新北师大版初中数学七年级上册 第五单元 一元一次方程 教案(全)
北师大版七年级数学上册教学设计:5.1认识一元一次方程
7.教学方法多样化,结合讲授、讨论、实验等多种教学手段,提高学生的学习兴趣和积极性。
四、教学内容与过程
(一)导入新课
1.教学活动:教师向学生展示一个与年龄有关的实际问题,如“小华今年10岁,比小亮大3岁,小亮今年几岁?”引导学生用算术法解决问题,然后提出问题:“如果小华年龄的3倍等于小亮年龄的2倍,他们各是多少岁呢?”
1.教学内容:对本节课所学的一元一次方程的概念、一般形式、求解方法等进行总结。
2.活动过程:教师引导学生回顾本节课所学内容,让学生用自己的话总结一元一次方程的特点和求解方法,并对学生在课堂上的表现给予肯定和鼓励。
3.设计意图:通过总结归纳,帮助学生梳理所学知识,形成系统的认识,同时培养学生的概括能力和自信心。
2.设计意图:通过生活中的实际问题,让学生感受到方程的实用性和趣味性,激发学生探究一元一次方程的欲望。
(二)讲授新知
1.教学内容:一元一次方程的概念、一般形式及求解方法。
(1)概念:教师引导学生从实际问题中抽象出一元一次方程,让学生理解方程中未知数、常数和等式的含义。
(2)一般形式:ax+b=0(a,b是常数,且a≠0),教师通过实例解释一元一次方程的一般形式,并强调a≠0的条件。
(2)在实际问题中,如何将问题转化为的一元一次方程?请举例说明。
作业要求:
1.请同学们认真完成作业,确保作业的整洁、规范。
2.对于选做题,鼓励同学们积极挑战,提升自己的解题能力。
3.完成作业后,请认真检查,确保解答正确。
4.对于作业中的疑问,及时与同学或老师交流,共同解决问题。
4.通过方程求解的过程,培养学生观察、分析、归纳和总结问题的能力。
北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计
《认识一元一次方程》教学设计(义务教育课程标准北师大版七年级上册第五章第1节第1课时)一、教材分析《认识一元一次方程》是义务教育课程标准北师大版七年级(上)第五章《认识一元一次方程》第1节,本节内容安排了两个课时,学生在小学认识方程和本册第3章字母表示数的基础上,进一步研究一元一次方程,本节课属于第一课时,研究一元一次方程概念.二、学情分析1.认知基础:在小学阶段学习过简易方程,不过与初中的要求相比,对知识的理解比较表层,大部分学生还没有真正体会到方程在解决实际问题时的优越性和重要性.2.活动经验基础:教材为学生提供了许多生动有趣的现实情境,七年级学生的思维活跃,喜欢参与探索活动,只要激发起兴趣,本课要贯彻的数学思想就能较好的实施.三、教学目标1.能根据给出的现实情境,找出其中的等量关系列出方程.2.通过观察,归纳出一元一次方程的概念.3.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力.四、教学重点与难点教学重点:1.一元一次方程的概念.2.通过现实情境建立方程模型的思想.教学难点:1.对一元一次方程的概念、特征的理解.2.从现实情境中提炼等量关系.五、教法、学法1.教学方法:引导探究法2.学习方法:自主探究,合作交流3.教具准备:多媒体课件,配套学案【习得】建立方程数学模型知识点二:一元一次方程定义探究问题2:由上面得到的式子:40+5x=100; (1+147.30%)x=8930; 2[x+(2x-5=21; 2x-5=19.这些方程有什么共同点?【知识整理】定义:在一个方程中,只含有一个未知数代数式都是整式,未知数的指数都是1,这种方程叫做一元一次方程.。
【教案】七年级数学上册第五章一元一次方程教案北师大版【精华】
§5.1一元一次方程(1)〖教学目的〗〖知识与技能目标:〗使学生了解一元一次方程的概念,〖过程与方法:〗并牢固地掌握最简单一元一次方程的解法;〖情感态度与价值观:〗培养学生观察、分析、概括的能力以及准确而迅速的运算能力.〖教学重点、难点:〗重点:一元一次方程的概念和方程ax=b(a≠0)的解法.难点:正确地解方程ax=b(a≠0).〖教学方法:〗启发式教学〖教学过程:〗Ⅰ.创设现实情景,引入新课1.针对前二节所学内容,请学生回答下列问题(1)什么叫等式?等式应具备什么性质?(2)什么叫方程?方程的解?解方程?(3)(投影)某数的4倍减去9等于3,列出方程,并检验x=2,x=3是不是该方程的解.(让一名学生在黑板上板演本题,其余学生在练习本上完成,教师巡视,发现问题,及时纠正)请找出它们具有的特点?(①只含有一个未知数;②未知数的次数都是一次)2.在学生回答完上述问题的基础上,引出课题我们将具备上述特点的方程叫做一元一次方程.请学生回答:什么叫一元一次方程?根据学生的回答,教师板书一元一次方程的概念.这时,教师还需指出:“元”是指未知数的个数,“次”是指方程中含有未知数项的最高次数.本节课我们来学习最简单的一元一次方程的解法.(板书课题)Ⅱ.讲授新课师生共同讨论得出最简一元一次方程的解法例解下列方程:分析:利用等式性质2,在方程的两边都除以未知数x的系数,将其系数化1,即可得到原方程的解.最后还需检验所得的数是否为原方程的解.(2)(3)(4)略.(让学生先回答本题,教师追问根据,然后,老师根据学生的回答将方程(1)的解答过程板书.方程(2)(3)(4)的解答过程请三名学生板演,师生共同讲评)最后,教师可追问学生,方程ax=b(a≠0)的解是什么?根据是什么?Ⅲ.做一做解下列方程:(投影)(本题的作用是进一步巩固学生对最简一元一次方程的解法的掌握,使之运用得灵活、自如.这样做也为后继课的学习做好铺垫)Ⅳ.课时小结采用师生一问一答的方式,小结本节课所学的内容.最后教师指出:据是等式性质2.2.不要把两个方程用等号连接起来.如-x=1=x=1.3.问题:若a=0,则方程ax=b的解又是什么呢?(思考) Ⅴ.课后作业解下列方程,并检验:思考题解关于x的方程:(关于x的方程,就是把方程中除x以外的字母看成已知数,解此类问题要注意已知数a,b的取值范围)〖板书设计:〗§5.1一元一次方程(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计§5.1一元一次方程(2)〖教学目的〗〖知识与技能目标:〗使学生掌握移项的概念〖过程与方法:〗并能利用移项解简单的一元一次方程;〖情感态度与价值观:〗培养学生观察、分析、概括和转化的能力,提高他们的运算能力.〖教学重点、难点:〗重点:移项解一元一次方程.难点:移项的概念〖教学方法:〗启发式教学〖教学过程:〗Ⅰ.创设现实情景,引入新课1.等式的性质是什么?2.什么叫一元一次方程?方程ax=b(a≠0)的解是什么?3.(投影)解方程:(让学生口答本题,发动其余学生及时纠正出现的错误,做到一题多用)我们已经学习了解最简单的一元一次方程ax=b(a≠0),今天学习把某些简单的一元一次方程化为最简的一元一次方程,从而求得其解.(教师板书课题:一元一次方程的解法(二) Ⅱ.讲授新课师生共同研究解简单的一元一次方程的方法例1解方程3x-5=4.在分析本题时,教师应向学生提出如下问题:1.怎样才能将此方程化为ax=b的形式?2.上述变形的根据是什么?(以上过程,如学生回答有困难,教师应作适当引导)解:3x-5=4,方程两边都加上5,得3x-5+5=4+5,即3x=4+5,3x=9,x=3.(本题的解答过程应找多名学生分别口述,教师严格、规范板书,并请学生口算检验)例2解方程7x=5x-4.(此题的分析与解答过程的教学设计可仿照例1重复进行)针对例1,例2的分析与解答,教师可提出以下几个问题:3.将方程3x-5=4,变形为3x=4+5这一过程中,什么变化了?怎样变化的?4.将方程7x=5x-4,变形为7x-5x=-4这一过程中,什么变化了?怎样变化的?(-5变为+5,并由方程的左边移到方程的右边;5x变为-5x,并由方程的右边移到方程的左边)我们将方程中某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.利用移项,我们可以将例2按以下步骤来书写.解:7x=5x-4,移项,得7x-5x=-4,合并同类项,得2x=-4,未知数x的系数化1,得x=-2.至此,应让学生总结出解诸如例1、例2这样的一元一次方程的步骤,并强调移项要变号.Ⅲ.做一做(用投影给出)解方程:(这个练习,应找部分学生板演,其余学生在下面自行完成,其间,教师要巡视,发现问题及时纠正,并鼓励同学间互相讲评,同时,教师还应要求学生严格参照例2的解题格式完成这个练习,并要求口算检根)Ⅳ.课时小结首先,采取师生一问一答的形式回顾本节课学习了哪些内容?采用了什么样的思维方法?在解题时需要注意什么?然后,教师需指出,采用了将“未知”转化为“已知”的思维方法,这是一种非常重要的思维方法,它在后继课的学习起着非常重要的作用.同时再次强调移项要变号.最后,教师可引申,若所给方程中的某一项或某几项有括号,我们应如何求出方程的解?(为下节课埋下伏笔,引出悬念,从而激发学生的学习兴趣)Ⅴ.课后作业解下列方程:思考题解关于x的方程:(1)ax=bx; (2)(a2+1)x=(a2-1)x.〖板书设计:〗§5.1一元一次方程(2)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计§5.1一元一次方程(3)〖教学目的〗〖知识与技能目标:〗使学生掌握解一元一次方程的移项规律。
北师大版七年级上册第五章 一元一次方程复习教案
本章复习教学目标:【知识与技能】掌握本章重要知识,能灵活运用有关知识解决具体问题.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及转化思想和数学建模思想,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,感受数学的应用价值,激发学生兴趣.教学重难点:【教学重点】回顾本章知识,构建知识体系.【教学难点】利用相关知识解决具体问题.教学过程:一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系.教学时,边回顾边建立结构框图.二、释疑解惑,加深理解1.一元一次方程和方程的解在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解.2.等式的基本性质等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.等式两边同时乘以同一个数(或除以同一个不为0的数)所得结果仍是等式.3.解一元一次方程的一般步骤(1)去分母.(2)去括号.(3)移项.(4)合并同类项.(5)未知数的系数化为1.4.列方程解应用题的一般步骤(1)设未知数.(2)找等量关系式.(3)列方程.(4)解方程.(5)检验.(6)写出答案.三、典例精析,复习新知例1已知下列方程:①x+3=l/x;②7x=3;③4x-3=3x+2;④x=2;⑤x+y=5;⑥x2+3x=l.其中是一元一次方程的有()A.2个B.3个C.4个D.5个【分析】①中分母中含有未知数,⑤中含有两个未知数,⑥中未知数的最高次数是2,所以是一兀一次方程的是②,③,④,故选B.例2下列等式变形正确的是()A.如果1/2x=6,那么x=3B.如果x-3=y-3,那么x-y=0C.如果mx=my,那么x=yD.如果S=1/2ab,那么b=S/(2a)【分析】C两边同时除以m,m可能为0,A、D变形都出现了错误,故选B.例3解方程.解:(1)去分母,得:5(3x-2)+20=2(x+1).去括号,得:15x-10+20=2x+2.移项,合并同类项,得:13x=-8.系数化为1,得:x=-8/13.(2)去分母,得:6x-3(x-1)=12-2(x+2).去括号,得:6x-3x+3=12-2x-4.移项,合并同类项,得:5x=5.系数化为1,得:x=1.2兀—kX—3k_例4若关于x的一兀一次方程的解是x=-1,则k的值是()A.2/7B.1C.-3/11D.0【分析】本题从“关于x的方程的解二上关于x的方程二关于k的方程仝二关于k的方程的解”的思维路线,考查学生对“方程的解”和“解方程”的知识的掌握情况,故选B.例5商场将某种品牌的冰箱先按进价提高50%作为标价,然后打出“八折酬宾,外送100元运装费”的广告,结果每台冰箱仍获利300元,求每台冰箱的进价是多少元.解:设每台冰箱的进价为x元,则标价为x(l+50%)元,实际售价为x(l+50%)X80%兀,由题意得:x(1+50%)X80%-100-x=300.解得x=20l9.答:每台冰箱的进价是2019元.例6甲、乙两站相距480km,一列慢车从甲站开出,每小时行90km,一列快车从乙站开出,每小时行140km.(1)慢车先开出lh,快车再开,两车相向而行,快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600km?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600km?【分析】此题关键是要理解清楚相向、相背、同向等的含义,弄清楚行驶过程,故可结合图形分析.(1)相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里.解:设快车开出xh后两车相遇,由题意得140x+90(x+1)=480,解之得x=123.答:快车开出1h后两车相遇.23(2)相背而行,画图表示为:等量关系是:两车所走的路程+480km=600km.解:设xh后两车相距600km.由题意,得(140+90)x+480=600.解之得x=23.答:相背而行h后,两车相距600km.23(3)等量关系为:快车所走路程-慢车所走路程+480km=600km.解:设x小时后两车相距600km,由题意,得(140-90)x+480=600.解之得x=12/5.答:12/5h后两车相距600km.四、复习训练,巩固提高1.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b-cB.如果ac=bc,a=bC.如果a=b,那么ac=bcD.如果a2=3a,那么a=32.若x=2是关于x的方程2x+3m-1=0的解.则m的值等于.3•当m=时,(m-l)/4的值比(2-m)/3的值大2.4•若(m-1)x I m i+5=0是关于x的一元一次方程.(1)求m的值;(2)请写出这个方程;(3)判断x=1,x=2.5,x=3是否是方程的解.5.解方程.6.小明在做家庭作业时练习册上一道解方程的题目被墨水污染了:x+1_弘_□_1,“口”是被污染的内容,他很着急,翻开书后面的答案,这道题的解是x=2,你能帮助他补上“□”的内容吗?说出你的办法.7.某童车厂生产由一个车身和三个车轮组成的童车,工厂有88名工人,每名工人每个星期可生产5个车身或9个车轮,问如何安排这些工人,使得他们每个星期生产的车身和车轮配套?8.某商场因换季准备处理一些羊绒衫,若每件羊绒衫按标价的六折出售将亏110元,若按标价的八折出售,每件将赚70元.每件羊绒衫的标价是多少元?进价是多少元?9.已知A、B两地相距100千米,甲每小时走11千米,乙每小时走9千米,甲、乙两人分别从A、B两地同时出发.(1)相向而行,经过多少小时两人相遇?(2)同向而行,经过多少小时甲追上乙?(3)反向而行,经过多少小时相距160千米?【教学说明】这部分安排了几个较典型的重点题型,加深对本章知识的理解,进一步提高学生综合运用所学知识的能力.前5题可由学生自主完成,后4题可由师生共同探讨得出结论.【答案】1.B2.-13.54.(1)m=-1(2)-2x+5=0(3)x=2.5是原方程的解;x=l,x=3不是原方程的解.5.(1)x=-3(2)x=17/256.解:设空格内的数为a,把x=2代入方程得?-=-±,解得a=4.2327.解:设安排x人生产车身,则生产车轮有(88-x)人,根据题意得:5x=(88-x)X9F3.解得x=33.故安排生产车轮有88-33=55(人).所以安排33名工人生产车身,55名工人生产车轮.8•解:设每件羊毛衫的标价为x元,由题意得:0.6x+110=0.8x-70.解得x=900,进价为900X0.6+110=650元.所以每件羊毛衫的标价是900元,进价为650元.9.解:(1)设相向而行,经过x小时两人相遇,则有11x+9x=100,解得x=5,所以相向而行,经过5小时两人相遇.(2)设同向而行,经过y小时甲追上乙,则有100+9y=11y解得y=50.所以同向而行,经过50小时甲追上乙.(3)设反向而行,经过z小时两人相距160千米,则有11z+100+9z=160,解得z=3.所以,反向而行经过3小时两人相距160千米.五、师生互动,课堂小结本堂课你能完整地回顾本章所学的有关知识吗?你学会了哪些与本章有关的数学思想方法?你还有哪些困惑与疑问?【教学说明】学生回顾本章知识,积极与同伴交流,对于学生的困惑与疑问,教师应及时指导.课后作业:1.布置作业:从教材“复习题5”中选取.2.完成练习册中本章复习课的练习.教学反思:本节课通过复习归纳本章重点知识,加深对本章知识的理解,通过例题的讲解与复习训练,进一步提高学生综合运用所学知识的能力.。
北师大版七年级上册数学教案:5.2求解一元一次方程优秀教学案例
为了实现上述目标,我设计了以下教学过程:首先,通过引入生活实例,激发学生的学习兴趣,引导学生发现实际问题中的一元一次方程;其次,通过自主学习、合作探究的方式,引导学生掌握一元一次方程的解法;最后,通过巩固练习和拓展延伸,检验学生的学习效果,提高学生运用数学知识解决实际问题的能力。
(二)问题导向
1.自主学习:引导学生自主探究一元一次方程的解法,培养学生独立思考和解决问题的能力。
2.合作探究:组织学生进行小组讨论,共同解决问题,培养学生的团队合作意识和交流能力。
3.教师引导:在学生探究过程中,教师进行有效引导,启发学生思考,帮助学生论,分享各自的学习心得和解题方法,培养学生之间的交流与合作能力。
在整个教学过程中,我注重关注每一个学生,充分调动学生的积极性,鼓励学生积极参与课堂讨论,培养学生的主体意识。同时,我运用多种教学方法,如讲解、示范、引导、激励等,使学生在轻松愉快的氛围中掌握知识,提高能力。
二、教学目标
(一)知识与技能
1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.学会运用一元一次方程解决实际问题,提高运用数学知识解决实际问题的能力。
3.教师评价:教师对学生的学习过程和结果进行全面、客观的评价,给予肯定和鼓励,激发学生的学习积极性。
在整个教学过程中,我注重关注每一个学生,充分调动学生的积极性,鼓励学生积极参与课堂讨论,培养学生的主体意识。同时,我运用多种教学方法,如讲解、示范、引导、激励等,使学生在轻松愉快的氛围中掌握知识,提高能力。
北师大版七年级上册数学教案:5.2求解一元一次方程优秀教学案例
北师大版七年级上册第五章5.1认识一元一次方程教案
北师大版七年级上册第五章 5.1 认识一元一次方程教课设计第五章一元一次方程1认识一元一次方程教课目的:【知识与技术】 1.理解一元一次方程,方程的解等观点.2.掌握等式的基天性质,能利用等式的基天性质解一元一次方程.【过程与方法】经过实质问题成立方程模型,归纳一元一次方程的观点,培育学生的认知能力和归纳归纳能力,掌握等式的基天性质 .【感情态度】联合本课教课特色,向学生进行理想主义教育和热爱学习教育,激发学生学习的兴趣 .教课重难点:【教课要点】 1.一元一次方程及等式的基天性质.2.利用等式的性质解一元一次方程.【教课难点】利用等式及等式的性质解一元一次方程.教课过程:一、情境导入,初步认识教材第 130 页最上方的彩图假如设小彬的年纪为x 岁,那么“乘 2 再减 5”就是 _________,所以能够获得方程: __________________.【教课说明】学生依据两人的对话找出相等关系,列出方程,初步领会根据实质问题成立方程模型的思想.二、思虑研究,获得新知1.列方程以获得方程: __________________.(2)甲、乙两地相距 22km,张叔叔从甲地出发到乙地,每小时比原计划多行走 1km,所以提早 12min 抵达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走xkm,能够获得方程: __________________.(3)依据第六次全国人口普查统计表数据,截止2010 年 11 月 1 日 0 时,1 / 4北师大版七年级上册第五章 5.1 认识一元一次方程教课设计全国每 10 万人中拥有大学文化程度的人数为8930 人,与 2000年第五次全国人口普查对比增加了 147.30%.2000年第五次全国人口普查时每 10万人中约有多少人拥有大学文化程度?假如设 2000年第五次全国人口普查时每10 万人中约有 x 人拥有大学文化程度,那么能够获得方程:__________________.(4)某长方形操场上的面积是 5850m2,长和宽之差为 25m,这个操场的长与宽分别是多少米?假如设这个操场的宽为xm,那么长为 (x+25)m ,由此能够得到方程 __________________.【教课说明】学生依据题意,找出相等关系列出方程,进一步领会方程建模思想 .【归纳结论】剖析实质问题中的数目关系,利用此中的相等关系列出方程,是用数学知识解决实质问题的一种常用方法 .2.一元一次方程及方程的解(2)方程 2x-5=21,40+5x=100,x(1+147.30%)=8930 有什么共同点?【教课说明】学生经过察看,与伙伴进行沟通,找出这些方程的共同点,归纳一元一次方程的观点.【归纳结论】在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解 .3.等式的基天性质吗?你能解方程5x=3x+4 吗?【教课说明】学生经过察看教材132 页天平均衡图,感知等式的基天性质.【归纳结论】等式两边同时加上(或减去)同一个代数式,所得结果还是等式,等式两边同时乘同一个数(或除以同一个不为0 的数),所得结果还是等式 .4.利用等式的基天性质解一元一次方程(1)x+2=5;(2)3=x-5;2 / 4北师大版七年级上册第五章 5.1 认识一元一次方程教课设计(3)-3x=15;(4)- n-2=10. 3【教课说明】学生经过计算,掌握运用等式的基天性质解一元一次方程的方法 .三、运用新知,深入理解1.依据题意列出方程:(1)在一卷公元前 1600 年左右遗留下来的古埃及厕纸书中,记录着一些数学识题 .此中一个问题翻译过来是:“啊哈,它的所有,它的 17你能求出问题中的“它”吗?(2)甲、乙两队展开足球抗衡赛,规定每队胜一场得3 分,平一场得1 分,负一场得 0 分.甲队与乙队一共竞赛了 10 场,甲队保持了不败记录,一共得了 22 分 .甲队胜了多少场?平了多少场?(1)3x+(10-x)=20;(2)2x2+6=7x.3.解以下方程:(1)x-9=8;(2)5-y=-16;(3)3x+4=-13;(4)2/3x-1=5.【教课说明】学生自主达成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握状况,对学生的迷惑教师应实时指导.达成上述题目后,教师指引学生达成练习册中本课时练习的讲堂作业部分.(2)设甲队胜 x 场,则 3x+(10-x)=22.x=6,10-6=43 / 4北师大版七年级上册第五章 5.1 认识一元一次方程教课设计解 .(2)将 x=2 代入方程,左侧 =2×22+6=14=右侧,故 x=2 是原方程的解 .3.(1)x=17(2)y=21(3)x=-17/3(4)x=9解得 x=11,故小红有 11 岁.四、师生互动,讲堂小结1.师生共同回首一元一次方程,方程的解的观点和等式的基天性质.2.经过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教课说明】教课指引学生回首知识点,让学生勇敢讲话,踊跃与伙伴交流,加深对新学知识的理解与运用.课后作业:1.部署作业:从教材“习题 5.1, 5.2”中选用 .2.达成练习册中本课时的相应作业.教课反省:本节课学生从实质问题中找出相等关系,列出方程,要认识一元一次的观点,运用等式的性质解一元一次方程培育学生着手、动脑习惯,激发学生学习的兴趣 .4 / 4。
最新版北师版七年级上册第五章一元一次方程整章教案
第五章 一元一次方程主备人:梁水莲5.1 认识一元一次方程(第一课时)【学习目标】:1.通过对多种实际问题的分析,感受方程是作为刻画现实世界的模型.2.通过观察,归纳一元一次方程的概念.【主要问题】:1.什么样的方程是一元一次方程? 2.什么是方程的解?一、基础知识回顾1.下列式子是代数式的有 (填编号)32xy (6)7x x 59-(5)3x a -(4) 63(3)x y-x 2(2) 2)1(π-=>+-y y x 2.列代数式:(1)有一树苗原来高20cm,每周长高5cm,则生长x 周后的树高为 cm(2)2000年全国约有13.6亿人,到2011年人口增长了15%,现有 亿人3.含有未知数的 叫做方程。
4.下列各式是方程的有 (填编号)①-2+5=3 ②3x +1>0 ③5m =0 ④2a +b ⑤x +y =8 ⑥y 2=4+y二、新知识产生过程【问题1】: 什么样的式子是一元一次方程?1.小彬的年龄乘2减5的得数是21,小彬今年几岁了?解:如果设小彬的年龄为x 岁,那么“乘2再减5”就是 ,可以得到方程:2.小颖种了一株树苗,开始时树苗高为 40 cm ,栽种后每周树苗长高约 5 cm ,大约几周后树苗长高到 1 m ? 解:如果设 x 周后树苗长高到 1 m ,那么可以得到方程:3. 甲、乙两地相距 22 km ,张叔叔从甲地出发到乙地,每时比原计划多行走1 km ,因此提前 12 min 到达乙地,张叔叔原计划每时行走多少千米?解: 设张叔叔原计划每时行走x km ,可以得到方程:_______ ____.4. 根据第六次全国人口普查统计数据,截至 2010 年 11 月 1 日 0 时,全国每 10 万人中具有大学文化程度的人数为8 930 人,与 2000年第五次全国人口普查相比增长了 147.30%.解:如果设 2000 年第五次全国人口普查时每 10 万人中约有 x 人具有大学文化程度,那么可以得到方程: .5.某长方形操场的面积是 5 8502m ,长和宽之差为 25 m ,这个操场的长与宽分别是多少米?解:如果设这个操场的宽为x m ,那么长为(x + 25)m .可以得到方程6.上面列出来的方程有什么共同点?在一个方程中,只含有____未知数,并且未知数的指数都是____,这样的方程叫做一元一次方程.7.判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。
北师大版初中数学七年级上册 5.1 认识一元一次方程 教案
第五章一元一次方程1.认识一元一次方程(二)一、学生起点分析学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了简单方程的简单数量关系的分析,对方程已有初步认识.学生在小学已经经历了简单方程的简答、简单数量关系的分析,具有一定的解方程的能力.这时解方程的操作依据为加减法、乘除法互为逆运算的简单算理.二、学习任务分析本课通过天平的实验形式,形象直观地感受等式的基本性质,并尝试着用等式的基本性质解简单的方程本课的重点:让学生理解等式的基本性质,并能应用它来解方程.难点:利用等式的基本性质对等式进行变形.三、教学目标1、借助直观对象理解等式性质;2、掌握利用等式性质解一元一次方程的基本技能;3、进一步体会解一元一次方程的含义和解方程的基本过程。
四、教学方法探究、试验、讨论法五、教学过程设计环节一:热身运动内容:用EN5的分组竞赛模块让两名学生上黑板找出正确的一元一次方程。
环节二:情境引入(实践操作,演示天平称量过程)1、等式的基本性质:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.等式两边同时乘同一个数(或除以同一个不为 0 的数),所得结果仍是等式.2、利用等式的基本性质可以解一元一次方程.目的:1.让学生初步体会小学等式的基本性质的内容与中学等式的基本性质有何差异?2.小学简单方程的求解过程的依据与中学方程求解过程依据有何差异?3.能看懂并能理解书上呈现内容的主要环节.实际效果:学生观察得知:1、要想消掉方程两边多的项,在方程两边同时加上这一项的相反数;2、要使得方程未知数的系数化为1,方程两边都乘以未知数的系数的倒数,或除以未知数的系数.环节三:例题探究内容1:在老师的协助下,学生用EN5中的克隆拖拽功能自己做试验.目的:培养学生从实际操作中获取信息,并通过亲身感受、体验归纳总结、抽象数学的能力;同时,培养学生严谨、有序的数学思维品质及科学的学术精神。
实际效果:1、实际操作归纳出了等式的基本性质一、二.2、通过引导并类比,分析出初中所学等式的基本性质一,有别于小学所学内容,“等式两边可同时加上同一个整式”.3、归纳出了数学表达式:如果a=b,(a、b为代数式),则(1)a ±z=b ±z ;(z 为代数式);(2)ac=bc ;(c 为任意有理数);(3)c b c a ;(c ≠0)。
北师大版数学七年级上册5.1《认识一元一次方程》教案1
北师大版数学七年级上册5.1《认识一元一次方程》教案1一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的内容是让学生初步了解一元一次方程的概念,学会解一元一次方程,培养学生解决实际问题的能力。
通过本节课的学习,学生能够理解一元一次方程的定义,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数、整式等基础知识,对数学符号和运算有一定的了解。
但是,对于一元一次方程这一概念,学生可能比较陌生。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握一元一次方程的概念和解法。
三. 教学目标1.知识与技能:让学生了解一元一次方程的概念,学会解一元一次方程。
2.过程与方法:通过实际问题,让学生感受数学与生活的联系,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次方程的概念和解法。
2.难点:理解一元一次方程的实际意义和解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生思考,用案例教学法讲解一元一次方程的解法,小组合作法让学生在讨论中巩固知识。
六. 教学准备1.准备一些实际问题,用于引导学生思考和练习。
2.准备PPT,用于展示和讲解一元一次方程的解法。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题。
例如,假设小明有3个苹果,每天吃掉1个,问5天后他还剩下几个苹果?这个问题可以引导学生思考如何用数学方法表示这个问题,从而引入一元一次方程的概念。
2.呈现(10分钟)通过PPT展示一元一次方程的定义和解法。
一元一次方程的一般形式为ax+b=0,其中a和b是常数,x是未知数。
解一元一次方程的步骤为:移项、合并同类项、化简、求解。
3.操练(10分钟)让学生练习解一元一次方程。
北师大版七年级数学上册5.1认识一元一次方程优秀教学案例
3.教师评价:教师对学生的学习成果进行评价,给予及时反馈,指导学生正确认识和评价自己的学习成果。
四、教学内容与过程
(一)导入新课
1.生活实例:以学生的日常生活为背景,提出一个与一元一次方程相关的问题,激发学生的学习兴趣,引导学生主动探究。
本节课的亮点主要体现在教学情境的创设、问题导向的教学策略、小组合作的学习方式、多元化的评价方式以及学生自主学习能力的培养等方面。这些亮点不仅使学生更好地理解和掌握了一元一次方程的知识,还提高了学生的数学思维能力、团队合作能力和自主学习能力。
二、教学目标
(一)知识与技能
1.让学生理解一元一次方程的概念,掌握一元一次方程的解法,能够运用一元一次方程解决实际问题。
2.培养学生运用数学知识描述和解决问题的能力,提高学生的数学思维水平。
3.通过对一元一次方程的学习,使学生了解数学在生活中的应用,培养学生的应用意识。
(二)过程与方法
1.引导学生通过观察、分析、归纳等数学活动,自主发现一元一次方程的规律,培养学生的探究能力。
2.利用多媒体课件、实物模型等教学资源,为学生提供丰富的学习素材,增强学生的直观感受,提高学生的学习兴趣。
3.设计具有挑战性的数学问题,激发学生的思考,培养学生解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,树立学生学习数学的自信心,让学生体验到数学学习的快乐。
2.通过对一元一次方程的学习,使学生感受到数学与生活的紧密联系,培养学生的应用意识。
2.媒体辅助:利用多媒体课件,展示与一元一次方程相关的图片或视频,增强学生的直观感受。
3.回顾旧知:简要回顾已学过的知识,如不等式、有理数等,为新课的学习做好铺垫。
七年级数学上册 第5章 一元一次方程教学案 (新版)北师大版
第五章一元一次方程1.了解方程、一元一次方程及其相关概念.2.理解等式的基本性质,并利用等式的基本性质学习一元一次方程的解法.3.熟练掌握移项、去括号、合并同类项等化简方程的方法,会解一元一次方程.4.能根据具体问题中的数量关系列出一元一次方程,并利用一元一次方程模型解决简单的实际问题.1.通过简单问题的思考和解决,使学生从中了解方程的一般概念以及用方程解决问题的重要性.2.经历一元一次方程从易到难的解法,掌握等式基本性质是一元一次方程化简和求解的重要依据.3.在教师的指导下,经历分析具体问题中的等量关系的过程,列方程进行求解,通过比较不同状态下方程解的情况,从中探索出规律.1.经历观察、归纳、应用等环节,形成良好的学习态度和方法.2.通过各种具体的例子,感受数学知识在现实生活中的广泛应用,进一步提高学习数学的信心.3.在观察中思考问题,并选择适当的数学工具解决问题,初步培养分析问题、解决问题的意识和能力.方程是中学数学的重要内容,一元一次方程作为内容最基本、形式最简单的方程,在初中数学中占有极其重要的地位.本章内容在整个代数知识的学习中起着承上启下的作用,一方面是对已经学过的代数式、有理数的运算、整式的加减等知识的巩固和加深,另一方面又为今后学习方程组、分式方程、函数等知识奠定基础,尤其是一元一次方程的应用,充分体现了数学知识来源于实践,又指导实践的辩证关系.本章通过各种实例,让学生体会方程作为一个解决问题的模型,在现实生活中的应用是十分有效而且广泛的.学生在“建模”“理论联系实际”等数学思想的学习中,既可以增强应用数学的意识,提高分析问题、解决问题的能力,又可以养成学以致用的好习惯.教材十分强调具体问题具体分析,从而得到不同问题的不同解决方法.本章重点是一元一次方程的解法和应用,学生习惯了应用算术方法解决实际问题,这给利用方程模型解决实际问题的理解带来难度,教师应及时给予适当的指导,让学生感受到方程解决问题所带来的方便.学好本章内容,不仅能使学生更好地理解和掌握代数的有关知识,对于学生学习初中数学的其他知识也至关重要.【重点】1.理解等式的两条基本性质,会用字母表示它们,并能熟练运用.2.熟练掌握一元一次方程的基本解法.3.能根据实际生活背景列一元一次方程解决问题.【难点】1.一元一次方程的解法.2.通过对实际问题的分析,正确理解题目中隐含的等量关系,列出方程.1.教学应结合具体内容多采用“问题情景——建立模型——应用拓展”的模式展开,从简单而具体的实例让学生经历方程的形成与应用的过程,从而更好地理解方程的基本概念及意义,使学生从小学算术的思维方式逐渐过渡到用方程的思想思考和解决实际问题,发展应用数学的意识和能力.2.在讲解一元一次方程的化简及求解的时候,应该同时练习代数式的有关知识,让学生通过所学的知识,学习和掌握新的知识.这样教学既有利于培养学生综合运用所学知识的能力,又有利于通过知识间的内在联系,化解教学中的难点,使学生更加牢固地掌握知识.3.有效的数学学习不是单纯的模仿和记忆,解方程的步骤也没有统一模式,教师应注意引导学生选择合理的解方程步骤,关注他们的个性发展.4.在讲解如何用一元一次方程解决实际问题的各节中,应该鼓励学生自己分析问题中的量与量之间的关系,并寻找问题中的等量关系,经历从分析问题、解决问题到检验问题的完整过程.教师在这个过程中只是起到一个引导的作用,不宜代替学生的思维过程.5.运用方程解决实际问题时,注意启发学生从多角度寻找等量关系,关注他们能否恰当地转化和分析量与量之间的关系,并鼓励学生大胆创新.1认识一元一次方程2课时2求解一元一次方程3课时3应用一元一次方程——水箱变高了1课时4应用一元一次方程——打折销售1课时5应用一元一次方程——“希望工程”义演1课时6应用一元一次方程——追赶小明1课时本章概括整合1课时1认识一元一次方程1.在具体情景中,理解方程的意义和作用.2.理解一元一次方程的概念.3.掌握利用等式性质解一元一次方程的基本技能,进而熟练解简单的一元一次方程.1.通过一元一次方程的引入,培养学生的建模思想,归纳、分析问题及解决问题的能力.2.通过类似天平的实验,形象直观地展示等式的基本性质,通过观察、思考,归纳出等式的基本性质.3.体会解一元一次方程就是将方程利用等式的基本性质变形为x=a(a为常数)的形式.1.通过观察、操作、归纳等数学活动,感受数学思考过程的条理性和数学结论的严密性.2.使学生在分析实际问题情境的活动中体会数学与现实的密切联系.【重点】在实际背景中理解方程的概念,并运用等式的基本性质进行求解.【难点】能够运用等式的基本性质对一元一次方程进行求解.第课时1.在具体情景中,理解方程的意义和作用.2.理解一元一次方程的概念.1.通过一元一次方程的引入,培养学生的建模思想,归纳、分析问题及解决问题的能力.2.通过类似天平的实验,形象直观地展示等式的基本性质,通过观察、思考,归纳出等式的基本性质.1.培养学生主动探究知识、自主学习和合作交流的意识.2.在分析实际问题情景的活动中体会数学与现实的密切联系.3.经历观察、归纳、应用等环节,形成良好的学习态度和学习方法.【重点】建立一元一次方程的概念,会根据具体问题中的数量关系列出一元一次方程,体会数学的应用价值.【难点】能根据具体问题中的等量关系列出一元一次方程.【教师准备】多媒体课件.【学生准备】预习教材.导入一:(出示投影)丢番图是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途.——出自《希腊诗文选》第126题.师:谁能用方程求出丢番图去世时的年龄?大家讨论、交流一下.生:可以利用我们所学的知识设他去世时的年龄为x岁,列方程为x+x+x+5+x+4=x.师生交流:你对方程有什么认识?列方程解决实际问题的关键是什么?本章将学习一元一次方程的概念、解法和应用,充分感受方程模型的思想,首先从第1节一元一次方程开始.(板书课题)[设计意图]通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效的模型.导入二:(出示投影)同学们请看大屏幕,小彬和小华在进行猜年龄游戏,我们来看一看,小华是怎样猜出小彬的年龄的?他是利用什么样的方法呢?分析:如果设小彬的年龄为x岁,那么“乘2再减5”就是,因此可以得到方程:.生:我知道是怎么回事,如果设小彬的年龄为x岁,那么“乘2再减5”就是2x- 5,因此可以得到方程:2x - 5=21.根据我们小学所学的方程的解法x=13,所以小彬的年龄为13岁.师:这位同学非常聪明,能够利用小学的知识把它解出来很好,而且非常正确,同学们给他掌声鼓励.那我们是否也可以用列方程的方式来解决生活中的实际问题呢?这节课我们开始学习一元一次方程.(板书课题)[设计意图]通过小彬和小华进行的猜年龄游戏,把现实生活中的问题转化为数学中的方程问题,从而认识一元一次方程的重要作用.[过渡语]同学们,生活中处处有数学,下面我们一起探究实际问题与数学的联系吧.情景1:如图所示,小颖种了一株树苗,开始时树苗高为40 cm,栽种后每周树苗长高约15 cm,大约几周后树苗长高到1 m?提示思考问题:(1)原来高多少?40 cm.(2)x周后长高了多少?15x cm.(3)本题中的等量关系是什么?树苗开始的高度+长高的高度=树苗将达到的高度.(4)如何列方程表达等量关系?情景2:甲、乙两地相距22 km,张叔叔从甲地出发到乙地,每时比原计划多行走1 km,因此提前12 min到达乙地,张叔叔原计划每时行走多少千米?思路一若设张叔叔原计划每时行走x km,则实际每小时走km, 由此,我们可以列出方程:.师生活动:设未知数,根据题意列出方程,老师点评并分析如何建立一元一次方程的数学模型,并整理.思路二小组活动,共同探究、思考:(1)题中的已知条件是什么?(2)题中的等量关系是什么?动手写出来.(3)如何设未知数,根据题中等量关系怎样列方程?[处理方式]教师在巡视过程中及时解决疑难问题,学生讨论后小组展示讨论结果,教师及时补充.情景3:根据第六次全国人口普查统计数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?思路一如果设2000年第五次全国人口普查时每10万人中约有x人具有大学文化程度,那么可以得到方程:.思路二(1)想一想:题目中的已知条件是什么?题目中各个量之间有什么关系?(2)品一品:你能正确地找出题目中的等量关系吗?动手写一写.(3)考一考:看谁能正确地列出方程?学生活动,教师巡视发现问题,并及时解决.[设计意图]设置丰富的问题情景,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.探究活动2什么是一元一次方程1.问题导学观察下面所列的方程,哪些是你熟悉的?有何共同特点?2x - 5=2140+15x=100(1+147.30%)x=8930在学生共同分析总结的基础上,指出这些方程中含有未知数的个数有什么特点?未知数的指数有什么特点?上面方程中的第1,2,4个都具有以下特点:(1)都只含一个未知数x;(2)未知数的指数都是1;(3)方程两边都是整式.板书:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫一元一次方程.[设计意图]让学生通过观察、类比的方法得到定义,从而达到真正理解定义的目的, [过渡语]我们了解了一元一次方程的有关概念,现在同学们比一比谁理解得更透彻吧!判断以下哪些是一元一次方程.(1) - 2+5=3;(2)3x - 1=7;(3)m=0;(4)x>3; (5)x+y=8;(6)2x2 - 5x+1=0;(7) 2a +b.[处理方式]以抢答的形式来完成此题,并让学生找出错误理由.教师应注意对学生给出的答案作出点评和归纳.[设计意图]进一步强化一元一次方程的概念满足的条件,采取抢答的形式,提高学生学习数学的兴趣和积极性.探究活动3什么是方程的解[过渡语]像开头的小游戏,当你告诉我计算结果是21时,我根据2x - 5=21,得出你的年龄是13.在这里13是使这个方程成立的x的值,我们把它称为方程2x - 5=21的解.例如:a=2是方程2a - 4=0的解;m=0是方程6m= - 0.7m的解.板书:使方程左、右两边的值相等的未知数的值,叫做方程的解.[知识拓展]1.判定一个方程是不是一元一次方程需同时满足三个条件:(1)方程中的代数式都是整式;(2)只含有一个未知数;(3)未知数的指数都是1.2.方程中解的意义和实际生活中问题的意义是有区别的,就是说方程的解不一定都在实际生活中有意义.1.一元一次方程:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫一元一次方程.2.方程的解:使方程左、右两边的值相等的未知数的值,叫做方程的解.1.在①2x - 1;②2x+1=3x;③|π - 3|=π - 3;④t+1=3中,等式有,方程有.(填序号)解析:一元一次方程必须满足三个条件:(1)未知数的指数是1;(2)是整式方程;(3)含有一个未知数.答案:②③④②④2.方程4x= - 4的解是x=.解析:由题意可知x= - 1.故填 - 1.3.根据“x的2倍与5的和比x的小10”,可列方程为.解析:由题意可知2x+5= - 10.故填2x+5= - 10.4.若2x=6与3(x+a)= - 5x有相同的解,那么a - 1=.解析:由2x=6,得x=3,因为2x=6与3(x+a)= - 5x有相同的解,所以把x=3代入3(x+a)= - 5x,解得a= - 8,所以a - 1= - 9.故填 - 9.5.若关于x的方程mx m - 2 - m+3=0是一元一次方程,则这个方程的解是.解析:由关于x的方程mx m - 2 - m+3=0是一元一次方程可知m - 2=1,解得m=3,所以把m=3代入mx m - 2 - m+3=0,得3x - 3+3=0,解得x=0.故填x=0.6.小明买了80分与2元的邮票共16枚,花了18元8角,求他买了80分的邮票和2元的邮票各多少枚.(只需列出方程)解:设他买了80分的邮票x枚,则2元的邮票(16 - x)枚,所以方程为0.8x+2(16 - x)=18.8.第1课时1.对实际问题通过列方程的形式表达2.什么是一元一次方程3.什么是方程的解一、教材作业【必做题】教材第132页习题5.1的1题.【选做题】教材第132页习题5.1的2题.二、课后作业【基础巩固】1.下列四个式子中,是一元一次方程的是 ()A.x2 - 1=0B.x=y+1C.y+1=0D.=22.x=3满足下列方程中的()① - 2x - 6=0;②|x+2|=5;③(x - 3)(x - 1)=0;④x=x - 2.A.1个B.2个C.3个D.4个3.某车间有100个工人,每人平均每天加工螺栓18个或加工螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓要配两个螺母),则应分配多少工人加工螺母?如果设分配x个工人加工螺母,则可列出方程()A.18x+24x=100B.18x+2×24x=100C.18×2x=(100 - x)×24D.x×24=2(100 - x)×184.若3x n - 1=2是一元一次方程,则n=.5.当n=时,1 - n的值是5.6.小明说小红的年龄比他大两岁,他俩的年龄和为18岁,求两人的年龄.若设小明x岁,则小红的年龄为岁.根据题意,列方程得:.【能力提升】7.已知2是关于x的方程mx=8的解,则m=.【拓展探究】8.父亲的年龄为50岁,儿子的年龄为20岁,则多少年后,父亲的年龄是儿子的两倍?(只需列出方程即可)【答案与解析】1.C(解析:A,未知数x的指数是2;B,含有两个未知数;D,方程中不是整式.故选C.)2.C(解析:根据方程的解的定义,把x=3分别代入②③④符合题意,故选C.)3.D(解析:如果设分配x个工人加工螺母,则有(100 - x)个工人加工螺栓,加工螺母24×x 个,加工螺栓18×(100 - x)个,由题意可列出方程x×24=2(100 - x)×18,故选D.)4.2(解析:由3x n - 1=2是一元一次方程,可知n - 1=1,解得n=2,故填2.)5. - 4(解析:由1 - n的值是5,可知1 - n=5,解得n= - 4,故填 - 4.)6.(x+2)x+2+x=18(解析:小红比小明大2岁,所以若设小明x岁,则小红的年龄为(x+2)岁.根据题意,列方程得x+2+x=18.)7.4(解析:因为2是关于x的方程mx=8的解,所以把x=2代入mx=8得2m=8,解得m=4.)8.解:设x年以后父亲的年龄是儿子的两倍,则x年后父亲的年龄为(50+x)岁,儿子的年龄为(20+x)岁,由题意可列方程为50+x=2(20+x).(1)以小游戏作为情景引入,让学生在一个轻松的环境中打开问题之门,由惊奇到好奇再到激起解开疑惑的欲望,然后设置一系列的情景问题,引导学生借助游戏中的思维方法来辨析生活中的实际问题,从而投入到认识一元一次方程上来,课堂达到了水到渠成的不错效果.(2)在整个教学实施过程中,自始至终坚持以问题为主线,诱导学生思考问题,进而去解决问题,问题的设计也遵循学生的思维特点,着重引导学生探索、归纳,注重过程教学,如此既有利于培养学生的分析归纳能力,也真正体现了以学生为主体的教学理念.(1)利用情景列方程时仍有部分同学不能及时地列出方程,达不到构建方程模型解决实际问题的能力要求.(2)小组学习活动效果不是太理想,部分同学不能全心参与,不明白自己的任务.充分调动学生的积极性,小组学习要有具体的内容,教师跟踪到位,及时发现问题,解决问题.练习(教材第131页)1.解:(1)设“它”为x,根据题意,得x+x=19. (2)设甲队胜了x场,则它平了(10 - x)场,根据题意,得3x+1×(10 - x)=22.2.解:(1)不是. (2)是.(1)数学来源于生活,又应用到生活中去,所以以三个不同的生活情景问题导入新课,通过分析题意,构建方程数学模型,让学生掌握利用方程解决问题,既突破了本节课的难点,又很自然地引出了本节课的课题即重点,从而归纳一元一次方程的概念,认识方程的解.(2)本节课重难点、易错点的掌握通过不同形式的练习加以巩固,让学生积极参与,培养竞争意识,激发学习兴趣,同时教师随时注意学生们出现的问题,及时引导和反馈,使学生在快乐中掌握知识.若方程3x m - 2+5=0是一元一次方程,则代数式4m - 5=.〔解析〕根据一元一次方程的条件,这里应有m - 2=1,解得m=3,从而4m - 5=4×3 - 5=7.故填7.【针对训练】若方程(a+6)x2+3x - 8=7是关于x的一元一次方程,则a=.〔解析〕根据定义需使x的二次项消失,即a+6=0,解得a= - 6.故填 - 6.第课时理解等式的两个基本性质,并能利用它求解简单的一元一次方程.1.通过类似天平的实验,形象直观地展示等式的基本性质,通过观察、思考,归纳出等式的基本性质.2.体会解一元一次方程就是将方程利用等式的基本性质变形为x=a(a为常数)的形式.经历观察、归纳、应用等环节,形成良好的学习态度和学习方法,感受数学思考过程的条理性和数学结论的严密性.【重点】1.等式的基本性质.2.体验用等式的基本性质解方程.【难点】利用等式的基本性质对方程进行变形,直至变形成x=a(a为常数)的形式,并能说出每步变形的根据.【教师准备】准备天平.【学生准备】预习教材.导入一:上节课我们做的猜年龄游戏大家还记得吗?老师的年龄乘2减去5得数是65,设老师的年龄为x岁,我们得方程2x - 5=65.为了更好地解决方程问题,今天我们就来继续学习认识一元一次方程(第2课时).导入二:在小学,我们求解过方程,请大家回忆你会求解哪些方程,方程5x=3x+4你会解吗?我们曾经利用逆运算求解形如ax+b=c的方程.(简单举例说明)对于较为复杂的方程,例如这样一个问题:某数与2的和的,比某数的2倍与3的差的大1,求某数.如果我们设某数为x,可以得到方程是+1.怎样才能求出x呢?如果还用逆运算容易求出方程的解吗?观察、思考,小组内简单交流后回答用逆运算不易求出方程的解.师:因此要想求出这些复杂的一元一次方程的解,我们有必要研究等式的基本性质,才可以解决这个问题.(板书课题)[设计意图]通过问题串,让学生感受到自己原先具有的知识已不能够解决问题,学生遇到了困难,从而激发学生的求知欲,产生了克服困难的决心和信心,更能积极投入到新课的学习情境中去.[过渡语]同学们,到底如何解上面的方程呢?我们先来探究一下等式的基本性质.小组合作交流展示.(1)等式两边同时加(或减),所得结果仍是等式.(2)等式两边同时乘同一个数(或除以同一个的数),所得结果仍是等式.(3)已知等式x=y,你能用数学符号表示等式的两个基本性质吗?若x=y,则,.(c为一代数式)若x=y,则,.(c为一不为0的数)【学生活动】小组合作交流:观察x=y的特征.【师生活动】复习学过的等式的基本性质,得出x±c=y±c,xc=yc,x÷c=y÷c(c≠0).[设计意图]交流讨论,并充分认识等式的基本性质,领会等式的基本性质的符号语言及与小学学习的区别,同时训练了学生的思维和小组合作意识.探究活动2用等式的基本性质解方程教师组织学生实践操作,演示天平称量过程.思路一教师引导学生思考并回答:表示x,表示2,将5x=3x+4用天平表示.(1)天平在开始平衡时怎样由5x=3x+4变成2x=4,再变成x=2的呢?(2)2x=4是在5x=3x+4的两边借助都减去3x得到的;x=2是在2x=4的两边借助都除以2得到的.思路二小组活动,共同探究,思考:(1)观察天平①②可知,5x - =3x - +4,得到2x=4.(2)观察天平②③可知,2x÷=4÷,得到x=2.(3)你能写出解方程的过程吗?【师生活动】教师在巡视过程中及时解决疑难问题,学生讨论后小组展示讨论结果,教师及时补充.【学生活动】归纳概念.在利用等式的两个基本性质时,需注意什么?(1)等式两边每一项都要参加运算,是同一种运算,要加都加,要减都减,要乘都乘,要除都除,并且等式两边加上或减去,乘或除以的数一定是同一个数.(2)第一个基本性质所加(或减)不受限制,只要是同一个代数式即可,第二个基本性质除数受限制,除数是不为0的同一个数.(教师板书应注意的问题)[设计意图]此探究活动既可以培养学生观察、思考、分析、总结、归纳能力,又培养了学生的语言表达能力.巩固练习在横线上填写适当的代数式,并说明根据等式的哪一条性质.(1)如果x - 3=2,那么x=,根据.(2)如果x+y=0,那么x=,根据.(3)如果4x= - 12y,那么x=,根据.(4)如果a - b - c=0,那么a=,根据.[设计意图]运用等式的基本性质进行等式变形,这种变化对一些学生来说很难把握准确,易于混淆.此处设计目的是鼓励学生区别清楚等式的两个基本性质,大胆做题,不要怕出错,要让学生在解题中积累经验,及对知识有更深层次的掌握.解下列方程:(1)x+2=5;(2)3=x - 5.解:(1)方程两边同时减去2,得x+2 - 2=5 - 2.于是x=3.(2)方程两边同时加上5,得3+5=x - 5+5.于是8=x.习惯上,我们写成x=8.[设计意图]在实际变形的过程中,让学生体会等式的基本性质1的真正含义;让学生感受到负数的引进及有理数运算的介入,用等式的基本性质解方程,相比小学的逆运算更具理性思维;在经历等式变形的过程中,增强学生理性思维的意识.解下列方程:(1) - 3x=15;(2) - - 2=10.【师生活动】组织学生以小组为单位,先独立解方程,然后小组交流不同方法.解:(1)方程两边同时除以 - 3,得,化简,得x= - 5.(2)方程两边同时加上2,得 - - 2+2=10+2.整理得 - =12.方程两边同时乘 - 3,得n= - 36.如何判断我们解得的值是不是方程的解呢?正确方法:把n= - 36代入原方程,左边= - - 2=12 - 2=10,右边=10.因为左边=右边,所以n= - 36是原方程的解.[设计意图]在实际变形的过程中,让学生体会等式的基本性质1,2的真正含义;培养学生严谨、科学的思维习惯,规范的数学书写格式.[知识拓展]方程是含有未知数的等式,所以可以利用等式的基本性质解方程.利用等式的基本性质解一元一次方程,也就是通过正确的变形,将方程化成未知数的系数为1的形式,即x=a的形式.等式的基本性质1和2关键的两个词是“同时”“同一个”,性质1的含义是只有等式两边同时加上(或减去)同一个代数式,才能保证所得结果仍是等式,否则所得结果不是等式.性质2的含义要注意两点:(1)等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式;(2)等式两边不能同时除以0,因为0不能作除数.一元一次方程的几种形式及求解方法:①x+a=b:方程两边都减去a,得x=b - a;②ax=b(a≠0):方程两边都除以a,得x=;③ax+b=c(a≠0):方程两边都减去b,得ax=c - b,再在方程的两边都除以a,得x=.等式的基本性质.1.下列各选项中,根据等式的基本性质变形正确的是()A.由 - x=y,得x=2yB.由3x=2x+2,得x=2C.由2x - 3=3x,得x=3D.由3x - 5=7,得3x=7 - 5解析:选项A中,等式两边同时乘3,得 - x=2y,故选项A错误;选项B中,等式两边都减去2x,得x=2,故选项B正确;选项C中,等式两边都减去2x,得 - 3=x,即x= - 3,故选项C 错误;选项D中,等式两边都加5,得3x=7+5,故选项D错误.故选B.2.若ma=mb,那么下列等式不一定成立的是()A.a=bB.ma - 6=mb - 6C. - 12ma= - 12mbD.ma+8=mb+8解析:仔细观察、分析原等式与各选项中的等式的结构、系数有何变化,从而确定是应用了等式的哪条基本性质.显然选项B和D应用了等式的基本性质1;选项C是运用了等式的基本性质2;选项A中,只有当m≠0时,才能成立,故选项A中的等式不一定成立.故选A.3.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a - 5=2bB.3a+1=2b+6C.3ac=2bf+5fD.a=b+解析:A项可由等式两边都减去5得到;B项可由等式两边都加上1得到;D项可由等式两边同除以3得到;只有C项是不一定成立的.故选C.4.在解方程3x - 3=2x - 3时,小华同学是这样解的:方程两边同加3,得3x - 3+3=2x - 3+3.(1)于是3x=2x.方程两边同除以x,得3=2.(2)所以此方程无解.小华同学的解题过程是否正确?如果正确,请指出每一步的理由;如果不正确,请指出错在哪里,并加以改正.解:第(1)步符合等式的基本性质1,是正确的;第(2)步不符合等式的基本性质2,是错误的.根据等式的基本性质2,方程两边同除以一个数时,要在这个数不为0的前提下进行,事实上,x是等于0的,应改为:方程两边同减去2x,得3x - 2x=0.于是x=0.5.解方程:(1)5x - 8=12;(2)4x - 2=2x.解:(1)方程的两边同时加上8,得5x=20.方程的两边同时除以5,得x=4.(2)方程的两边同时减去2x,得2x - 2=0.方程的两边同时加上2,得2x=2.方程的两边同时除以2,得x=1.。
北师大版七年级上册数学 5.1认识一元一次方程 教案
5.1认识一元一次方程
5.1认识一元一次方程
教学反思
本节课是在小学方程的基础上加深对一元一次方程的理解,能清楚的判断一个式子是不是一元一次方程。
本文使用Word编辑,排版工整,可根据需要自行修改、打印,使用方便。
在上课前给每个学生发了一张有关本节课的导学案,要求学生必须先进行预习,然后在课堂过程中解决学生的疑难问题。
在学生展示方面,由于提前预习,因此学生展示的比较好,知识点也能讲清楚,但是学生展示时的语言不是很简练、逻辑思维有点混乱。
在以后的教学中,我会多培养学生的逻辑思维能力,多让学生给别人讲解知识点和习题,而且可以二次讲解,看第二次能否比第一次更简洁、更清楚。
课堂中,由于我的感染力不够,课堂气氛稍显沉闷,有些学生自律性很好,他能及时的回答问题,并且学会了本节课的内容。
有个别学生主动性不强,思想容易抛锚,可能是由于课堂内容中不能吸引他们,在这方面我应该好好的思考一下,尽量在课堂中设置一些小游戏、小比赛、笑话等,来激发学生的学习兴趣,同时加强小组之间的监督互学,这样确保不会有学生不听课。
再有就是本节课后续内容衔接不太好,习题之间衔接显得生硬,在这方面指导老师给我的建议是习题层层递进,这样就一层一层深入,课堂就更有深度。
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。
它严谨、简洁,富含逻辑。
5.3 一元一次方程的应用 教学设计-北师大版(2024)七年级数学上册
5.3《一元一次方程的应用》教学设计教材分析本节课是北师大版( 2024)七年级上册的第五章第三节(《一元一次方程的应用》教学内容,它是学生学习完一元一次方程的概念和解法后的第一个模型应用内容,目的是让学生感受一元一次方程是刻画现实世界常见的数学模型之一。
本节课内容与学生现实生活结合紧密,这样可以让学生更容易根据问题中的数量关系建立方程模型。
与此同时,由于本节课是学生首次经历建立数学模型并求解的全过程,所以对于本课的教学,需引导学生真正经历从实际问题中获得等量关系、建立和求解一元一次方程模型的全过程,感悟模型思想,为以后学习研究其他数学模型奠定基础。
因此,本节课无论是在知识上还是思想方法及能力上都起着举足轻重的作用。
本节课的重点是通过对实际问题所涉及的数学关系的理解,找到图形问题中的等量关系,建立一元一次方程,使实际问题数学化。
难点是审清题意,关键让学生抓住图形问题中的不变量。
核心素养目标:思维品质、能正确分析应用题的题意,找出题中的不变量——等量关系,设未知数、列方程、求解并检验解的合理性。
数学建模、通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力。
情感态度与价值观、通过对实际问题的探讨,使学生在动手独立思考、方程意识的过程中,进一步体会数学应用的价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望。
教学重点与难点:重点:能正确分析应用题的题意,找出题中的不变量——等量关系,设未知数、列方程、求解并检验解的合理性。
难点:通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力。
课前准备:多媒体课件、细绳、小球、水杯。
教学过程:一、创新情境,引入新课活动内容:情境1:成语( 朝三暮四”的故事( 附内容:从前有个人养了一群猴子.每天早晨和晚上都喂每只猴子四个橡子,可是他家里越来越穷了,已经买不起这么多橡子了,这可怎么办,于是他想了一个办法,第二天他对猴子们说,从今天开始,每天早上给你们三个橡子,晚上给四个,猴子们一听,早上的比晚上的少,气的大叫起来,那个人灵机一动,连忙改口说,要不我每天早上给你们四个橡子,晚上三个橡子,这样总可以了吧,猴子们一听,早上比晚上多,都高兴的跳了起来。
北师大版数学七年级上册5,1认识一元一次方程优秀教学案例
(五)作业小结
1.布置作业:教师根据本节课所学内容,布置一些具有针对性的作业,让学生巩固所学知识。
2.作业反馈:教师对学生的作业进行及时反馈,指出学生的优点和不足,帮助学生提高。
3.作业小结:学生在课后对本次作业进行小结,总结自己在完成作业过程中的经验教训,提高学习效果。
2.一元一次方程的解法:教师通过讲解、示范,引导学生掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。
3.一元一次方程的应用:通过设计一些实际问题,让学生运用一元一次方程解决问题,感受方程在实际生活中的价值。
(三)学生小讨论
1.问题引导:教师提出一系列与一元一次方程相关的问题,引导学生进行思考、探讨。
本节课的教学内容主要包括一元一次方程的概念、特点及其在实际问题中的应用。通过学习,学生能理解一元一次方程的意义,掌握一元一次方程的解法,并能运用一元一次方程解决实际问题。
在教学过程中,我将充分运用启发式教学方法,引导学生从生活情境中发现问题、提出问题,并通过合作交流、探讨解决问题的方法。在教学设计上,注重理论与实践相结合,让学生在解决实际问题的过程中,感受方程的价值,提高学生的数学应用能力。同时,注重培养学生的逻辑思维能力和创新意识,使学生在轻松愉快的氛围中掌握一元一次方程的知识。
五、案例亮点
1.生活情境导入:通过设计一些与学生生活密切相关的情境,如购物、行程等问题,让学生感受到方程在生活中的实际应用,从而激发学生学习方程的兴趣。这种情境导入的方式能够有效引发学生的学习兴趣,让学生感受到数学与生活的紧密联系。
2.问题导向:设计一系列有针对性的问题,引导学生思考、探讨,激发学生的思维活力。教师提问和学生提问相结合,培养学生的质疑精神和思考能力,提高学生的思维水平。
(北师大版2024)七年级数学上册同步5.1 认识方程 教案
第五章 一元一次方程1 认识方程1.从生活的实际问题出发,通过小组讨论、教师引导发现数学与生活密不可分.2.通过列方程的过程,感受方程作为刻画现实世界的数学模型的意义,体会到由算式到方程式是数学的一大进步,从而体会方程思想.重点:初步认识一元一次方程的特征,形成一元一次方程的概念.难点:理解方程的解的概念.一、情境导入二、合作探究探究点一:方程及一元一次方程的概念【类型一】 方程的识别下列各式是方程的有( )(1)2x -3=7;(2)8+5=13;(3)2m -3n =0;(4)2+5x ;(5)x +2>3.A .0个B .1个C .2个D .3个解析:(1)2x -3=7,(3)2m -3n =0是含有未知数的等式,属于方程;(2)8+5=13中不含有未知数,不是方程;(4)2+5x 不是等式,不是方程;(5)x +2>3不是等式,不是方程.故选C .方法总结:含有未知数的表示量相等的等式称为方程.下列方程中,是一元一次方程的是( )A .2x +3y =5B .x 2-x +2=0C .3x -5=4x +1D .1x-x =1 解析:紧扣一元一次方程的概念,A 中含有两个未知数;B 中未知数的最高次数是2;D 中分母含有未知数.故选C .方法总结:识别一个方程是否为一元一次方程,不能仅以未知数的个数和次数去判断,必须先化简保证未知数的系数不为0.【类型二】 利用一元一次方程的概念求字母的值方程(m +1)x |m|+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足指数为1,系数不等于0,所以⎩⎨⎧|m|=1,m +1≠0,解得m =1.故选B . 方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可求方程中字母的值.探究点二:检验方程的解检验下列各数是不是方程5x -2=7+2x 的解,并写出检验过程.(1)x =2; (2)x =3.解析:将未知数的值代入,看左边是否等于右边,即可判断是不是方程5x -2=7+2x 的解.解:(1)将x =2代入方程,左边=8,右边=11,左边≠右边,故x =2不是方程5x -2=7+2x 的解.(2)将x =3代入方程,左边=13,右边=13,左边=右边,故x =3是方程5x -2=7+2x 的解.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点三:由实际问题抽象出一元一次方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B .方法总结:解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,最后列方程.三、板书设计认识方程 ⎩⎪⎨⎪⎧方程→含有未知数的表示量相等的等式叫作方程.一元一次方程→只含有一个未知数,且方程中的代数式都是整式,未知数的次数是1的方程叫作一元一次方程.方程的解→使方程左、右两边的值相等的未知数的值,叫作方程的解.教学过程中,通过对多种实际问题情境的分析,感受方程作为刻画现实世界有效模型的意义,通过观察、归纳一元一次方程的概念,使学生在分析实际问题情境的活动中体会数学与现实的密切联系.。
北师大版数学七年级上册5.1.1一元一次方程的认识(教案)
举例:解方程-2x + 5 = 3x - 1,需要理解负号在移项时的变化。
在教学过程中,教师要针对这些重点和难点进行详细的讲解和指导,确保学生能够透彻理解一元一次方程的相关知识。通过典型例题的极参与课堂讨论和练习,以便及时发现并解决他们在学习过程中遇到的问题。
实践活动和小组讨论的环节,让我看到了学生的积极性和合作精神。他们针对一元一次方程在实际生活中的应用展开了热烈的讨论,并提出了许多有趣的例子。在实验操作过程中,同学们动手实践,加深了对一元一次方程的理解。同时,我也在旁边观察,适时给予指导和启发,帮助学生更好地消化和吸收知识。
然而,我也发现了一些需要改进的地方。首先,在新课讲授过程中,可能需要更加注重对重点和难点的强调。对于一些基础薄弱的同学,可能需要反复讲解,让他们有更多的机会去理解和掌握。其次,在实践活动和小组讨论中,时间分配可能需要更加合理,确保每个小组都有足够的时间展示他们的成果。
举例:3x - 7 = 0,其中a=3,b=-7。
(2)方程的解:掌握方程解的含义,即能使得方程左右两边相等的未知数的值。
举例:对于方程3x - 7 = 0,解x=7/3。
(3)求解一元一次方程的步骤:熟练掌握移项、合并同类项、化简等求解方法。
举例:解方程3x - 7 = 0,先将方程两边同时加7,得到3x = 7,然后两边同时除以3,得到x = 7/3。
4.培养学生的数学抽象能力:让学生从具体的实例中抽象出一元一次方程的一般形式,理解数学概念的形成过程,提高数学抽象能力。
5.培养学生的合作交流能力:在小组讨论和练习过程中,鼓励学生互相交流、探讨,共同解决问题,提高合作交流能力。
三、教学难点与重点
七年级数学上册 第五章 一元一次方程复习教案 (新版)北师大版-(新版)北师大版初中七年级上册数学教
第五章 一元一次方程小结与复习一、等式的概念和性质1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则. 2.等式的类型(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式123+=. (2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程56x +=需要1x =才成立.(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如125+=,11x x +=-.注意:等式由代数式构成,但不是代数式.代数式没有等号.3.等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b =,则am bm =,a b mm=(0)m ≠.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边. (2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b =,那么b a =.②等式具有传递性,即:如果a b =,b c =,那么a c =. 二、方程的相关概念1.方程,含有未知数的等式叫作方程.注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可. 2.方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元. 3.方程的已知数和未知数已知数:一般是具体的数值,如50x +=中(x 的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有a 、b 、c 、m 、n 等表示.未知数:是指要求的数,未知数通常用x 、y 、z 等字母表示.如:关于x 、y 的方程2ax by c -=中,a 、2b -、c 是已知数,x 、y 是未知数.4.方程的解使方程左、右两边相等的未知数的值,叫做方程的解. 5.解方程求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.6.方程解的检验要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是. 三、一元一次方程的定义1.一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数. 2.一元一次方程的形式标准形式:0ax b +=(其中0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式.最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式.注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b =与方程(0)ax b a =≠是不同的,方程ax b =的解需要分类讨论完成. 四、一元一次方程的解法 1.解一元一次方程的一般步骤(1)去分母:在方程的两边都乘以各分母的最小公倍数.注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.(2)去括号:一般地,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边.注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成ax b =的形式.注意:字母和其指数不变.(5)系数化为1:在方程的两边都除以未知数的系数a (0a ≠),得到方程的解b x a=.注意:不要把分子、分母搞颠倒.2.解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等. 3.关于x 的方程 ax b 解的情况⑴当a 0时,x ⑵当a,b 0时,方程有无数多个解⑶当a 0,b 0时,方程无解练习1、等式的概念和性质 列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式. 2.根据等式的性质填空. (1)4a b =-,则a b =+; (2)359x -=,则39x =+;(3)683x y =+,则x =; (4)122x y =+,则x =.练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?①34a +;②28x y +=;③532-=;④1x y ->;⑤61x x --;⑥; ⑦230y y +=;⑧2223a a -;⑨32a a <-. 2.判断题.(1)所有的方程一定是等式. ( ) (2)所有的等式一定是方程. ( ) (3)241x x -+是方程. ( ) (4)51x -不是方程.( ) (5)78x x =不是等式,因为7x 与8x 不是相等关系. ( ) (6)55=是等式,也是方程.( )(7)“某数的3倍与6的差”的含义是36x -,它是一个代数式,而不是方程. ( ) 练习3、一元一次方程的定义1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3x+5=12; (2)31+x +2x =5; (3)2x+y=3;(4)y 2+5y -6=0;(5)x 3-x =2.2.已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值.()7421=+--m x m 是关于x 的一元一次方程,则m=_________4.已知方程1(2)40a a x --+=是一元一次方程,则a =;x =.练习4、一元一次方程的解与解法1)一元一次方程的解 一)、根据方程解的具体数值来确定x 的方程a xx -=+332的解是2x =-,则代数式21aa -的值是_________。
七年级上册数学北师大版第五单元复习教学设计 教案
第5单元一元一次方程复习教案一、复习目标二、课时安排2课时三、复习重难点(1)一元一次方程的求解(2)一元一次方程的应用四、教学过程(一)知识梳理1.一元一次方程的概念2.一元一次方程的求解3.一元一次方程的应用—--等体积变化4.一元一次方程在销售中的应用5.一元一次方程在分配中的应用6.一元一次方程在追击问题中的应用(二)题型、方法归纳1. 关于x的方程(a-1)x2+x+a2-4=0是一元一次方程,则方程的解为.2. 已知方程x-2y+3=8,则整式x-2y的值为()A.5B.10C.12D.153. 小明买了80分和2元的邮票共16枚,花了18元8角,若设他买了80分的邮票x枚,则可列方程()A.80x+2(16-x)=188B.80x+2(16-x)=18.8C.0.8x+2(16-x)=18.8D.8x+2(16-x)=1884. 元旦来临,各大商场都设计了促进消费增加利润的促销措施,“物美”商场把一类双肩背的书包按进价提高50%进行标价,然后再打出8折的优惠价,这样商场每卖出一个书包就可盈利8元,这种书包的进价是()A.42元B.40元C.38元D.35元5. 几个小朋友分一堆糖,若每人k颗,还剩14颗,若每人(k+1)颗,最后一个人只分到6颗,计算小朋友人数及k的值分别是()A.17人,k=8B.17人,k=9C.11人,k=10D.11人,k=8(三)典例精讲例1. 已知(a+1)x2-(a-1)x+8=0是关于x的一元一次方程,求代数式60(2x+2a)(x-a)+208的值解:由(a+1)x2-(a-1)x+8=0是关于x的一元一次方程,可得a+1=,解得a=-1,此时方程变化2x+8=0,解得x=-4,把a=-1,x=-4代入代数式得60(2x+2a)(x-a)+208=60×[2×(-4)+2×(-1)][-4-(-1)]+208=60×(-10)×(-3)+208=2008.例2:某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利20%,此商品的进价是多少元?解:设该商品的进价为x元.根据题意得:780×90%-30-x=20%x.解得:x=560元,即该商品的进价为560元.例3:某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.解:①设购买一等席x张,二等席(36-x)张.根据题意得:600x+400(36-x)=10050.解得:x=-21.75(不合题意).②设购买一等席x张,三等席(36-x)张.根据题意得:600x+250(36-x)=10050.解得:x=3.∴可购买一等席3张,二等席位33张.③设购买二等席x张,三等席(36-x)张.根据题意得:400x+250(36-x)=10050.解得:x=7.∴可购买二等席7张,二等席位29张.答;共有2中方案可供选择,方案①可购买一等席3张,二等席位33张;方案②可购买二等席7张,二等席位29张.(四)归纳小结1.一元一次方程的概念方程是含有未知数的等式,只含有一个未知数,未知数的指数为1的方程叫做一元一次方程。
北师大版数学七年级上册第五章一元一次方程回顾与思考教学设计
-通过自编应用题,同学们可以更好地理解一元一次方程在实际生活中的应用,同时也能够检验自己是否真正掌握了方程的解法。
4.撰写学习心得,总结一元一次方程的学习体会,包括学习中的困难、解决方法以及收获。
-学习心得的撰写有助于同学们对自己的学习过程进行反思,找出不足之处,以便在今后的学习中更好地调整自己的学习策略。
(四)课堂练习,500字
1.教师设计具有代表性的练习题,涵盖一元一次方程的不同应用场景,让学生独立完成。
2.学生在练习过程中,教师巡回指导,关注学生的解题方法和技巧。
3.教师针对学生的练习情况,进行有针对性的讲解,帮助学生巩固所学知识。
4.学生互相交流解题心得,分享解题方法,共同提高。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结一元一次方程的解法及其在实际问题中的应用。
2.学生分享学习心得,交流在学习过程中遇到的困难和解决办法。
3.教师强调一元一次方程在实际生活中的重要性,激发学生学习数学的兴趣。
4.教师布置课后作业,要求学生在课后巩固所学知识,提高解题能力。
5.教师对学生的课堂表现进行评价,关注学生的全面发展,鼓励他们在今后的学习中勇于面对挑战,增强解决问题的信心。
难点:如何引导学生运用所学知识解决具有挑战性的问题,提高他们的数学思维。
(二)教学设想
1.创设情境,导入新课
通过生活中的实例,引导学生发现一元一次方程的实际应用,激发学生的学习兴趣。在此基础上,回顾一元一次方程的基础知识,为新课的学习做好铺垫。
2.自主探究,合作交流
教师提供具有挑战性的实际问题,鼓励学生自主探究,尝试将问题转化为数学方程。在此基础上,组织学生进行合作交流,分享各自的解题思路和方法,共同解决问题。
北师大版数学七年级上册《 第五章 一元一次方程 》教学设计
北师大版数学七年级上册《第五章一元一次方程》教学设计一. 教材分析北师大版数学七年级上册第五章《一元一次方程》是初中学段数学教学的重要内容,主要让学生了解和掌握一元一次方程的定义、解法及其应用。
本章通过实际问题引入方程的概念,让学生感受数学与实际生活的联系,培养学生的数学应用能力。
教材内容安排合理,由浅入深,既注重基础知识的教学,又重视学生能力的培养。
二. 学情分析初入学段的七年级学生在数学知识、技能、思维方式等方面具有一定的基础,但方程概念、解法及应用对于他们来说还是一个新的领域。
因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发他们的求知欲望,引导学生主动探究、合作交流,逐步掌握一元一次方程的知识。
三. 教学目标1.知识与技能目标:使学生了解一元一次方程的概念,掌握一元一次方程的解法,能运用一元一次方程解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生发现规律、解决问题的能力。
3.情感态度与价值观目标:培养学生热爱数学、勇于探究的精神,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:一元一次方程的概念、解法及应用。
2.难点:一元一次方程的解法,以及如何将实际问题转化为方程问题。
五. 教学方法1.情境教学法:通过生活实例引入方程概念,让学生感受数学与实际生活的联系。
2.启发式教学法:引导学生主动思考、探究,发现方程的解法及应用。
3.合作学习法:鼓励学生之间相互讨论、交流,提高解决问题的能力。
4.反馈评价法:及时了解学生的学习情况,针对性地调整教学方法及策略。
六. 教学准备1.教学课件:制作生动、直观的课件,辅助教学。
2.教学案例:准备一些实际问题,用于引导学生解决方程问题。
3.练习题库:准备一定数量的练习题,用于巩固所学知识。
4.教学用具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活实例引入方程的概念,如“小明买书”问题,引导学生感受数学与实际生活的联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1认识一元一次方程教学目标知识技能:根据问题情境寻找等量关系,根据等量关系列出方程,能够分析归纳出一元一次方程的定义.数学思考:本节课提取学生切身体会的例子,渗透了数学建模思想和归纳、化归等数学思想方法.问题解决:能根据具体问题的数量关系列出方程并归纳出一元一次方程的定义,培养学生获取信息,分析问题,处理问题的能力.情感态度:在探究新知识的活动中,培养学生学习数学的好奇心和求知欲,激发学生学数学、爱数学、用数学的情感,同时通过小组合作增进师生情感.教学重难点重点:一元一次方程的概念难点:根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。
用尝试、检验的方法解决实际问题.教学过程(一)、新课导入同学们,方程是刻画现实生活中等量关系的有效模型,方程思想是数学中非常重要的一个思想。
在小学我们已经学习了如何利用方程解决简单的实际问题,这一章我们将学习如何利用一元一次方程解决较复杂的实际问题。
(板书本章课题第五章一元一次方程)今天这节课我们就先和一元一次方程见个面,先认识一下它,看看它的长相。
(板书本节课题 5.1.1认识一元一次方程)我们先来做一个游戏游戏:教师提问学生:请全体同学把你的年龄乘2减5,告诉我结果,我就能说出你的年龄,你信不信?(大多同学们不太相信,开始举手告诉老师结果,老师叫5名学生说结果依次告诉实际年龄)师提问问题:你知道我是怎么得到的?你知道老师的年龄乘2减5得数是多少吗?猜一下。
1.老师的年龄乘2减5得数是61,你能告诉老师今年多大了吗?学生回答:方法1:(61+5)除以2;学生回答:方法2:设老师的年龄为x ,则2X-5=61,得到x=33.问题:两种方法有什么区别?学生回答完问题之后师强调:列算式:只用已知数,表示计算程序,依据是问题中的数量关系。
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
师提问:你感觉那种方法好?让学生回答并说明原因。
师:我也感觉第二种方法好,其实从算式到方程是数学的进步。
师生共同总结并板书:像这样含有未知数的等式叫做方程,并指出判断方程应具备的两个条件:①等式;②含有未知数.未知数:用小写字母x,y,z 等来表示不知道的数,叫做未知数.【设计意图】:当学生看到自己所学的知识与现实世界息息相关时,学生通常会更主动。
练一练:1.判断下列各式是不是方程?(1) 2a+b ( ) (2)-2+8=6 ( )(3) 5x > 6 ( ) (4) 3x-8 =0 ( ) (5) 12x= ( ) (6) x 2-2 x +10=0 ( ) 师提出问题:刚才得出老师年龄是33岁,把x=33代入方程2x-5=61,左边的值与右边的值相等吗?(学生回答:相等)师生共同总结:使方程左、右两边的值相等的未知数的值,叫做方程的解.处理方式: 让学生读题、审题,锻炼学生的审题能力;(1)引导学生抓住其中的等量关系“老师的年龄×2-5=61”,告诉学生把这个关系叫做等量关系.列出方程.通过老师和学生进行猜年龄游戏,把现实生活中的问题转化为数学中的方程问题,从而认识一元一次方程的重要作用.了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左边和右边,看是否相等.相等则为原方程的解.检验一个数是不是方程的解的步骤:1.将数值代入方程左右两边进行计算,2.比较左右两边的值,若左边=右边,则是方程的解,反之,则不是.设计抢答题:①2x =是方程24x =的解吗?②3x =是方程218x +=的解吗?【设计意图】:加深“方程的解”定义的理解,为今后解方程检验起到铺垫作用,同时抢答能活跃气氛.弄清楚这两个概念后,下面我们专门练习如何列方程:(小黑板展示)情境一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?(只列方程)问题:上面的问题中包含哪些已知量、未知量和等量关系?学生回答:已知量:数苗开始的高度、将来的高度、每周长高的高度。
未知量:周数(长高的高度)等量关系:树苗开始的高度+长高的高度=树苗将达到的高度.问题:等量关系中有已知量、未知量,未知量用什么表示呢?学生回答:字母x 表示,即设x 周后树苗长高到1米,则可列出方程: 4015100x +=问题:根据情境列方程的关键是什么?一般步骤是什么?此问题学生不一定能回答到,教师引导回答,这是为后面环节做好铺垫.关键:找等量关系一般步骤:①找等量关系;②设未知数,用字母表示;③列出方程.【设计意图】:让学生体会到列方程的关键与一般步骤,不仅解决了本节的难点,也为今后的学习奠定了基础.(小黑板展示)情境二:某种足球现价200元,比原价上涨了15%,请问原价为多少元?(只列方程)学生小组合作讨论完成,并在学案上做出答案.解答:设原价为x 元,由题意得:(115%)200x +=【设计意图】:学生小组合作完成该题,让学生熟练列方程的一般步骤.(小黑板展示)情境三:某长方形操场的面积是58502m ,长和宽之差为25m ,这个操场的长与宽分别是多少米(只列方程).如果设这个操场的宽为x m ,那么长为(25)x +m ,由此可得到方程:(25)5850x x +=学生独立思考并完成在学案上.(小黑板展示)情境四:甲、乙两地相距22km ,小明从甲地出发到乙地,每时比原计划多行走1km ,因此提前12min 到达乙地,小明原计划每小时行走多少千米?小组合作讨论完成,并写在学案上,同时请一位同学到黑板上演板.解答:设原计划每小时行走x 千米,则:2222115x x -=+ (二)、探究新知议一议:几个情境得到方程:2x-5=61,4015100x +=(115%)200x += ,(25)5850x x +=,2222115x x -=+ 哪些是你熟悉的方程?与同伴进行过交流。
2x-5=61,4015100x +=,(115%)200x +=有什么共同特征?处理方式:启发学生观察上面所列方程2x-5=61,4015100x +=(115%)200x += ,(25)5850x x +=,2222115x x -=+.其中那些是你熟悉的方程?逐步引发学生回忆小学时所学方程的特点,旨在让学生自己归纳出一元一次方程的概念,并用自己的语言进行描述.并判断上述五个方程只有三个一元一次方程.结论的得出源于学生在实际问题中分析,并不断地综合总结,体现了学生思维的主动性.学生通过讨论归纳出一元一次方程的定义,不仅能加深对一元一次方程定义的理解和掌握,也能培养学生的观察、归纳、总结的能力,至此也解决了本节课的重点.学生讨论归纳出一元一次方程的定义(教师板书):在一个方程中,只含有一个未知数,未知数的指数是1,而且方程中的代数式都是整式,这样的方程叫做一元一次方程.在这个定义中要注意两点:①只含有一个未知数的等式;②并且未知数的指数是1.特别需要注意的地方:1.分母不能含未知数;2.化简之后再判断.设计意图:由问题1引导学生逐步深入地思考所列的五个方程的特点:未知数的次数、位置不同;由问题2得出一元一次方程的定义:在一个方程中,只含有一个未知数,且未知数的指数都是 1,这样的方程叫做一元一次方程.(三)、巩固提高练一练:(小黑板展示)2.判断下列哪些方程是一元一次方程.、(1) x+y =2 ( ) (2) 3x -1=0 ( )(3) y =3 ( ) (4)5x 2-2 x +18=0 ( )(5) 2x -5x +1=0 ( ) (6) xy -1=0 ( )设计意图:进一步强化本节的内容,即一元一次方程的定义.3.下列方程中,解为x =2的是( )A. 3x +(10-x )=20B. -x +3=0C. 2x 2+6=7xD. 5x -2=7设计意图:进一步强化本节的内容,即方程的解的定义.4.(看课本随堂练习题)根据题意,列出方程:(1) 在一卷公元前 1600 年左右遗留下来的古埃及纸草书中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于 19.”你能求出问题中的“它”吗? 解:设“它”为x ,则 1197x x += (2) 甲、乙两队开展足球对抗赛,规定每队胜一场得 3 分,平一场得 1 分,负一场得 0 分.甲队与乙队一共比赛了 10 场,甲队保持了不败记录,一共得了 22分.甲队胜了多少场?平了多少场?解:设甲队赢了x 场,则乙队赢了(10-x )场.则()31022x x +-=。
处理方式:教师进行提示,帮助学生分析题意.本题只要求学生设列方程,不必求解.根据学情提出不同的要求,最后请两名学生说出自己所列的方程.(四)、课堂小结活动内容:师生互动,梳理本节内容.(1)本节课学习了哪些知识?(2)领悟到那些解决问题的方法?感触最深的是什么?(3)对于本节课的学习还有什么困惑?处理方式:教师请3-5名学生总结,谈收获和困惑.以形成完整知识结构,培养归纳概括能力和语言表达能力.同时也有助于良好学习习惯的培养.然后教师进行总结提升:一元一次方程的定义、列方程解应用题的关键——借助关键语句发现等量关系.设计意图:梳理知识的内在联系,提炼思想方法,总结情感体验,从知识的学习,方法的领悟等方面引导学生归纳、总结本节课,使学生将本节课所学知识纳入方程学习的知识体系.在一个培养学生的问题意识,从低年级开始培养学生良好的数学学习习惯.(五)、课后检测题1.如果25-m x =8是一元一次方程,那么m = .2.下列各式中,是方程的是 (只填序号).① 2x =1; ② 5-4=1; ③ 7m-n +1; ④ 3(x+y )=4.3.下列各式中,是一元一次方程的是 (只填序号).① x -3y =1; ② x 2+2x +3=0; ③ x =7; ④ x 2-y =0.4. 某数的一半减去该数的31等于6,若设此数为x ,则可列出方程处理方式:学生独立完成,教师随堂批改,对于个别有困难的学生要单独进行辅导.最后用实物投影仪展示一位学生的正确答案和两名学生的典型错例,请一位学生进行讲解.最终以等级的形式评价学生.在学生解答的过程中,要关注学生解题的正确性,方法的多样性.设计意图:探究过程都应配有针对性的即时反馈,落实基础,结合激励性的评价,为后续的反馈、矫正准备素材.(六)、布置作业必做题:课本132页第1、3题.选做题:(趣味题)(只需列出方程)我国明代数学家程大为曾提出过一个有趣问题.有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只羊”.请问这群羊有多少只?【答案:设这群羊有x只,则11110024x x x x++++=.】设计意图:分层次的作业设置,旨在为学生搭建不同高度的学习平台,满足不同层次学生的数学发展需求,有利于个性化巩固提高的要求.板书设计:5.1.2认识一元一次方程(等式性质)一、学情分析学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了简单方程的简单数量关系的分析,对方程已有初步认识.学生在小学已经经历了简单方程的简答、简单数量关系的分析,具有一定的解方程的能力.这时解方程的操作依据为加减法、乘除法互为逆运算的简单算理.二、教学目标1、借助直观对象理解等式性质;2、掌握利用等式性质解一元一次方程的基本技能;3、进一步体会解一元一次方程的含义和解方程的基本过程。