLAB operation and transmission line fault analysis method, the main content of the fault on the power system within the scope of the build system simulation model, and illustrates the problems of transmission line, especially the various types of short circuit. In the case of running and referring to these simulation cases, the depth analysis of the simulation results is made. By comparing the simulation results with the results obtained by fault calculation, the conclusions are drawn. The simulation results show that the transmission line simulation based on MATLAB is able to operate, and the computer simulation technology based on MATLAB can easily analyze all kinds of short-circuit faults.Key words: MATLAB; simulation study; fault1 绪论1.1 短路故障电力系统指的是电能生产、变换、传输、分配和使用的各种电气设备按照一定的技术要求有机的组合成的一个联合系统。
无穷大功率电源供电系统两相短路故障matlab仿真
无穷大功率电源供电系统两相短路故障 Matlab 仿真简介无穷大功率电源供电系统是一种高效、稳定的供电系统,可以为各种设备提供稳定的电力。
然而,由于各种原因,可能会发生短路故障,导致系统无法正常工作。
本文将使用 Matlab 对无穷大功率电源供电系统中的两相短路故障进行仿真分析。
仿真目标本次仿真的目标是模拟无穷大功率电源供电系统中的两相短路故障,并分析故障对系统的影响。
具体来说,我们将通过以下步骤完成仿真:1.创建无穷大功率电源供电系统模型2.添加两相短路故障3.运行仿真并记录结果4.分析结果并得出结论仿真步骤创建无穷大功率电源供电系统模型我们需要创建一个无穷大功率电源供电系统的模型。
在 Matlab 中,我们可以使用Simulink 工具箱来构建这个模型。
具体步骤如下:1.打开 Matlab,并新建一个 Simulink 模型文件。
2.在 Simulink 库浏览器中选择合适的电源模块,将其拖拽到模型中。
3.添加适当的负载模块,以模拟实际设备的电力需求。
4.连接电源和负载模块,以建立供电系统的拓扑结构。
添加两相短路故障接下来,我们需要向供电系统中添加两相短路故障。
短路故障是指电路中两个相之间产生了直接连接,导致电流过大、电压下降等问题。
在 Matlab 中,我们可以使用 Simulink 的开关模块来模拟短路故障。
具体步骤如下:1.在 Simulink 库浏览器中选择开关模块,并将其拖拽到模型中。
2.连接开关模块与供电系统的两个相之间。
3.设置开关状态,使其处于闭合状态,即产生短路故障。
运行仿真并记录结果完成供电系统和短路故障的建模后,我们可以运行仿真并记录结果。
在 Matlab 中,我们可以使用 Simulink 模型自带的仿真工具来进行仿真。
具体步骤如下:1.在 Simulink 模型界面上点击“运行” 按钮或使用快捷键 Ctrl+T 来运行仿真。
2.观察仿真结果,包括电流、电压等参数的变化,并记录下来。
Matlab在输电线路故障测距中的应用
毕业设计(论文)题目Matlab在输电线路故障测距中的应用二级学院电子信息与自动化学院专业电气工程及其自动化班级 110070401学生姓名施永平学号指导教师雷绍兰职称教授时间2014年2月24日至6月10日目录摘要 (3)Abstract (4)1绪论 01.1 引言 0 0 (1) (1) (2) (2) (3)2 高压输电线路的行波测距方法 (4)2.2 行波的传输特性 (4) (6) (7)2.4.1 单端测距法 (7) (8) (9)3 基于小波变换的输电线路行波测距 (10)3.1 连续小波变换的基本概念 (10)3.2 小波变换模极大值理论 (11)3.3 本章小结 (12)4 基于Matlab的行波故障测距仿真分析 (14)4.1 仿真工具介绍 (14)4.1.1 Matlab PSB简介 (14)4.1.2 Matlab中的小波分析工具箱 (14)4.2 输电线路故障仿真模型 (15)4.3 输电线路故障行波的提取 (15)4.4 仿真及结果分析 (16)4.4.1 接地电阻为0的单相接地短路故障测距仿真分析 (17)4.4.2 行波故障测距在不同故障距离、不同故障类型和不同接地电阻的仿真分析 (21)4.5 输电线路单端行波测距和双端行波测距的比较 (24)4.6 本章小结 (24)5 结论 (25)致谢 (26)参考文献 (27)附录1 故障行波提取程序 (29)摘要输电线路担负着输送电能的作用,一直被视为电力系统的大动脉,而输电线路故障又是电力系统故障的常见问题。
准确、及时的输电线路故障测距能够缩短线路故障的时间和减小故障带来的经济损失,所以输电线路故障测距的研究一直是国内外研究的热点。
本文首先介绍了目前故障测距方法研究的现状,讲述了现代社会常用的输电线路故障测距方法,对常用的行波故障测距法、故障分析法及智能化测距法的理论原理进行了简单的介绍分析。
接着对行波故障测距法进行了深入的分析,其中仔细讲述了基于小波变换的行波故障测距算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统MATLAB仿真实训说明书——输电线路双端故障测距仿真
————————————————————————————————作者:————————————————————————————————日期:
燕山大学
课程设计说明书题目:输电线路双端故障测距仿真
学院(系):
年级专业:
学号:
学生姓名:
指导教师:
教师职称:
燕山大学课程设计(论文)任务书
院(系):电气工程学院基层教学单位:电力工程系学号学生姓名专业(班级)
设计题目输电线路双端故障测距仿真
设计技术参数
测距方法大致分3大类:行波法、阻抗法和故障分析法,其中建立在工频电气量基础之一的阻抗算法目前得到了广泛的工程应用。
在掌握双端测距基本原理的基础上,搭建输电线路MATLAB故障测距仿真模型,分析不同的故障、故障距离、两侧电源相位差和接地过渡电阻对测距结果的影响。
具体参数见参考资料。
设计要求1.搭建输电线路MATLAB故障测距仿真模型,分析不同的故障、故障距离、两侧电源相位差和接地过渡电阻对测距结果的影响;
2.遵守实训期间的纪律要求,独立完成实训任务,;
3.撰写实训总结报告一份(不少于五千字),要求有理论分析和仿真结果,文字符号符合国家现行标准。
工作量1.学会使用MATLAB/SIMULINK电力系统仿真工具箱;2.独立完成仿真电路设计、连接与调试;
3.参加答辩并完成实训报告。
工作计划1.学习使用MATLAB/SIMULINK电力系统仿真工具箱,下发任务书;2.完成实训内容的原理分析与电路设计;
3.在MA TLAB仿真平台上进行电路连接、调试并验收。
4.参加答辩并撰写实训报告。
参考资料1.吴天明. MA TLAB电力系统设计与分析. 国防工业出版社
2.毕潇, 李学农, 陈延枫, 等. 一各双端故障测距算法的仿真及现场实例分析.
高电压技术, 2006, 32(3):105-107
3.自查资料
指导教师签字基层教学单位主任签字
说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
年月日燕山大学课程设计评审意见表
指导教师评语:
成绩:
指导教师:
年月日答辩小组评语:
成绩:
组长:
年月日课程设计总成绩:
答辩小组成员签字:
年月日
目录示例
目录
第1章摘要 (1)
第2章引言 (2)
第3章基本原理 (3)
第4章参数设计及运算 (5)
4.1 结构设计 (5)
4.2 电容设计与计算 (8)
4.3 其他参数的计算 (10)
4.4 测量电路的设计 (12)
第5章误差分析 (14)
第6章结论 (16)
心得体
会 (17)
参考文
献 (18)
此示例仅供参考,各专业可根据本专业设计内容自行调整
参考文献示例
参考文献
1 强锡富. 传感器. 机械工业出版社,2001年
2 李科杰. 新编传感器技术手册. 国防工业出版社,2002年
3 贾伯年. 传感器技术. 东南大学出版社,1992年
4 杨宝清.孙宝元. 传感器及其应用手册. 2004年
5 单成祥. 传感器的理论与设计基础及其应用. 国防工业出版社. 1999年基本原理
2输电线路故障测距方法
按采用的线路模型,定位原理,测量设备的不同,高压输电线故障定位原理和方法可大致分为阻抗法、故障分析法和行波法[7]。
2.1阻抗法
阻抗法与阻抗继电器的基本工作原理相同,都是根据故障时测量的电压量、电流量来计算故障回路的阻抗。
前提是忽略线路的分布电容和漏电导。
假设输电线路为均匀线路,在不同的故障类型下计算出的故障回路阻抗或电抗,与测量点到故障点的距离成正比,如此便可以求出故障距离。
目前阻抗法有相当广泛的应用,早期的相关设备是由机电式或静态电子器件构成,测距的精度较差,微处理机的出现为测距技术的发展提供了新的机会,使得测距的可靠性和准确性有所提高。
阻抗法本身的优点就是比较简单可靠,但是大多数阻抗法都存在着精度问题。
它们的误差主要源于算法本身的假设,测距精度受到故障点过渡电阻的影响,所以只有当故障点过渡电阻为0时,故障点的距离才能够比较准确地计算出来。
而且由于实际系统中的线路是不完全对称的,还有测量端对侧系统阻抗值的不可知因素影响,使得测距误差会远大于某些故障测距产品在理想条件下给出的误差标准。
为此中外学者做了许多研究工作,在提高阻抗法的精度方面进行了不懈的努力,先后提出了解微分方程法和一些基于工频基波量的测距算法,如零序电流相位修正法、零序电流迭代法和解二次方程法等[8]。
但迭代法有时候可能会出现收敛于伪根或难于收敛、甚至于不收敛的情况[8];解二次方程法则可能会有伪根问题,所以阻抗法测距的主要问题仍然是测距精度。
摘要
输电线路是电力系统的重要组成部分,是电力系统的命脉,精确的输电线路故障测距对保证电力系统的安全稳定和经济运行有着十分重要的作用。
然而,电力系统本身是一个复杂的动态系统,基于经济因素考虑,长距离、
重负荷的输电系统常常运行在临界稳定的状态下,当系统发生扰动、故障等情况时会不可避免地存在各种复杂多样的动态过程。
文章首先介绍了各种测距方法的基本原理,并将现有的各种测距方法分为行波测距、单端测距和双端测距三类,然后逐类对各种算法的理论基础和应用条件进行了分析、对比和讨论。
然后主要针对一种单回线双端电气量测距算法进行研究,相比于传统的算法该算法提出了实部相等的解决办法,再利用故障分量进行测距计算,这样一来可以消除负荷电流的影响,并且测距精度也几乎不受过渡电阻、故障类型等因素的影响。
最后通过MTLAB仿真,对全波傅氏算法和全波差分傅氏算法进行了比较,最后得出全波差分傅氏算法滤波效果更好,测距结果更精确。
而对应于不同的过渡电阻,实际测量到的故障距离相差不大,说明过渡电阻对于测距影响不大
引言
高压输电线路是电力系统的命脉它担负着传递电能的重任,同时,它又是系统中发生故障最多的地方,并且极难查找。
因此,在线路故障后迅速准确地把故障点找到,不仅对及时修复线路和保证可靠供电,而且对电力系统安全稳定和经济运行都有十分重要的作用。
输电线路的故障类型分为瞬时性故障和永久性故障。
瞬时性故障会造成局部绝缘损伤,一般没有明显痕迹,这便给故障点的查找带来巨大的困难。
但是这类瞬时性故障往往发生在系统的薄弱之处,所以需要尽快找到加以处理,否则若是再次发生故障便会危及电力系统的安全稳定运行。
永久性故障排除时间的长短会直接影响到输电线路的供电和电力系统的安全稳定运行,排除的时间越长,则停电所造成的损失会越大,对电力系统安全稳定运行的影响也越大。
因此,输电线路故障后准确并快速地找到故障点,是帮助故障快速排除的有效途径,也对电力系统持续稳定和经济运行有非常重要的意义。
长距离输电线路由于输电距离长,沿路经过的地域广阔,地理环境很复杂,若不依靠故障定位装置来查找故障点位置,要找到故障点无异于大海捞针。
所以,精确的故障定位对于长距离输电线路发生故障后故障位置的准确查找显得尤其重要。
故障测距装置又称为故障定位装置,是一种测定故障点位置的自动装置。
它能根据不通的故障特征迅速准确地测定故障点,这不仅大大减轻了人工巡线的辛苦劳动,而且还能查出人们难以发现的故障。
因此他给电力生产部门带来的社会和经济效益是难以估计的。
本文所研究的内容在电力系统中是有助于及时排查故障并修复线路供电,以此来保证电力系统供电的可靠性,从而大量节约查线的人力和物力,减轻工人们繁重的体力劳动,在技术上保证电力网的安全稳定运行,具有巨大的社会和经济效益。