指数函数 和 对数函数公式 (全)

合集下载

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数知识方法扫描一、指数函数及其性质形如y =a x (a >0,a ≠1)的函数叫作指数函数,其定义域为R ,值域为(0,+∞).当0<a <1时,y =a x 是减函数,当a >1时,y =a x 为增函数,它的图像恒过定点(0,1).二、分数指数幂a 1n=na ,a m n=n a m ,a -n=1an ,a -mn =1na m三、对数函数及其性质对数函数y =log a x (a >0,a ≠1)的定义域为(0,+∞),值域为R ,图像过定点(1,0).它是指数函数y =a x (a >0,a ≠1)的反函数,所有性质均可由指数函数的性质导出.当0<a <1时,y =log a x 为减函数,当a >1时,y =log a x 为增函数.四、对数的运算性质(M >0,N >0)(1)a log M a =M (这是定义);(2)log a (MN )=log M a +log a N ;(3)log a MN=log a M -log a N ;(4)log a M n =n log a M ;(5)log a b =log c blog c a (a ,b ,c >0,a ,c ≠1)(换底公式).由以上性质(4)、(5)容易得到以下两条推论:1)log a mb n =n m log a b ;2)log a b =1log b a.典型例题剖析1已知x 1是方程x +lg x =10的根,x 2是方程x +10x =10的根,求x 1+x 2的值.【解法1】由题意得lg x 1=10-x 110x 2=10-x 2,表明x 1是函数y =lg x 与y =10-x 的交点的横坐标,x 2是函数y =10x 与y =10-x 的交点的横坐标.因为y =lg x 与y =10x 互为反函数,其图像关于y =x 对称,由y =10-x y =x 得,x =5y =5 ,所以x 1+x 22=5,所以x 1+x 2=10.【解法2】构造函数f (x )=x +lg x ,由x 1+lg x 1=10知f x 1 =10,x 2+10x 2=10即10x 2+lg10x 2=10,则f 10x 2 =10,于是f x 1 =f 10x 2 ,又f (x )为(0,+∞)上的增函数,故x 1=10x 2,x 1+x 2=10x 2+x 2=10.【解法3】由题意得x 1=1010-x 110-x 2=10x 2,两式相减有x 1+x 2-10=1010-x 1-10x 2.若x 1+x 2-10>0,则1010-x 1-10x 2>0,得10-x 1>x 2,矛盾;若x 1+x 2-10<0,则1010-x 1-10x 2<0,得10-x 1<x 2,矛盾;而当x 1+x 2=10时,满足题意.【评注】解法1巧妙地利用了数形结合的方法,解法2巧妙地利用了函数的单调性,解法3巧妙地利用了反证法的技巧.2已知a >0,b >0,log9a =log 12b =log 16(a +b ),求ba的值.【解法1】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .由于9k ×16k =12k 2故(a +b )a =b 2,解得:b a =1+52(负根舍去).【解法2】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .b a =12k 9k =43 k ,而9k +12k =16k,故1+12k 9k =16k 9k ,即43 k 2-43 k -1=0,故b a =43 k =1+52(负根舍去).【评注】对数运算和指数运算互为逆运算,有关对数的运算和处理,往往可以转化为指数的运算和处理.3已知函数f (x )=1x +1+log 13x 2-x,试解不等式f x x -12 >12.【分析】本题为分式不等式与对数不等式混合.初看不易解决,但可以发现该函数在其定义域内单调递减,这是本题的解题关键.【解】易证函数y =f (x )在其定义域(0,2)内是单调减函数.并且f (1)=12,所以原不等式即为f x x -12 >f (1)等价于x x -12 <10<x x -12 <2⇒ x 12<x <1+174或1-174<x <0 .【评注】利用函数单调性解决不易入手的不等式是一种常用方法.4设方程lg (kx )=2lg (x +1)仅有一个实根,求k 的取值范围.【分析】本题要注意函数的定义域.【解法1】当且仅当kx >0①x +1>0②x 2+(2-k )x +1=0③时原方程仅有一个实根,对方程③使用求根公式,得x 1,x 2=12k -2±k 2-4k ④Δ=k 2-4k ≥0⇒k <0或k ≥4.当k <0时,由方程③,得x 1+x 2=k -2<0,x 1x 2=1>0,所以x 1,x 2同为负根.又由方程程④知x 1+1>0,x 2+1<0,所以原方程有一个解x 1.当k =4时,原方程有一个解x =k2-1=1.当k >4时,由方程③,得x 1+x 2=k -2>0,x 1x 2=1>0. 所以x 1,x 2同为正根,且x 1≠x 2,不合题意,舍去.综上所述可得k <0或k =4为所求.【解法2】由题意,方程kx =(x +1)2,也即方程k =x +1x+2在满足关于x 的不等式kx >0x +1>0 的范围内有唯一实数根,以下分两种情况讨论:(1)当k >0时,k =x +1x +2在x >0范围内有唯一实数根,则有k =4;(2)当k <0时,k =x +1x+2在-1<x <0范围内有唯一实数根,则有k <0.综上可得k <0或k =4为所求.【评注】本题实质上是一道一元二次方程问题.5解不等式:log 12(x +3x )>log 64x .【分析】若考虑到去根号,可设x =y 6(y >0),原不等式变为log 12y 3+ y 2 >log 6446=log 2y ,即2log 12y +log 2(y +1)>log 2y ,陷入困境.原不等式即6log 12(x +3x )>log 2x ⇒2log 12x +log 121+x166>log 2x ,设t =log 2x ,则log 12x =1log x12=12log x 2+log x 3,同样陷入困境.下面用整体代换y =log 64x .【解】设y =log 64x ,则x =64y,代人原不等式,有log 128y +4y >y ,8y +4y >12y,23 y +13 y >1,由指数函数的单调性知y =log 64x <1,则0<x <64.故原不等式的解集为(0,64).6已知1<a ≤b ≤c 证明:log a b +log b c +log c a ≤log b a +log c b +log a c .【证法1】注意到log a b +log b c +log c a -log b a +log c b +log a c=ln b ln a +ln c ln b +ln a ln c -ln a ln b+ln b ln c +ln c ln a =ln 2b ln c +ln 2c ln a +ln 2a ln b -ln 2b ln a +ln 2c ln b +ln 2a ln c ln a lnb ln c=-(ln a -ln b )(ln b -ln c )(ln c -ln a )ln a ln b ln c.【证法2】设log b a =x ,log c b =y ,则log a c =1xy ,于是原不等式等价于x +y +1xy ≤1x +1y+xy ,即x 2y +xy 2+1≤y +x +x 2y 2,即xy (x +y )-(x +y )+1-x 2y 2 ≤0,也即(x +y -1-xy )(xy -1)≤0也即(x -1)(y -1)(xy -1)≥0,由1<a ≤b ≤c 知x ≥1,y ≥1,所以(x -1)(y -1)(xy -1)≥0,得证.因为1<a ≤b ≤c ,所以ln a ln b ln c >0,(ln a -ln b )(ln b -ln c )(ln c -ln a )≥0所以log a b +log b c +log c a -log b a +log c b +log a c ≤0即log a b +log b c +log c a ≤log b a +log c b +log a c °【评注】若令x =ln a ,y =ln b ,z =ln c 则原不等式等价于:设0<x ≤y ≤z ,求证:x 2y +y 2z +z 2x ≤xy 2+yz 2+zx 2.7设函数f (x )=|lg (x +1)|,实数a ,b (a <b )满足f (a )=f -b +1b +2,f (10a +6b +21)=4lg2,求a 、b 的值.【分析】利用已知条件构建关于a 、b 的二元方程组进行求解.【解】因为f (a )=f -b +1b +2 ,所以|lg (a +1)|=lg -b +1b +2+1 =lg 1b +2=|lg (b +2)|所以,a +1=b +2或(a +1)(b +2)=1,又因为a <b ,所以a +1≠b +2,所以(a +1)(b +2)=1又由于0<a +1<b +1<b +2,于是0<a +1<1<b +2,所以(10a +6b +21)+1=10(a +1)+6(b +2)=6(b +2)+10b +2>1,从而f (10a +6b +21)=lg 6(b +2)+10b +2=lg 6(b +2)+10b +2,又f (10a +6b +21)=4lg2,所以lg 6(b +2)+10b +2 =4lg2,故6(b +2)+10b +2=16.解得b =-13或b =-1(舍去).把b =-13代故(a +1)(b +2)=1,解得a =-25.所以,a =-25,b =-13.同步训练一、选择题1已知a 、b 是方程log 3x 3+log 27(3x )=-43的两个根,则a +b =().A.1027B.481C.1081D.2881【答案】C .【解析】原方程变形为log 33log 3(3x )+log 3(3x )log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t 1=-1,t 2=-3.所以1+log 3x =-1或1+log 3x =-3,方程的两根分别为19和181,所以a +b =1081.故选C .2已知函数f (x )=1a x -1+12x 2+bx +6(a ,b 为常数,a >1),且f lglog 81000 =8,则f (lglg2)的值是().A.8 B.4 C.-4 D.-8【答案】B .【解析】由已知可得f lglog 81000 =f lg33lg2=f (-lglg2)=8,又1a -x -1+12=a x 1-a x +12=-1+11-a x +12=-1a x -1-12,令F (x )=f (x )-6,则有F (-x )=-F (x ).从而有f (-lglg2)=F (-lglg2)+6=-F (lglg2)+6=8,即知F (lglg2)=-2,f (lglg2)=F (lglg2)+6=4.3如果f (x )=1-log x 2+log x 29-log x 364,则使f (x )<0的x 的取值范围为().A.0<x <1 B.1<x <83C.x >1D.x >83【答案】B .【解析】显然x >0,且x ≠1.f (x )=1-log x 2+log x 29-log x 364=1-log x 2+log x 3-log x 4=log x 38x .要使f (x )<0.当x >1时,38x <1,即1<x <83;当0<x <1时,38x >1,此时无解.由此可得,使得f (x )<0的x 的取值范围为1<x <83.应选B .4若f (x )=lg x 2-2ax +a 的值域为R ,则a 的取值范围是().A.0<a <1 B.0≤a ≤1 C.a <0或a >1 D.a ≤0或a ≥1【答案】D .【解析】由题目条件可知,(0,+∞)⊆y |y =x 2-2ax +a ,故Δ=(-2a )2-4a ≥0,解得a ≤0或a ≥1.选D .二、填空题5设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是.【答案】[3,4].【解析】定义域(0,4].在定义域内f (x )单调递增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4].6设0<a <1,0<θ<π4,x =(sin θ)log asin θ,y =(cos θ)log atan θ,则x 与y 的大小关系为.【答案】x <y .【解析】根据条件知,0<sin θ<cos θ<1,0<sin θ<tan θ<1,因为0<a <1,所以f (x )=log a x 为减函数,所以log a sin θ>log a tan θ>0,于是x =(sin θ)log a sin θ<(sin θ)log a tan θ<(cos θ)log a tan θ=y .7设f (x )=12x +5+lg 1-x 1+x ,则不等式f x x -12<15的解集为.【答案】1-174,0 ∪12,1+174.【解析】原不等式即为f x x -12<f (0).因为f (x )的定义域为(-1,1),且f (x )为减函数.所以-1<x x -12 <1x x -12 >0.解得x ∈1-174,0∪12,1+174.8设f (x )=11+2lg x +11+4lg x +11+8lg x ,则f (x )+f 1x =.【答案】3.【解析】f (x )+f 1x =11+2lg x +11+4lg x +11+8lg x +11+2-lg x +11+4-lg x +11+8-lg x =3.三、解答题9已知函数f (x )=a x +3a (a >0,a ≠1)的反函数是y =f -1(x ),而且函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称.(1)求函数y =g (x )的解析式;(2)若函数F (x )=f -1(x )-g (-x )在x ∈[a +2,a +3]上有意义,求a 的取值范围.【解析】(1)由f (x )=a x +3a (a >0,a ≠1),得f -1(x )=log a (x -3a ).又函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称,则g (a +x )=-f -1(a -x ),于是,g (x )=-f -1(2a -x )=-log a (-x -a ),(x <-a ).(2)由(1)的结论,有F (x )=f -1(x )-g (-x )=log a (x -3a )+log a (x -a ).要使F (x )有意义,必须满足x -3a >0,x -a >0. 又a >0,故x >3a .由题设F (x )在x ∈[a +2,a +3]上有意义,所以a +2>3a ,即a <1.于是,0<a <1.10设f (x )=log a (x -2a )+log a (x -3a ),其中a >0且a ≠1.若在区间[a +3,a +4]上f (x )≤1恒成立,求a 的取值范围.【解析】f (x )=log a x 2-5ax +6a 2=log a x -5a 2 2-a 24.由x -2a >0x -3a >0, 得x >3a ,由题意知a +3>3a ,故a <32,从而(a +3)-5a 2=-32(2-a )>0,故函数g (x )=x -5a 2 2-a 24在区间[a +3,a +4]上单调递增.若0<a <1,则f (x )在区间[a +3,a +4]上单调递减,所以f (x )在区间[a +3,a +4]上的最大值为f (a +3)=log a 2a 2-9a +9 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式loglog a 2a 2-9a +9 ≤1恒成立,从而2a 2-9a +9≥a ,解得a ≥5+72或a ≤5-72.结合0<a <1,得0<a <1.若1<a <32,则f (x )在区间[a +3,a +4]上单调递增,所以f (x )在区间[a +3,a +4],上的最大值为f (a +4)=log a 2a 2-12a +16 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式log a 2a 2-12a +16 ≤1恒成立,从而2a 2-12a +16≤a ,即2a 2-13a +16≤0,解得13-414≤a ≤13+414.易知13-414>32,所以不符合.综上所述,a 的取值范围为(0,1).11解方程组x x +y=y 12y x +y =x 3,(其中x ,y ∈R * .【解析】两边取对数,则原方程组可化为(x +y )lg x =12lg y ①(x +y )lg y =3lg x ②把式①代入式②,得(x +y )2lg x =36lg x ,所以(x +y )2-36 lg x =0.由lg x =0,得x =1;代入式①,得y =1.由(x +y )2-36=0x ,y ∈R * 得x +y =6.代入式①得lg x =2lg y ,即x =y 2,所以y 2+y -6=0.又y >0,所以y =2,x =4.所以方程组的解为x 1=1y 1=1 ,x 2=4y 2=2 .12已知f (x )=lg (x +1)-12log 3x .(1)解方程f (x )=0;(2)求集合M =n f n 2-214n -1998 ≥0,n ∈Z 的子集个数.【解析】(1)任取0<x 1<x 2,则f x 1 -f x 2 =lg x 1+1 -lg x 2+1 -12log 3x 1-log 3x 2=lgx 1+1x 2+1-12log 3x 1x 2=lg x 1+1x 2+1-log 9x 1x 2,因为x 1+1x 2+1>x 1x 2,所以lg x 1+1x 2+1>lg x 1x 2.故f x 1 -f x 2 =lg x 1+1x 2+1-log 9x 1x 2>lg x 1x 2-lg x1x 2lg9,因为0<lg9<1,lg x 1x 2<0,所以f x 1 -f x 2 >lg x 1x 2-lg x1x 2=0,f (x )为(0,+∞)上的减函数,注意到f (9)=0,当x >9时,f (x )<f (9)=0;当<x <9时,f (x )>f (9)=0,所以f (x )=0有且仅有一个根x =9.(2)由f n 2-214n -1998 ≥0⇒f n 2-214n -1998 ≥f (9)所以n 2-214n -1998≤9n 2-214n -1998>0 ⇔n 2-214n -2007≤0n 2-214n -1998>0⇔(n -223)(n +9)≤0(n -107)2>1998+1072=13447>1152⇔-9≤n ≤223n >222或n <-8 ⇔⇔-9≤n ≤223n ≥223或n ≤-9 ,所以n =223或n =-9,M ={-9,223},M 的子集的个数是4.13已知a >0,a ≠1,试求使得方程log a (x -ak )=log a x 2-a 2 有解的k 的取值范围.【解析】由对数性质知,原方程的解x 应满足(x -ak )2=x 2-a 2x -ak >0x 2-a 2>0(1)(2)(3)若式(1)、式(2)同时成立,则式(3)必成立,故只需要解(x -ak )2=x 2-a 2x -ak >0.由式(1)可得2kx =a 1+k 2(4)当k =0时,式(4)无解;当k ≠0时,式(4)的解是x =a 1+k 2 2k ,代人式(2),得1+k 22k>k .若k <0,则k 2>1,所以k <-1;若k >0,则k 2<1,所以0<k <1.综上所述,当k ∈(-∞,-1)∪(0,1)时,原方程有解.14已知0.301029<lg2<0.301030,0.477120<lg3<0.477121,求20001979的首位数字.【解析】lg20001979=1979lg2000=1979(3+lg2).所以6532.736391<lg20001979<6532.73837.故20001979为6533位数,由lg5=1-lg2,lg6=lg2+lg3,得0.698970<lg5<0.6989710.778149<lg6<0.778151⇒lg5<0.736391<0.73837<lg6,说明20001979的首位数字是5.15已知3a +13b =17a ,5a +7b =11b ,试判断实数a 与b 的大小关系,并证明之.【解析】令a =1,则13b =14,5+7b =11b ,可见b >1.猜想a <b .下面用反证法证明:若a ≥b ,则13a ≥13b ,5a ≥5b ,所以17a =3a +13b ≤3a +13a ,11b =5a +7b ≥5b +7b ,即317 a +1317 a ≥1,511 b +711 b ≤1,而函数f (x )=317 x +1317 x和g (x )=511 x +711 x在R 上均为减函数,且f (1)=317+1317=1617<1≤f (a ),g (1)=511+711=1211>1≥g (b ).所以a <1,b >1.这与a ≥b 矛盾,故a <b .16解不等式log 2x 12+3x 10+5x 8+3x 6+1 <1+log 2x 4+1 .【解析】原不等式等价于log 2x 12+3x 10+5x 8+3x 6+1 <log 22x 4+2 .由于y =log 2x 为单调递增函数,于是x 12+3x 10+5x 8+3x 6+1<2x 4+2,两端同时除以x 6,并整理得2x2+1x 6>x 6+3x 4+3x 2+1+2x 4+2=x 2+1 3+2x 2+1 构造函数g (t )=t 3+2t ,则上述不等式转化为g1x2>g x 2+1 .显然g (t )=t 3+2t 在R 上为增函数.于是以上不等式等价于1x2>x 2+1,即x 2 2+x 2-1<0,解得x 2<5-12.故原不等式的解集为-5-12,5-12.。

指数与对数的转换公式

指数与对数的转换公式

指数与对数的转换公式一、指数的基本概念指数是数学中用来表示一个数的乘方的次数的概念。

指数有一些基本的性质,如指数的加法和乘法法则。

假设a和b都是实数,m和n都是整数,则指数运算的基本规则如下:1.a^m*a^n=a^(m+n)。

这表示,将底数a的指数m和n分别相加,得到的结果再用底数a的指数表示,等于将底数a的指数m和n相加后得到的指数表示的值。

2.(a^m)^n=a^(m*n)。

这表示,将底数a的指数m和n分别相乘,得到的结果再用底数a的指数表示,等于将底数a的指数m和n相乘后得到的指数表示的值。

3.(a*b)^m=a^m*b^m。

这表示,将若干个底数a和b连乘,并用底数a和b的共同指数表示,等于将底数a和b分别用指数表示后连乘得到的值。

基于指数运算的基本规则,可以推导出一些常见的指数运算公式,如指数函数的乘法公式、指数函数的除法公式和零次方的值等。

二、对数的基本概念对数是指数的逆运算。

如果a^x = b,则称x为以a为底,b为真数的对数,记作x=log_a(b)。

其中,a被称为底数,b被称为真数。

对数函数以及它的性质在实际问题中有广泛的应用。

对数函数的图像是一条过点(1,0)的递增曲线,与指数函数的图像相互对称。

对数函数具有一些特殊的性质,如对数函数的加法和乘法法则。

假设a为任意正数,b和c都是正数并且不等于1,则对数运算的基本规则如下:1. log_a(b * c) = log_a(b) + log_a(c)。

这表示,将底数a的两个正数相乘,并用底数a的对数表示,等于将底数a的这两个正数分别用对数表示后相加得到的值。

2. log_a(b / c) = log_a(b) - log_a(c)。

这表示,将底数a的两个正数相除,并用底数a的对数表示,等于将底数a的这两个正数分别用对数表示后相减得到的值。

3. log_a(b^m) = m * log_a(b)。

这表示,将底数a的正数b以及底数a的对数表示的值相乘,并用底数a的对数表示,等于将底数a的正数b分别用对数表示后乘以底数a的对数表示的值。

求积分公式大全高等数学

求积分公式大全高等数学

求积分公式大全高等数学高等数学中常见的积分公式包括:基本积分公式、初等函数的积分公式、换元积分法、分部积分法、三角函数的积分公式、反三角函数的积分公式、指数函数和对数函数的积分公式、定积分与变限积分的关系、定积分的求值公式等。

下面将对这些公式进行详细介绍。

1.基本积分公式:(1)常数函数的积分公式:∫kdx=kx+C,其中k为常数,C为任意常数。

(2)幂函数的积分公式:∫x^ndx=x^(n+1)/(n+1)+C,其中n≠-1(3)指数函数的积分公式:∫e^xdx=e^x+C。

(4)对数函数的积分公式:∫1/xdx=ln,x,+C。

2.初等函数的积分公式:(1)三角函数的积分公式:∫sinxdx=-cosx+C∫cosxdx=sinx+C∫sec^2xdx=tanx+C∫csc^2xdx=-cotx+C∫tanxdx= -ln,cosx,+C∫cotxdx=ln,sinx, + C。

(2)反三角函数的积分公式:∫dx/√(1-x^2)=arcsinx+C∫dx/√(1+x^2)=arctanx+C∫dx/(x^2+a^2)=1/aarctan(x/a)+C。

3.换元积分法:换元积分法是利用变量代换的方法进行积分运算。

设u=g(x)为原函数x的一个连续可导函数,即u=g(x)满足一一对应的关系时∫f(g(x))g'(x)dx=∫f(u)du。

4.分部积分法:分部积分法是将一个积分化成两个函数的乘积的积分,应用于求∫u(x)v'(x)dx的积分。

根据分部积分法的公式∫u(x)v'(x)dx =u(x)v(x) - ∫v(x)u'(x)dx,可以递归地求解复杂的积分。

5.指数函数和对数函数的积分公式:∫e^adx=e^ax+C∫a^xdx=(a^x)/(lna)+C。

∫1/xln(ax)dx=ln,ln(ax),+C。

6.定积分与变限积分的关系:设f(x)是[a,b]上的连续函数,F(x)是f(x)的一个原函数,则∫[a,b]f'(x)dx=F(b)-F(a)。

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结一、指数函数1、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。

需要注意的是,底数\(a\)的取值范围,当\(a = 1\)时,函数就变成了\(y = 1^x = 1\),是一个常函数,不符合指数函数的定义;当\(a < 0\)时,对于某些\(x\)的值,\(a^x\)无意义,比如\((-2)^{\frac{1}{2}}\)就没有实数解。

2、指数函数的图象当\(a > 1\)时,指数函数\(y = a^x\)的图象是上升的,经过点\((0, 1)\),在\(R\)上单调递增;当\(0 < a < 1\)时,指数函数\(y = a^x\)的图象是下降的,经过点\((0, 1)\),在\(R\)上单调递减。

我们可以通过几个特殊的点,比如\((0, 1)\)、\((1, a)\)、\((-1, \frac{1}{a})\)等来大致描绘指数函数的图象。

3、指数函数的性质(1)定义域:\(R\)(2)值域:\((0, +∞)\)(3)恒过定点\((0, 1)\)(4)单调性:当\(a > 1\)时,在\(R\)上单调递增;当\(0 <a < 1\)时,在\(R\)上单调递减(5)函数值的变化情况当\(a > 1\)时,若\(x > 0\),则\(a^x > 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(0 < a^x < 1\)。

当\(0 < a < 1\)时,若\(x > 0\),则\(0 < a^x < 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(a^x > 1\)。

4、指数运算的性质(1)\(a^m × a^n = a^{m + n}\)(2)\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))(3)\((a^m)^n = a^{mn}\)(4)\((ab)^n = a^n b^n\)这些运算性质在化简指数表达式和进行指数运算时经常用到。

对数函数指数函数幂函数

对数函数指数函数幂函数

对数函数指数函数幂函数 LELE was finally revised on the morning of December 16, 2020真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。

但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立(比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于4,另一个等于-4)】通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。

另外,在科学技术中常使用以无理数e=···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把loge N 记为In N. 根据对数的定义,可以得到对数与指数间的关系:当a 〉0,a≠ 1时,a^x=N→X=logaN。

由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:负数和零没有对数;loga 1=0 loga a=1 (a为常数)对数的定义和运算性质一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b 叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。

底数则要大于0且不为1 真数大于0对数的运算性质:当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n)=nlog(a)(M) (n∈R)(4)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)(5) a^(log(b)n)=n^(log(b)a) 证明:设a=n^x 则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)(6)对数恒等式:a^log(a)N=N;log(a)a^b=b对数与指数之间的关系当a>0且a≠1时,a^x=N x=㏒(a)N右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

对数函数运算公式8个

对数函数运算公式8个

对数函数运算公式8个
1.对数函数的定义:y=loga(x),其中a为底数,x为真数,y为对数。

2. 换底公式:loga(b)=logc(b)/logc(a),其中a、b、c为任意正数且a≠1,c≠1。

3. 对数函数的反函数为指数函数,即x=a^y。

4. 对数函数的图像在底数a>1时,是递增的,当底数a<1时,是递减的。

5. 对数函数的基本性质:loga1=0,logaa=1,
loga(ab)=loga(a)+loga(b),loga(a/b)=loga(a)-loga(b),
loga(a^n)=nloga(a),其中a、b为正数,n为整数。

6. 反比例函数的图像为双曲线,对数函数的图像也具有双曲线的特征。

7. 对数函数在数学、物理、化学、经济等学科中都有广泛的应用。

8. 对数函数的性质及应用需要系统地学习和掌握,可以通过大量的练习来加深理解和掌握技巧。

- 1 -。

高数积分公式大全

高数积分公式大全

高数积分公式大全高等数学中的积分是数学分析的重要内容之一,它是求函数面积、定积分、不定积分等的方法,被广泛应用于科学和工程领域。

下面是高等数学中常用的积分公式大全,供大家参考和学习。

一、基本积分公式:1. 常数函数积分公式:∫c dx = cx + C(其中c为常数,C为积分常数)2. 幂函数积分公式:∫x^n dx = (1/(n+1)) * x^(n+1) + C(其中n不等于-1,C 为积分常数)3. 指数函数积分公式:∫e^x dx = e^x + C4. 三角函数积分公式:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C5. 乘方函数积分公式:∫(a^x) dx = (1/log(a)) * (a^x) + C(其中a为正数且不等于1,C为积分常数)6. 对数函数积分公式:∫(1/x) dx = ln|x| + C二、常用积分公式:1. 三角函数的复合积分:∫sin(ax) dx = - (1/a) * cos(ax) + C∫cos(ax) dx = (1/a) * sin(ax) + C2. 反三角函数的积分:∫1/(√(1-x^2)) dx = arcsin(x) + C∫1/(1+x^2) dx = arctan(x) + C3. 指数函数的积分:∫e^(ax) dx = (1/a) * e^(ax) + C4. 对数函数的积分:∫(1/x) dx = ln|x| + C5. 分式函数的积分:∫(1/(x-a)) dx = ln|x-a| + C(其中a不等于0)∫(1/(x^2+a^2)) dx = (1/a) * arctan(x/a) + C(其中a不等于0)6. 三角函数的积分:∫sin^n(x) cos^m(x) dx7. 部分分式的积分:∫(p(x)/q(x)) dx8. 具体函数的特殊积分:∫e^x sin(x) dx∫e^x cos(x) dx∫(sin(x))^n (cos(x))^m dx(其中n和m为正整数)三、数列求和公式:1. 等差数列求和公式:S_n = (n/2)(a_1 + a_n)(其中S_n为前n项和,a_1为首项,a_n为末项)2. 等比数列求和公式:S_n = (a_1(1-q^n))/(1-q)(其中S_n为前n项和,a_1为首项,q为公比)以上是高等数学中一些常见的积分公式,通过掌握和灵活运用这些公式,可以帮助我们更好地解决数学中的问题。

(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)

(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习一、指数的性质(一)整数指数幂n 1.整数指数幂概念:a =a ⋅Λ⋅a (n ∈N )a 0=1(a ≠0)1⋅4a 243*n 个aa-n=1a ≠0,n ∈N *)n(a 2.整数指数幂的运算性质:(1)a m ⋅a n =a m +n (m ,n ∈Z )(2)a (3)(ab )=a ⋅b n n n ()mn=a mn(m ,n ∈Z )(n ∈Z )其中a ÷a =a ⋅a m n m -n =a m -n a n ⎛a ⎫-1nn -n , ⎪=(a ⋅b)=a ⋅b =n .b ⎝b ⎭n 3.a 的n 次方根的概念即:若x n 一般地,如果一个数的n 次方等于a n >1,n ∈N ),那么这个数叫做a 的n 次方根,=a ,则x 叫做a 的n 次方根,(n >1,n ∈N )**(说明:①若n 是奇数,则a 的n 次方根记作n a ;若a >0则n a >0,若a <o 则n a <0;②若n 是偶数,且a >0则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:-n a ;(例如:8的平方根±8=±2216的4次方根±416=±2)③若n 是偶数,且a <0则n a 没意义,即负数没有偶次方根;④Θ0=0n >1,n ∈N nn (*)∴n 0=0;⑤式子a 叫根式,n 叫根指数,a 叫被开方数。

∴(a )nn=a ..4.a 的n 次方根的性质一般地,若n 是奇数,则n a n =a ;若n 是偶数,则n a n =a =⎨5.例题分析:例1.求下列各式的值:(1)3-8⎧a⎩-aa ≥0a <0.(3)(2)(-10)*2(3)4(3-π)(4)4例2.已知a <b <0,n >1,n ∈N ,化简:n (a -b )+n (a +b ).n n (二)分数指数幂1051231.分数指数幂:5a =a =a102(a >0)3a =a =a124(a >0)即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)a 3()kn=akn 对分数指数幂也适用,442255⨯3⨯4⎛2⎫⎛⎫2532例如:若a >0,则 a 3⎪=a 3=a , a 4⎪=a 4=a ,∴a =a 3⎝⎭⎝⎭a =a .545即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数:1.基本概念:指数函数是形如y=a^x(a>0,且a≠1)的函数,其中a称为底数,x 称为指数,a^x称为底数a的x次幂。

2.基本性质:(1)a^0=1,任何数的0次幂等于1;(2)a^x*a^y=a^(x+y),相同底数的指数幂相乘,底数不变,指数相加;(3)a^x÷a^y=a^(x-y),相同底数的指数幂相除,底数不变,指数相减;(4)(a^x)^y=a^(x*y),指数幂的乘积再乘方,指数相乘;(5)a^(-x)=1/(a^x),任何数的负指数满足倒数规律。

3.常见指数函数:(1)指数函数y=2^x:以2为底的指数函数,可以用来描述2的x 次幂关系,是一种常见的指数型增长函数,图像逐渐向上凸起。

二、对数函数:1.基本概念:对数函数是指y=loga(x),其中a>0,且a≠1,a称为底数,x称为真数,y称为以a为底x的对数。

2.基本性质:(1)loga(1)=0,底数为任何正数时,1的对数都是0;(2)loga(a)=1,底数为任何正数时,底数的对数都是1;(3)loga (x*y) = loga(x) + loga(y),对数相乘,真数取乘积,对数相加;(4)loga (x/y) = loga(x) - loga(y),对数相除,真数取商,对数相减;(5)loga(x^k) = k * loga(x),对数乘方,真数取底数的k次方,对数乘以指数。

3.常见对数函数:(1)常用对数函数:y=log10(x),其中底数为10,对数函数可以简写为y=log(x)。

常用对数函数是以10为底的对数函数,输入一个正实数x,输出满足10^y=x的y值。

(2)自然对数函数:y=ln(x),其中底数为e。

自然对数函数是以e 为底的对数函数,输入一个正实数x,输出满足e^y=x的y值。

三、指数函数与对数函数的关系:四、指数函数与对数函数的应用:1.科学中的指数增长:指数函数常常用于描述原子衰变、细胞分裂和放射性物质的衰变等过程。

指数函数与对数函数

指数函数与对数函数

指数函数指数函数程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7)函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)(8)显然指数函数无界。

(9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。

底数的平移:对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

即“上加下减,左加右减”底数与指数函数图像:指数函数(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。

幂的大小比较:比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。

比较两个幂的大小时,除了上述一般方法之外,还应注意:(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。

例如:y1=3^4,y2=3^5,因为3大于1所以函数单调递增(即x的值越大,对应的y值越大),因为5大于4,所以y2大于y1.(2)对于底数不同,指数相同的两个幂的大小比较,可指数函数以利用指数函数图像的变化规律来判断。

指数函数和对数函数的关系

指数函数和对数函数的关系

指数函数和对数函数的关系指数函数和对数函数是数学中非常重要的两类函数,它们有着密切的关系。

指数函数是具有形如f(x)=a^x的函数,其中a是一个常数且a>0且不等于1,x是自变量;而对数函数是具有形如f(x)=loga(x)的函数,其中a是一个常数且a>0且不等于1,x是自变量。

接下来,我们来详细探讨指数函数和对数函数的关系。

1.定义关系:f(g(x))=a^(loga(x))=xg(f(x))=loga(a^x)=x也就是说,对于指数函数f(x)和对数函数g(x),当它们的自变量和函数的定义域和值域匹配时,它们的函数值相互等于自变量。

2.特点对比:- 指数函数f(x)=a^x是增长的函数,也就是说随着x的增大,函数值也随之增大;而对数函数g(x)=loga(x)是上升的函数,它的函数值随着x的增大而增加。

- 当a>1时,指数函数f(x)=a^x的图像是上升的且没有上界;而对数函数g(x)=loga(x)的图像是上升的且有一个水平渐近线y=0。

- 当0<a<1时,指数函数f(x)=a^x的图像是下降的且没有下界;而对数函数g(x)=loga(x)的图像是下降的且有一个水平渐近线y=0。

-指数函数的定义域为实数集R,值域为正实数集(0,+∞);而对数函数的定义域为正实数集(0,+∞),值域为实数集R。

3.换底公式:另一个重要的关系是指数函数和对数函数的换底公式。

对于任意两个正实数a和b,以及a不等于1,b不等于1,有以下换底公式:loga(b) = logc(b) / logc(a)其中,c是一个任意正实数且不等于1、换底公式的含义是,以任意底c取对数的结果都是等价的,只是在数值上有所差异。

4.解方程与求导关系:- 解指数方程通常需要利用对数函数,例如求解a^x=b的x时,可以取对数得到x=loga(b)。

- 解对数方程通常需要利用指数函数,例如求解loga(x)=b的x时,可以取指数得到x=a^b。

高中数学公式大全 -回复

高中数学公式大全 -回复

高中数学公式大全一、代数部分1. 幂函数:y = axn (n为指数,a为底数)2. 指数函数:y = abx (b为底数)3. 对数函数:y = logax (a为底数)4. 一元二次方程公式:ax2 + bx + c = 0x = [-b ± √(b2 - 4ac)] / 2a5. 一元三次方程公式:ax3 + bx2 + cx + d = 0x1 = (-b + √Δ)/ax2 = (-b - √Δ)/ax3 = -c/a(Δ = b2 - 3ac)6. 高次方程公式:对于一元n次方程axn + anxn-1 + ... + b = 0,当a≠0时,有公式: x = n√[(-1)n-1b/an] (n为方程的次数)7. 四则运算公式:加法:a + b = c减法:a - b = c乘法:ab = c除法:a / b = c8. 比例:a / b = c / d (a与b成比例,c与d也成比例)9. 百分比:百分数/100 = 总数 / 部分数10. 简单利息公式:I = Prt / 100 (I为利息,P为本金,r为利率,t为时间)11. 复利公式:本金 × (1 + 年利率) ^ 时间 = 本金和利息之和12.一元二次函数: y = ax2 + bx + c13. 一元三次函数:y = ax3 + bx2 + cx + d14. 一次函数 y = kx + b15. 导数的概念: f'(x) = Δy/Δx = lim Δy/Δx (Δx->0)16. 导数的运算法则:(1)常数 Func: f'(x) = 0(2)一次Func: f'(x) = k (3)sinFunc: f'(x) = cosx(4)cosFunc: f'(x) = -sinx (5)tanFunc: f'(x) = sec2x(6)exFunc: f'(x) = ex(7)lnFunc: f'(x) = 1/x(8)求和: f'(x) = f'u + f'v (9)求差: f'(x) = f'u - f'v(10) 乘积: f'(x) = u'v + uv'(11)商: f'(x) = (u'v - uv')/v217. 函数的递增递减判断: f'(x)>0时,函数y=f(x)递增;f'(x)<0时,函数y=f(x)递减。

幂函数、指数函数和对数函数

幂函数、指数函数和对数函数

幂函数、指数函数和对数函数一、幂函数1、函数k x y =(k 为常数,Q k ∈)叫做幂函数2、单调性: 当k>0时,单调递增;当k<0时,单调递减3、幂函数的图像都经过点(1,1)二、指数函数1、x a y =(0>a 且1≠a )叫做指数函数,定义域为R ,x 作为指数2、指数函数的值域:),(∞+03、指数函数的图像都经过点(0,1)4、当a>1时,为增函数;当0<a<1时,为减函数5、指数函xa y =数的图像:a>1 0<a<1三、对数1、如果a(a>0,且a ≠-1)的b 次幂等于N ,即N a b=,那么b 叫做以a 为底N 的对数,记作b N a =log ,其中,a 叫做底数,N 叫做真数2、零与负数没有对数,即N>03、对数恒等式:N aNa =log4、(重点强调)a>0,且a ≠-1,N>05、常用对数:以十为底的对数,记作lg N6、自然对数:以e 为底的对数,记作in N7、对数的运算性质:如果a>0,a ≠1,M>0,N>0,那么(1)N M MN a a a log log )(log += (2)N M NMa a alog log log -=(3)M n M a n a log log = 8、对数换底公式:)01,01,(log log log >≠>≠>=N b b a o a NNN b a b ,,其中四、反函数1、对于函数)(x f y =,设它的定义域为D ,值域为A ,如果A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应(即一个x 对应一个y ),且满足)(x f y =,这样得到的x 关于y 的函数叫做)(x f y =的反函数,记作)(1y f x -=,习惯上,自变量用x 表示,而函数用y 表示,说以把它改写为))((1A x x fy ∈=-2、反函数的定义域与值域: 函数)(x f y = 反函数)(1x f y -=定义域 D A 值域AD3、函数)(x f y =的图像与反函数)(1x f y -=的图像关于直线x y =对称五、对数函数1、函数)1,0(log ≠>=a a x y a 且叫做对数函数,是指数函数的反函数2、对数函数的图像都在y 轴的右方3、对数函数的图像都经过点(1,0)4、当a,x 范围相同时,y>0;当a,x 范围不同是,y<0,(范围指的是0<x<1和x>1两个范围)5、对数函数)1,0(log ≠>=a a x y a 且的图像6、对数函数的定义域:x>07、对数函数的单调性:当a>1时,单调递增;当0<a<1时,单调递减六、简单指数方程指数里含有未知数的方程叫做指数方程1、819252=+-x x(1)将方程化为同底数幂的形式:225992=+-x x2252=+-∴x x 解得:5,021==x x(2)指对互换:281log 2592==+-x x ,解得:5,021==x x2、0155252=-⋅-x x换元法:令)05>=t t x(,则原方程化为01522=--t t ,解得:(舍)3,521-==t t 1,55==∴x x3、11235-+=x x两边同取以十为底的对数,得:1123lg 5lg -+=xx ,3lg )1)(1(5lg )1+-=+∴x x x ( 0)3lg 3lg 5)(lg 1(=+-+∴x x ,解得:5log 13lg 5lg 113+=+=-=x x 或七、简单对数方程对数符号后面含有未知数的方程叫做对数方程(解对数方程须检验,真数>0)1、化为同底:2)532(log 2)1(=-++x x x2)1(2)1()1(log )532(log +=-+++x x x x x ,532)1(22-+=+x x x062=-+x x ,3,221-==x x经检验,x=2为原方程的解2、换元:1log 325log 225=-x x令t x =25log ,则t x 125log =,所以原方程化为:1312=-t t0232=-+∴t t ,解得32,121=-=t t当1-=t 时,1log 25-=x ,251=∴x当32=t 时,32log 25=x ,3165=∴x经检验,它们都是原方程的根 所以原方程的解为321165,32==x x。

指数函数和对数函数公式

指数函数和对数函数公式

指数函数和对数函数公式一、指数函数公式指数函数是形如y=a^x的函数,其中a是一个正实数且不等于1,x 可以是实数。

指数函数具有以下常见的公式:1.以自然对数e为底的指数函数:y=e^x2.以底数为a的指数函数:y=a^xa是一个大于0且不等于1的实数。

a^x的图像也是一个逐渐增长的曲线,但斜率的增长速度取决于底数a的大小。

当0<a<1时,曲线倾斜向下;当a>1时,曲线倾斜向上。

指数函数有许多重要的性质:1.指数函数一定经过点(0,1),因为a^0=12.当x为正无穷大时,指数函数趋于正无穷大,当x为负无穷大时,指数函数趋于0。

3.指数函数的值在整个实数范围内都是正的。

4.指数函数具有指数律,即a^(x+y)=a^x*a^y,a^(x-y)=a^x/a^y,以及(a^x)^y=a^(x*y)。

二、对数函数公式对数函数是指以一些正实数为底的对数函数,常用的底数有10和自然对数e。

对数函数的公式如下:1.以底数为10的对数函数:y=log10x (也可以写成y=logx)这个函数的定义域是正实数,值域是实数。

对数函数的图像是一个逐渐增长的曲线,当x增大时,函数值增长速度变慢。

当x=1时,函数值为0。

对数函数的斜率随着x的增大而减小。

2.以自然对数e为底的对数函数:y=lnx这个函数的定义域是正实数,值域是实数。

自然对数函数的图像与以10为底的对数函数非常相似,但是斜率变化的速度更慢。

当x=1时,函数值为0。

自然对数函数在数学和科学中有广泛的应用。

对数函数具有以下重要性质:1. 对数函数的反函数是指数函数。

即如果y=logax,则x=a^y。

2.对数函数的值随着x的增大而增大,但增长速度逐渐减慢。

3.当x趋于正无穷大时,对数函数趋于正无穷大;当x趋于0时,对数函数趋于负无穷大。

4. 对数函数具有对数律,即logab=logcb/logca,logab=logac/logbc,以及log(a^b)=bloga。

高中数学幂函数指数函数对数函数三角函数求导公式以及积与商的函数导数求法

高中数学幂函数指数函数对数函数三角函数求导公式以及积与商的函数导数求法

高中数学幂函数指数函数对数函数三角函数求导公式以及积与商的函数导数求法高中数学中,幂函数、指数函数、对数函数和三角函数是常见的函数类型。

这些函数求导的公式常用于解决函数的速率和变化率等问题。

同时,积与商的函数导数求法也是数学中常用的方法之一1.幂函数的导数:幂函数的一般形式为y = ax^n (a ≠ 0, n为实数)。

其导数可以通过求导公式来计算。

对于幂函数 y = ax^n,其导数为 dy/dx = anx^(n-1)。

例如,对于函数 y = 2x^3,其导数为 dy/dx = 3*2x^(3-1) = 6x^2 2.指数函数的导数:指数函数的一般形式为y=a^x(a>0,a≠1)。

其导数可以通过自然对数的导数来计算。

对于指数函数 y = a^x,其导数为 dy/dx = ln(a) * a^x。

例如,对于函数 y = e^x,其导数为 dy/dx = ln(e) * e^x = e^x。

3.对数函数的导数:对数函数的一般形式为y = log_a(x) (a > 0, a ≠ 1)。

其导数可以通过换底公式和幂函数的导数来计算。

换底公式:log_a(x) = ln(x) / ln(a)对于对数函数 y = log_a(x),其导数为 dy/dx = 1/(xln(a))。

例如,对于函数 y = log_2(x),其导数为 dy/dx = 1/(xln(2))。

4.三角函数的导数:常见的三角函数包括正弦函数、余弦函数和正切函数等。

它们的导数可以通过基本导数公式来计算。

正弦函数的导数:d(sin(x))/dx = cos(x)余弦函数的导数:d(cos(x))/dx = -sin(x)正切函数的导数:d(tan(x))/dx = sec^2(x)5.积的函数导数求法:对于两个函数相乘的情况,可以使用乘积的求导法则来计算。

设函数 y = f(x) * g(x),其中 f(x) 和 g(x) 为可导函数,则它们的乘积的导数为 dy/dx = f'(x) * g(x) + f(x) * g'(x)。

第四章 指数函数与对数函数(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第四章 指数函数与对数函数(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第四章指数函数与对数函数(公式、定理、结论图表)一.根式及相关概念(1)a 的n 次方根定义如果x n=a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)a 的n 次方根的表示n 的奇偶性a 的n 次方根的表示符号a 的取值范围n 为奇数n aR n 为偶数±n a[0,+∞)(3)根式式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.二.根式的性质(n >1,且n ∈N *)(1)n 为奇数时,na n=a .(2)n 为偶数时,na n=|a|=≥0,a <0.(3)n0=0.(4)负数没有偶次方根.思考:(na )n 中实数a 的取值范围是任意实数吗?提示:不一定,当n 为大于1的奇数时,a ∈R ;当n 为大于1的偶数时,a ≥0.三.分数指数幂的意义分数指数幂正分数指数幂规定:a m n =na m (a >0,m ,n ∈N *,且n >1)负分数指数幂规定:a -m n =1a m n =1na m (a >0,m ,n ∈N *,且n >1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义思考:在分数指数幂与根式的互化公式a m n =n a m中,为什么必须规定a >0?提示:①若a =0,0的正分数指数幂恒等于0,即na m=a mn =0,无研究价值.②若a <0,a m n =n a m 不一定成立,如(-2)32=2(-2)3无意义,故为了避免上述情况规定了a >0.四.有理数指数幂的运算性质(1)a r a s=ar +s(a >0,r ,s ∈Q ).(2)(a r )s =a rs (a >0,r ,s ∈Q ).(3)(ab )r =a r b r (a >0,b >0,r ∈Q ).五.无理数指数幂一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.六.指数函数的概念一般地,函数y =a x(a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R .七.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域R值域(0,+∞)过定点(0,1),即当x=0时,y=1单调性在R上是增函数在R上是减函数奇偶性非奇非偶函数对称性函数y=a x与y=a-x的图象关于y轴对称思考1:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于什么?提示:指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于字母a.当a>1时,图象具有上升趋势;当0<a<1时,图象具有下降趋势.思考2::指数函数值随自变量有怎样的变化规律?提示:指数函数值随自变量的变化规律.八.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.九.常用对数与自然对数十.对数的基本性质(1)负数和零没有对数.(2)loga1=0(a>0,且a≠1).(3)logaa=1(a>0,且a≠1).思考:为什么零和负数没有对数?提示:由对数的定义:a x=N (a >0且a ≠1),则总有N >0,所以转化为对数式x =log a N 时,不存在N ≤0的情况.十一.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (MN )=log a M +log a N ;(2)log a MN=log a M -log a N ;(3)log a M n=n log a M (n ∈R ).思考:当M >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立?提示:不一定.十二.对数的换底公式若a >0且a ≠1;c >0且c ≠1;b >0,则有log a b =log c blog c a.十三.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).思考1:函数y =2log 3x ,y =log 3(2x )是对数函数吗?提示:不是,其不符合对数函数的形式.十四.对数函数的图象及性质提示:底数a 与1的关系决定了对数函数的升降.当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.十五.反函数指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数.十六、三种函数模型的性质y=a x(a>1)y=logax(a>1)y=kx(k>0)在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴平行随x增大逐渐近似与x轴平行保持固定增长速度增长速度①y=a x(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=logax(a>1)的增长速度越来越慢;②存在一个x,当x>x时,有a x>kx>logax十七.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.思考1:函数的零点是函数与x轴的交点吗?提示:不是.函数的零点不是个点,而是一个数,该数是函数图象与x轴交点的横坐标.十八.方程、函数、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.十九.函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.思考2:该定理具备哪些条件?提示:定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0.二十.二分法的定义对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考:若函数y=f(x)在定义域内有零点,该零点是否一定能用二分法求解?提示:二分法只适用于函数的变号零点(即函数在零点两侧符号相反),因此函数在零点两侧同号的零点不能用二分法求解,如f(x)=(x-1)2的零点就不能用二分法求解.二十一.二分法求函数零点近似值的步骤(1)确定零点x的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点c.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x=c),则c就是函数的零点;②若f(a)f(c)<0(此时x∈(a,c)),则令b=c;③若f(c)f(b)<0(此时x∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).二十二.常用函数模型思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:<解题方法与技巧>1.带条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.典例1:(1)若x <0,则x +|x |+x 2x=________.(2)若-3<x <3,求x 2-2x +1-x 2+6x +9的值.[思路点拨](1)由x <0,先计算|x |及x 2,再化简.(2)结合-3<x<3,开方、化简,再求值.(1)-1[∵x<0,∴|x|=-x,x2=|x|=-x,∴x+|x|+x2x=x-x-1=-1.](2)[解]x2-2x+1-x2+6x+9=(x-1)2-(x+3)2=|x-1|-|x+3|,当-3<x≤1时,原式=1-x-(x+3)=-2x-2.当1<x<3时,原式=x-1-(x+3)=-4.x-2,-3<x≤1,x<3.2.根式与分数指数幂互化的规律(1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.典例2:将下列根式化成分数指数幂的形式:(1)a a(a>0);(2)13x(5x2)2;-23(b>0).[解](1)原式=a·a12=a34.(2)原式=13x·(x25)2=13x·x45=13x95=11x35=x-35.-23=b-23×14×=b19.3.指数幂运算的常用技巧(1)有括号先算括号里的,无括号先进行指数运算.(2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.典例3:化简求值:4.解决条件求值的思路(1)在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形,沟通所求式子与条件等式的联系,以便用整体代入法求值.典例4:已知a 12+a -12=4,求下列各式的值:(1)a +a -1;(2)a 2+a -2.[思路点拨]a 12+a -12=4――――→两边平方得a +a -1的值――――→两边平方得a 2+a -2的值[解](1)将a 12+a -12=4两边平方,得a +a -1+2=16,故a +a -1=14.(2)将a +a -1=14两边平方,得a 2+a -2+2=196,故a 2+a -2=194.5.判断一个函数是否为指数函数,要牢牢抓住三点:(1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上;(3)a x的系数必须为1.典例5:(1)下列函数中,是指数函数的个数是()①y =(-8)x;②y =2x 2-1;③y =a x;④y =2·3x.A.1B.2C.3D.0(2)已知函数f (x )为指数函数,且=39,则f (-2)=________.(1)D(2)19[(1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数;④中3x前的系数是2,而不是1,所以不是指数函数,故选D.(2)设f (x )=a x(a >0且a ≠1),由=39得a -32=39,所以a =3,又f (-2)=a -2,所以f (-2)=3-2=19.]6.指数函数图象问题的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.典例6:(1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是()A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0(2)函数y =a x -3+3(a >0,且a ≠1)的图象过定点________.(1)D(2)(3,4)[(1)由于f (x )的图象单调递减,所以0<a <1,又0<f (0)<1,所以0<a -b <1=a 0,即-b >0,b <0,故选D.(2)令x -3=0得x =3,此时y =4.故函数y =a x -3+3(a >0,且a ≠1)的图象过定点(3,4).]7.比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x 取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a >1和0<a <1两种情况分类讨论.典例7:比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a 1.1与a 0.3(a >0且a ≠1).[解](1)1.52.5,1.53.2可看作函数y =1.5x 的两个函数值,由于底数1.5>1,所以函数y =1.5x在R 上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.(2)0.6-1.2,0.6-1.5可看作函数y =0.6x的两个函数值,因为函数y =0.6x 在R 上是减函数,且-1.2>-1.5,所以0.6-1.2<0.6-1.5.(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,所以1.70.2>0.92.1.(4)当a >1时,y =a x 在R 上是增函数,故a 1.1>a 0.3;当0<a <1时,y =a x在R 上是减函数,故a 1.1<a 0.3.8.利用指数函数的单调性解不等式(1)利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.(2)解不等式af (x )>ag (x )(a >0,a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,典例8:(1)解不等式x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,a ≠1),求x 的取值范围.[解],∴原不等式可以转化为x -1.∵y 在R 上是减函数,∴3x -1≥-1,∴x ≥0,故原不等式的解集是{x |x ≥0}.(2)分情况讨论:①当0<a <1时,函数f (x )=a x(a >0,a ≠1)在R 上是减函数,∴x 2-3x +1>x +6,∴x2-4x-5>0,根据相应二次函数的图象可得x<-1或x>5;②当a>1时,函数f(x)=a x(a>0,a≠1)在R上是增函数,∴x2-3x+1<x+6,∴x2-4x-5<0,根据相应二次函数的图象可得-1<x<5.综上所述,当0<a<1时,x<-1或x>5;当a>1时,-1<x<5.9.函数y=a f(x)(a>0,a≠1)的单调性的处理技巧(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考查f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.典例9:判断f(x 2-2x的单调性,并求其值域.[思路点拨]令u=x2-2x―→函数u(x)的单调性――→函数f(x)的单调性[解]令u=x2-2x,则原函数变为y.∵u=x2-2x=(x-1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y在(-∞,+∞)上递减,∴y 2-2x在(-∞,1]上递增,在[1,+∞)上递减.∵u=x2-2x=(x-1)2-1≥-1,∴y,u∈[-1,+∞),=3,∴原函数的值域为(0,3].10.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.典例10:将下列对数形式化为指数形式或将指数形式化为对数形式:(1)2-7=1128;(2)log 1232=-5;(3)lg 1000=3;(4)ln x =2.[解](1)由2-7=1128,可得log 21128=-7.(2)由log 12=32.(3)由lg 1000=3,可得103=1000.(4)由ln x =2,可得e 2=x .11.求对数式log a N (a >0,且a ≠1,N >0)的值的步骤(1)设log a N =m ;(2)将log a N =m 写成指数式a m =N ;(3)将N 写成以a 为底的指数幂N =a b ,则m =b ,即log a N =b .典例11:求下列各式中的x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x;(4)-ln e 2=x .[解](1)x =(64)-23=(43)-23=4-2=116.(2)x 6=8,所以x =(x 6)16=816=(23)16=212= 2.(3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2,所以x =-2.12.应用换底公式应注意的两个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.典例12:已知3a =5b =c ,且1a +1b=2,求c 的值.[思路点拨]3a =5b =c ――――→指对互化求1a ,1b ――――→1a +1b =2求c 的值[解]∵3a =5b =c ,∴a =log 3c ,b =log 5c ,∴1a =log c 3,1b=log c 5,∴1a +1b=log c 15.由log c 15=2得c 2=15,即c =15.13.求对数型函数的定义域时应遵循的原则(1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.典例13:求下列函数的定义域:(1)f (x )=1log 12x +1;(2)f (x )=12-x +ln(x +1);(3)f (x )=log (2x -1)(-4x +8).[解](1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).+1>0,x >0,>-1,<2,解得-1<x <2,故函数的定义域为(-1,2).x +8>0,x -1>0,x -1≠1,<2,>12,≠1.故函数y =log (2x -1)(-4x +8)的定义域为|12<x<2,且x ≠114.函数图象的变换规律(1)一般地,函数y =f (x ±a )+b (a ,b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.典例14:(1)当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象为()A B C D(2)已知f (x )=log a |x |,满足f (-5)=1,试画出函数f (x )的图象.[思路点拨](1)结合a >1时y =a -x 及y =log a x 的图象求解.(2)由f (-5)=1求得a ,然后借助函数的奇偶性作图.(1)C [∵a >1,∴0<1a<1,∴y =a -x 是减函数,y =log a x 是增函数,故选C.](2)[解]∵f (x )=log a |x |,∴f (-5)=log a 5=1,即a =5,∴f (x )=log 5|x |,∴f (x )是偶函数,其图象如图所示.15.比较对数值大小的常用方法(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.典例15:比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.[解](1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,所以0>log 213>log 215,所以1log 213<1log 215,所以log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54.16.常见的对数不等式的三种类型(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x的单调性求解;典例16:已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1).(1)求函数φ(x )=f (x )+g (x )的定义域;(2)试确定不等式f (x )≤g (x )中x 的取值范围.[思路点拨](1)直接由对数式的真数大于0联立不等式组求解x 的取值集合.(2)分a >1和0<a <1求解不等式得答案.[解]-1>0,x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ),①当a >1x <3,-1≤6-2x ,解得1<x ≤73;②当0<a <1x <3,-1≥6-2x,解得73≤x <3.综上可得,当a >11,73;当0<a <1时,不等式的解集为73,317.常见的函数模型及增长特点(1)线性函数模型线性函数模型y =kx +b (k >0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y =a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y =log a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.典例17:(1)下列函数中,增长速度最快的是()A.y =2019x B.y =2019C.y =log 2019xD.y =2019x(2)下面对函数f (x )=log 12x ,g (x 与h (x )=-2x 在区间(0,+∞)上的递减情况说法正确的是()A.f (x )递减速度越来越慢,g (x )递减速度越来越快,h (x )递减速度越来越慢B.f (x )递减速度越来越快,g (x )递减速度越来越慢,h (x )递减速度越来越快C.f (x )递减速度越来越慢,g (x )递减速度越来越慢,h (x )递减速度不变D.f (x )递减速度越来越快,g (x )递减速度越来越快,h (x )递减速度越来越快(1)A(2)C [(1)指数函数y =a x,在a >1时呈爆炸式增长,并且随a 值的增大,增长速度越快,应选A.(2)观察函数f (x )=log 12x ,g (x 与h (x )=-2x 在区间(0,+∞)上的图象(如图)可知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象递减速度不变.]18.由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.典例18:函数f (x )=2x和g (x )=2x 的图象如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f f (2019)与g (2019)的大小.[解](1)C 1对应的函数为g (x )=2x ,C 2对应的函数为f (x )=2x.(2)∵f (1)=g (1),f (2)=g (2)从图象上可以看出,当1<x <2时,f (x )<g (x ),∴当x >2时,f (x )>g (x ),∴f (2019)>g (2019).19.函数零点的求法(1)代数法:求方程f (x )=0的实数根.(2)几何法:对于不能用求根公式的方程f (x )=0,可以将它与函数y =f (x )的图象联系起来.图象与x 轴的交点的横坐标即为函数的零点.典例19:(1)求函数f (x 2+2x -3,x ≤0,x ,x >0的零点;(2)已知函数f (x )=ax -b (a ≠0)的零点为3,求函数g (x )=bx 2+ax 的零点.[解](1)当x ≤0时,令x 2+2x -3=0,解得x =-3;当x >0时,令-2+ln x =0,解得x =e 2.所以函数f (x 2+2x -3,x ≤0x ,x >0的零点为-3和e 2.(2)由已知得f (3)=0即3a -b =0,即b =3a .故g (x )=3ax 2+ax =ax (3x +1).令g (x )=0,即ax (3x +1)=0,解得x =0或x =-13.所以函数g (x )的零点为0和-13.20.判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.典例20:(1)函数f (x )=ln(x +1)-2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)(2)根据表格内的数据,可以断定方程e x -x -3=0的一个根所在区间是()x -10123e x 0.371 2.727.3920.08x +323456A.(-1,0)B.(0,1)C.(1,2)D.(2,3)(1)C (2)C [(1)因为f (1)=ln 2-21<0,f (2)=ln 3-1>0,且函数f (x )在(0,+∞)上单调递增,C.(2)构造函数f (x )=e x -x -3,由上表可得f (-1)=0.37-2=-1.63<0,f (0)=1-3=-2<0,f (1)=2.72-4=-1.28<0,f (2)=7.39-5=2.39>0,f (3)=20.08-6=14.08>0,f (1)·f (2)<0,所以方程的一个根所在区间为(1,2),故选C.]21.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.典例21:已知函数f (x )的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4D.4,3D [图象与x 轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.]22.函数拟合与预测的一般步骤:(1)根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出拟合直线或拟合曲线.(3)求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.典例22:某企业常年生产一种出口产品,自2015年以来,每年在正常情况下,该产品产量平稳增长.已知2015年为第1年,前4年年产量f (x )(万件)如下表所示:x1234f (x ) 4.00 5.587.008.44(1)画出2015~2018年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2019年(即x =5)因受到某国对我国该产品反倾销的影响,年产量减少30%,试根据所建立的函数模型,确定2019年的年产量为多少?[思路点拨]描点――→依散点图选模――→待定系数法求模――→误差验模→用模[解](1)画出散点图,如图所示.(2)由散点图知,可选用一次函数模型.设f (x )=ax +b (a +b =4,a +b =7,=1.5,=2.5,∴f (x )=1.5x +2.5.检验:f (2)=5.5,且|5.58-5.5|=0.08<0.1,f (4)=8.5,且|8.44-8.5|=0.06<0.1.∴一次函数模型f (x )=1.5x +2.5能基本反映年产量的变化.(3)根据所建的函数模型,预计2019年的年产量为f (5)=1.5×5+2.5=10万件,又年产量减少30%,即10×70%=7万件,即2019年的年产量为7万件.。

指数函数对数函数求导公式

指数函数对数函数求导公式

指数函数对数函数求导公式对 a^x 和 log_ax 求导的推导做一个总结。

我以前接触到的推法是:首先记住 (log_ax)'=\frac{1}{x*lna} ,之后 a^x 的导数可以根据对数的导数推导如下:令 y=a^x , 所以 x = log_ay,俩边求导, 根据复合函数求导法则为:(log_ay)'=x'\Rightarrowy'\frac{1}{y*lna}=1\Rightarrowy'=y*lna=a^xlna或者记住 a^x 的导数,用复合函数求导推 log_ax 的导数。

但是个人觉得这种做法太讨巧了,而且我也不是总能记住其中一个的导数是什么,一般是一忘就都忘了。

理解一个东西,还是得从定义上去理解,找了一个百度百科的定义:导数:当函数 y=f(x) 的自变量x 在一点 x_0 上产生一个增量 \Delta x 时,函数输出值的增量 \Delta y 与自变量增量 \Delta x 的比值在 \Delta x 趋于0时的极限a 如果存在, a 即为在 x_0 处的导数,记作 f'(x_0) 或\frac{df(x_0)}{dx} 。

既然是定义,就一定是普适的,所以我们可以从定义推导出导数。

指数函数对数函数求导公式 1f'(a^{x_0})=\lim_{\Delta x \rightarrow0}\frac{{{a^{x_0 + \Delta x}-a^{x_0}}}}{\Delta x} \\ =\lim_{\Delta x \rightarrow 0}{\frac{a^{x_0}(a^{\Delta x}-1)}{\Delta x}}令 y=a^{\Delta x} - 1 , 则有 \Delta x = log_a(y+1) ,则f'(a^{x_0})=\lim_{\Delta x \rightarrow0}\frac{a^{x_0}*y}{log_a(y+1)}\\=a^{x_0}\lim_{\Delta x \rightarrow 0}\frac{1}{log_a(y+1)^\frac{1}{y}}当 \Delta x \rightarrow 0 时,\frac{1}{y}\rightarrow+\infty , 此时log_a(y+1)^\frac{1}{y}=log_ae,因此:f'(a^{x_0})=a^{x_0}*\frac{1}{log_ae}=a^{x_0}*lna对数函数导数定义推导对数函数求导同样:f'(log_ax_0)=\lim_{\Deltax\rightarrow0}\frac{{log_a(x_0+\Delta x)}-log_ax_0}{\Delta x} \\=\lim_{\Deltax\rightarrow0}\frac{1}{\Delta x}log_a\frac{x_0+\Delta x}{x_0}\\=\lim_{\Deltax\rightarrow0}log_a(1+\frac{\Deltax}{x_0})^\frac{1}{\Delta x}\\=\lim_{\Deltax\rightarrow0}\frac{1}{x_0}log_a(1+\frac{\Deltax}{x_0})^\frac{x_0}{\Delta x}当 \Delta x\rightarrow0 的时候, \frac{x_0}{\Delta x}\rightarrow\infty ,此时 log_a(1+\frac{\Deltax}{x_0})^\frac{x_0}{\Delta x}=log_ae ,f'(log_ax_0)=\frac{1}{x_0}log_ae=\frac{1}{x_0lna}其中 log_ae=\frac{lne}{lna} 是用了换底公式,换底公式的证明:有一个等式: c=log_ab,假设其中 e^x=a, e^y=b ,所以c=log_{e^x}e^y=\frac{y}{x}log_ee由于 x=lna, y=lnb ,所以c=\frac{y}{x}=\frac{lnb}{lna}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数和对数函数重点、难点:重点:指数函数和对数函数的概念、图象和性质。

难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y xxa ==,l o g 在a >1及01<<a 两种不同情况。

1、指数函数:定义:函数()y aa a x=>≠01且叫指数函数。

定义域为R ,底数是常数,指数是自变量。

为什么要求函数y ax=中的a 必须a a >≠01且。

因为若a <0时,()y x=-4,当x =14时,函数值不存在。

a =0,y x=0,当x ≤0,函数值不存在。

a =1时,y x=1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x=中的a a >≠01且。

1、对三个指数函数y y y x xx==⎛⎝ ⎫⎭⎪=21210,,的图象的认识。

图象特征与函数性质:图象特征函数性质(1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x>0; (2)图象都经过点(0,1);(2)无论a 取任何正数,x =0时,y =1;(3)yy xx==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x=⎛⎝ ⎫⎭⎪12的图象正好相反;(3)当a >1时,x a x a x x>><<⎧⎨⎪⎩⎪0101,则,则 当01<<a 时,x a x a x x><<>⎧⎨⎪⎩⎪0101,则,则(4)y y x x==210,的图象自左到右逐渐(4)当a >1时,y a x=是增函数,上升,y x=⎛⎝ ⎫⎭⎪12的图象逐渐下降。

当01<<a 时,y a x=是减函数。

对图象的进一步认识,(通过三个函数相互关系的比较):①所有指数函数的图象交叉相交于点(0,1),如y x=2和y x=10相交于()01,,当x >0时,y x=10的图象在y x=2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。

②y x=2与y x=⎛⎝ ⎫⎭⎪12的图象关于y 轴对称。

③通过y x=2,y x=10,y x=⎛⎝ ⎫⎭⎪12三个函数图象,可以画出任意一个函数y a x=(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x=10两个图象的中间,且过点()01,,从而y x=⎛⎝ ⎫⎭⎪13也由关于y 轴的对称性,可得y x=⎛⎝ ⎫⎭⎪13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。

2、对数:定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。

) 由于N a b=>0故lo g a N 中N 必须大于0。

当N 为零的负数时对数不存在。

(1)对数式与指数式的互化。

由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如:求log .032524⎛⎝⎫⎭⎪分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524⎛⎝ ⎫⎭⎪=x ,再改写为指数式就比较好办。

解:设log .032524⎛⎝⎫⎭⎪=x则即∴即032524825825125241212032.log .x xx =⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪=--评述:由对数式化为指数式可以解决问题,反之由指数式化为对数式也能解决问题,因此必须因题而异。

如求35x=中的x ,化为对数式x =log 35即成。

(2)对数恒等式:由a N b N ba ==()l o g ()12 将(2)代入(1)得aNa Nl o g = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。

计算:()3132-log解:原式==⎛⎝ ⎫⎭⎪-=313122221313l o g l o g 。

(3)对数的性质:①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。

(4)对数的运算法则:①()()l o g l o g l o g a a aM N M N M N R =+∈+, ②()l o g l o g l o g a a aMNM N M N R =-∈+, ③()()l o g l o g a naNn N N R =∈+④()l o g l o g a naN nNNR =∈+1 3、对数函数:定义:指数函数y a a a x=>≠()01且的反函数y x a =l o g x∈+∞(,)0叫做对数函数。

1、对三个对数函数y x y x==l o g l o g 212,,y x =lg 的图象的认识。

图象特征与函数性质:图象特征函数性质(1)图象都位于 y 轴右侧; (1)定义域:R +,值或:R ;(2)图象都过点(1,0);(2)x =1时,y =0。

即l o g a 10=; (3)y x=l o g 2,y x =lg 当x >1时,图象在x 轴上方,当00<<x 时,图象在x 轴下方,y x =log 12与上述情况刚好相反; (3)当a >1时,若x >1,则y >0,若01<<x ,则y <0; 当01<<a 时,若x >0,则y <0,若01<<x 时,则y >0; (4)y x y x ==l o g l g 2,从左向右图象是上升,而y x =log 12从左向右图象是下降。

(4)a >1时,y x a =l o g 是增函数; 01<<a 时,y xa =l o g 是减函数。

对图象的进一步的认识(通过三个函数图象的相互关系的比较):(1)所有对数函数的图象都过点(1,0),但是y x=l o g 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时,y x =l o g 2的图象在y x =lg 的图象上方;而01<<x 时,y x =l o g 2的图象在y x =lg 的图象的下方,故有:l o g.l g .21515>;l o g .l g .20101<。

(2)y x=l o g 2的图象与y x =log 12的图象关于x 轴对称。

(3)通过y x=l o g 2,y x =lg ,y x =log 12三个函数图象,可以作出任意一个对数函数的示意图,如作y x =l o g 3的图象,它一定位于y x =l o g 2和y x =lg 两个图象的中间,且过点(1,0),x >0时,在y x =lg 的上方,而位于y x=l o g 2的下方,01<<x 时,刚好相反,则对称性,可知y x =log 13的示意图。

因而通过课本上的三个函数的图象进一步认识无限个函数的图象。

4、对数换底公式:l o g l o g l o g l o g (.)l o g ba a n e g N N bLN Ne N LN N====其中…称为的自然对数称为常数对数27182810 由换底公式可得:L N N e NN n===l g l g l g ..l g 043432303由换底公式推出一些常用的结论:(1)l o g l o g l o g l o g a ba bb a b a ==11或· (2)log log a ma n bmnb =(3)l o g l o g ana nb b =(4)lo g a mn a mn=5、指数方程与对数方程*定义:在指数里含有未知数的方程称指数方程。

在对数符号后面含有未知数的方程称对数方程。

由于指数运算及对数运算不是一般的代数运算,故指数方程对数方程不是代数方程而属于超越方程。

指数方程的题型与解法:名称 题型 解法基本型 同底数型 不同底数型 需代换型()a bf x = a a f x x ()()=ϕ ()()a bf x x =ϕ ()F a x =0取以a 为底的对数()f x b a =l o g 取以a 为底的对数()()f x x =ϕ 取同底的对数化为()()fx a x b ··l g l g =ϕ换元令t a x=转化为t 的代数方程名称 题型解法基本题 ()l o g a f x b = 对数式转化为指数式()f x a b=同底数型 ()()l o g l o g a afx x =ϕ 转化为()()f x x =ϕ(必须验根) 需代换型 F a x (log )=0换元令t xa =l o g 转化为代数方程。

相关文档
最新文档