高三数学上学期第一次诊断测试试题文
四川省宜宾市普通高中2022届高三上学期第一次诊断测试文科数学试题
一、单选题二、多选题1.设集合,则( )A.B.C.D.2.正项等比数列中,,若,则的最小值等于( )A .1B.C.D.3. 新冠来袭,湖北告急!有一支援鄂医疗小队由3名医生和6名护士组成,他们全部要分配到三家医院.每家医院分到医生1名和护士1至3名,其中护士甲和护士乙必须分到同一家医院,则不同的分配方法有( )种A .252B .540C .792D .6844. 双曲线的一条渐近线方程为,则该双曲线的离心率为( )A.B.C.D .25.将函数的图象向右平移个周期后,所得函数图象的一个对称中心为( )A.B.C.D.6. 6名同学相约在周末参加创建全国文明城市志愿活动,现有交通值守、文明劝导、文艺宣讲三种岗位需要志愿者,其中,交通值守、文明劝导岗位各需2人,文艺宣讲岗位需1人.已知这6名同学中有4名男生,2名女生,现要从这6名同学中选出5人上岗,剩下1人留守值班.若两名女生都已经到岗,则她们不在同一岗位的概率为( )A.B.C.D.7.已知函数,关于的命题:①的最小正周期为;②图像的相邻两条对称轴之间的距离为;③图像的对称轴方程为;④图像的对称中心的坐标为;⑤取最大值时. 则其中正确命题是( )A .①②③B .①③⑤C .②③⑤D .①④⑤8. 已知数列为等差数列,且,则的值为( )A.B .45C.D.9. 若z 满足,则( )A .z 的实部为3B .z 的虚部为1C.D .z 对应的向量与实轴正方向夹角的正切值为310. 若函数在上单调,则实数的值可以为( )A.B.C.D .311.已知,若不等式在上恒成立,则a 的值可以为( )A.B.C .1D.12. 定义:设是的导函数,是函数的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图象的对称中心.已知函数图象的对称中心为,则下列说法中正确的有( )A .,B .函数的极大值与极小值之和为2四川省宜宾市普通高中2022届高三上学期第一次诊断测试文科数学试题四川省宜宾市普通高中2022届高三上学期第一次诊断测试文科数学试题三、填空题四、解答题C.函数有三个零点D .在区间上单调递减13.展开式中的系数为___________.(用数字作答)14. 命题“,使得”为假命题,则a 的取值范围为________.15. 如图,在中,是边上一点,,则__________;的面积为___________.16. 已知坐标原点为O ,点P为圆上的动点,线段OP 交圆于点Q ,过点P 作x 轴的垂线l ,垂足R ,过点Q 作l 的垂线,垂足为S .(1)求点S 的轨迹方程C ;(2)已知点,过的直线l 交曲线C 于M ,N ,且直线AM ,AN 与直线交于E ,F ,求证:E ,F 的中点是定点,并求该定点坐标17.已知函数(1)讨论的单调性;(2)当有三个零点时a的取值范围恰好是求b 的值.18. 有甲、乙两个不透明的罐子,甲罐有3个红球,2个黑球,球除颜色外大小完全相同.某人做摸球答题游戏.规则如下:每次答题前先从甲罐内随机摸出一球,然后答题.若答题正确,则将该球放入乙罐;若答题错误,则将该球放回甲罐.此人答对每一道题目的概率均为.当甲罐内无球时,游戏停止.假设开始时乙罐无球.(1)求此人三次答题后,乙罐内恰有红球、黑球各1个的概率;(2)设第次答题后游戏停止的概率为.①求;②是否存在最大值?若存在,求出最大值;若不存在,试说明理由.19. 如图,据气象部门预报,在距离某码头南偏东45°方向600km 处的热带风暴中心正以20km /h 的速度向正北方向移动,距风暴中心450km 以内的地区都将受到影响.据以上预报估计,从码头现在起多长时间后,该码头将受到热带风暴的影响,影响时间大约为多长(精确到0.1h)?20. 在卡塔尔世界杯期间,某体育学院统计了该校足球系10个班级的学生喜欢观看世界杯的人数,统计人数如下表所示:班级12345喜欢观看世界杯的人数3935383836班级67891 0喜欢观看世界杯的人数39437438(1)该校计划从这10个班级中随机抽取3个班级的学生,就世界杯各国水平发挥进行交谈,求这3个班级喜欢观看世界杯的人数不全相同的概率;(2)从10个班级中随机选取一个班级,记这个班级喜欢观看世界杯的人数为X,用上表中的频率估计概率,求随机变量X的分布列与数学期望.21. 已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)记数列的前项和为.若,(为奇数),求的值.。
山东省2025届高三上学期第一次诊断考试 数学含答案
山东省2025届高三第一次诊断考试数学试题(答案在最后)2024.10说明:本试卷满分150分。
试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{ln(3)},{2}A x y x B x x ==+=∣∣ ,则下列结论正确的是A.A B⊆ B.B A ⊆ C.A B = D.A B ⋂=∅2.在612x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为A.152-B.152C.52-D.523.已知()()cos f x x a x =+为奇函数,则曲线()y f x =在点(π,(π))f 处的切线方程为A.ππ0x y +-= B.ππ0x y -+= C.π0x y ++= D.0x y +=4.在ABC 中,“π2C =”是“22sin sin 1A B +=”的A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件5.由0,1,2,,9 这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的有A.98个B.105个C.112个D.210个6.已知函数()f x 在R 上满足()()f x f x =-,且当(,0]x ∈-∞时,()()0f x xf x '+<成立,若()0.60.6221122,ln 2(ln 2),log log 88a f b f c f ⎛⎫=⋅=⋅=⋅ ⎪⎝⎭,则,,a b c 的大小关系是A.a b c >>B.c b a>> C.a c b>> D.c a b>>7.若1cos 3sin αα+=,则cos 2sin αα-=A.-1B.1C.25-D.-1或25-8.已知函数225e 1,0(),()468,0x x f x g x x ax x x x ⎧+<⎪==-+⎨-+≥⎪⎩,若(())y g f x =有6个零点,则a 的取值范围是A.(4,)+∞ B.174,2⎡⎫⎪⎢⎣⎭C.[4,5]D.2017,(4,5]32⎡⎤⋃⎢⎥⎣⎦二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.已知0a b >>,下列说法正确的是A.若c d >,则a c b d ->-B.若0c >,则b b c a a c+<+C.2ab a b <+D.11a b b a+>+10.已知,A B 分别为随机事件A ,B 的对立事件,()0,()0P A P B >>,则A.()()1P B A P B A +=∣∣ B.()()()P B A P B A P A +=∣∣C.若A ,B 独立,则()()P A B P A =∣ D.若A ,B 互斥,则()()P A B P B A =∣∣11.已知函数()(1)ln (0)f x x x ax a a =---≠在区间(0,)+∞上有两个不同的零点1x ,2x ,且12x x <,则下列选项正确的是A.a 的取值范围是(0,1) B.121x x =C.()()12114x x ++> D.1214ln 2ln ln 23x a x x a +<<++三、填空题:本题共3小题,每小题5分,共15分.12.若1~10,5X B ⎛⎫ ⎪⎝⎭,且51Y X =+,则()D Y =___________.13.已知二次函数2()2()f x ax x c x =++∈R 的值域为[1,)+∞,则14a c+的最小值为___________.14.一颗质地均匀的正方体骰子,六个面上分别标有点数1,2,3,4,5,6.现随机地将骰子抛掷三次(各次抛掷结果相互独立),其向上的点数依次为123,,a a a ,则事件“1223316a a a a a a -+-+-=”发生的概率为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤。
2025届长郡中学高三上学期第一次调研考试数学试题+答案
长郡中学2025届高三第一次调研考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}320,20A xx x Bxx x =−==−−<∣∣,则A B ∩=( )A.{}0,1B.{}1,0−C.{}0,1,2D.{}1,0,1−2.已知,m n 是两条不同的直线,,αβ是两个不同的平面,则m ∥α的一个充分条件是( ) A.m ∥,n n ∥α B.m ∥,βα∥βC.,,m n n m αα⊥⊥⊄D.,m n A n ∩=∥,m αα⊄3.20252x 的展开式中的常数项是( )A.第673项B.第674项C.第675项D.第676项4.铜鼓是流行于中国古代南方一些少数民族地区的礼乐器物,已有数千年历史,是作为祭祀器具和打击乐器使用的.如图,用青铜打造的实心铜鼓可看作由两个具有公共底面的相同圆台构成,上下底面的半径均为25cm ,公共底面的半径为15cm ,铜鼓总高度为30cm.已知青铜的密度约为38g /cm ,现有青铜材料1000kg ,则最多可以打造这样的实心铜鼓的个数为( )(注:π 3.14≈)A.1B.2C.3D.45.已知定义在()0,∞+上的函数()f x 满足()()()1f x x f x <−′(()f x ′为()f x 的导函数),且()10f =,则( )A.()22f <B.()22f >C.()33f <D.()33f >6.已知过抛物线()2:20C y px p =>的焦点F 且倾斜角为π4的直线交C 于,A B 两点,M 是AB 的中点,点P 是C 上一点,若点M 的纵坐标为1,直线:3230l x y ++=,则P 到C 的准线的距离与P 到l 的距离之和的最小值为( )7.已知函数()()π2sin 0,2f x x ωϕωϕ=+><,对于任意的ππ,1212x f x f x ∈+=−R ,()π02f x f x+−=都恒成立,且函数()f x 在π,010 − 上单调递增,则ω的值为( )A.3B.9C.3或8.如图,已知长方体ABCD A B C D ′−′′′中,2,AB BC AA O ==′=为正方形ABCD 的中心点,将长方体ABCD A B C D ′−′′′绕直线OD ′进行旋转.若平面α满足直线OD ′与α所成的角为53 ,直线l α⊥,则旋转的过程中,直线AB 与l 夹角的正弦值的最小值为( )(参考数据:43sin53,cos5355≈≈)二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某机械制造装备设计研究所为推进对机床设备的优化,成立,A B 两个小组在原产品的基础上进行不同方向的研发,A 组偏向于智能自动化方向,B 组偏向于节能增效方向,一年后用简单随机抽样的方法各抽取6台进行性能指标测试(满分:100分),测得A 组性能得分为:91,81,82,96,89,73,B 组性能得分为:73,70,96,79,94,88,则( )A.A 组性能得分的平均数比B 组性能得分的平均数高B.A 组性能得分的中位数比B 组性能得分的中位数小C.A 组性能得分的极差比B 组性能得分的极差大D.B 组性能得分的第75百分位数比A 组性能得分的平均数大10.嫁接,是植物的人工繁殖方法之一,即把一株植物的枝或芽,嫁接到另一株植物的茎或根上,使接在一起的两个部分长成一个完整的植株.已知某段圆柱形的树枝通过利用刀具进行斜辟,形成两个椭圆形截面,如图所示,其中,AC BD 分别为两个截面椭圆的长轴,且,,,A C B D 都位于圆柱的同一个轴截面上,AD 是圆柱截面圆的一条直径,设上、下两个截面椭圆的离心率分别为12,e e ,则能够保证CD 12,e e 的值可以是( )A.12e e =121,2e e ==C.12e e =D.12e e = 11.对于任意实数,x y ,定义运算“⊕”x y x y x y ⊕=−++,则满足条件a b b c ⊕=⊕的实数,,a b c 的值可能为( )A.0.30.50.5log 0.3,0.4,log 0.4a b c =−== B.0.30.50.50.4,log 0.4,log 0.3a b c ===− C.0.10.1100.09,,ln e 9abc ==D.0.10.110,ln ,0.09e 9ab c == 三、填空题:本题共3小题,每小题5分,共15分.12.在复平面内,复数z 对应的点为()1,1,则21zz−=+__________. 13.写出一个同时满足下列条件①②③的数列{}n a 的通项公式n a =__________. ①m na a m n−−是常数,*,m n ∈N 且m n ≠;②652a a =;③{}n a 的前n 项和存在最小值.14.清代数学家明安图所著《割圆密率捷法》中比西方更早提到了“卡特兰数”(以比利时数学家欧仁・查理・卡特兰的名字命名).有如下问题:在n n ×的格子中,从左下角出发走到右上角,每一步只能往上或往右走一格,且走的过程中只能在左下角与右上角的连线的右下方(不能穿过,但可以到达该连线),则共有多少种不同的走法?此问题的结果即卡特兰数122C C nn n n −−.如图,现有34×的格子,每一步只能往上或往右走一格,则从左下角A 走到右上角B 共有__________种不同的走法;若要求从左下角A 走到右上角B 的过程中只能在直线AC 的右下方,但可以到达直线AC ,则有__________种不同的走法.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知M 为圆229x y +=上一个动点,MN 垂直x 轴,垂足为,N O 为坐标原点,OMN 的重心为G . (1)求点G 的轨迹方程;(2)记第(1)问中的轨迹为曲线C ,直线l 与曲线C 相交于A B 、两点,点()0,1Q ,若点)H 恰好是ABQ 的垂心,求直线l 的方程. 16.(本小题满分15分)如图,四边形ABCD 为圆台12O O 的轴截面,2AC BD =,圆台的母线与底面所成的角为45 ,母线长为E 是 BD的中点.(1)已知圆2O 内存在点G ,使得DE ⊥平面BEG ,作出点G 的轨迹(写出解题过程);(2)点K 是圆2O 上的一点(不同于,A C ),2CK AC =,求平面ABK 与平面CDK 所成角的正弦值. 17.(本小题满分15分)素质教育是当今教育改革的主旋律,音乐教育是素质教育的重要组成部分,对于陶冶学生的情操、增强学生的表现力和自信心、提高学生的综合素质等有重要意义.为推进音乐素养教育,培养学生的综合能力,某校开设了一年的音乐素养选修课,包括一个声乐班和一个器乐班,已知声乐班的学生有24名,器乐班的学生有28名,课程结束后两个班分别举行音乐素养过关测试,且每人是否通过测试是相互独立的. (1)声乐班的学生全部进行测试.若声乐班每名学生通过测试的概率都为(01)p p <<,设声乐班的学生中恰有3名通过测试的概率为()f p ,求()f p 的极大值点0p .(2)器乐班采用分层随机抽样的方法进行测试.若器乐班的学生中有4人学习钢琴,有8人学习小提琴,有16人学习电子琴,按学习的乐器利用分层随机抽样的方法从器乐班的学生中抽取7人,再从抽取的7人中随机抽取3人进行测试,设抽到学习电子琴的学生人数为ζ,求ζ的分布列及数学期望. 18.(本小题满分17分)已知数列{}n a 为等比数列,{}n b 为等差数列,且1185482,8,a b a a a b ====. (1)求{}{},n n a b 的通项公式;(2)数列1ππ12242(1)n n b −+−⋅的前n 项和为n S ,集合*422,n n n S b A nt n n a ++ ⋅ =≥∈ ⋅N 共有5个元素,求实数t 的取值范围;(3)若数列{}n c 中,()212log 1,2114nnn a c c n b ==≥−,求证:1121231232n c c c c c c c c c c +⋅+⋅⋅++⋅⋅<19.(本小题满分17分)设有n 维向量1122,n n a b a b ab a b=,称1122,n n a b a b a b a b =+++ 为向量a 和b 的内积, 当,0a b = ,称向量a 和b 正交.设n S 为全体由1−和1构成的n 元数组对应的向量的集合. (1)若1234a=,写出一个向量b ,使得,0a b =; (2)令[]{},,nBxy x y S =∈∣.若m B ∈,证明:m n +为偶数; (3)若()4,4n f =是从4S 中选出向量的个数的最大值,且选出的向量均满足,0a b =,猜测()4f 的值,并给出一个实例.长郡中学2025届高三第一次调研考试数学参考答案一、选择题:本题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 9 10 11 答案ACDCDDAAADADBD6.D 【解析】由题得C 的焦点为,02p F,设倾斜角为π4的直线AB 的方程为2p y x =−,与C 的方程22y px =(联立得2220y py p −−=,设()()1122,,,A x y B x y ,则1222,1y y p p +===,故C 的方程为212,,02y x F=.由抛物线定义可知点P 到准线的距离等于点P 到焦点F 的距离,联立抛物线2:2C y x =与直线:3230l xy ++=,化简得291090x x ++=,由Δ1004992240=−××=−<得C 与l 相离.,,Q S R 分别是过点P 向准线、直线:3230l x y ++=以及 过点F 向直线:3230l x y ++=引垂线的垂足,连接,FP FS , 所以点P 到C 的准线的距离与点P 到直线l 的距离之和PQ PS PF PS FS FR +=+≥≥, 等号成立当且仅当点P 为线段FR 与抛物线的交点, 所以P 到C 的准线的距离与P 到l 的距离之和的最小值为点1,02F到直线:3230l x y ++=. 故选:D.7.A 【解析】设函数()f x 的最小正周期为T ,因为函数()f x 在π,010−上单调递增, 所以π0102T −−≤,得2ππ5T ω=≥,因此010ω<≤. 由ππ1212f x f x+=−知()f x 的图象关于直线π12x =对称, 则11πππ,122k k ωϕ⋅+=+∈Z ①. 由()π02f x f x +−= 知()f x 的图象关于点π,04对称,则22ππ,4k k ωϕ⋅+=∈Z ②. ②-①得()2112πππ,,62k k k k ω⋅−−∈Z ,令21kk k =−,则63,k k ω=−∈Z , 结合010ω<≤可得3ω=或9.当3ω=时,代入(1)得11ππ,4k k ϕ=+∈Z ,又π2ϕ<,所以π4ϕ=, 此时()π2sin 34f x x=+,因为πππ32044x −<+<, 故()f x 在π,010−上单调递增,符合题意;当9ω=时,代入(1)得11π,k k ϕ∈Z ,又π2ϕ<,所以π4ϕ=−, 此时()π2sin 94f x x=−,因为23πππ92044x −<−<−, 故()f x 在π,010−上不是单调递增的,所以9ω=不符合题意,应舍去. 综上,ω的值为3. 故选:A.8.A 【解析】在长方体ABCD A B C D ′−′′′中,AB ∥C D ′′, 则直线AB 与l 的夹角等于直线C D ′′与l 的夹角.长方体ABCD A B C D ′−′′′中,2,AB BC AA O ==′=为正方形ABCD 的中心点,则2OD OC ==′′,又2C D ′′=, 所以OC D ′′ 是等边三角形,故直线OD ′与C D ′′的夹角为60 .则C D ′′绕直线OD ′旋转的轨迹为圆锥,如图所示,60C D O ∠=′′ .因为直线OD ′与α所成的角为53,l α⊥ ,所以直线OD ′与l 的夹角为37 . 在平面C D O ′′中,作,D E D F ′′,使得37OD EOD F ∠∠′==′ .结合图形可知,当l 与直线D E ′平行时,C D ′′与l 的夹角最小,为603723C D E ∠−′′== , 易知603797C D F ∠+′′== .设直线C D ′′与l 的夹角为ϕ,则2390ϕ≤≤ ,故当23ϕ= 时sin ϕ最小,而()sin23sin 6037sin60cos37cos60sin37=−=−sin60sin53cos60cos53=−≈故直线AB 与l . 故选:A二、多选题:本题共3小题,每小题6分,共18分.9.AD 10.AD11.BD 【解析】由a b b c ⊕=⊕,可得a b a b b c b c −++=−++,即a b b c c a −−−=−,若,a b c b ≤≤,可得a b b c c a −−−=−,符合题意,若,a b c b ≤>,可得2a b b c b a c −−−=−−,不符合题意, 若,a b c b >≤,可得a b b c a c −−−=−,不符合题意, 若,a b c b >>,可得2a b b c c a b −−−=+−,不符合题意, 综上所述0,0a b b c −≤−≥,可得,b a b c ≥≥, 故只需判断四个选项中的b 是否为最大值即可.对于A,B ,由题知0.50.50.510log 0.3log log 103−=<=,而0.3000.40.41<<=, 0.50.5log 0.4log 0.51>=,所以0.30.50.5log 0.30.4log 0.4−<<.(点拨:函数0.5log y x =为减函数,0.4x y =为减函数), 对于A ,a b c <<;对于B ,c a b <<,故A 错误,B 正确.对于C ,D 0.10.10.10.090.9e (10.1)e ,0.1e ==− (将0.9转化为10.1−,方便构造函数)构造函数()()[)1e ,0,1xf x x x =−∈, 则()e xf x x ′=−,因为[)0,1x ∈,所以()()0,f x f x ′≤单调递减,因为()01f =,所以()0.11f <, 即0.10.9e 1<,所以0.10.10.09e <. (若找选项中的最大值,下面只需判断0.10.1e与10ln 9的大小即可) ()10.10.10.10.10.1100.190.190.1ln ln ln ln 10.1e 9e 10e 10e −−=−=+=+−, 构造函数()()[)ln 1,0,1e x xh x x x =+−∈,则()()211(1)e e 1e 1x x x x x h x x x −−−=−=−−′, 因为[)0,1x ∈,所以()e 10xx −>,令()2(1)e xx x ω=−−,则()()21e xx x ω=−−−′, 当[)0,1x ∈时,()()0,x x ωω′<单调递减,因为()00ω=,所以()0x ω≤,即()()0,h x h x ′≤单调递减,又()00h =,所以()0.10h <, 即()0.10.1ln 10.10e +−<,所以0.10.110ln e 9<. 综上,0.10.1100.09lne 9<<.对于C ,a b c <<;对于D ,c a b <<,故C 错误,D 正确. (提醒:本题要比较0.09与10ln 9的大小关系的话可以利用作差法判断, 即()11090.09ln 0.10.9ln 10.90.9ln0.9910− −=×−=−×+, 构造函数()()(]1ln ,0,1g x x x x x =−+∈, 则()()()221112112x x x x g x x x x x′+−+−++=−+==,因为(]0,1x ∈,所以()()0,g x g x ′≥单调递增,因为()10g =,所以()0.90g <, 即100.09ln09−<,所以100.09ln 9<) 故选:BD. 三、填空题:本题共3小题,每小题5分,共15分. 12.13i 55− 【解析】由于复数z 对应的点为()1,1,所以1i z =+, 故()()()()1i 2i 21i 13i 13i 12i 2i 2i 555z z −−−−−====−+++−, 故答案为:13i 55− 13.4n −(答案不唯一)14.35;14四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.【解析】(1)设()()00,,,G x y M x y ,则()0,0N x ,因G 为OMN 的重心,故有:00233x x y y = =,解得003,32x x y y ==,代入22009x y +=,化简得2214x y +=, 又000x y ≠,故0xy ≠,所以G 的轨迹方程为()22104x y xy +=≠. (2)因H 为ABQ 的垂心,故有,AB HQ AH BQ ⊥⊥,又HQ k ==l k =,故设直线l 的方程为()1y m m +≠, 与2214x y +=联立消去y 得:2213440x m ++−=, 由2Δ208160m =−>得213m <,设()()1122,,,A x y B xy ,则212124413m x x x x −+=, 由AH BQ⊥2211y x −=−,所以()211210x x m m −+++−=,所以)()21212410x x m x x m m +−++−=, 所以()()()22444241130m m m m m −−−+−=,化简得2511160m m +−=,解得1m =(舍去)或165m =−(满足Δ0>),故直线l 的方程为165y =−.16.【解析】(1)E 是 BD的中点,DE BE ∴⊥. 要满足DE ⊥平面BEG ,需满足DE BG ⊥,又DE ⊂ 平面,BDE ∴平面BEG ⊥平面BDE如图,过B 作下底面的垂线交下底面于点G ,过G 作BE 的平行线,交圆2O 于2,G G ,则线段12G G 即点G 的轨迹.(2)易知可以2O 为坐标原点,221,O C O O 所在直线分别为y ,z 轴建立如图所示的空间直角坐标系2O xyz −,45,2AC BD = ,21122,1,1O A O B O O ∴===,取K 的位置如图所示,连接2O K ,22,60CK AC CO K ∠=∴= ,即230xO K ∠= ,则)()()()(),0,2,0,0,1,1,0,2,0,0,1,1K A B C D −−,则)))),2,1,1,0,1AK BK CK DK −−− . 设平面ABK 的法向量为()111,,n x y z =, 则00n AK n BK ⋅= ⋅=,即111113020y y z +=+−=,令1x =)111,1,1,1z y n ==−∴=− . 设平面CDK 的法向量为()222,,m x y z =, 则00m CK m DK ⋅= ⋅=,即222200y z −=−=,令2x =,则)223,3,z y m ==∴= . 设平面ABK 与平面CDK 所成的角为θ,则cos =sin θ∴17.【解析】(1)24名学生中恰有3名通过测试的概率()332124C (1)f p p p =⋅−, 则()()322132032202424C 3(1)21(1)C 3()8,01jf p p p p p p p p p =−−−=⋅⋅′−−<< , 令()0f p ′=,得18p =, 所以当108p <<时,()()0,f p f p ′>单调递增; 当118p <<时,()()0,f p f p ′<单调递减, 故()f p 的极大值点018p =. (2)利用分层随机抽样的方法从28名学生中抽取7名, 则7名学生中学习钢琴的有1名,学习小提琴的有2名,学习电子琴的有4名,所以ζ的所有可能取值为0,1,2,3,()()3213343377C C C 1120,1C 35C 35P P ζζ======, ()()1233443377C C C 1842,3C 35C 35P P ζζ======, 则随机变量ζ的分布列为()112184120123353535357E ζ=×+×+×+×=. 18.【解析】(1)设数列{}n a 公比的为q ,数列{}n b 公差的为d 则由318518,82,2n n n a a q q a a q −==∴=∴==,4816a b ==,即()827162,2122n b d d b n n =+=∴=∴=+−=. (2)设1ππ12242(1)n n n d b −+ =−⋅则22224414243441424312848n n n n n n n n d d d d b b b b n −−−−−−+++=+−−=− ()()412344342414n n n n n S d d d d d d d d −−−∴=++++++++()12848802n n −+= ()6416n n +()()()()4222641622328222n n n n n n n n n S b n a ++++⋅+++⋅∴==⋅ 令()()()32822nn n f n ++=, 则()()()()()()113240332824122n n n n n n f n f n +++++++−=− ()22144113288822n n n n n n +−−+−−+=, 可得()()()()()1234f f f f f n <>>>> ,故当2n =时,()f n 最大.且()()()147160,5,6254f f f ===, 147254t ∴<≤,即t 的取值范围为14725,4. (3)由()()()121,2111n n n c c n n n n ===≥−+−,则当2n ≥时, ()()()122311324113451n n n c c c n n n n =××××=⋅⋅−+×××××+ ()()()21111221!1!!1!n n n n n n +−==− +++当1n =时,11c =也满足上式()()*12112!1!n c c c n n n ∴=−∈ + N 112123123n c c c c c c c c c c ∴+⋅+⋅⋅++⋅⋅()1111221222!2!3!!1!n n =−+−++−=−< + 故原不等式成立.19.【解析】(1)由定义,只需满足12342340b b b b +++=,不妨取1110b= −(答案不唯一). (2)对于,1,2,,m B i n ∈=, 存在{}{}1122,1,1,,1,1,ii n n x y x y x x y y x y ∈−=∈− ……使得[],x y m = . 当i i x y =时,1i i x y =;当i i x y ≠时,1i i x y =−.令11,,0,ni i i i i ii x y k x y λλ== == ≠ ∑. 所以所以22m n k n n k +−+为偶数.(3)当4n =时,可猜测互相正交的4维向量最多有4个,即()44f =.不妨取123411111111,,,11111111a a a a −− −− ==== −−则有[][][][][][]121314232434,0,,0,,0,,0,,0,,0a a a a a a a a a a a a ======. 若存在5a ,使[]15,0a a = ,则51111a − = − 或1111 − − 或1111 − −. 当51111a − = −时,[]45,4a a =− ; 当51111a − = −时,[]25,4a a =− ; 当51111a = − −时,[]35,4a a =− , 故找不到第5个向量与已知的4个向量互相正交.。
高中高三数学第一次诊断性考试试卷 文 绵阳 一诊 扫描 试题
高2021级第一次诊断性考试数学(文)参考解答及评分HY一、选择题:本大题一一共12小题,每一小题5分,一共60分.BBCDA DAACC BC二、填空题:本大题一一共4小题,每一小题4分,一共16分.13.214.甲15.216.①④三、解答题:本大题一一共6小题,一共74分.解容许写出文字说明、证明过程或者演算步骤.17.解:由|x -a |≤4有-4≤x -a ≤4,解得a -4≤x ≤a +4,即A ={x |a -4≤x ≤a +4}.……………………………………………………2分 由116<+x 可变形为015<+-x x ,等价于(x +1)(x -5)>0,解得x <-1或者x >5, 即B ={}51>-<x x x 或.………………………………………………………4分 〔Ⅰ〕由A ∩B =(]75,知a +4=7,解得a =3. ……………………………7分 〔Ⅱ〕由A ∩B =A 有A ⊆B ,∴ a +4<-1,或者a -4>5, …………………………………………………10分 解得a <-5或者a >9. ………………………………………………………12分 18.解:〔Ⅰ〕由5010.05==n , 于是5.05025==m ,x =50-(4+5+25+6)=10,2.05040==y , 即m ,n =50,x =10,y . …………………………………………4分〔Ⅱ〕据题意,所抽取的两人应分别在(]5.42.4,和(]4.51.5,内取, ∴ 1152112625=+=C C C P .即所求的概率为115. …………………………………………………………7分 〔Ⅲ〕因为采用的是分层抽样,所以样本中一共有10名女生, 由题知该校的高三女生人数为13013110=÷人, ∴ 全校高三学生人数为130×5=650人.根据频率统计表知,该校高三学生中视力高于 4.8的人数为650×(0.2+0.12)=208人. ……………………………………………………12分 19.解:〔Ⅰ〕设{a n }的公比为q ,那么q >0,由有⎩⎨⎧⋅==+,,)(9)(164112111q a a q a q a a 可解得31=q 〔31-=q 已舍去〕,311=a . ∴ nn n a )31()31(311=⨯=-. ……………………………………………………6分 〔Ⅱ〕∵ 2)1(-2)1(3213213)31()31()31()31()31()31(3++++++===⋅⋅⋅⋅=n n n n n n b n,∴2)1(1+-=n n b n ,即)111(2)1(2+--=+-=n n n n b n .………………………9分 ∴n n b b b b S ++++= 321)1113121211(2+-++-+--=n n )111(2+--=n 12+-=n n. ………………………………………………………………12分 20.解:〔Ⅰ〕23)2(23)2()(2-+-=-+-=x x x x x h , ∴ xx x h x f 3)2()(+=+=. ……………………………………………………3分 设0<x 1<x 2≤3,那么)3(3)()(221121x x x x x f x f +-+=- 212121)(3)(x x x x x x ---= 2121213)(x x x x x x -⋅-=, ∵ 0<x 1<x 2≤3,∴ x 1- x 2<0,x 1x 2<3即x 1x 2-3<0,x 1x 2>0, ∴ f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴ f (x )在(0,3)上是减函数.……………………………………………7分 〔Ⅱ〕∵xax x g ++=3)(, ∴ 由有xa x ++3≥8有a ≥-x 2+8x -3, 令t (x )=-x 2+8x -3,那么t =-(x -4)2+13,于是t (x )在(0,3)上是增函数. ∴ t (x )max =12.∴ a ≥12.……………………………………………………………………12分 21.解:〔Ⅰ〕由有ax x x f 23)(2-=',∴ 0382)38(3)38(2=⨯-⨯='a f ,解得a =4. …………………………………2分于是)83(83)(2-=-='x x x x x f ,令0)(='x f ,得x 0=0或者38=x .〔Ⅱ〕要使f (x )在区间[1,2]内至少有一个实数x ,使得f (x )<0,只需f (x )在[1,2]内的最小值小于0.∵)23(23)(2a x x ax x x f -=-=',且由0)(='x f 知x 1=0,322a x =, ①当32a≤0即a ≤0时,0)(>'x f ,∴ f (x )在[1,2]上是增函数, 由023)1()(min <-==a f x f ,解得23>a .这与a <0矛盾,舍去. ②当320a <≤1即0<a ≤23时,0)(>'x f ,∴ f (x )在[1,2]上是增函数.由023)1()(min <-==a f x f ,解得23>a .这与0<a ≤23矛盾,舍去. ③当1<32a <2即323<<a 时, 当1≤32a x <时0)(<'x f ,∴ f (x )在⎪⎭⎫⎢⎣⎡321a ,上是减函数, 当32a ≤x <2时0)(>'x f ,∴ f (x ) 在⎪⎭⎫⎢⎣⎡132,a 上是增函数. ∴02744)32()(3min <-==a a f x f ,解得a >3.这与23<a <3矛盾,舍去.④当32a≥2即a ≥3时,0)(<'x f ,f (x )在[1,2]上是减函数, ∴0412)2()(min <-==a f x f ,解得a >3.结合a ≥3得a >3.综上,a >3时满足题意.……………………………………………………12分 22.解:〔Ⅰ〕证明:令x =y =0时,那么由有)00100()0()0(⨯--=-f f f ,可解得f (0)=0.再令x =0,y ∈(-1,1),那么有)010()()0(yyf y f f ⋅--=-,即f (-y )=-f (y ),∴ f (x )是(-1,1)上的奇函数.……………………………………………4分 〔Ⅱ〕令x =a n ,y =-a n ,于是)12()()(2nnn n a a f a f a f +=--, 由得2f (a n )=f (a n+1),时间: 2022.4.12 单位: ……*** 创编者: 十乙州 时间: 2022.4.12 单位: ……*** 创编者: 十乙州 ∴ 2)()(1=+n n a f a f , ∴ 数列{f (a n )}是以f (a 1)=1)21(-=f 为首项,2为公比的等比数列. ∴.221)(11---=⋅-=n n n a f ……………………………………………………8分 〔III 〕n n n a f b 21)(21=-=, ∴ T n = b 1+ b 2+ b 3+…+ b n n n 211211)211(21-=--=.……………………………10分 于是不等式21441<--+m T m T n n 即为21)211(4)211(41<----+m m n n , 整理得212)4(24)4(2<----m m n n . 令t =2n (4-m ),于是变形为2124<--t t ,等价于2<t <6. 即2<2n (4-m )<6. 假设存在正整数m ,n 使得上述不等式成立,∵ 2n是偶数,4-m 为整数,∴ 2n (4-m )=4. 于是 ⎩⎨⎧=-=,,1442m n 或者⎩⎨⎧=-=,,2422m n 解得⎩⎨⎧==,,23n m 或者⎩⎨⎧==.12n m , 因此存在正整数m =2,n =1或者m =3,n =2使原不等式成立.…………14分。
江苏省海门中学2025届高三上学期第一次调研考试数学试题(含答案)
2024/2025学年度高三第一次调研测试数学2025.09 一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.命题“x∈N,x2>0”的否定为A.x∈N,x2≤0B.x∈N,x2≤0C.x∈N,x2>0D.x∈N,x2<02.已知集合A={x||x|<2,x∈Z},B={x|y=ln(3x-x2)},则A∩B=A.{x|0<x<2}B.{x|-2<x<3}C.{1}D.{0,1,2} 3.已知点P(3,-4)是角α终边上一点,则cos2α=A.B.-C.D.-4.已知函数f(x)=在R上单调递减,则实数a的取值范围为A.a<0B.a>-C.-<a<0D.0≤a<5.已知函数f(x)部分图象如图所示,则其解析式可能为A.f(x)=x2(e x-e-x)B.f(x)=x2(e x+e-x)C.f(x)=x(e x-e-x)D.f(x)=x(e x+e-x)6.过点(3,1)作曲线y=ln(x-1)的切线,则这样的切线共有A.0条B.1条C.2条D.3条7.锐角α、β满足sin β=cos(α+β)sin α,若tan α=,则cos(α+β)=A.B.C.D.-8.若函数f(x)=sin2ωx-2cos2 ωx+ (ω>0)在(0,)上只有一个零点,则ω的取值范围为A.(,]B.[,)C.(,]D.[,)二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分。
9.己知0<a<1-b<1,则A.0<b<1B.a>bC.a-b<1D.ab<10.已知x1,x2,x3是函数f(x)=x3-a2x+1的三个零点(a>0,x1<x2<x3),则A.a3>B.x1<0<x2C.f’(x1)=f’(x3)D.11.若定义在R上的函数f(x)的图象关于点(2,2)成中心对称,且f(x+1)是偶函数,则A.f(x)图象关于x=0轴对称B.f(x+2)-2为奇函数C.f(x+2)=f(x)D.三、填空题:本题共3小题,每小题5分,共15分。
2025届西安市高三数学上学期第一次质量检测考试卷附答案解析
2025届西安市高三数学上学期第一次质量检测考试卷本卷满分:150分考试时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,1=-=-A x x B x log x x ,则A B ⋂=()A.{}10x x - B.{}10x x -< C.{}10x x -< D.{}10x x -<<2.“01a <<”是“函数()log (2)a f x a x =-在(,1)-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数()()2sin x xf x x e e x-=-+-在区间[]2.8,2.8-的大致图像为()A. B. C. D.4.已知5log 2a =,2log b a =,1()2bc =,则()A.c b a >> B.c a b>> C.a b c>> D.b c a>>5.已知定义在R 上的函数()f x 满足3(2)()f x f x +=,且(2)1f =-,则(100)f =()A.3B.1C.1-D.3-6.已知函数1,0,()()12,0,x e x f x g x kx x x⎧-⎪==-⎨<⎪⎩ ,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[,)e +∞ C.1(,0){}8e -⋃ D.1(,){}8e -∞-⋃7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.直线2y x =是曲线()y f x =的切线D.点(0,1)是曲线()y f x =的对称中心8.已知函数24,0(),0x x f x x log x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28-B.28C.14- D.14二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211(x x'=- B.()x xe e '--= C.21(tan )x cos x'=D.1(ln ||)x x'=10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种11.已知0c b a <<<,则()A.ac b bc a+<+ B.333b c a +< C.a c ab c b+<+ D.>三、填空题:本题共3小题,每小题5分,共15分.12.某班的全体学生参加化学测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则该班学生化学测试成绩的第40百分位数为__________.13.若曲线x y e x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =__________.14.5(1)(2)y x y x-+的展开式中,23x y 的系数为__________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()2.32a f x x x ax +=-+(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线bx a y e +=的附近,请根据下表中的数据求出(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数a 和b 的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.月份x 123456体重超标人数y987754483227ln z y= 4.58 4.37 3.98 3.87 3.46 3.29附:经验回归方程:ˆˆˆybx a =+中,1221ˆniii nii x ynx y b xnx ==-⋅=-∑∑,ˆˆay bx =-;参考数据:6123.52i i z ==∑,6177.72i ii x z==∑,62191i i x ==∑,ln10 2.30.≈17.已知函数()log (1)a f x x =+,()2log (2)(a g x x t t =+∈R ),0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x 的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布2(,)N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布2(,)N μσ,则()0.6827P μσξμσ-<<+≈,(22)0.9545P μσξμσ-<<+≈,(33)0.9973.)P μσξμσ-<<+≈(2)(ⅰ)从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ⅱ)该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.19.已知函数1()ln (1).x f x ae x a x -=+-+(1)当0=a 时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.一.选择题(本题共8小题,每小题5分,共40分)二.选择题(本题共3小题,每小题6分,共18分)三、填空题:(本题共3小题,每小题5分,共15分.)12.6513.ln 214.40三、解答题:(本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分)15.(本小题满分13分)解:(1)1a =时,3213()2,()(1)(2)32f x x x x f x x x '=-+=--,所以1x <或2x >时,()0f x '>;12x <<时,()0f x '<则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞上递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =...............................5分陕西省西安中学高2025届高三第一次质量检测数学参考答案题号12345678答案CBABDCDA题号91011答案ACDBCDABD3212(2)()232a f x x x ax +=-+,则()()(2)f x x a x '=--,当2a =时,()0f x ' ,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,()0f x '>;2x a <<时,()0f x '<,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,()0f x '>;2a x <<时,()0f x '<所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减................................8分(2)令-+<=≈,所以,解得,由于,所以,所以从第十个月开始,该年级体重超标的人数降至10人以下................................5分17.(本小题满分15分)解:(1)1=- t 时,()()2log 1log 21a a x x +- ,又01a <<,21(21)210x x x ⎧+-∴⎨->⎩,2450151242x x x x ⎧-⎪∴∴<⎨>⎪⎩,∴解集为:15{|}24x x <;...............................6分(2)解法一:()222F x tx x t =+-+,由()0F x =得:22(2x t xx +=-≠-且12)x -< ,22(2)4(2)2x t x x +∴=-+-++,设2U x =+(14U < 且2U ≠,则212424U t U U U U=-=--+-+,令2()U U Uϕ=+, 当1U <<时,()U ϕ4U <<时,()U ϕ单调递增,且9(1)3,(4).2ϕϕϕ===9()2U ϕ∴且() 4.U ϕ≠12402U U∴---< 或2044U U<--- ,t 的取值范围为:2t - 或224t +解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得:24t =,又1212x x t ==-(]1,2,∈-24t +∴=;②()F x 在(1,2]-上只有一个零点,且不是方程的重根,则有()()120F F -<,解得:2t <-或1t >,又经检验:2t =-或1t =时,()F x 在(1,2]-上都有零点;2t ∴- 或 1.t ③方程()0F x =在(1,2]-上有两个相异实根,则有0,01122(1)0(2)0t t F F >∆>⎧⎪⎪-<-<⎪⎨⎪->⎪>⎪⎩或0,01122(1)0(2)0t t F F <∆>⎧⎪⎪-<-<⎪⎨⎪-<⎪<⎪⎩,解得:214t +<<,综上可知:t 的取值范围为2t - 或224t +...............................15分18.(本小题满分17分)(1)(1)由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69.x =⨯⨯+⨯+⨯+⨯+⨯=即69x μ≈=11s σ≈≈,所以X ∽2(69,11)N ,因为质量指标值X 近似服从正态分布2(69,11)N ,所以1(69116911)1()(80)22P X P X P X μσμσ--<<+--<<+== 10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16................................5分(2)()(0.010.01)1010020i +⨯⨯=,所以所取样本的个数为20件,质量指标值在[85,95]的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:3010103202(0)19C C P C η===,21101032015(1)38C C P C η===,12101032015(2)38C C P C η===,0310103202(3)19C C P C η===,随机变量η的分布列为:η0123P21915381538219所以η的数学期望2151523()0123.193838192E η=⨯+⨯+⨯+⨯=...............................11分()ii 设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以Y ∽(100,0.16)B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))()100ln(25)m m E Y m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-,令()1684ln(25)(124)f x x x x =+-<<84()16025f x x '=-=-得,794x =,又79(1,)4x ∈,()0f x '>,()f x 递增79;(,24)4x ∈,()0f x '<,()f x 递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大................................17分19.(本小题满分17分)(1)解:当0=a 时,()ln =-f x x x ,且知11()1-'=-=xf x x x,在(0,1)上,()0'>f x >,()f x 在(0,1)上单调递增;在(1,)+∞上,()0'<f x ,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞..............................4分(2)证明:因为1a =,所以1()ln 2x f x e x x -=+-,且知11()2x f x e x-'=+-,要证函数()f x 单调递增,即证()0f x ' 在(0,)+∞上恒成立,设11()2x g x ex -=+-,0x >,则121()x g x e x-'=-,注意1x y e -=,21y x=-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g = ,即()0f x ' ,因此函数()f x 在(0,)+∞上单调递增;...............................10分(3)由11()1x f x ae a x -'=+--,有(1)0f '=,令11()1x h x ae a x -=+--,有121()x h x ae x-'=-,①当0a 时,11()0x xh x aex -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1x y ae -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞..........................17分。
广东省深圳市高级中学2024-2025学年高三上学期10月第一次诊断测试 数学(含答案)
深圳市高级中学2025届高三第一次诊断考试数 学(本试卷共3页,19小题,满分150分。
考试用时120分钟。
) 2024.10一、单项选择题:本题共8小题,每小题5分,共40分。
1.已知集合,,,则( )A .B .C .D .2.,是平面内不共线两向量,已知,,,若A ,B ,D 三点共线,则k 的值是( )A .B .2C .D .33.若是第三象限角,且,则的值为( )A .B .5C .D .4.已知函数的定义域为,则函数的定义域为( )A .B .C .D .5.已知函数在上单调递增,则a 的取值范围是()A .B .C .D .6.已知平面向量和满足,在上的投影向量为,则在上的投影向量为()A .B .C .D .7.已知关于x 不等式的解集为,则()A .B .点在第二象限C .的最大值为D .关于x 的不等式的解集为{}2,1,0,1,2,3U =--{}1,2A ={}1,0,1B =-()U A B = ð{}2,3-{}2,2,3-{}2,1,0,3--{}2,1,0,2,3--1e 2e 12AB e ke =- 122CB e e =+ 123CD e e =-2-3-α()()5sin cos cos sin 13αββαββ+-+=-tan 2α5-513-513()f x []2,2-()()1f x F x x+=[]1,3-[]3,1-[)(]1,00,3- [)(]3,00,1- ()()22ln 3f x x ax a=--+[)1,+∞(],1-∞-(),1-∞-(],2-∞()2,+∞1e 2e 2122e e ==2e 1e 1e - 1e 2e 212e -12-214e -2e - ()()20x ax b x c-+≥-(](],21,2-∞- 2c =(),a b 22y ax bx a =+-3a20ax ax b +-≥[]2,1-8.已知,,分别是函数与的零点,则的最大值为( )A .2B .C .D .二、多项选择题:本题共3小题,每小题6分,共18分。
深圳宝安区2025届高三上学期第一次调研测试数学试卷+答案
宝安区2024-2025学年第一学期调研测试卷高三数学2024.101.样本数据1,6,7,8,8,9,10,11,12,13的第30注意事项:1.答题前,请将姓名、班级和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并正确粘贴条形码.2.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔把答案写在答题卡指定区域内,写在本试卷或草稿纸上,其答案一律无效.3.本试卷19小题,满分150分.考试时间120分钟.4.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.百分位数为( ) A .7B .7.5C .8D .8.52.已知集合{}25Ax x=<{}12B x x =∈−<Z,则A B = ( )A .{}1,0,1,2−B .{}1,2C .{}0,1,2D .{}1,0,1,2,3−3.若11i z z+=−,则z =( ) A .1i −− B .I C .1i −D .-i4.已知向量()2,a x = ,(),2b x = ,若()a b a ⊥−,则x =( )A .2B .0C .1D .-25.已知()sin m αβ−=,tan 2tan αβ=,则()sin αβ+=( )A .mB .m −C .3mD .4m6.一个正四面体边长为3,则一个与该正四面体体积相等、高也相等的正三棱柱的侧面积为( ) A.B.C.D.7.已知函数为()()311,1e ln 2,1x x ax x f x x x + ++<− = ++≥− ,在R 上单调递增,则a 的取值范围是( )A .[]3,1−−B .(],3−∞−C .[)3,−+∞D .[)1,−+∞8.函数()cos 2f x x x =在13π0,6上的零点个数为( ) A .3B .4C .5D .6二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多个选项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量X 服从正态分布()2~0,X N σ,当σ变大时,则( ) A .1122P X −<< 变大B .1122P X −<< 变小C .正态分布曲线的最高点上移D .正态分布曲线的最高点下移10.对于正数a ,b ,[)00,x ∃∈+∞,使()00e 1x bx a ++⋅≤,则( )A .e 1b a >B .1eab ≤C .224eab ≤D .1a b +≤11.已知函数()f x 的定义域为R ,若()()()11f x y f x f y ++=+−,且()02f =,则( )A .()11f −=−B .()f x 无最小值C .()401900i f i ==∑D .()f x 的图象关于点()2,0−中心对称三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()2f x x m =−与函数()ln f x x x =+在公共点处的切线相同,则实数m 的值为______.13.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且π4B =,b =,1a =,M 为AB 的中点,则线段CM 的长为______.14.为了回馈长期以来的顾客群体,某健身房在五周年庆活动期间设计出了一种游戏活动,顾客需投掷一枚骰子两次,若两次投掷的数字都是偶数,则该顾客获得该健身房的免费团操券5张,且有2次终极抽奖机会(2次抽奖结果互不影响);若两次投掷的数字之和是5或9,则该顾客获得该健身房的免费团操券5张,且有1次终极抽奖机会;其余情况顾客均获得该健身房的免费团操券3张,不具有终极抽奖机会.已知每次在终极抽奖活动中的奖品和对应的概率如下表所示.则一位参加游戏活动的顾客获得蛋白粉的概率为______.三、解答题15.(本题13分)如图,在直角POA △中,PO AO ⊥,24PO AO ==,将POA △绕边PO 旋转到POB△的位置,使2π3AOB ∠=,得到圆锥的一部分,点C 为 AB 上的点,且 14AC AB =. (1)求点O 到平面P AB 的距离;(2)设直线OC 与平面P AB 所成的角为θ,求sin θ的值.16.(本题15分)已知椭圆C :22221x y a b +=,()0a b >>,离心率e =,且点()2,1A −在椭圆上.(1)求该椭圆的方程;(2)直线l 交椭圆C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0,且π2PAQ ∠=,求PAQ △的面积. 17.(本题15分)函数()ln f x x =,()22g x x x m =−−+.(1)若e m =,求函数()()()F x f x g x =−的最大值;(2)若()()()22e xf xg x x x +≤−−在(]0,2x ∈上恒成立,求实数m 的取值范围.18.(本题17分)甲乙两人参加知识竞赛活动,比赛规则如下:两人轮流随机抽题作答,答对积1分且对方不得分,答错不得分且对方积1分;然后换对方抽题作答,直到有领先2分者晋级,比赛结束.已知甲答对题目的概率为45,乙答对题目的概率为p ,答对与否相互独立,抽签决定首次答题方,已知两次答题后甲乙两人各积1分的概率为25.记甲乙两人的答题总次数为()2n n ≥.(1)求p ;(2)当2n =时,求甲得分X 的分布列及数学期望;(3)若答题的总次数为n 时,甲晋级的概率为()n P A ,证明:()()()2388159n P A P A P A ≤++⋅⋅⋅+<. 19.(本题17分)定义:任取数列{}n a 中相邻的两项,若这两项之差的绝对值为3,则称数列{}n a 具有“性质3”.已知项数为n 的数列{}n a 的所有项的和为n M ,且数列{}n a 具有“性质3”. (1)若4n =,且10a =,43a =,写出所有可能的n M 的值;(2)若12024a =,2023n =,证明:“20234042a =−”是“()11,2,,2022k k a a k +>=⋅⋅⋅”的充要条件; (3)若10a =,2n ≥,0n M =,证明:4n m =或41n m =+,(*m ∈N ).宝安区2025届高三毕业班第一次调研考试数学参考答案一、单项选择题题号 1 2 3 4 5 6 7 8 答案BCBACADC二、多项选择题题号 9 10 11 答案BDBCBCD三、填空题:12.0 13.95576四、解答题:15.【解答】(1)证明:由题意知:PO OA ⊥,PO OB ⊥,OA OB O = ,OA ⊂平面AOB ,OB ⊂平面AOB∴PO ⊥平面AOB ,又24POOA ==,所PA PB ==,AB =所以12PABS =×△设点O 到平面P AB 的距离为d ,由O PAB P OAB V V −−=得1112π422sin3323d ×=×××××,解得d =; (2)以O 为原点,OC ,OB ,OP 的方向分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,由题意知π6AOC ∠=,则)1,0A−,则()2,0,0C ,()0,2,0B ,()0,0,4P ,所以()AB =,()4AP =,()2,0,0OC =.设平面P AB 的法向量为(),,n a b c = ,则3040n AB b n AP b c ⋅+= ⋅=++=,不妨取平面P AB的一个法向量为12n =,所以sin cos ,n OC n OC n OCθ⋅===. (利用几何解法相对简单,酌情给分)16.【解答】(1)解:由题22411a b = +=解得:a b = = 故椭圆C :22182x y += (2)设直线AP 的倾斜角为α,由π2PAQ ∠=,2πPAQ α+∠=,得π4α=,1AP k =,1AQ k =− (或0111AP AQ AP AQ AP AQ k k k k k k +== ⇒=−⋅=−) 即AP :3y x =−,AQ :1y x =−+联立3y x =−,及22182x y +=得1145x =,22x =(舍),故141,55P− , 联立1y x =−+,及22182x y +=得125x =−,22x =(舍),故27,55Q−, 故12125x x +=,122825x x =−2−,2AQ =−,故()121214824225PAQ S AP AQ x x x x ==−++=△. 17.【解答】(1)因为()2ln e 2F x x x x =−++−, 可知()F x 的定义域为()0,+∞,且()()()211121x x F x x xx+−′=−+=−,由()0F x ′>,解得01x <<;由()0F x ′<,解得1x >. 可知()F x 在()0,1内单调递增,在()1,+∞内单调递减,所以函数()()()F x f x g x =−的最大值为()1e 2F =−.(2)因为()()()22e xf xg x x x +≤−−在(]0,2x ∈恒成立, 等价于()2e ln 2xm x x x ≥−+−+在(]0,2x ∈恒成立.设()()2e ln 2x h x x x x =−+−+,(]0,2x ∈,则()()()111e 11e x x h x x x xx ′−+−−−,当1x >时,则10x −>,且e e x >,11x <,可得1e e 10x x−>−>,所以()0h x ′>; 当01x <<时,则10x −<,设()1e x u x x=−,01x <<,则()21e 0x u x x ′=+>,可知()u x 在()0,1递增,且1202u=−<,()1e 10u =−>.则01,12x∃∈,使得()00u x =.当()00,x x ∈时,()0u x <;当()0,1x x ∈时,()0u x >. 当()00,x x ∈时,()0h x ′>;当()0,1x x ∈时,()0h x ′<. 可知函数()h x 在()00,x 递增,在()0,1x 递减,在()1,2递增. 由()0001e 0xu x x =−=,得001e x x =,且00ln x x =−.可得()()()0000000000112e ln 222232x h x x x x x x x x x=−+−+=−−+=−+, 且01,12x∈,则()00h x <,又因为()2ln 20h =>,可知当(]0,2x ∈时,()()max 2ln 2h x h ==,所以m 的取值范围是[)ln 2,+∞.18.【解答】(1)记i A =“第i 次答题时为甲”,B =“甲积1分”, 则()112P A =,()4|5i P B A =,()41|155i P B A =−=,()|1i P B A p =−,()|i P B A p =, ()()2141114115255255p p p p=+−+−⋅+⋅, 则23155p +=,解得13p =; (2)由题意可知当2n =时,X 可能的取值为0,1,2,则由(1)可知 ()215P X ==,()11111102533515P X ==×+×= ,()14224822533515P X ==×+×= ,随机变量X 的数学期望为()128220121551515E X =×+×+×=. (3)由答题总次数为n 时甲晋级,不妨设此时甲的积分为x 甲,乙的积分为x 乙, 则2x x −=甲乙,且x x n +=甲乙,所以甲晋级时n 必为偶数,令2n m =,*m ∈N 当n 为奇数时,()0n P A =,则()()()()()()2324n n P A P A P A P A P A P A ++⋅⋅⋅+=++⋅⋅⋅+ 012128282828515515515515m −=⋅+⋅+⋅+⋅⋅⋅+⋅012121158222288212155555159515m m m − − =+++⋅⋅⋅+==−− −又∵1m ≥时,()()()23n P A P A P A ++⋅⋅⋅+随着m 的增大而增大, ∴()()()2388159n P A P A P A ≤++⋅⋅⋅+< 19.【解答】(1)解:依题意, 若n a :0,3,0,3,此时6n M = 若n a :0,-3,0,3,此时0n M = 若n a :0,3,6,3,此时12n M =(2)证明:必要性:因为()11,2,,2022k k a a k +>=⋅⋅⋅, 故数列{}()1,2,3,2023n a n =⋅⋅⋅为等差数列,所以13k k a a +−=−,()1,2,,2022k =⋅⋅⋅,公差为-3, 所以()()()2023202420231340421,2,,2022a k =+−×−=−=⋅⋅⋅,必要性得证 充分性:由于202320223a a −≥−,202220213a a −≥−,…,213a a −≥−, 累加可得,202316066a a −≥−,即2023160664042a a ≥−=−, 因为20234042a =−,故上述不等式的每个等号都取到,所以13k k a a +−=−,()1,2,,2022k =⋅⋅⋅,所以1k k a a +<,()1,2,,2022k =⋅⋅⋅,充分性得证综上所述,“20234042a =−”是“1k k a a +<,()1,2,,2022k =⋅⋅⋅”的充要条件; (3)证明:令()11,2,,1k k k c a a k n +=−=⋅⋅⋅−,依题意,3k c =±, 因为211a a c =+,3112a a c c =++,…,1121n n a a c c c −=+++⋅⋅⋅+, 所以()()()11231123n n M na n c n c n c c −=+−+−+−+⋅⋅⋅+()()()()()()()12112111121n n n c n c n c −=−+−+⋅⋅⋅+−−−−−−−⋅⋅⋅−− ()()()()()()1211111212n n n c n c n c −−−−−+−−+⋅⋅⋅+− , 因为3k c =±,所以1k c −为偶数()1,2,,1k n =⋅⋅⋅−, 所以()()()()()12111121n c n c n c −−−+−−+⋅⋅⋅+−为偶数; 所以要使0n M =,必须使()12n n −为偶数,即4整除()1n n −, 亦即4n m =或()*41n m m =+∈N , 当()*4nm m ∈N 时,比如,41430k k a a −−==,423k a −=−,43k a =()1,2,,k m =⋅⋅⋅ 或41430k k a a −−==,423k a −=,43k a =−()1,2,,k m =⋅⋅⋅时,有10a =,0n M =; 当()*41n m m =+∈N 时,比如41430k k a a −−==,423k a −=−,43k a =,410k a +=()1,2,,k m =⋅⋅⋅, 或41430k k a a −−==,423k a −=,43k a =−,410k a +=()1,2,,k m =⋅⋅⋅,有10a =,0n M =; 当42n m =+或()43n m m =+∈N 时,()1n n −不能被4整除,0n M ≠.。
四川省绵阳市2024_2025学年高三数学上学期第一次诊断性考试文
绵阳市中学2024级第一次诊断性考试文科数学留意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.己知集合,则A. B. {-1,0,1}C. {-1,0,1,2}D.2.若命题:“”是真命题,则实数的取值范围是A. ≤-1B. <-1C. ≥1D. >13.若,则肯定有A. B. C. D.4.设,则的值是A.2B.3C.D. 65.已知是等差数列的前项和,若,则A. 3B.4C. 6D.86.在△ABC中,点M为边AB上一点,,若,则A.3B.2C. 1D.-17.函数的图象大致为A B C D8.己知曲线在点处的切线方程为,则A.2B. eC.3D.2e9.若存在实数,使得函数的图象的一个对称中心为,则的取值范围为A. B. C. D.10.某地锰矿石原有储量为万吨,安排每年的开采量为本年年初储量的倍,那么第年在开采完成后剩余储量为,并按该安排方案运用10年时间开采到原有储量的一半.若开采到剩余储量为原有储量的70%时,则需开采约()年.(参考数据: )A.4B. 5C. 6D. 811.已知A. 10°B. 20°C.30°D.70°12.若函数的定义域为R,且为偶函数,关于点(3,3)成中心对称,则下列说法正确的是A.的一个周期为2B.C.的一条对称轴为D.二、填空题:本大题共4小题,每小题5分,共20分。
13.在正方形ABCD中,,则正方形ABCD的边长为___________14.若等比数列的各项均为正数,且,则=____.15.函数则满意不等式的的取值范围为 .16.某游乐场中的摩天轮作匀速圆周运动,其中心距地面20.5米,半径为20米.假设从小军在最低点处登上摩天轮起先计时,第6分钟第一次到达最高点.则第10分钟小军离地面的高度为____米.三、解答题:共70分。
福建省漳浦一中高三数学上学期第一次调研试题 文
数 学 试 卷(文)考试时间120分钟. 第一部分 选择题(共50分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求,请选出,并把答案填在答题卡相应的位置上) 1.命题“[)30,,0x x x ∀∈+∞+≥”的否定是( )A .()3,0,0x x x ∀∈-∞+<B .()3,0,0x x x ∀∈-∞+≥C .[)30000,,0x x x ∃∈+∞+<D .[)30000,,0x x x ∃∈+∞+≥ 2.已知集合{}10A x x =+<,{}30B y y =->,那么集合A B =I ( )A .{}1x x <- B .{}3x x < C .{}13x x -<< D .∅ 3.下列函数中,增长速度最快的是( )A.y=20xB.y=x 20C.xy 20log = D.y=20x4.函数y=x 2-2x+3,-1≤x ≤2的值域是( )A.RB.[3,6]C.[2,6]D.[2,+∞)5.定义在R 上的偶函数f (x )在[0,7]上是增函数,在[7,+∞)上是减函数,f (7)=6,则f (x )( )A.在[-7,0]上是增函数,且最大值是6B.在[-7,0]上是减函数,且最大值是6C.在[-7,0]上是增函数,且最小值是6D.在[-7,0]上是减函数,且最小值是66.已知函数()()⎩⎨⎧≥+-<=0,430x a x a ,x a x f x 满足对任意x 1≠x 2,都有()()01212<--x x x f x f 成立,则a 的取值范围是( )A.⎥⎦⎤ ⎝⎛41,0B.()1,0C.⎪⎭⎫⎢⎣⎡1,41 D.()3,07. 已知函数f(x)满足:当x ≥4时,f(x)=x⎪⎭⎫⎝⎛21;当x<4时,f(x)=f(x+1),则f(2+log 23)=( )A.241 B.121 C.81 D.83 8.定义运算a b ad bc c d=-,若函数()123x f x xx -=-+在(,)m -∞上单调递减,则实数m的取值范围是( )A.(2,)-+∞B.[2,)-+∞C.(,2)-∞-D.(,2]-∞-9.已知对数函数f(x)=log a x 是增函数,则函数f(|x|+1)的图象大致是( )A B C D10.定义在R 上的函数y=f(x+1)的图象如图所示, 它在定义域上是减函数,给出如下命题:①f(0)=1; ②f(-1)=1;③若x>0,则f(x)<0;④若x<0,则f(x)>0, 其中正确的是( )A.②③B.①④C.②④D.①③11.若函数1,0(),0x x fx x a e bx x ⎧<⎪=+⎨⎪-≥⎩ 有且只有一个零点,则实数b 等于 ( )A .e -B .1-C .1D .e12.已知集合{(,)()}M x y y f x ==,若对于任意11(,)x y M ∈,存在22(,)x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①1{(,)}M x y y x==; ②{(,)2}xM x y y e ==-;③{(,)cos }M x y y x ==; ④{(,)ln }M x y y x ==.其中是“垂直对点集”的序号是( )A .①②B .②③C .①④D .②④第二部分 非选择题(共100分)二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在答题卡中相应的横线上) 13.幂函数f(x)=(m 2-2m-2)x 2m+1过原点,则实数m=_____.14.函数f(x)是定义在[-1,3]上的减函数,且函数f(x)的图象经过点P(-1,2),Q(3,-4),则该函数的值域是 .15.已知命题“[1,2]x ∃∈,使220x x a ++≥”为真命题,则a 的取值范围是 . 16. 对于函数1()1ax f x x +=- (其中a 为实数,1x ≠),给出下列命题:①当1a =时,()f x 在定义域上为单调增函数;②()f x 的图象关于点(1,)a 对称;③对任意a R ∈,()f x 都不是奇函数;④当1a =-时,()f x 偶函数;⑤当2a =时,对于满足条件122x x <<的所有12,x x , 总有 1221()()3()f x f x x x -<-.其中正确命题的序号为______________.三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数lg(2)lg(6)y x x =-+-的定义域为A ,函数2(02)x y x =≤≤的值域为B ,集合{|26}C x a x a =<<+.(Ⅰ)求A B I 和A B U ; (Ⅱ)若()R C B C R =U ,求实数a 的取值范围.18.(本小题满分12分)设命题p:方程2x 2+x+a=0的两根x 1,x 2满足x 1<1<x 2,命题q:函数y=log 2(ax-1)在区间[1,2]内单调递增. (Ⅰ)若p 为真命题,求实数a 的取值范围;(Ⅱ)试问:p ∧q 是否有可能为真命题?若有可能,求出a 的取值范围;若不可能,请说明理由.19.(本小题满分12分)已知函数f(x)=kx-,且f(1)=1. (Ⅰ)求实数k 的值及函数的定义域. (Ⅱ)判断函数在(0,+∞)上的单调性.20.(本小题满分12分)已知函数f(x)=log a (3-ax).(Ⅰ)当x ∈[0,2]时,函数f(x)恒有意义,求实数a 的取值范围.(Ⅱ)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.21.(本小题满分12分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为24880005x y x =-+,已知此生产线年产量最大为210吨.(Ⅰ)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(Ⅱ)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?22.(本小题满分14分)已知函数2()22f x x ax a =--+. (Ⅰ)若()f x 是R 上偶函数,求函数()f x 在[1,2]-上的值域; (Ⅱ)若()0f x <对任意[0,2]x ∈恒成立,求实数a 的取值范围; (Ⅲ)若函数()y f x =在区间[0,2]上有零点,求实数a 的取值范围.参考答案数 学 试 卷(文)一.选择题:CADCB CADBB DB二.填空题:13. 3 14. [-4,2]. 15. [8,)-+∞ 16.②③⑤ 三、解答题:17.(本小题满分12分) 解:(Ⅰ)由2060x x ->⎧⎨->⎩得26x <<,{|26}A x x =<<;02x ≤≤Q 124x ∴≤≤ {|14}B y y =≤≤ ....................................4分 {|24}A B x x ∴=<≤I ,{|A B x =U 16}x ≤< .......................................7分 (Ⅱ){|1R C B x x =<或4}x > (8)分()R C B C R =U ,2164a a <⎧∴⎨+>⎩, (10)分解得122a -<<………………………………………………………………………………11分故实数a 的取值范围是1(2,)2-……………………………………………………………12分18. (本小题满分12分)解:(Ⅰ)令f(x)=2x 2+x+a,由题意,得f(1)<0,……………………………………………………3分则3+a<0,∴a<-3.………………………………………………………………………………6分(Ⅱ)若q 为真,则a>0且a×1-1>0,即a>1.…………………………………………………………9分若p ∧q 为真,则a<-3和a>1同时成立,这是不可能的.……………………………………11分故p ∧q 不可能为真命题. ……………………………………………………………………12分19.(本小题满分12分)解:(Ⅰ)由f(1)=1得k=2, …………………………………………………………………………3分定义域为{x ∈R|x ≠0}.…………………………………………………………………………5分(Ⅱ)在(0,+∞)上为增函数.…………………………………………………………………………6分在(0,+∞)上任取两数x 1,x 2.设x 2>x 1>0, 则f(x 2)-f(x 1)=(2x 2-)-(2x 1-)=(x 2-x 1)(2+), (8)分因为x 2>x 1>0,所以x 2-x 1>0,2+>0,…………………………………………………………10分所以f(x 2)-f(x 1)>0,即f(x 2)>f(x 1), …………………………………………………………11分所以f(x)为(0,+∞)上的增函数. ……………………………………………………………12分法二:(Ⅱ) 因为()01112''>+=⎪⎭⎫ ⎝⎛-=x x x x f 在(0,+∞)上恒成立, (11)分所以f(x)为(0,+∞)上的增函数. ……………………………………………………………12分20.(本小题满分12分)解:(Ⅰ)由题设,3-ax>0对一切x ∈[0,2]恒成立, ………………………………………………1分设g(x)=3-ax,∵a>0,且a ≠1,∴g(x)=3-ax 在[0,2]上为减函数. …………………………3分从而g(2)=3-2a>0,∴a<32. ……………………………………………………………………5分∴a 的取值范围为(0,1)∪(1,32). ……………………………………………………………6分(Ⅱ)假设存在这样的实数a, ………………………………………………………………………7分由题设知f(1)=1,即log a (3-a)=1,∴a=32. …………………………………………………9分此时f(x)=323log 3x 2(), ……………………………………………………………………10分当x=2时,f(x)没有意义,故这样的实数a 不存在. …………………………………………12分21. (本小题满分12分)解:(Ⅰ)每吨平均成本为y x(万元). …………………………………………………………………1分又y x=x5+8000x-48≥2x 5·8000x-48=32, …………………………………………………3分当且仅当x 5=8000x,即x =200时,取等号. …………………………………………………5分∴年产量为200吨时,每吨平均成本最低,最低为32万元.………………………………6分(Ⅱ)设总利润为R (x )万元.则R (x )=40x -y =40x -x 25+48x -8000=-x 25+88x -8000=-15(x -220)2+1680(0<x ≤210).………………………………9分∵R (x )在(0,210]上是增函数,∴x =210时,R (x )有最大值为-15(210-220)2+1680=1660(万元).………………………11分∴年产量为210吨时,可获得最大利润1660万元.…………12分 22.(本小题满分14分)解:(Ⅰ)依题意()()f x f x -= 0a ∴= 2()2f x x ∴=+ ………………………………………2分当[1,2]x ∈-时, 2()2f x x =+Q 在[1,0]-上递增,在[0,2]上递增()[2,6]f x ∴∈即函数()y f x =的值域为[2,6] (4)分(Ⅱ)2()22f x x ax a =--+Q 为开口向上的二次函数()0f x <对任意[0,2]x ∈恒成立(0)20(2)650f a f a =-<⎧⇔⎨=-<⎩, ……………………………………………………………………6分解得2a >,故a 的取值范围是2a >…………………………………………………………8分(Ⅲ)函数()y f x =在区间[0,2]上有零点(0)(2)(2)(65)0f f a a ⇔=--≤,或24(2)002(0)20(2)650a a a f a f a ⎧∆=+-≥⎪<<⎪⎨=->⎪⎪=->⎩ ………………………11分解得625a ≤≤,或615a ≤< 12a ∴≤≤…………………………………………………13分故实数a 的取值范围是12a ≤≤……………………………………………………………14分解法二: (Ⅱ)原命题2221x a x +⇔>+在[]0,2内恒成立,令22(),[0,2]21x g x x x +=∈+,则max [()]a g x > 2222(21)2(2)2(1)(2)()(21)(21)x x x x x g x x x +-+-+'==++Q 当(0,1)x ∈时,()0g x '<;当(1,2)x ∈时,()0g x '>()g x ∴在(0,1)上单调递减,在(1,2)单调递增又(0)2g =,6(2)5g =,max [()](2)g x g ∴=,从而2a > (8)分(Ⅲ)函数()y f x =在区间[0,2]上有零点⇔方程()0f x =,即2221x a x +=+在区间[0,2]上有解原命题即求函数22(),[0,2]21x g x x x +=∈+的值域,由(Ⅱ)知:max ()(2)2g x g ==,min ()(1)1g x g ==,()g x ∴的值域为[1,2] 故a 的取值范围是[1,2].………………………………………………………………………14分解法三:(Ⅲ)()f x 图象的对称轴是x a =,开口向上当0a <时,()f x 在[0,2]上递增(0)20f a =->Q ,函数()y f x =在区间[0,2]上没有零点………………………………9分当02a ≤≤时,(0)20f a =-≥Q ,要使函数()y f x =在区间[0,2]上有零点只要24(2)0a a ∆=+-≥,解得2a ≤-,或1a ≥,从而12a ≤≤.……………………11分当2a >时,()f x 在[0,2]上递减(0)20f a =-<Q ,函数()y f x =在区间[0,2]上没有零点 ……………………………12分综上,实数a 的取值范围是12a ≤≤. ………………………………………………………14分。
陕西省汉中市2023届高三上学期教学质量第一次检测理科数学试题(含答案解析)
()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.函数 f x 2 x3 x e x 的图象大致是( )
A.
B.
C.
D.
5.m,n 为空间中两条不重合直线, 为空间中一平面,则下列说法正确的是( )
A.若 m // n , n ,则 m / /
B.若 m , m // n ,则 n
7.A 【分析】先将原函数用诱导公式变形为正弦函数表示,再根据“左加右减”的原则判断即可.
【详解】
y
cos
2x
3
cos
2x
5 6
2
sin
2x
5 6
sin
2
x
5 12
故可由
y
sin2x 的图象向左平移
5 12
个单位长度得到.
故选:A.
8.C
【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.
三、解答题
17.已知 a,b, c 分别为 ABC 内角 A, B,C 的对边,且 2b a cosC c cosA
(1)求角 C ; (2)若 c2 2ab,ABC 的面积为 3 ,求 a b 的值. 18.如图,多面体 ABCDEF 中,四边形 ABCD 为菱形, ABB FA 2ED 2 .
A.
1 3
B. 2 5
C.
1 2
D. 3 5
11.若双曲线
x2 a2
y2 b2
1(a
0, b
0)
的实轴的两个端点与抛物线
x2
8by
的焦点是一个直
角三角形的顶点,则该双曲线的离心率为( )
四川省绵阳市2024届高三上学期第一次诊断性考试理科数学试题
一、单选题二、多选题1. 若函数是奇函数,则使得成立的的取值范围是A.B.C.D.2. 为落实党的二十大提出的“加快建设农业强国,扎实推动乡村振兴”的目标,银行拟在乡村开展小额贷款业务.根据调查的数据,建立了实际还款比例关于贷款人的年收入(单位:万元)的Logistic ,模型:,已知当贷款人的年收入为8万元时,其实际还款比例为50%.若银行希望实际还款比例为40%,则贷款人的年收入为( )(精确到0.01万元,参考数据:,)A .4.65万元B .5.63万元C .6.40万元D .10.00万元3. 若函数满足,且当时,,则( )A .-1B.C .0D.4. 若复数满足,则( )A.B.C.D.5. 设函数,则( )A .-8B .-6C .6D .86. 把标号为1,2,3,4的四个小球分别放入标号为1,2,3,4的四个盒子中,每个盒子只放一个小球,则1号球不放入1号盒子的方法共有( )A .18种B .9种C .6种D .3种7.直线与圆相交于两点,则是“的面积为”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件8. 已知中,,,,点P 为边AB 上的动点,则的最小值为( )A .-4B .-2C .2D .49. 下列说法正确的是( )A.经验回归方程对应的经验回归直线至少经过其样本数据点中的一个点B .在残差的散点图中,残差分布的水平带状区域的宽度越窄,其模型的拟合效果越好C .设随机变量服从正态分布,若,则D .若将一组样本数据中的每个数据都加上同一个常数,则样本的方差不变10. 下列命题正确的有( )A .空间中两两相交的三条直线一定共面B .已知不重合的两个平面,,则存在直线,,使得,为异面直线C .过平面外一定点,有且只有一个平面与平行D .已知空间中有两个角,,若直线直线,直线直线,则或11. 设,为正实数,则下列不等式正确的是( )A.B.C.D.四川省绵阳市2024届高三上学期第一次诊断性考试理科数学试题四川省绵阳市2024届高三上学期第一次诊断性考试理科数学试题三、填空题四、解答题12. 若,则下列不等式对一切满足条件的a ,b 恒成立的是( )A.B.C.D.13. 已知集合,,若则实数的值为________14. 已知抛物线的焦点为F ,斜率为1的直线l 过F 与C 交于A ,B 两点,AB 的中点到抛物线准线的距离为8,则______.15. 已知,且,则等于______.16.已知函数的最大值为2.(1)求函数在上的单调递减区间;(2)中,,,分别是角,,所对的边,,,且,求的面积.17. 人工智能教育是将人工智能与传统教育相结合,借助人工智能和大数据技术打造的智能化教育生态.为了解我国人工智能教育发展状况,通过中国互联网数据平台得到我国2015年-2020年人工智能教育市场规模统计图.如图所示,若用x 表示年份代码(2015年用1表示,2016年用2表示,依次类推),用y 表示市场规模(单位:亿元),试回答:(1)根据条形统计图中数据,计算变量y 与x 的相关系数r ,并用r 判断两个变量y 与x 相关关系的强弱(精确到小数点后2位);(2)若y 与x 的相关关系拟用线性回归模型表示,试求y 关于x 的线性回归方程,并据此预测2022年中国人工智能教育市场规模(精确到1亿元).附:线性回归方程,其中;相关系数;参考数据:.18. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知.(1)求角B 的大小;(2)求的取值范围.19. 如图,在三棱锥中,分别是AC ,PC 的中点.(1)求证:平面平面;(2)求二面角的余弦值20. 如图,在四棱锥中,底面ABCD为矩形,为等腰直角三角形,,,F是BC的中点.(1)在AD上是否存在点E,使得平面平面,若存在,求出点E的位置;若不存在,请说明理由.(2)为等边三角形,在(1)的条件下,求直线SE与平面SBC所成角的正弦值.21. 如图,为圆的直径,点在圆上,,矩形所在平面和圆所在的平面互相垂直.已知,.(Ⅰ)求证:平面平面;(Ⅱ)设几何体、的体积分别为,求的值.。
甘肃省张掖市23届高三上学期第一次诊断考试数学(文科)含答案
张掖市2022——2023学年高三年级第一次诊断考试数学试卷(文科)一、选择题:本大题包括12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是符合题目要求的1.设全集{}1,2,3,4,5U =,若集合M 满足{}1,2U M =ð.则()A .2M∈B .3M∈C .4M∉D .5M∉2.若复数i(32i)z =+(i 是虚数单位),则z 的虚部是()A .3iB .3C .3i-D .3-3.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=()A .3B .6C .9D .124.3log 2a =,5log 2b =,2log 3c =,则()A .c a b>>B .b c a>>C .c b a>>D .a c b>>5.在ABC ∆中,D 为线段BC 上一点,且2BD CD =,则AD = ()A .3144AD AB AC=+ B .1344AD AB AC=+C .2133AD AB AC=+D .1233AD AB AC=+6.下列说法中正确的是()A .“5x >”是“3x >”的必要不充分条件B .命题“对R x ∀∈,恒有210x +>”的否定是“R x ∃∈,使得210x +<”C .在同一直角坐标系中,函数2x y =与lg y x =的图象关于直线y x =对称D .若幂函数()f x mx α=过点1,22⎛⎫ ⎪ ⎪⎝⎭,则32m α+=7.把函数()sin 24f x x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标伸长为原来的2倍,纵坐标保持不变,再把所得的图象向左平移(0)a a >个单位长度,得到函数cos y x =的图象,则a 可以是()A .8πB .4πC .2πD .34π8.设m ,n 为不重合的两条直线,α,β为不重合的两个平面,下列命题错误..的是()A .若m α⊥且n α⊥,则m n ∥B .若m α∥且m β⊥,则αβ⊥C .若m α∥且n α∥,则m n ∥D .若αβ∥且m α⊥,则m β⊥9.函数x e x f x ln )(=在点))1(,1(f 处的切线方程是()A .)1(2-=x e yB .1-=ex y C .)1(-=x e y D .ex y -=10.意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144,...,这就是著名的斐波那契数列,它的递推公式是*12(3,)n n n a a a n n N --=+≥∈,其中,121,1.a a ==若从该数列的前120项中随机地抽取一个数,则这个数是偶数的概率为()A.13B.23 C.12D.3411.已知抛物线x y 82=的焦点到双曲线)0,0(1:2222>>=-b a b y a x E 的渐近线的距离不大于3,则双曲线E 的离心率的取值范围是()A .]2,1(B .]2,1(C .),2[+∞D .),2[+∞12.已知实数a ,b ,c ,满足ln e a b c ==,则a ,b ,c 的大小关系为()A.a b c>> B.c b a>> C.b c a>> D.a c b>>二、填空题:本大题共4小题,每小题5分,共20分。
四川省达州市2023届高三联合测试 一模试题-文科数学试卷(后附参考答案)
一诊数学(文)试卷第1页(共4页)达州市普通高中2023届第一次诊断性测试数学试题(文科)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x =≤1,{|1}B x x =<,则A B =A .[0 1),B .(0 1),C .( 1)-∞,D .( 1]-∞,2.复数z 满足1=2i z,则z =A .12-B .12C .1i2-D .1i23.已知向量a ,b ,满足⊥a b ,(12),a = ,则()-⋅=a b a A .0B .2CD .54.四川省将从2022年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一.某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是A .样本中选择物理意愿的男生人数少于选择历史意愿的女生人数B .样本中女生选择历史意愿的人数多于男生选择历史意愿的人数C .样本中选择物理学科的人数较多D .样本中男生人数少于女生人数5.“0a b >>”是“e 1a b->”的A .充分不必要条件B .必要不充分条件C .充分必要条件D.既不充分也不必要条件一诊数学(文)试卷第2页(共4页)6.《将夜》中宁缺参加书院的数科考试,碰到了这样一道题目:那年春,夫子游桃山,一路摘花饮酒而行,始切一斤桃花,饮一壶酒,复切一斤桃花,又饮一壶酒,后夫子惜酒,故再切一斤桃花,只饮半壶酒,再切一斤桃花,饮半半壶酒,如是而行,终夫子切六斤桃花而醉卧桃山.问:夫子切了五斤桃花一共饮了几壶酒?A .18B .4716C .238D .31167.三棱锥P ABC -的底面ABC 为直角三角形,ABC △的外接圆为圆O ,PQ ⊥底面ABC ,Q 在圆O 上或内部,现将三棱锥的底面ABC 放置在水平面上,则三棱锥P ABC -的俯视图不可能是A.B .C .D .8.将函数1π()sin()23f x x ω=+(0)ω>图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到函数()g x 的图象,直线l 与曲线()y g x =仅交于11()A x y ,,22()B x y ,,ππ(())66P g ,三点,π6为1x ,2x 的等差中项,则ω的最小值为A .8B .6C .4D .29.曲线()()e xf x x m =+()m ∈R 在点(0(0))f ,处的切线平分圆22(2)(2)5x y -+-=,则函数()y f x =的增区间为A .(,1)-∞-B .(0 )+∞,C .(1 )-+∞,D .(0e),10.点F 为双曲线22221x y a b-=(0 0)a b >>,的一个焦点,过F 作双曲线的一条渐近线的平行线交双曲线于点A ,O 为原点,||OA b =,则双曲线的离心率为A B .C .D 11.在棱长为2的正方体1111ABCD C D 中,E ,分别为AB ,BC 的中点,则A .平面1D EF ∥平面11BA C B .点P 为正方形1111A B C D 内一点,当DP ∥平面1B EF 时,DP 的最小值为2C .过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为+D .当三棱锥1B BEF -的所有顶点都在球O 的表面上时,球O 的表面积为12π12.已知!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯⨯ ,规定0!1=,如3!3216=⨯⨯=.定义在R上的函数()y f x =图象关于原点对称,对任意的0x <,都有(()1xf xf x x =-.若12()10099!f =,则(1)f =A .0B .1C .2D .199!一诊数学(文)试卷第3页(共4页)二、填空题:本题共4小题,每小题5分,共20分.13.抛物线22(0)y px p =>上的点(4)M a ,到焦点的距离为5,则焦点坐标为.14.从集合{1 2 3 4 5},,,,中随机取两个不同的数a ,b ,则满足||2a b -=的概率为.15.已知正项数列{}n a 前n 项和n S 满足(1)2n n n a a S m +=+,m ∈R ,且3510a a +=,则m =.16.已知正方形ABCD 边长为2,M ,N 两点分别为边BC ,CD 上动点,45=∠MAN ,则CMN △的周长为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)党的十九大提出实施乡村振兴战略以来,农民收入大幅提升,2022年9月23日某市举办中国农民丰收节庆祝活动,粮食总产量有望连续十年全省第一.据统计该市2017年至2021年农村居民人均可支配收入的数据如下表:年份20172018201920202021年份代码x12345人均可支配收入y (单位:万元)1.301.401.621.681.80(1)根据上表统计数据,计算y 与x 的相关系数r ,并判断y 与x 是否具有较高的线性相关程度(若0.30||0.75r <≤,则线性相关程度一般,若||0.75r ≥则线性相关程度较高,r 精确到0.01);(2)市五届人大二次会议政府工作报告提出,2022年农村居民人均可支配收入力争不低于1.98万元,求该市2022年农村居民人均可支配收入相对2021年增长率最小值(用百分比表示).参考公式和数据:相关系数()()niix x y y r --=∑,51()() 1.28iii x x y y =--=∑,521()0.17ii y y =-≈∑ 1.3≈.18.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,ABC △的面积tan S A =,BC (1)求a ;(2)求ABC △外接圆面积的最小值.一诊数学(文)试卷第4页(共4页)19.(12分)如图,四棱锥P ABCD -的底面ABCD 是梯形,AD BC ∥,AB BC ⊥.E 为AD 延长线上一点,PE ⊥平面ABCD ,2PE AD =,tan 2PDA ∠=-.F 是PB 中点.(1)证明:EF PA ⊥;(2)若22BC AD ==,三棱锥E PDC -的体积为13,求点C 到平面DEF 的距离.20.(12分)已知F 是椭圆C :22221(0)x y a b a b+=>>的一个焦点,过点( )P t b ,的直线l 交C 于不同两点A ,B .当t a =,且l经过原点时,||AB =,||||AF BF +=.(1)求C 的方程;(2)D 为C 的上顶点,当4t =,且直线AD ,BD 的斜率分别为1k ,2k 时,求1211k k +的值.21.(12分)已知函数()ln ()f x x x a a =+∈R .(1)若()f x 最小值为0,求a 的值;(2)231()1(0)8x g x x x x =--+>,若7ea ≥,()0gb <,证明()f x b >.(二)选考题:共 10分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10 分) 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为 ρ2−2 ρcos − θ2 ρsin − θ2 =0 ,直线l 的参数方程为2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数.(1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,定点(2 2)P ,,求PA PB +的最小值.23.[选修4-5:不等式选讲](10分)设函数12)(-=x x f .(1)若()()f x f x m >+的解集为{|0}x x <,求实数m 的值;(2)若0a b <<,且()()f a f b =,求411a b +-的最小值.A BC DEFP达州市普通高中2023届第一次诊断性测试文科数学参考答案一、选择题:1.A 2.C3.D4.C5.A6.C7.D 8.C9.C10.D11.B12.C二、填空题:本题共4小题,每小题5分,共20分.13.(1,0)14.31015.1-16.4三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)由表知x 的平均数为1234535x ++++==.522221()(13)(23)(53)10i i x x =∴-=-+-++-=∑.5()()0.98iix x y y r --=∑.75.098.0> ,∴y 与x 具有较高的线性相关程度.(2)设增长率为p ,则1.8(1)p +≥1.98,解得p ≥0.1.∴min 0.110%p ==.该市2022年农村居民人均可支配收入相对2021年增长率最小值为10%.18.解:(1)由A S tan =得AAA bc cos sin sin 21=,∵0πA <<,0sin >A ,∴2cos =A bc .取BC 中点D ,连接AD ,则1()2AD AB AC =+ ,∴22242AD AB AB AC AC =+⋅+ ,即A bc c b cos 21222++=,∴822=+c b .∵448cos 2222=-=-+=A bc c b a ,∴2=a .(2)设ABC △外接圆半径为R ,由正弦定理R A a 2sin =,得AR sin 1=.由(1)知bc A 2cos =22412b c =+≥,当且仅当2==c b 时取“=”.∵0πA <<,∴A <0≤π3,∴0sin 2A <≤,∴A R sin 1=23332=,当sin 2A =,即π3A =时取“=”.∴ABC △外接圆面积最小值为2234π(π33⨯=.19又E AD PE = ,∴AB ⊥平面PAD .∵PA ⊂平面PAD ,∴PA AB ⊥.取P A 的中点M ,连接EM ,FM ,∵F 为PB的中点,∴FM PA ⊥.∵tan 2PDA ∠=-,∴tan 2PDE ∠=,∴2=DEPE ,∴AD DE PE 22==,∴D 为AE 的中点,∴PE AE =,∴EM PA ⊥.又M FM EM = ,∴PA ⊥平面EFM .∵EF ⊂平面EFM ,∴EF PA ⊥.(2)解:∵222BC AD DE ===,∴2PE =.∴ BC AE ∥,且 BC AE =,∵AB BC ⊥,∴四边形ABCE 为矩形,∴CE ⊥平面PAE .1111123323E PDC P DEC DEC V V S PE CE --==⋅=⨯⨯⨯⨯=△,∴1=CE .连接M D ,Rt BCE △中51222=+=BE ,Rt PEB △中35222=+=PB .∵F 为PB 中点,∴点F 到平面ABCD 的距离1211==PE h ,Rt PEB △中,2321==PB EF ,111122ECD S =⨯⨯=△.由(1)知FM PAE ⊥面,11=22FM AB =,在Rt FME △中,52DF ==,∴DEF △中,22235()1)222cos 33212DEF +-∠==⨯⨯,3sin DEF ∠=,124DEF S DE EF sin DEF =⨯⨯⨯∠=△.设点C 到平面DEF 的距离为2h ,则121133F EDC C DFE DEC DFE V V S h S h --==⋅=⋅△△,解得5522=h .所以点C 到平面DEF 的距离为552.20.解:(1)由题意,当t a =,且l 经过原点时,l 的方程为by x a=,且点A ,B 关于原点对称.设00( )A x y ,,将b y x a=代入22221x y a b +=,并化简得222a x =,即2202a x =,∴2202b y =.∵||AB =2222004()2()6x y a b +=+=.设C 的另一个焦点为0F ,根据对称性,0||||||||AF BF AF AF +=+=,根据椭圆定义得2a =,∴22a =.∴21b =.所以C 的方程为2212x y +=.(2)由(1)知,点D 坐标为(0 1),.A B C M E F PD由题意可设l :(1)4x k y =-+,即4x ky k =+-,将该式代入2212x y +=,并化简得222(2)2(4)8140k y k k y k k ++-+-+=,∴16(47)0k ∆=->.设11()A x y ,,22()B x y ,,则1222(4)2k k y y k -+=-+,21228142k k y y k -+=+.∴12122164()822kx x k y y k k -+=++-=+.∴1212211212121212()1111()1x x x y x y x x k k y y y y y y +-++=+==---++2222212121221212222(814)2(4)1642(4)()()2228142(4)()1122k k k k k kky y k y y x x k k k k k k k y y y y k k -+----+-+-++++=-+--++++++1=-.即12111k k +=-.21.解:(1)由()ln f x x x a =+得0x >,且()ln 1f x x '=+当10e x <<时,()0f x '<,()f x 单调递减,当1ex >时,()0f x '>,()f x 单调递增.所以min 11()()()0e ef x f x f a ===-+=极小,∴1e a =.(2)证明:由231()18x g x x x =--+得322231344()144x x g x x x x -+'=-+=(0>x ).设32()344h x x x =-+,则28()989()9h x x x x x '=-=-,当809x <<时,()0h x '<,()h x 单调递减,当89x >时,()0h x '>,()h x 单调递增.∴当0x >时,()min 8()()09h x h x h =>≥,即()0g x '>,()g x 在区间(0 )+∞,单调递增.∵(2)0g =,∴若0x >,则当且仅当02x <<时,()0g x <,∵()0g b <,∴2b <.由(1)知,min 11()()e e f x f a ==-.∵7ea ≥,∴min 16()()e e f x f x a =-≥≥.∴6()2ef x b >>≥,即()f x b >.22.解:(1)将222x y ρ=+,cos x ρθ=,sin y ρθ=代入C 的极坐标方程22cos ρρθ-2sin 20ρθ--=得曲线C 为222220x y x y +---=,即4)1()1(22=-+-y x .(2)易知点P 在直线l 上,将直线l 的参数方程2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数代入曲线C 方程得4)sin 1()cos 1(22=+++θθt t ,整理得02)cos (sin 22=-++t t θθ.设点A ,B 对应该的参数分别为1t ,2t ,则)cos (sin 221θθ+-=+t t ,0221<-=t t ,由参数t 的几何意义不妨令||||1P A t =,||||2PB t =.∴||||||||||2121t t t t PB P A -=+=+122sin 44)(21221+=-+=θt t t t .当12sin -=θ,即ππ()4k k θ=-∈Z 时,22|)||(|=+PB P A .23.(1)解:不等式可化为|1|||22-+>m x x ,∴|1||1|-+>-m x x ,两边同时平方可得222m m mx -<.原不等式解集为{|0}x x <,∴0>m ,即21mx -<.∴021=-m,2=m .(2)解: )()(b f a f =,∴|1||1|22--=b a ,|1||1|-=-b a .)1(2)1(||x f x f x -==+,∴)(x f y =关于直线1=x 对称,∴b a <<<10,∴11-=-b a ,即2=+b a .所以1)1(45)1114(-+-+=-+-+b a a b b a b a ≥9425=+,当且仅当1)1(4-=-b aa b ,即34,32==b a 时取“=”,∴114-+b a 的最小值为9.。
2021年高三数学上学期第一次诊断考试试题 文
2021年高三数学上学期第一次诊断考试试题文一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2A x R xB x R x x=∈>=∈--<等于{|1},{|20}A. B. C. D.2、如果命题“”为假命题,则A.均为真命题 B.均为减命题C.中至少有一个为真命题 D.中至多有一个真命题3、已知在处取最大值,则A.一定是奇函数 B.一定是偶函数C.一定是奇函数 D.一定是偶函数4、已知,若是的充分不必要条件,则正实数的取值范围是A. B. C. D.5、设等差数列的前n项和为,若,则必有A.且 B.且C.且 D.且6、函数的零点有A.0 B.1 C.2 D.37、已知中,,则等于A.或 B. C. D.8、已知,函数,,集合==∈==∈,记分别为集合中元素的个数,那么下列结论不{|()0,},{|()0,}S x f x x R T x g x x R可能的是A .B .C .D .9、若函数子啊R 上可导,且满足,则A .B .C .D .10、在中,点分别是上,且,线段与相交于点P ,且,则用和表示为A .B .C .D .第Ⅱ卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在题中的横线上) 11、已知函数在处有极值为10,则的值等于12、等差数列中,已知,则的取值范围是13、已知直线上的三点,向量满足,则函数的表达式为14、函数的图象与的图象所有交点的横坐标之和等于15、已知,,()()(),(1)2a b N f a b f a f b f *∈+=+=,则等于三、解答题(本大题共6小题,共75分,请在解答时写出必要的文字说明、证明过程或演算步骤,把解题过程写在答题卡上)16、(本小题满分12分)设。
(1)求的最大值及最小值周期;(2)在中,角的对边分别为,锐角A 满足,求的值。
四川省德阳市高中2022-2023学年高三上学期第一次诊断考试理科数学试题 附答案
德阳市高中2020级第一次诊断考试数学试卷(理工农医类)说明:1.本试卷分第Ⅰ卷和第Ⅱ卷,共4页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束后,将答题卡交回.2.本试卷满分150分,120分钟完卷.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P={x ∈ N |x ²≤9},Q={1,3},则P∩Q=( ) A.QB.{-3,-2,-1,0,1,3}C.PD.{-3,-2,-1,2}2.关于统计数据的分析,有以下几个结论,其中正确的是( ) A.样本数据9、3、5、7、12、13、1、8、10、18的中位数是8或9 B.将一组数据中的每个数据都减去同一个数后,平均数与方差均没有变化C.利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高D.调查影院中观众观后感时,从15排(每排入数相同)每排任意抽取一人进行调查是系统抽样法 3.复数5i−2的共轭复数为( ) A.2+i B.-2+ i C.-2-i D.2-i 4.已知等比数列{a n }的前n 项和为Sₙ,且S₅=5,S₁₀=30, 则 S₁₅=( ) A.90B.125C.155D.1805.已知x 、y 满足约束条件{x +2y ≤12x +y +1≥0x −y ≤0 则 yx+2的最小值为( )A.1B.17C.−13D.−156.已知 OA ⃗⃗⃗⃗⃗ =a,OB ⃗⃗⃗⃗⃗ =b, 点M 关于A 的对称点为S ,点S 关于B 的对称点为N ,那么MN ⃗⃗⃗⃗⃗⃗⃗ =( ) A.2a-2bB.2a+2bC.-2a-2bD.-2a+2b7.德阳市文庙广场设置了一些石凳供游人休息,这些石凳是由正方体形石料(如图1)截去8个一样的四面体得到的(如图2),则下列对石凳的两条边AB 与CD 所在直线的描述中正确的是( ) ①直线AB.与CD 是异面直线 ②直线AB 与CD 是相交直线 ③直线AB 与CD.成60°角 ④直线AB 与CD 垂直A.①③B.①④C.②③D.②④8.已知某曲线方程为x2m+3−y22m−1=1,则下列描述中不正确的是()A.若该曲线为双曲线,且焦点在x轴上,则m∈(12,+∞)B.若该曲线为圆,则m=4C.若该曲线为椭圆,则其焦点可以在x轴上,也可以在y轴上D.若该曲线为双曲线,且焦点在y轴上,则m∈(-∞,-3)9.函数f(x)=[ln(π-x)+lnx]cosx的大致图象为A. B.C. D.10.·如图是旌湖边上常见的设施,从两个高为1.米的悬柱上放置:一根均匀铁链,让其自然下垂轻触地面(视为相切)形成的曲线称为悬链线(又称最速降线).建立恰当的直角坐标系后,其方程可以是y=12(e x+e−x+t),那么两悬柱间的距离大致为(可能会用到的数据e1.25≈3.49,e1.35≈3.86)()A.2.5米B.2.6米C.-2.8米D.2.9米11.已知函数f(x)=1+x−x22+x33−x44+⋯+x2n2023,x∈R,则f(x)在R上的零点个数为()A.0B.1C.2D.202312.已知a、b、c是正实数,且e²ᵃ−2eᵃ⁺ᵇ+eᵇ⁺ᶜ=0,则a、b、c的大小关系不可能为()A.a=b=cB.a>b>cC.b>c>aD.b>a>c第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答,二、填空题:共4小题,每小题5分,共20分.将答案填在答题卡上.13.已知二项式(√x√x )n(n∈N∗)的展开式中最后三项的二项式系数和为79,则n =______.14.已知a,b是单位向量,且a·b=0,若c=λa+(1-λ)b,那么当c⊥(a-b)时,λ=______.15.已知函数f(x)=sin(ωx+)(ω⟩0,||<π2)的部分图象如图所示,则f(x)=______.16.如图,矩形ABCD中,AC是对角线,设∠BAC=α,已知正方形Sₙ正方形S的周长.和正方形Sₙ分别内接于Rt△ACD和Rt△ABC,则正方形S1的周长正方形S2的周长的取值范围为______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分)已知等差数列{a n}的首项为1,公差d≠0,前n项和为Sn,且S nS2n为常数.(1)求数列{a n}的通项公式;(2)若bₙ=2ⁿ⁻¹⋅an,求数列{bₙ}的前n项和Tₙ.18.(本题满分12分)在△ABC中,边a、b、c对应角分别为A、B、C,且ba =√3sinA.(1)求角B的大小;(2)从条件①、条件②、条件③中任选一个作为已知条件,使得△ABC存在且唯一,求AC边上的高.条件①:cosA=√33,b=1;条件②:b=2,c=2√3;条件③:a=3,c=2.注:若选多个条件分别作答,则按第一个解答给分.19.(本题满分12分)买盲盒是当下年轻人的潮流之一,每个系列的盲盒分成若干个盒子,每个盒子里面随机装有一个动漫、影视作品的图片,或者设计师单独设计出来的玩偶,消费者不能提前得知具体产品款式,具有随机属性,某礼品店2022年1月到8月售出的盲盒数量及利润情况的相关数据如下表所示:(1)求出月利润y(千元).关于月销售量x(百个)的回归方程(精确到0.01); 数学一诊(理工农医类) 第3页 共高页签字号(2)2022年“一诊”考试结束后,某班数学老师购买了装有“五年高考三年模拟”和“教材全解”玩偶的两款盲盒各4个,从中随机选出3个作为礼物赠送给同学,用ξ表示3个中装有“五年高考三年模拟”玩偶的盲盒个数,求ξ的分布列和数学期望.参考公式:回归方程 y ̂=â+b̂x ⋅中斜率和截距最小二乘估计公式分别为: b̂=∑i=1n(x i −x̅)(y i −y ̅)∑i=1n (x i−x̅)2=∑i=1nx i y i −nx̅y ̅∑i=1n x i2−nx̅2,â=y ̅−b̂x̅. 参考数据: ∑i=18x i2=580,∑i=18x i y i =459.5.20.(本题满分12分)已知函数 f (x )=13x 3+12(a −1)x 2−ax (a ⟩0).(1)求函数f(x)的极值;(2)当a>1时,记f(x)在区间[-1,2]的最大值为M,最小值为m.已知M+m ∈ (13,23). 设f(x)的三个零点为xₙ,xₙ,xₙ,求 f( xₙxₙ+xₙxₙ+xₙxₙ)的取值范围. 21.(本题满分12分)已知函数f (x )=eˣ,g (x )=tsinx +1,设 b(x) =f(x)-g(x).(1)若h(x)在 (−π2,π2) 上单调递增,求实数t 的取值范围;(2)求证:∃t ∈(0,+∞);对∀x ∈R,∃a ∈[0,+∞),使得xh(x)=a 总成立.请考生在22、23二题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本题满分10分)在平面直角坐标系中,曲线Cₙ的方程为(x −1)2+(y −√3)2=1,曲线Cₙ的参数方程为 {x =3t 2y =√3t(t 为参数),直线l 过原点O 且与曲线Cₙ交于A 、B 两点,点P 在曲线Cₙ上且·OP ⊥AB.以O 为极点,x 轴正半轴为极轴建立极坐标系.(1)写出曲线Cₙ的极坐标方程并证明|OA|·|OB|为常数; (2)若直线l 平分曲线Cₙ,求△PAB 的面积. 23.(本题满分10分) 已知函数f(x)=|x|.(1)画出y=f(x-1)-f(x+5)的图象,并根据图象写出不等式f(x--1)-f(x+5)≤-4的解集; (2)若f(x-1)-f(x+5)+kf(x+2)≥0恒成立,求实数k 的取值范围.德阳市高中2020级第一次诊断考试数学参考答案与评分标准(理科)一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分) 13.12 14.12 15.sin 24x π⎛⎫+ ⎪⎝⎭ 16.3⎡⎫⎪⎢⎣⎭.三、解答题17.解:(1)由题意知:()()211222n n n dn d nS na d -+-=+=. 所以()224222n dn d nS +-=.所以()()22222422442n n dn d n S dn dS dn d n dn d+-+-==+-+-为常数. 因为0d ≠,故只要2442d dd d-=-,解得2d =,此时21n a n =-. (2)由(1)知21n a n =-,()112212n n n n b a n --=-⋅=.所以()111232212n n T n -=⨯+⨯+⋅⋅⋅+-⨯得()()22121232232212n n n T n n -=⨯+⨯+⋅⋅⋅+-⨯+-⨯两式相减得:()011122222212n n n T n --=⨯+⨯+⋅⋅⋅+⨯--⨯()()12121221212n n n --=+⨯--⨯-()3223n n =-⨯-所以()2323nn T n =-⨯+.18.解:(1)在△ABC 中,由正弦定理及b a =, sin sin cos sin A B A B A ⋅=⋅+因为sin 0A ≠cos 1B B -=,即1sin 62B π⎛⎫-= ⎪⎝⎭, 得:66B ππ-=或56π,解得3B π=. (2)若选条件①:cos A =,1b =.易知符合条件的ABC △存在且唯一,AC 边上的高为sin c A ⋅.由cos A =得:sin A =所以()sin 3sin sin sin 326A AC A B A ππ⎛⎫=--=+==⎪⎝⎭.故sin sin b Cc B===AC边上的高为sin c A ⋅=.若选条②:2b =,c =sin 32c B ⋅=>,所以符合条件的ABC △不存在. 若选条件③:3a =,2c =,由余弦定理得:294232cos 73b π=+-⨯⨯⨯=.所以b =由正弦定理sin sin C Bc b =得:2sin sin 7c B C b ⎛ ===. 所以AC边上的高为sin 7a C ⋅=. 19.解:(1)由题意得:8x =, 6.5y =,所以818221ˆ8459.588 6.50.645808618i ii i i x y xybx x==--⨯⨯===-⨯-∑∑6.50.64ˆ8 1.38.a y bx=-=-⨯= 故月利润y (千元)关于月销售量x (百个)的回归方程为:0.64 1.38y x =+. (2)ξ的所有市能取值为0,1,2、3,则()34384056C P C ξ===,()24433824156C C P C ξ⨯===, ()12443824256C C P C ξ⨯===,()34384356C P C ξ===. 故ξ的分布列为:ξ的数学期望0123565656562E ξ=⨯+⨯+⨯+⨯=.20.解(1)因为()()()()211f x x a x a x a x =+--=+-' 令()0f x '=解得:1x =或x a =-因为0a >,可知()f x 在(),a -∞-上单增,(),1a -上单减,()1,+∞上单增. 所以()()321162f x f a a a =-=+极大值,()()1126a f x f ==--极小值. (2)由(1)知()f x 在(),a -∞-上单增,(),1a -上单减,()1,+∞上单增. 当1a >时,()f x 在[]1,1-上单减,在[]1,2上单增. 所双()f x 在区间[]1,2-的最小值()11.26a m f ==-- 最大值M 为()35126a f -=-与()223f =的较大者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
达州市2017届高三上学期第一次诊断测试数学试卷(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{1,1,2}A =-,集合{10}B x x =->,集合A B 为( )A .φB .{1,2}C .{1,1,2}-D .{2} 2.已知i 是虚数单位,复数21ii=+( ) A .1i - B .i C .1i + D .i -3.将函数sin()3y x π=+的图象向x 轴正方向平移6π个单位后,得到的图象解析式是( )A .sin()6y x π=+B .sin()6y x π=-C .2sin()3y x π=-D .2sin()3y x π=+4.已知AB 是直角ABC ∆的斜边,(2,4)CA =,(6,)CB x =-,则x 的值是( ) A .3 B .-12 C .12 D .-35.已知,x y 都是实数,命题:0p x =;命题22:0q x y +=,则p 是q 的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分又不必要条件 6.抛物线24y x =的焦点坐标是( )A .(0,2)B .(2,0)C .(1,0)D .(0,1)7.已知直线l ⊄平面α,直线m ⊂平面α,下面四个结论:①若l α⊥,则l m ⊥;②若//l α,则//l m ;③若l m ⊥,则l α⊥;④若//l m ,则//l α,其中正确的是( )A .①②④B .③④C .②③D .①④ 8.已知344ππα<<,4sin()45πα-=,则cos α=( ) A 2 B .272D .29.一几何体的三视图如图所示,三个三角形都是直角边为2的等腰直角三角形,该几何体的顶点都在球O 上,球O 的表面积为( )A .16πB .3πC .43πD .12π10.《周髀算经》记载了勾股定理的公式与证明,勾股定理相传由商高(商代)发现,故又有称之为商高定理,满足等式222a b c +=的正整数组(,,)a b c 叫勾股数,如(3,4,5)就是勾股数,执行如图所示的程序框图,如果输入的数是互相不相等的正整数,则下面四个结论正确的是( ) A .输出的数组都是勾股数B .任意正整数都是勾股数组中的一个C .相异两正整数都可以构造出勾股数D .输出的结果中一定有a b c <<11.已知双曲线22221(1)x y m m -=+(0m >)的离心率为5,P 是该双曲线上的点,P 在该双曲线两渐近线上的射影分别是,A B ,则PA PB •的值为( )A .45 B .35 C .43 D .3412.记函数()f x (1x e e<≤, 2.71828e =…是自然对数的底数)的导数为'()f x ,函数'()()()g x x f x e=-只有一个零点,且()g x 的图象不经过第一象限,当1x e >时,1()4ln ln 1f x x x e++>+,1[()4ln ]0ln 1f f x x x ++=+,下列关于()f x 的结论,成立的是( )A .当x e =时,()f x 取得最小值B .()f x 最大值为1C .不等式()0f x <的解集是(1,)eD .当11x e<<时,()0f x > 第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分,将答案填在机读卡上相应的位置.)13. A 公司有职工代表120人,B 公司有职工代表100人,现因,A B 两公司合并,需用分层抽样的方法在这两个公司的职工代表中选取11人作为企业资产评估监督员,应在A 公司中选取__________人.14.计算:213(22)(0.1)lg 2lg5-⨯--=___________.15.已知,x y 满足:10490490x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则z x y =-的最大值为___________.16.已知函数*()()nf x n N x=∈,过点(,())P n f n 与()y f x =的图象相切的直线l 交x 轴于(,0)n A x ,交y 轴于(0,)n B y ,则数列1{}()n n n x x y +的前n 项和为____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知等差数列{}n a 中,11a =,21a >,249,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S . 18.(本小题满分12分) 已知函数21()cos 3sin cos 2f x x x x =-+. (1)求()f x 单调递减区间;(2)ABC ∆中,角,,A B C 的对边,,a b c 满足222b c a bc +->,求()f A 的取值范围. 19.(本小题满分12分)某交警大队对辖区A 路段在连续10天内的n 天,对过往车辆驾驶员进行血液酒精浓度检查,查得驾驶员酒驾率()f n 如下表; 5 6 7 8 90.060.060.050.040.02可用线性回归模型拟合()f n 与n 的关系. (1)建立()f n 关于n 的回归方程;(2)该交警大队将在2016年12月11日至20日和21日至30日对A 路段过往车辆驾驶员进行血液酒精浓度检查,分别检查12,n n 天,其中12,n n 都是从8,9,10中随机选择一个,用回归方程结果求两阶段查得的驾驶员酒驾率都不超过0.03的概率. 附注:参考数据:95() 1.51n nf n ==∑,925255n n==∑,()0.046f n =,回归方程()f n bn a =+中斜率和截距最小乘估计公式分别为:959225()5()5n n nf n nf n b nn==-=-∑∑,()a f n bn =-.20.(本小题满分12分)已知,如图,P 是平面ABC 外一点,PA 不垂直于平面ABC ,,E F 分别是线段,AC PC 的中点,D 是线段AB 上一点,AB AC =,PB PC =,DE EF ⊥.(1)求证:PA BC ⊥; (2)求证://BC 平面DEF . 21.(本小题满分12分) 已知函数21()()2xf x e ax a e x =-+-(0x ≥)( 2.71828e =…为自然对数的底数) (1)当0a =时,求()f x 的最小值; (2)当1a e <<时,求()f x 单调区间的个数.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的参数方程为222x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 的极坐标方程为4ρ=. (1)若l 的参数方程中的t =M 点,求M 的极坐标和曲线C 直角坐标方程; (2)若点(0,2)P ,l 和曲线C 交于,A B 两点,求11PA PB+. 23. (本小题满分10分)选修4-5:不等式选讲 已知()2151f x x x =-+- (1)求()1f x x >+的解集;(2)若2m n =-,对m ∀,(0,)n ∈+∞,恒有14()f x m n+≥成立,求实数x 的范围. 达州市2016年普通高中三年级第一次诊断性检测数学(文科)参考答案及评分标准1-12 DCAAB CDBDC AB 13.6 14.19 15.3 16.44nn +17.解:(Ⅰ)设等差数列{}n a 的公差为d ,∵11a =,12>a ,∴012>-=a a d . …………1分∵942a a a 、、成等比数列,∴9224a a a =,即)81)(1()31(2d d d ++=+.………3分 解得,3=d . ……………5分23)1(31)1(1-=-+=-+=n n d n a a n ,减区间5[,] ,36k k k Z ππππ++∈ ……………6分(Ⅱ) 由题意可知03A π<<, ……………9分1()(,1)2f A ∈- ……………12分19.解:(Ⅰ)由表可知,7n =, ………………1分 又51.1)(915=∑=n nf ,255952=∑=n n,046.0)(=n f ,∴959225()5()5n n nf n n f n b nn==-=-∑∑21.51570.0460.0125557-⨯⨯==--⨯, ……………………4分 ∴()a f n bn =-0.046(0.01)70.116=--⨯=, ……………………5分 ∴)(n f 关于n 的回归方程是()0.010.116f n x =-+. ……………………6分 (Ⅱ)由表及(Ⅰ)知,(8)0.036f =,(9)0.026f =,(10)0.016f =.…………8分 ∴两阶段查得的驾驶员酒驾率的结果有:)016.0,036.0(),026.0,036.0(),036.0,036.0(,)016.0,026.0(),026.0,026.0(),036.0,026.0(,)026.0,016.0(),036.0,016.0(,(0.016,0.016),共9个. …………10分其中都两阶段结果都不超过03.0的有)016.0,026.0(),026.0,026.0(,),026.0016.0(,(0.016,0.016)共4个. ……………………11分设“两阶段查得的驾驶员酒驾率的结果都不超过03.0”为事件A ,则94)(=A P . 答:两阶段查得的驾驶员酒驾率的结果都不超过03.0概率为94. ……………………12分 20.(Ⅰ)证明:设线段BC 的中点为G ,分别连接AG PG 、.……………1分 ∵AB AC =,PB PC =,∴AG BC ⊥,PG BC ⊥, ∵AG PG 、是平面AGP 内的两条相交线,∴BC ⊥平面AGP . ……………………4分 ∵PA ⊂平面AGP ,∴PA BC ⊥. ………………6分 (Ⅱ)证明:∵E F 、分别是线段AC PC 、的中点,∴EF ∥AP .∵DE EF ⊥,∴PA DE ⊥. ……………………8分 因PA BC ⊥,BC DE 、是平面ABC 内两条直线,如果BC DE 、相交,则PA ⊥平面ABC ,与PA 不与平面ABC 的垂直矛盾. ∴BC ∥DE . ……………………10分 又BC ⊄平面DEF ,DE ⊂平面DEF ,∴BC ∥平面DEF ……………………12分 21.解:(Ⅰ)∵21()()2x f x e ax a e x =-+-(x ≥0), 0a = ∴()x f x e ex=-()x f x e e '=-.……………………1分∴当0≤1x <时,()0f x '<,()f x 是减函数.当1x >时,()0f x '>,()f x 是增函数. ……………………3分 又0)1(='f ,∴()f x 的最小值min ()()(1)0f x f x f ===极小.…………………4分(Ⅱ)∵21()()2x f x e ax a e x =-+-(x ≥0), ∴()xf x e ax a e '=-+-.设()()xg x f x e ax a e '==-+-,则()xg x e a '=-.∵1a >,∴(ln )0g a '=,当0≤ln x a <时,()0g x '<,()f x '单调递减. 当ln x a >时,()0g x '>,()f x '单调递增. ……………………6分 ∴min ()()(ln )2ln f x f x f a a a a e '''===--极小. 设()2ln (1)h x x x x e x =-->,则()1ln h x x '=-. 当0x e <<时,()0h x '>,()h x 单调递增, 当x e >时,()0h x '<,()h x 单调递减.∴max ()()()0h x h x h e ===极大,即a e =时,min ()f x '取得最大值0, 所以当1a e <<时,min ()0f x '<.………7分 若1a <≤1e -,则(0)1f a e '=+-≤0,(1)0f '=,∴0≤1x <时,()f x '≤0,)(x f 单调递减,1x >时,()f x '>0,()f x 单调递增, 即函数()f x 有两个单调区间.…9分若1e a e -<<,则(0)10f a e '=+->,∴存在0x ∈(0,ln )a ,使得0()0f x '=.又(1)0f '=∴0≤x 0x <或1x >时,()0f x '>,()f x 单调递增.01x x <<时,()0f x '<,()f x 单调递减.即函数()f x 有三个单调区间. ……………………11分综上所述,当1a <≤1e -时,函数()f x 有两个单调区间,当1e a e -<<且a e ≠时,函数()f x 有三个单调区间. …………………12分22.(Ⅰ)若l 的参数方程中的2t =-,得到M 点,求M 的极坐标和曲线C 直角坐标方程; (Ⅱ) 若点(0,2)P ,l 和曲线C 交于A ,B 两点,求11||||PA PB +. 解:(1)32,)4M π,曲线C 的直角坐标方程:2216x y += ……………5分(2)由2222()(2)16t t ++=得222120t t +-=,121222, 12t t t t +=-⋅=- 21212(22)4(12) ||||1114|||| ||t t PA PB t t --⋅-++===⋅……………10分 23.解:(Ⅰ)127 ()511()3 ()5217 2 ()2x x f x x x x x ⎧-<⎪⎪⎪=≤≤⎨⎪⎪->⎪⎩解得解集为11(,)(,)82-∞+∞………5分(Ⅱ)因为141419()()22m n m n m n +=++⋅≥,当且仅当24,33m n ==时等于号成立. 由9()2f x ≥解得x 的取值范围为513(,)1414-……………10分。