现代平差理论与测量平差

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代测量与现代平差技术

摘要:本文首先简述了现代测量平差中的各种理论与经典测量平差之间的关系,指出现代测量平差与数据处理理论仍然是以高斯-马尔柯夫模型为核心,通过该模型在不同层面上的扩充、发展形成了若干新理论、新方法,并以图描述了经典测量与现代测量数据处理中各种理论之间的关系。然后分别阐述了现代测量数据处理中粗差理论、系统误差的处理、病态问题的处理、非线性问题的处理、不等式约束的平差等的发展,最后综述了其他数据处理理论的一些发展情况。最后讲了整体平差法是一个严格而又有效的平差方法,其应用与现代计算机技术密切相关。具体介绍了整体平差法的基本原理,并以实测GPS控制网的布设为例,探讨了它在现代测量控制网建立中的具体应用及其技术优势。

关键词:经典测量平差;现代测量平差;高斯-马尔柯夫误差模型;误差模型扩展整体平差分级平差GPS控制网

Abstract: This paper described the relationship between the theories in modern surveying adjustment and the traditional surveying adjustment. It pointed out that the theories of modern surveying adjustment and the data processing should be still based on Gauss-Markov error model. Through enlargement and development in different aspects of the model, new theories and methods are worked out. A figure showing such relationship is given.Meanwhile, the theories on blunder detection, systematic error processing, ill-pose problem, nonlinear model,inequality constraints are elaborated. At the last the progresses of other theories on data processing are summarized.Key words: traditional surveying adjustment; modern surveying adjustment; Gauss-Markov error model;extension of error model

1、现代测量平差与数据处理理论发展概述

经典的测量平差与数据处理是以高斯-马尔柯夫模型为核心[1]:

L=AX+Δ(1a)

E(Δ) = 0,D(Δ) =σ20Q=σ20P-1(1b)

Rnk(A) =n,R(Q) =R(P) =n(1c)

这里L为观测向量,Δ为误差向量,X为未知参数向量,A为X的系数矩阵,E(·)为数学期望,σ2为单位权方差,P为观测权矩阵,Q为协因素矩阵,n为观测个数。现代测量平差与数据处理理论仍然是以高斯-马尔柯夫模型为核心,通过该模型在不同层面上的扩充、发展形成了若干新理论、新方法。例如,误差从独立扩展到相关导出了相关平差的理论[2],误差从偶然误差扩展到系统误差引出了系统误差处理的有关理论和方法[3~5];误差从偶然误差扩展到粗差导出了粗差探测理论、稳健估计理论等[6~8],系数矩阵从满秩扩展到病态引出了病态问题的处理理论、有偏估计等[9~11],从满秩扩展到秩亏则引出了秩亏网平差理论;参数从无先验信息扩展到有信息先验则引出了滤波、配置和推估、Bayes方法等[12];参数从与时间无关扩展到与时间相关引出动态测量数据处理理论[13,14];观测从单一种类观测扩展到多类观测引出方差估计理论、信息融合等理论[12,15];模型从线性扩展到非线性引出了非线性平差理论[16,17];模型从无约束扩展到有等式约束、到不等式约束导出了附不等式约束平差理论[18~20];待估参数扩展到函数导出非参数统计、小波分解、半参数回归等[21,22]。各种现代平差理论与方

法与经典平差模型的关系可以描述如图1.1所示。

图1.1 各种现代平差理论与方法与经典平差模型的关系图

本文将根据上述扩展,分别论述现代测量数据处理中粗差处理、系统误差处理、病态问题处理、多元异质数据处理、先验信息处理、动态测量数据处理、非线性模型处理、不等式约束问题处理等方面的进展。

2、粗差处理处理理论与技术的发展

经典的测量平差与数据处理理论是建立在观测误差为偶然误差的假设上的,最小二乘估计的最优性也只是在观测误差为偶然误差的假设基础上成立。但观测难免会出现粗差,特别是现代测量中,观测数据量大、自动化程度高,影响观测的各种环境因素难以控制的情形。有统计学家曾经根据大量数据分析指出生产实际和科学实验中,粗差的出现大约占观测总数的1%~10%[8]。当观测出现粗差时,传统的最小二乘方法则难以取到最优结果。欧自强[24]曾经研究比较了当观测受粗差污染(观测服从污染分布)时最小二乘估计与一范估计的性质,结果表明,观测受到很小的污染时,一范估计就会优于最小二乘估计,这是统计研究的结果。实际上,粗差的出现,特别是大粗差的出现往往会给经典平差的结果带来严重的影响,因此,在现代测量数据处理中如何消除粗差的影响就显得越来越重要。

现代测量与数据处理理论中,粗差影响的消除主要是从两个方面开展研究的,一是把粗差看做非随机,从粗差主要影响观测值的均值的角度开展研究,即使用污染误差模型中的均值移动模型作为误差模型,使用粗差探测的有关方法来发现和剔除粗差;二是把粗差看做一种随机的大误差,从粗差主要影响观测方差的角度开展研究,即使用污染误差模型中的方差扩大模型作为误差模型,使用抗差估计(稳健估计)等方法来消除粗差的影响[3,7]。

在粗差探测方面,最早由Baarda提出了的数据探测法(Data-snooping)[25],

相关文档
最新文档