(完整word版)高中数学圆锥曲线结论(最完美版本)

合集下载

圆锥曲线192条结论(清晰版本)

圆锥曲线192条结论(清晰版本)

结论 13:点 M

x0

y
0
)在椭圆
x
a
m
2
2
y
n2
b2
1上,过点 M
作椭圆的切线方程

(x0
m)( x a2
m)
( y0
n)( y b2
n)
1.
结论 14:点 M

x0

y
0
)在双曲线
x
a
m2
2
y
x0
mx
a2
m
y0
n y
b2
n
1.
2
结论 15:点 M ( x0 , y0 )在抛物线 y n2 2 px m上,过点 M 作抛物线的切线方 程为 y0 ny n px x0 2m.

y0
)在椭圆
x a
2 2
y2 b2
1( a b 0 )上,过点 M
作椭圆的切线方
程为
x0 x a2
y0 y b2
1.
结论 8:点 M

x0

y0
)在椭圆
x a
2 2
y2 b2
1( a b 0 )外,过点 M
作椭圆的两条切
线,切点分别为
A,B
,则切点弦
AB
的直线方程为
x0 x a2
y0 y b2
a )作
双曲线(单支)的两条切线,切点分别为 A ,B ,则切点弦 AB 所在的直线必过点 P( a 2 ,0) . m
结论 31:过抛物线 y 2 2 px( p 0 )外任意一点 M 作抛物线的两条切线,切点分别为 A ,
B ,弦 AB 的中点为 N ,则直线 MN 必与其对称轴平行.

高中数学圆锥曲线结论最完美版本

高中数学圆锥曲线结论最完美版本

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB=。

高中数学圆锥曲线结论(最完美版本)

高中数学圆锥曲线结论(最完美版本)

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. A B 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF⊥NF.11. A B 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K ABOM =⋅,即0202y a x b K AB =。

(完整版)高中数学圆锥曲线结论(最完美版本)

(完整版)高中数学圆锥曲线结论(最完美版本)

圆锥曲线二级推论椭圆Q 两点, A 为椭圆长轴上一个顶点,连 结 AP 和 AQ 分别交相应于焦点 F 的椭 1. 点 P 处的切线 PT 平分△ PF 1F 2在点P 处的外角.2. PT 平分△ PF 1F 2在点 P 处的外角,则焦 点在直线 PT 上的射影 H 点的轨迹是以 圆准线于 M 、N 两点,则 MF ⊥NF.10.过椭圆一个焦点 F 的直线与椭圆交于 两点 P 、Q, A 1、 A 2为椭圆长轴上的顶 点,A 1P 和 A 2Q 交于点 M ,A 2P 和 A 1Q3. 4. 5. 6.长轴为直径的圆,除去长轴的两个端 点.以焦点弦 PQ 为直径的圆必与对应准线 相离.以焦点半径 PF 1 为直径的圆必与以长轴为直径的圆 内切 . 2 若P 0(x 0, y 0) 在椭圆 x2 a 的椭圆的切线方程是 2 yb 2x 0x 2a2yb 21上,则过P 0 y 0y1. b 02 1.1外 ,则过2若P 0(x 0, y 0) 在椭圆 x2 a Po 作椭圆的两条切线切点为 P 1、P 2, P 1P 2 的直线方程是 则切点弦x 0x y 0y22 ab 2 椭圆 x 2a 分别为 F 1, 点 F 1PF 2 积为 S F 1PF 222椭圆 x 2y 式:|MF 1 | a ex 0,|MF 2 | a ex 0 ( F 1( c,0) , F 2 (c,0) M (x 0,y 0)).1. 7. 8.交于点 N ,则 MF ⊥NF. 2y2 1的不平行于对称轴 b2 yb 2 1 (a >b > 0)的左右焦点 F2,点 P 为椭圆上任意一 ,则椭圆的焦点角形的面 b 2 tan . 22 1(a > b >0)的焦半径公 ab9. 设过椭圆焦点 F 作直线与椭圆相交 P 、2 11.AB 是椭圆 x2 a的弦, M (x 0,y 0)为 AB 的中点,则k OM k AB即 KABb 22, ab 2 x 02。

高中数学圆锥曲线结论(最完美版本)

高中数学圆锥曲线结论(最完美版本)

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11.AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10.过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11.AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K ABOM =⋅,即0202y a x b K AB=。

(完整word版)高中数学圆锥曲线重要结论讲义

(完整word版)高中数学圆锥曲线重要结论讲义

圆锥曲线重要结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b+=.6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=.7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB-=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b-=.6. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

(完整word版)圆锥曲线知识要点及结论个人总结

(完整word版)圆锥曲线知识要点及结论个人总结

《圆锥曲线》知识要点及重要结论一、椭圆1 定义 平面内到两定点21,F F 的距离的和等于常数)2(221F F a a >的点P 的轨迹叫做椭圆。

若212F F a =,点P 的轨迹是线段21F F 。

若2120F F a <<,点P 不存在.2 标准方程 )0(12222>>=+b a b y a x ,两焦点为)0,(),0,(21c F c F -.)0(12222>>=+b a b x a y ,两焦点为),0(),,0(21c F c F -.其中222c b a +=. 3 几何性质椭圆是轴对称图形,有两条对称轴. 椭圆是中心对称图形,对称中心是椭圆的中心. 椭圆的顶点有四个,长轴长为a 2,短轴长为b 2,椭圆的焦点在长轴上。

若椭圆的标准方程为)0(12222>>=+b a b y a x ,则b y b a x a ≤≤-≤≤-,;若椭圆的标准方程为)0(12222>>=+b a b x a y ,则a y a b x b ≤≤-≤≤-,。

二、双曲线1 定义 平面内到两定点21,F F 的距离之差的绝对值等于常数)20(221F F a a <<的点的轨迹叫做双曲线. 若212F F a =,点P 的轨迹是两条射线.若212F F a >,点P 不存在.2 标准方程 )0,0(12222>>=-b a b y a x ,两焦点为)0,(),0,(21c F c F -。

)0,0(12222>>=-b a b y a x ,两焦点为),0(),,0(21c F c F -.其中222b a c +=. 3 几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心。

双曲线的顶点有两个21,A A ,实轴长为a 2,虚轴长为b 2,双曲线的焦点在实轴上.若双曲线的标准方程为)0,0(12222>>=-b a by a x ,则R y a x a x ∈≥-≤,或;若双曲线的标准方程为)0,0(12222>>=-b a bx a y ,则R x a y a y ∈≥-≤,或。

高中数学圆锥曲线结论最完美版本(供参考)

高中数学圆锥曲线结论最完美版本(供参考)

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB=。

(完整word)高中数学有关圆锥曲线的经典结论

(完整word)高中数学有关圆锥曲线的经典结论

有关解析几何的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+. 二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

高中数学圆锥曲线结论(完美版本)

高中数学圆锥曲线结论(完美版本)

高中数学圆锥曲线结论(完美版本)————————————————————————————————作者:————————————————————————————————日期:2椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

(完整word版)高中数学圆锥曲线结论(最完美版本)

(完整word版)高中数学圆锥曲线结论(最完美版本)

1 .点P处的切线PT平分△PF1F2在点P 处的外角.2 . PT平分△PF1F2在点P处的外角,那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3 .以焦点弦PQ为直径的圆必与对应准线相离.4 .以焦点半径PF i为直径的圆必与以长轴为直径的圆内切.2 25 .假设P o(X o, y o)在椭圆与yY 1上,那么过P0 a b的椭圆的切线方程是警缪1. a b2 26 .假设P0(X o, y o)在椭圆占4 1外,那么过a bP0作椭圆的两条切线切点为P1、P2, 那么切点弦P1P2的直线方程是x o x y o y-2~ ~2~1.a b2 27.椭圆\ 4 1 (a>b>0)的左右焦点a b分别为F1, F2,点P为椭圆上任意一点F1PF2 ,那么椭圆的焦点角形的面积为S F PF b2 tan-. 1 222 28 .椭圆=yr 1 (a>b>0)的焦半径公a b式:IMF I | a ex0,|MF2 | a e%(F1( c,0),F2(C,0) M(x0,y.)).9 .设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N 两点,那么MF XNF.10 .过椭圆一个焦点F的直线与椭圆交于两点P、Q,A I、A2为椭圆长轴上的顶点,A I P和A2Q交于点M, A2P和A I Q交于点N,那么MFXNF.2 211. AB是椭圆与当1的不平行于对称轴a b的弦,M(x°,y°)为AB的中点,那么b2k OM k AB _2,a即K AB整.a V.双曲线1 .点P处的切线PT平分△PF1F2在点P处的内角.2 . PT平分△PF1F2在点P处的内角, 那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3 .以焦点弦PQ为直径的圆必与对应准线相交.4 .以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)2 25 .假设P o(%,y.)在双曲线与3 1 (a>a b0,b>0〕上,那么过B的双曲线的切为AB 的中点,那么K OM K AB 线方程是粤.当1.a b2 26.假设R〔X°,y.〕在双曲线与匕ab 1 (a>0,b>0〕外,那么过Po作双曲线的两条切线切点为P「P2,那么切点弦P1P2的直线方程是X0X y0 y 1.即K ABb2X.-20a y.212.右P Q〔X.,y.〕在双曲线—2ab2X.-2 )a y.1 (a>0,b>0〕内,那么被Po所平分的中点弦的方程是2 2X Q X y°y X0 y2 27.双曲线 : 〕a b 右焦点分别为线上任意一点1 〔a>0,b>o〕的左F 2,点P为双曲F1PF2 ,那么双曲线2 . 2 2aba213.假设P0(x0,y0)在双曲线—ab2 yb7 1(a>的焦点角形的面积为S2 2 F1PF2b2cot—.20,b>0〕内,那么过Po的弦中点的轨2 2迹方程是3线誓岑.a2b2a2b28 .双曲线: I 1 〔a>0,b>o〕的焦a b半径公式:〔F1〔 c,0〕, F2〔c,0〕当M〔X0,y°〕在右支上时,|MF1| ex0 a ,| MF2 | ex0 a.当M〔X0, y°〕在左支上时,|MF1| eX0 a,|MF2| eX0 a9 .设过双曲线焦点F作直线与双曲线椭圆与双曲线的对偶性质-椭1.相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别2.交相应于焦点F的双曲线准线于M、N 两点,那么MFXNF.10.过双曲线一个焦点F的直线与双曲3.线交于两点P、Q, A「A2为双曲线2 2椭圆三-yy 1 〔a>b>o〕的两个顶 a b 点为A〔 a,0〕,A2〔a,0〕,与y轴平行的直线交椭圆于P r P2时A1P1与A2P22 2交点的轨迹方程是3多1. a b2 2过椭圆与与1 〔a> 0, b>0〕上任 a b 一点A〔X0,y.〕任意作两条倾斜角互补的直线交椭圆于B,C两点,那么直线BC有定向且k Bc骆〔常数〕.a y.2 2假设P为椭圆33 1 〔a>b>0〕上 a b实轴上的顶点,A1P和A2Q交于点异于长轴端点的任一点,F1, F 2是焦M, A2P和A1Q交于点N,那么MF点, PFE PF2F1±NF.tan — cot —.2 11. AB是双曲线三a2纭 1 (a> 0,b> 0) b 4. 设椭圆得a24 1 (a>b>0)的两个b2的不平行于对称轴的弦,M 〔X., y°〕焦点为F I、F2,P 〔异于长轴端点〕为椭圆上任意一点,在△ PF1F2中, 记F1PF2 ,PF1F2 , F i F2P ,那么有点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,贝E|MN |210.椭圆与ae.22yb21 ( a> b>0)sin c --- ----- e.sin sin a ,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点25.假设椭圆与a 2 y_b21 (a> b>0)的左、右焦点分别为F i、F2,左准线为L,2 .2P(x°,0),那么a211.设P点是椭圆三aX2 ,2a baa> b>0)那么当0<e<点1时,可在椭圆上求一点P,使得PF i是P到对应准线距离d与PF2的比例中项.2 26. P为椭圆二与1 (a>b>0)上任a b 上异于长轴端点的任一点,F i、F2 为其焦点记F1PF2 ,那么八2b21) 1P削0、一点,F i,F2为二焦点,A为椭圆内一定点,那么2) S PF1F2 b2tan-.1 2 2212.设A、B是椭圆与a 1 ( a> b2a |AF2 11PA | | PF i | 2a |AF1 |,当且仅当A,F2,P三点共线时,等号成立>0)的长轴两端点,P是椭圆上的一点, PAB ,PBA , BPA , c、e分别是椭圆的半焦距离心率,那么有2 27.椭圆区舁1与直线a bAx By C 0有公共点的充要条件是A2a2B2b2(Ax0 By0 C)2.2 28.椭圆一4 1 (a>b>0), O a b为坐标原点,P、Q为椭圆上两动点,且OP OQ .(1)|PA|tan tanS PAB2 . .2ab |cos |2a2bb213.椭圆9. 1)2)3)2 2c cos1 e2.(3)2.(2)2a2xacot2yb21 ( a>b>0)的右准线l与X轴相交于点E ,过椭圆1 1 1 1 .| OP |2|OQ |2a2b2;|OP2+|OQ|2的最大值为2 2S OPQ的最小值是告红a b右焦点F的直线与椭圆相交于A、B2 24a2b2 .~~2 ,a b2冬i (a>b>0)的右焦b两点,点C在右准线l上,且BC x轴,那么直线AC经过线段EF的中点.14 .过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15 .过椭圆焦半径的端点作椭圆的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16 .椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17 .椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18 .椭圆焦三角形中,半焦距必为内、外点到椭圆中央的比例中项.椭圆与双曲线的对偶性质一双曲线2 21 .双曲线二4 1 (a>0,b>0) a b的两个顶点为A( a,0) , A2(a,0), 与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹2 2方程是x2 4 1.a b2 22 .过双曲线与4 1 (a>0,b>o)a b上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,那么直线BC有定向且k Bc 辂(常数).a V.23 .假设P为双曲线与a>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点,PF1F2 , PF2F1,那么c-a tan—cot—(或c a 2 2c a x----- tan—cot —7.c a 2 22 24.设双曲线与与1 (a>0,b>0) a b的两个焦点为F「F2,P (异于长轴端点)为双曲线上任意一点,在△PF1F2 中,记F1PF2 ,PF1F2 , \F2P ,那么有sin c--------------------- --- e.(sin sin ) a2 25 .假设双曲线-2 -V2- 1 (a>0,b>0) a b的左、右焦点分别为F「F2,左准线为L,那么当1<ew V2 1时,可在双曲线上求一点巳使得PF1是P到对应准线距离d与PF2的比例中项. 2 26 . P为双曲线与4 1 (a>0,b> a b2£ 1( a> 0,b0)上任一点,F I,F2为二焦点,A 为双曲线内一定点,那么2 ,SPF1F2b COt二.22 212.设A、B是双曲线与与a b 1 (aIAF2I 2a |PA| |PF i|,当且仅当>0,b>0)的长轴两端点,P是双曲线上的一点,PABA,F2,P三点共线且P和A, F2在y PBA , BPA , C、e 分别是轴同侧时,等号成立双曲线的半焦距离心率,那么有2 7.双曲线x2 a与直线Ax2y2 1 (a> 0,b> 0) b By C 0有公共点的充要条件是A2a2B2b2C2.2 28.双曲线tI 1 (b>a >a b0), O为坐标原点,P、Q为双曲线上两动点,且OP OQ .1)2)3)2 . .2ab | cos ||PA|「2-N | a c cos |2tan tan 1 e .SPAB2, 22a b ,2一 2 cotb a 213.双曲线占a2j 1 (a> 0,b>(1)| OP |2|OQ I2(2) |OP2+|OQ|2的最小值为2,2(3) S OPQ的最小值是-2巴b2a2 2 4a b . ~22 ;b a2 29.过双曲线与匕1 (a>0,b>0)a b的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,那么|PF | e .|MN | 22 210.双曲线 \ 4 1 (a>0,b>a b0) ,A、B是双曲线上的两点, 线段AB的垂直平分线与x轴相2 .2交于点P(x°,0),那么x.a~^或 a2 ,2a b x-- .a2 211.设P点是双曲线与与1 (a>a2b20,b> 0)上异于实轴端点的任一点,F1、F2为其焦点记F1PF2 ,那么⑴|PF1||PF2|产一.⑵1 cos0)的右准线l与x轴相交于点E , 过双曲线右焦点F的直线与双曲线相交于A、B两点,点C在右准线l上,且BCx轴,那么直线AC经过线段EF的中点.14.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15 .过双曲线焦半径的端点作双曲线的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16 .双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).〔注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点〕.17 .双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18 .双曲线焦三角形中,半焦距必为内、外点到双曲线中央的比例中项.圆锥曲线问题解题方法圆锥曲线中的知识综合性较强,因而解题时就需要运用多种根底知识、采用多种数学手段来处理问题.熟记各种定义、根本公式、法那么固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧.一.紧扣定义,灵活解题灵活运用定义,方法往往直接又明了.例1.点A (3, 2), F (2, 0),双曲线2X2匕1,P为双曲线上一点.31求|PA| 1|PF|的最小值.2解析:如下图,双曲线离心率为2, F为右焦点,由第1二定彳t知1|PF|即点P到准线距离.1 5|PA| |PF| |PA| |PE| AM -2 2二.引入参数,简捷明快参数的引入,尤如化学中的催化剂,能简化和加快问题的解决.例2.求共焦点F、共准线l的椭圆短轴端点的轨迹方程.解:取如下图的坐标系,设点F到准线l的距离为p (定值),椭圆中央坐标为M (t, 0) (t为参数) ,叫.2 .b pc pt再设椭圆短轴端点坐标为P (x, y),那么X c ty b ..pt消去t,得轨迹方程y2 px三 .数形结合,直观显示将“数〞与“形〞两者结合起来,充分发挥“数〞的严密性和“形〞的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化.熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题.例3.x,y R,且满足方程x2 y2 3(y 0),又m --3 ,求m 范围.解析:m —-的几何意义为,曲线x 3x2 y2 3(y 0)上的点与点(—3, — 3)连线的斜率,如下图四.应用平几,一目了然用代数研究几何问题是解析几何的本质特征,因此,很多“解几〞题中的一些图形性质就和“平几〞知识相关联,要抓住关键,适时引用,问题就会迎刃而解.例4.圆(x 3)2 y2 4和直线y mx的交点为P、Q,那么|OP||OQ|的值为.解:OMP ~ OQN|OP||OQ| |OM||ON| 5五.应用平面向量,简化解题向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具.例5.椭圆:工y- 1 ,直线l :24 16y12 81, P是l上一点,射线OP交椭圆于六.应用曲线系,事半功倍利用曲线系解题,往往简捷明快,收到事半功 倍之效.所以灵活运用曲线系是解析几何中重要 的解题方法和技巧之一.例6.求经过两圆x 2 y 2 6x 4 0和 22x y 6y 28 0的父点,且圆心在直线x y 4 0上的圆的方程.点R,点Q 在OP 上且满足|OQ||OP| |OR|2 ,当 点P 在l 上移动时,求点Q 的轨迹方程.解:设所求圆的方程为:22_22_x 2y 26x 4 (x 2y 26y 28) 0 (1 )x 2 (1)y 2 6x 6 y (284) 0分析:考生见到此题根本上用的都是解析 几何法,给解题带来了很大的难度,而如果用向 量共线的条件便可简便地解出. 解:如图,OQ, OR, OP 共线,设 OR OQ , OP OQ , OQ (x, y),贝U 那么圆心为(」_ , _J_),在直线11x y 4 0 上解得 7故所求的方程为x 2 y 2 x 7y 32 0OR ( x, y) , OP ( x, y) 2七.巧用点差,简捷易行在圆锥曲线中求线段中点轨迹方程,往往采用 点差法,此法比其它方法更简捷一些.例7.过点A (2, 1)的直线与双曲线2x 2 — 1相交于两点P 1、P 2,求线段P 1P 2中点2的轨迹方程.解:设 P ,(x1,Y I ) , P 2(x 2, y 2),那么2X I 2 X22 Y I2 2Y 2 2|OQ||OP| |OR| <2> —<1> 得(X 2 X I )(X I X 2)1 2(Y 2 Y I )(Y I2Y 2)2 22 |OQ|2 2|OQ|22点R 在椭圆上,P 点在直线l 上 2 222———匕1,三△ 12416 12 8 2 2即士 L 二y241612 8化简整理得点Q 的轨迹方程为: 22 _(x 1) (y 1) 2 … -—广1(直线y — x 上万 5 5 323局部) 即 Y 2 Y I2( X I X 2) X 2 X IY I Y 2设P 1P 2的中点为M(X O , y 0),那么kP 1P 2Y 2 Y Ix 2 X 12xY O又,而P I 、A 、M 、P 2共线k P 1P2k AM,即^X O 2Y O的轨迹方程是2x 2 y 2 4x y 0P 1P 2中点M解析几何题怎么解高考解析几何试题一般共有4题(2个选择题,1个填空题,1个解做题),共计30分左右,考查的 知识点约为20个左右.其命题一般紧扣课本,突出重点,全面考查.选择题和填空题考查直线,圆, 圆锥曲线,参数方程和极坐标系中的根底知识.解做题重点考查圆锥曲线中的重要知识点,通过知识 的重组与链接,使知识形成网络,着重考查直线与圆车t 曲线的位置关系,求解有时还要用到平几的基 本知识,这点值得考生在复课时强化.例1点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0<t<1),以AB 为直腰作直角梯形 AA B B ,使AA 垂直且等于AT,使BB 垂直且等于BT , A B 交半圆于P 、Q 两点,建立如图所 示的直角坐标系.⑴写出直线A B 的方程; (2)计算出点P 、Q 的坐标;(3)证实:由点P 发出的光线,经AB 反射后,反射光线 通过点Q.饼斛:通过I 卖图,看出A , B 点的坐标. 一…' ' .'一 ,.…(1 )显然A 1,1 t , B 1,1 t ,于是直线A B 的方程为ytx 1 ;222(2)由方程组 x y 1,解出 P(0,1)、Q(1/,」^); y tx 1, 1 t 1 t由直线PT 的斜率和直线QT 的斜率互为相反数知,由点 P 发出的光线经点T 反射,反射光线通 过点Q.需要注意的是,Q 点的坐标本质上是三角中的万能公式,有趣吗?22例2直线l 与椭圆\ J 1(a b 0)有且仅有一个交点Q,且与x 轴、y 轴分别交于R 、S, a b 求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程.讲解:从直线l 所处的位置,设出直线l 的方程,由,直线l 不过椭圆的四个顶点,所以设直线l 的方程为y kx m(k 0). 代入椭圆方程 b 2x 2 a 2y 2 a 2b 2,得 b 2x 2 a 2(k 2x 2 2kmx m 2)a 2b 2.化简后,得关于x 的一■兀二次方程 (a 2k 2b 2)x 2 2ka 2mxa 2m 2 a 2b 20.于是其判别式(2ka 2m)2 4(a 2k 2 b 2)(a 2m 2 a 2b 2) 4a 2b 2(a 2k 2 b 2 m 2).由,得^ 二0 .即a 2k 2 b 2 m 2.①在直线方程y kx m 中,分别令y=0, x=0,求得R ( —,0),S(0,m). k(3) k PTk QT2t1t(it 2昌m I, y x—, k — 令顶点P 的坐标为(x, y), 由,得 k解得 xym.m y.2, 2代入①式并整理,得 a 2 b 2 1,即为所求顶点P 的轨迹方程.x 2 3 y 22. 2方程土上1形似椭圆的标准方程,你能画出它的图形吗?22x y例3双曲线x 2 4 1的离心率e .,过A (a,0),B(0, b)的直线到原点的距离是 —.a 2b 2 32(1)求双曲线的方程;的值.设C(x i ,y i ),D(x 2,y 2),CD 的中点是 E(x o ,y o ),那么2(2)考虑直线l 的斜率的存在性,可分两种情况:解出 e i)当k 存在时,设l 的方程为y k(x c)于是椭圆方程可转化为x 2 2y 2 2c 2 0 ................................. ②(2)直线y kx5(k 0)交双曲线于不同的点 C, D 且C, D 都在以B 为圆心的圆上,求k讲解::( 1) £ a2卡原点到直线AB:二 1的距离dab ■..a 2 1, ab 2■、.ab c、3~2~故所求双曲线方程为x 2 2V y 1.(2)把y kx 5代入x 23y 23中消去y,整理得(12 23k 2)x 230kx 78x .x 1x 22 15 k U y 0kx 05; : । 2 , kBE1 3ky 01x 0x 0 ky 0 k0,即15 k 3k 25 k---------- - k 0,又 k 1 3k 20, k故所求k= ± a.为了求出 k 的值,需要通过消元,想法设法建构k 的方程.例4椭圆 C 的中央在原点,焦点F I 、F 2在x 轴上,点P 为椭圆上的一个动点, 的最大值为90° ,直线l 过左焦点F I 与椭圆交于A 、B 两点,4ABF 2的面积最大值为 且/ 12.F 1PF 2(1)求椭圆C 的离心率; (2)求椭圆C 的方程. 讲解: (D 设IPF I I「I ,|PF 2| "F I F 2|2c ,对PF I F 2,由余弦定理,得cos F 1PF 21 22r 1 r 2 4c2rj 2(.L)22r 1r 2 4c 2 2rj 24a 4c 1------------- 1 1 r 1 r 2 2 2(七壬卜面给出此题的另一解法,请读者比拟二者的优劣: 设过左焦点的直线方程为:x my c (这样设直线方程的好处是什么?还请读者进一步反思反思 2 2椭圆的方程为:x ^ \ 1,A(x 1,y 1),B(x 2,y 2) a b 由e 字得:a 2 2c 2,b 2 c 2,于是椭圆方程可化为: 把①代入②并整理得:(m 2 2)y 2 2mcy c 2 于是y 〞y 2是上述方程的两根. AB 边上的高h 一c1 m 2当且仅当m=0取等号,即S max 收02. 由题意知v2c 2 12,于是b 2 c 2 66,a 2 12V2 .故当△ ABF 2面积最大时椭圆的方程为: 上 工12. 262将①代入②,消去y 得 x 2 2k 2(x c)2 2c 20,整理为x 的一元二次方程,得._2、22_2.2、 一(1 2k )x 4ck x 2c (k 1) 0.那么x i 、x 2是上述方程的两根.且 | x 2 x i | 2 .. 2c1 k AB 边上的高 h | FR | sin BF 1 F 21 2c |k|,2,1 k2kk 2| x 2 x i |2 2c(1 k 2);~2,1 2k厂也可这样求解:2c 1cc/1 k 2、 |k | c S -2 2c( 2) |—| 22c212k1 k 212产区| M y 2|2.2c 2.rviki 1 2k 2k 2k 4k 24k 42'2"1 1 42k k,2c 2.c | k | | x ix 2 |ii)当k 不存在时,把直线x c 代入椭圆方程得 y£c ,|AB|由①②知S 的最大值为V2c 2由题意得2c 2 = 12所以c 2 6 2 b 212 2故当△ ABF 2面积最大时椭圆的方程为: 上12. 2 2V 1.6 2x 2 2y 2 2c 2 0 .................. (2|AB| \(x 1、2 z、2x ) (y1 m2 | y 2 y 1|1 m2 4m2 2, 2,2c 4c (m 2)2m 2-22 2c(1 m 2)从而 S l|AB|h 二2 2c(1m2)22 m 2 22c221 m22 2c 21m2c(m 2)22 2c 2■ m1 1 122m 212c 2. 1.2 2例5直线y x 1与椭圆之与1〔a b 0〕相交于A、B两点,且线段AB的中点在直 a b 线l :x 2y 0上.〔1〕求此椭圆的离心率;〔2 〕假设椭圆的右焦点关于直线l的对称点的在圆x2y24上,求此椭圆的方程.y 讲解:〔1〕设A、B两点的坐标分别为A〔x1,y〕 BM, y?〕.那么由x2-2 a2 2、 2 2 2 2(a b )x 2a x a a,- 4.2如果| AB | ——,求直线MQ的万程;〔2〕求动弦AB的3中点P的轨迹方程.、… r 4、2讲解:〔1〕由1A Bi可,可得|MP| J MA |2 (LA%2J12(迪)2 1,由射影定理,得2 . 3 3|MB |2|MP | |MQ |,得|MQ | 3,在RtAMOQ 中,|OQ | <| MQ |2 |MO |2、32 2 2 M5 ,故a 盘或a <5 ,所以直线AB方程是2x J5y 2运 0或2x 岛2匹 0; x 1, y2行2_ 1 b2根据韦达定理,得x1 x2与,,y2函 a bX2)2b2a2b2「•线段AB的中点坐标为〔2 .2a b~2 -2 , -2 ~2 a b a b2由得二Ja2b22b-2 a 厂0, a2 2b2 2(a2 c2) 2c2,故椭圆的离心率为〔2〕由〔1〕知 b c,从而椭圆的右焦点坐标为F〔b,0〕,设F〔b,0〕关于直线l:x 2y 0的对称点为(x°, y°),那么也x0 b 2 f 0,解得X. 3 b且y°2 b5 5由得4,3 2(b)52 2(-b)2 4, b24,故所求的椭圆方程为—1 .5 8 4.M:x2(y 2〕2 1,Q是x轴上的动点,QA, QB分别切.M于A, B两点, (DC............ I _ z — I 1............................... ~~z 2 y_2(2)连接MB, MQ,设P(x,y),Q(a,0),由点M, P, Q 在一直线上,得一 -一,(*) a x由射影定理得| MB |2 |MP | | MQ |,即 &一(y 2)2 商—4 1,(**)7 c 1把(*)及(**)洎去a,并注意到y 2,可得x2(y -)2—(y 2).4 16适时应用平面几何知识,这是快速解答此题的要害所在,还请读者反思其中的微妙a—例- 如图,在Rt^ABC 中,/CBA=90° , AB=2 , AC=旧.2DO=2 ,曲线E过C点,动点P在E上运动,且保持| PA |+| PB |的值不变.(1)建立适当的坐标系,求曲线E的方程;(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设-DM ,试确定DNDO LAB 于.点,OA=OB ,实数讲解: 的取值范围.(1)建立平面直角坐标系,如下图 : | PA |+| PB |=| CA |+|CB | V=得 22 ( 22)22V2「•动点P的轨迹是椭圆;、区b 1,c 1;曲线E的方程是(2)设直线L的方程为y kx 2,代入曲线E的方程x i 2y2 2,得(2k22(8k)2 4(2k 1)8k x2x〔x22 ,2k2 162 .2k 1i) L与y轴重合时, ii) L与y轴不重合时, x2x1 0,.(x〔x2)2x1 x2xx2x2x i1)x2 8kx 0设M1 ( 〞乂), N(x2, y),0,| DM |rDNu由①得DMDNxD X MX D X Nx1x2 x1 0, .,.0< < 1 ,1 2-.(x x2)2x1 x264k226(2k2 1)3213(2 -7)k那抛物线有两个不同的交点,因此l 与l 不重合,l 不是CD 的垂直平分线.此题是课此题的深化,你能够找到它的原形吗?知识在记忆中积累,水平在联想中提升 .课本是 高测试题的生长点,复课切忌忘掉课本!1,A(x 1,y 1),B(x 2,y 2)由 e / 得 a 2 2c 2,b21 .,・•・ 6 3(2-2) 8.■ ■ 432V~ 3(2 -r) k16 ・二 4 16 31,10 32, 1.的取值范围是10 3值得读者注意的是,直线 L 与y 轴重合的情况易于遗漏,应当引起警惕.例8直线l 过抛物线y 22 Px(p 0)的焦点,且与抛物线相交于 A (x 1, y 1)和B(x 2, y 2)两点.(1)求证:4x 1x 2p 2; (2)求证:对于抛物线的任意给定的一条弦 CD,直线l 不是CD 的垂直平分线.讲解:(1)易求得抛物线的焦点F (£°). 2,2 …・右l ,x 轴,那么l 的方程为x P 显然x 1x 2 —.右l 不垂直于x2,八〞 4 轴,可设y k(x P),代入抛物线方程整理得 2__ _ 2x 2P(1 ,)x — k 4 0,那么x 1x 2—.综上可知 4X I X 24.2. 2(2)设C(J c) D(L d)且c d ,那么CD 的垂直平分线l 的万程为y Jd 2p' ' 2p' 2c d——(x 2P2 2〞) 4P假设l 过F,那么0,2, 2一3(R c d )整理得 (c d)(2p 2 c 2 d 2) 2p 2 4p2p 2 c 2 d 2 0 ,d 0.这时l 的方程为y=0,从而l 与抛物线y 2 Px 只相交于原点.而l 与。

高中数学圆锥曲线结论(最完美版本)

高中数学圆锥曲线结论(最完美版本)

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB=。

高中数学圆锥曲线结论(最完美版本)

高中数学圆锥曲线结论(最完美版本)

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB=。

(word完整版)高中数学圆锥曲线小结论2017完美打印版

(word完整版)高中数学圆锥曲线小结论2017完美打印版

11.2 2AB是椭圆一^ 2a b1的不平行于对称轴的弦,M(X0,y°)为AB 的中点P处的切线PT平分△ PF1F2在点P处的外角.PT平分△ PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点以焦点弦PQ为直径的圆必与对应准线相离.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.2x若P°(x0, y°)在椭圆一2a 2爲1上,则过P。

的椭圆的切线方程是b 点,则k OM k AB即K ABb2x°~2 ay。

1.2x 若P°(x0,y0)在椭圆一^a P1、P2,则切点弦2x椭圆一2a任意一点2x椭圆一2a|MF1 | a b2~2,a双曲线F1PF22每1外,则过bx0xP1P2的直线方程是-0raPo作椭圆的两条切线切点为y「y 1 孑1.(a> b>0)的左右焦点分别为F1, F 2,点P为椭圆上,则椭圆的焦点角形的面积为S F1PF2b2 ta n22匕1b2ex0 ,| MF21 a ex°(F1( c,0) , F2(c,0) M(x°,y0)).(a> b > 0)的焦半径公式:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF 丄NF.过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M , A2P和A1Q交于点N,贝U MF丄NF.1. 点P处的切线PT平分△ PF1F2在点P处的内角.2. PT平分△ PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点3. 以焦点弦PQ为直径的圆必与对应准线相交.4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)2 2x y5. 若F0(X0,y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB=。

12. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-.13. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b-=-.椭圆与双曲线的对偶性质--椭 圆1. 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2. 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y =(常数). 3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8. 已知椭圆22221x y a b+=(a >b >0),O为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥. 1)22221111||||OP OQ a b+=+; 2) |OP|2+|OQ|2的最大值为22224a b a b +;3) OPQ S ∆的最小值是2222a b a b+.9. 过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知椭圆22221x y a b+=( a >b >0),A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.11. 设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则1) 2122||||1cos b PF PF θ=+.2) 122tan 2PF F S b γ∆=.12. 设A 、B 是椭圆22221x y a b+=( a >b>0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2)2tan tan 1e αβ=-.(3)22222cot PABa b S b a γ∆=-. 13. 已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.椭圆与双曲线的对偶性质--双曲线1. 双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b +=.2. 过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BCb x k a y =-(常数). 3. 若P 为双曲线22221x y a b-=(a >0,b>0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点,12PF F α∠=, 21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+). 4. 设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.5. 若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e1+时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y轴同侧时,等号成立.7. 双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A aB bC -≤.8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥. (1)22221111||||OP OQ a b +=-; (2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a-.9. 过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a+≤-.11. 设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2)122cot 2PF F S b γ∆=.12. 设A 、B 是双曲线22221x y a b-=(a>0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有1) 22222|cos ||||s |ab PA a c co αγ=-.2) 2tan tan 1e αβ=-. 3) 22222cot PABa b S b a γ∆=+. 13. 已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点. 14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16.双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).17.双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18.双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.圆锥曲线问题解题方法圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。

相关文档
最新文档