离散数学-经典必看
离散数学知识点总结
离散数学知识点总结离散数学是一门重要的数学学科,它涉及到离散的对象和离散的结构,而不是连续的对象和结构。
以下是离散数学的几个重要知识点的总结:集合论- 集合:集合是由元素组成的对象的集合。
集合的运算包括并集、交集和差集等。
集合:集合是由元素组成的对象的集合。
集合的运算包括并集、交集和差集等。
- 子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。
子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。
- 幂集:一个集合的幂集是所有可能的子集构成的集合。
幂集:一个集合的幂集是所有可能的子集构成的集合。
逻辑- 命题:一个命题是一个陈述句,可以被判断为真或假。
命题:一个命题是一个陈述句,可以被判断为真或假。
- 逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。
逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。
- 真值表:用来列出复合命题在各种可能情况下的真值。
真值表:用来列出复合命题在各种可能情况下的真值。
关系- 关系:关系用来描述元素之间的联系。
关系可以是二元的或多元的。
关系:关系用来描述元素之间的联系。
关系可以是二元的或多元的。
- 等价关系:等价关系是一种满足自反性、对称性和传递性的关系。
等价关系:等价关系是一种满足自反性、对称性和传递性的关系。
- 偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。
偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。
- 图的表示:图可以用邻接矩阵或邻接表来表示。
图的表示:图可以用邻接矩阵或邻接表来表示。
图论- 连通性:图中的连通性用来描述图中顶点之间是否存在路径。
连通性:图中的连通性用来描述图中顶点之间是否存在路径。
- 最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。
最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。
离散数学重要公式定理汇总分解
离散数学重要公式定理汇总分解离散数学是计算机科学领域中的一门基础课程,它主要研究离散结构和离散对象之间的关系。
离散数学中有许多重要的公式和定理,这些公式和定理在计算机科学和其他领域中有广泛的应用。
下面是对离散数学中一些重要的公式和定理的汇总。
1.集合:-幂集公式:一个集合的幂集是所有它子集的集合。
一个集合有n个元素,那么它的幂集有2^n个元素。
-集合的并、交、差运算规则:并集运算满足交换律、结合律和分配律;交集运算也满足交换律、结合律和分配律;差集运算不满足交换律和结合律。
2.逻辑:-代数运算规则:多个逻辑表达式的与、或、非运算满足交换律、结合律和分配律。
-归结原理:对于一个给定的只包含“合取”和“析取”的合式公式集合,如果假设集合中的每个合式公式都为真,以及从这些前提出发,不能推导出这个集合中的一个假命题,则称这个假设集合是不一致的。
3.图论:-图的欧拉路径和欧拉回路:对于一个连通的图,如果它存在欧拉路径,那么这个图中最多只有两个度数为奇数的节点;如果一个连通的图存在欧拉回路,那么所有节点的度数都是偶数。
-图的哈密顿路径和哈密顿回路:对于一个图,如果它存在哈密顿路径,那么这个图中任意两个不相邻的节点u和v之间必然存在一条边;如果一个图存在哈密顿回路,那么从任意一个节点开始,可以经过图中的所有节点且最后回到起点。
4.代数结构:-子群定理:如果G是群H的一个子集,并且G是关于群H的运算封闭的,那么G是H的一个子群。
- 同态定理:如果f是从群G到群H的一个满射同态,那么G的核ker(f)是G的一个正规子群,而H是G/ker(f)的同构像。
5.排列组合:-排列公式:从n个元素中取出m个元素进行排列,有P(n,m)=n!/(n-m)!-组合公式:从n个元素中取出m个元素进行组合,有C(n,m)=n!/(m!*(n-m)!)以上只是离散数学中一小部分重要的公式和定理,这些公式和定理在计算机科学、密码学、图形学等领域中有广泛的应用。
离散数学 蝶形
离散数学蝶形
蝶形(Butterfly)图形是离散数学中最经典的图形之一,它也是一个最简单的数学公式所表现出的美妙。
蝶形图形的形状像一只展翅飞舞的蝴蝶,它的特点是由两个正弦
曲线的叠加形成的。
在图形中,我们可以看到两个上升的正弦曲线和
两个下降的正弦曲线。
每个正弦曲线的振幅和频率都是不同的,同时
它们也都是对称的,在中心处相交形成了蝶形图案。
蝶形图形是一种震荡现象的图象表示,它在信号分析,特别是在
滤波器设计、数字信号处理和通信系统中得到了广泛应用。
在实际应
用中,蝶形图形可以用于模拟混叠、减少噪声和恢复失真的方法。
除此之外,在数学教学中,蝶形图形也是离散傅里叶变换(Discrete Fourier Transform,简称DFT)和快速傅里叶变换(Fast Fourier Transform,简称FFT)中的一个重要图形。
在教学过程中,通过蝶形图形的演示,学生们能够直观地理解傅里叶变换和频域分析
的基本概念。
总体来说,蝶形图形是离散数学中一个非常重要的图形,它不仅
能够用于信号处理和通信系统的优化,还能够用于数学教学中学习傅
里叶变换和频域分析的基本概念。
因此,对于离散数学学习者来说,
掌握蝶形图形的基本概念和应用方法是非常重要的。
离散数学图论(图、树)常考考点知识点总结
离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。
离散数学 经典教材
离散数学是计算机科学中的一门核心课程,它涉及到数学中的许多概念和方法。
以下是一些离散数学的经典教材:
1.《离散数学》(作者:Kozen)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。
这本书的内容非常丰富,而且语言通俗易懂,是学习离散数学的好教材。
2.《离散数学及其应用》(作者:Rosen)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。
这本书的内容非常详细,而且有很多例子和练习题,可以帮助读者更好地掌握离散数学的知识。
3.《离散数学教程》(作者:Kleitman)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。
这本书的内容非常详细,而且有很多例子和练习题,可以帮助读者更好地掌握离散数学的知识。
4.《离散数学精讲》(作者:Sipser)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。
这本书的内容非常详细,而且有很多例子和练习题,可以帮助读者更好地掌握离散数学的知识。
以上是一些离散数学的经典教材,每本书都有其独特的风格和特点,读者可以根据自己的需求和兴趣选择适合自己的教材。
考试必备离散数学定理总结
2.8、C1∧C2≈Res(C1,C2)2.10、(消解的完全性)一个合取范式是不可满足的当且仅当它有否证.3.1、由命题公式A1, A2, …, Ak推B的推理正确当且仅当A1∧A2∧…∧Ak→B为重言式.(推理正确不能保证结论一定正确)4.1、闭式在任何解释下都是命题5.1、(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式6.1、空集是任何集合的子集。
(推论:空集是唯一的)6.2、(包含排斥原理)设集合S上定义了n条性质,其中具有第i 条性质的元素构成子集Ai, 那么集合中不具有任何性质的元素数为:6.3、德摩根律:A-(B⋃C)=(A-B)⋂(A-C)A-(B⋂C)=(A-B)⋃(A-C)~(B⋃C)=~B~⋂C~(B⋂C)=~B~⋃C7.9、设R为A上的关系, 则(1) R 在A上自反当且仅当IA ⊆R(2) R 在A上对称当且仅当R=R^(-1)(3) R 在A上传递当且仅当R︒R ⊆R7.10、设R为A上的关系, 则有(1) r(R)=R∪R^0(2) s(R)=R∪R^(-1)(3) t(R)=R∪R^2∪R^3∪…9.1、设◦为S上的二元运算,el和er分别为S中关于运算的左和右单位元,则el = er = e为S上关于◦运算的惟一的单位元.9.2、设◦为S上的二元运算,θl和θr分别为S中关于运算的左和右单位元,则θl = θr = θ为S上关于◦运算的惟一的零元.9.3、设◦为S上的二元运算,e和θ分别为◦运算的单位元和零元,如果S至少有两个元素,则e≠θ.9.4、设◦为S上可结合的二元运算, e为该运算的单位元, 对于x∈S 如果存在左逆元yl 和右逆元yr, 则有yl = yr= y, 且y是x 的惟一的逆元.10.2、G为群,∀a,b∈G,方程ax=b和ya=b在G中有解且仅有惟一解. (G中适合消去律)10.3、G为群,a∈G且|a| = r. 设k是整数,则(1) a^k = e当且仅当r | k(r整除k)(2 )|a^-1| = |a|10.4、(子群判定定理一)设G为群,H是G的非空子集,则H是G的子群当且仅当(1) ∀a,b∈H有ab∈H(2) ∀a∈H有a^-1∈H.10.5、(子群判定定理二)设G为群,H是G的非空子集. H是G的子群当且仅当∀a,b∈H有ab^-1∈H.10.6、(子群判定定理三)设G为群,H是G的非空有穷子集,则H是G的子群当且仅当∀a,b∈H有ab∈H.10.7、设H是群G的子群,则He=H,∀a∈G有a∈Ha10.8、设H是群G的子群,则∀a,b∈G有:a∈Hb ⇔ab-1∈H ⇔Ha=Hb10.9、设H是群G的子群,在G上定义二元关系R:∀a,b∈G, <a,b>∈R ⇔ab-1∈H则R是G上的等价关系,且[a]R = Ha.推论:设H是群G的子群, 则(1) ∀a,b∈G,Ha = Hb或Ha∩Hb = ∅(2) ∪{Ha | a∈G} = G10.10、(Lagrange)设G是有限群,H是G的子群,则:|G| = |H|·[G:H]其中[G:H] 是H在G中的不同右陪集(或左陪集) 数,称为H在G 中的指数.推论1:设G是n阶群,则∀a∈G,|a|是n的因子.推论2:对阶为素数的群G,必存在a∈G使得G = <a>.10.11、(循环群的生成元)设G=<a>是循环群. :(1) 若G是无限循环群,则G只有两个生成元,即a和a-1.(2) 若G是n 阶循环群,则G含有φ(n)个生成元. 对于任何小于n且与n 互质的数r∈{0,1,…,n-1}, ar是G的生成元.10.12、(循环群的子群)设G=<a>是循环群.(1) 设G=<a>是循环群,则G的子群仍是循环群.(2) 若G=<a>是无限循环群,则G的子群除{e}以外都是无限循环群.(3) 若G=<a>是n阶循环群,则对n的每个正因子d,G恰好含有一个d 阶子群.14.1、(握手定理)在任何无向图中,所有顶点的度数之和等于边数的2倍.14.2、(握手定理)在任何有向图中,所有顶点的度数之和等于边数的2倍;所有顶点的入度之和等于所有顶点的出度之和,都等于边数.推论:任何图(无向或有向) 中,奇度顶点的个数是偶数.14.5、在n 阶图G中,若从顶点vi 到vj(vi≠vj)存在通路,则从vi 到vj 存在长度小于或等于n-1 的通路.推论:在n 阶图G中,若从顶点vi 到vj(vi≠vj)存在通路,则从vi 到vj 存在长度小于或等于n-1的初级通路(路径).14.7、对任意无向图G中,有:κ(G)λ≤(G)δ≤(G)14.8、D强连通当且仅当D中存在经过每个顶点至少一次的回路14.9、D单向连通当且仅当D中存在经过每个顶点至少一次的通路14.10、无向图G=<V,E>是二部图当且仅当G中无奇圈15.1、无向图G是欧拉图当且仅当G连通且无奇度数顶点.15.2、无向图G是半欧拉图当且仅当G 连通且恰有两个奇度顶点.15.5、G是非平凡的欧拉图当且仅当G是连通的且是若干个边不重的圈的并.15.6、设无向图G=<V,E>是哈密顿图,对于任意V1⊂V且V1∅≠,均有p(G-V1) ≤ |V1|设无向图G=<V,E>是半哈密顿图,对于任意的V1⊂V且V1∅≠均有p(G-V1) ≤ |V1|+1 15.7、设G是n阶无向简单图,若对于任意不相邻的顶点vi,vj,均有d(vi)+d(vj) ≥n-1则G 中存在哈密顿通路.推论:设G为n(n≥3) 阶无向简单图,若对于G中任意两个不相邻的顶点vi,vj,均有d(vi)+d(vj) ≥n则G中存在哈密顿回路,从而G为哈密顿图.16.1、设G=<V,E>是n阶m条边的无向图,则下面各命题是等价的:(1) G 是树(2) G 中任意两个顶点之间存在惟一的路径.(3) G 中无回路且m=n-1.(4) G 是连通的且m=n-1.(5) G 是连通的且G 中任何边均为桥.(6) G 中没有回路,但在任何两个不同的顶点之间加一条新边,在所得图中得到惟一的一个含新边的圈.16.2、设T是n阶非平凡的无向树,则T 中至少有两片树叶.16.3、无向图G具有生成树当且仅当G连通.推论1 :G为n阶m条边的无向连通图,则m≥n-1.推论2 :余树的边数为m-n+1.推论3 :余树为G的生成树T的余树,C为G中任意一个圈,则C与余树一定有公共边17.3、平面图各面次数之和等于边数的两倍.17.4、极大平面图是连通的,并且n(n≥3)阶极大平面图中不可能有割点和桥.17.5、设G为n(n≥3)阶极大平面图,则G的每个面的次数均为3.17.6、(欧拉公式)设G为n阶m条边r个面的连通平面图,则n-m+r=217.7、(欧拉公式的推广)设G是具有k(k≥2)个连通分支的平面图,则n-m+r=k+117.8、设G为连通的平面图,且deg(Ri)≥l, l≥3,则m≤ l(n-2)/( l-2)推论:K5,K3,3不是平面图17.10、设G为n(n≥3)阶m条边的简单平面图,则m≤3n-6.17.11、设G为n(n≥3)阶m条边的极大平面图,则m=3n-6.17.12、设G 为简单平面图,则δ(G)≤5.17.13、G是平面图⇔G中不含与K5或K3,3同胚的子图.17.14、G是平面图⇔G中无可收缩为K5或K3,3的子图18.3、设n阶图G中无孤立顶点.(1) 设M为G中一个最大匹配,对于G中每个M非饱和点均取一条与其关联的边,组成边集N,则W=M⋃N为G中最小边覆盖.(2) 设W1为G中一个最小边覆盖;若W1中存在相邻的边就移去其中的一条,设移去的边集为N1,则M1=W1-N1为G中一个最大匹配.(3) G中边覆盖数α1与匹配数β1满足α1+β1=n.推论:设G是n阶无孤立顶点的图. M为G中的匹配,W是G中的边覆盖,则|M| ≤ |W|,等号成立时,M为G中完美匹配,W为G中最小边覆盖.18.4、M为G中最大匹配当且仅当G中不含M的可增广交错路径.18.5、(Hall定理)设二部图G=<V1,V2,E>中,|V1|≤|V2|. G中存在从V1到V2的完备匹配当且仅当V1中任意k(k=1,2,…,|V1|)个顶点至少与V2中的k个顶点相邻.本定理中的条件常称为“相异性条件”.18.6、设二部图G=<V1,V2,E>中,V1中每个顶点至少关联t (t≥1)条边,而V2中每个顶点至多关联t 条边,则G 中存在V1到V2的完备匹配.18.7、对于任意无向图G,均有χ(G) ≤∆(G)+1几个相关性质:χ(G)=1当且仅当G为零图χ(Kn)=n若G为奇圈或奇阶轮图,则χ(G)=3,若G为偶阶轮图,则χ(G)=4.若G的边集非空,则χ(G)=2当且仅当G为二部图18.8、(Brooks定理)若连通无向图G不是Kn,(n≥3),也不是奇数阶的圈,则χ(G) ≤∆(G) 18.10、(四色定理)任何平面图都是4-可着色的。
离散数学知识点总结及应用
离散数学知识点总结及应用
知识点1: 集合论
- 集合的定义和表示方法
- 集合的运算:并、交、差、补
- 集合的基本性质和定律
知识点2: 逻辑与命题
- 命题的定义和特性
- 命题的联结词:与、或、非
- 命题的真值表和逻辑运算
- 命题的充分条件和必要条件
知识点3: 关系与函数
- 关系的定义和性质
- 关系的类型:自反、对称、传递、等价
- 函数的定义和基本概念
- 函数的特性和图像
知识点4: 图论
- 图的基本概念和术语
- 图的存储结构:邻接矩阵、邻接表
- 图的遍历算法:深度优先搜索、广度优先搜索
- 最短路径算法:Dijkstra算法、Floyd-Warshall算法
知识点5: 组合数学
- 排列和组合的基本概念
- 排列和组合的计算方法
- 随机变量和概率分布
- 组合数学在密码学等领域的应用
知识点6: 布尔代数
- 布尔代数的基本运算:与、或、非
- 布尔函数的最小化方法
- 布尔代数的应用:逻辑电路设计、编码器等
知识点7: 计算理论
- 自动机的基本概念和分类
- 正则语言和正则表达式
- 文法的定义和性质
- 上下文无关文法和巴科斯范式
知识点8: 数论
- 整数的性质和基本运算
- 质数和分解定理
- 同余关系和同余方程
- 数论在加密算法中的应用
以上是离散数学中的一些主要知识点和应用场景的简要总结,希望对你的研究有所帮助。
离散数学沃舍尔算法
离散数学沃舍尔算法沃舍尔算法(Warshall's Algorithm)是一种经典的离散数学算法,用于寻找有向图的传递闭包。
它通过对图的邻接矩阵进行逐步的更新操作,最终得到传递闭包的结果。
在这篇文章中,我们将详细介绍沃舍尔算法的原理及应用。
首先,让我们先来了解一下什么是有向图的传递闭包。
对于一个有向图G=(V,E),如果存在一个顶点vi到vj的路径,则称vj是vi的后继节点。
如果对于任意的vi,vj∈V,都存在一条从vi到vj的路径,则这个有向图被称为是传递闭的。
换句话说,传递闭包包含原图中所有可能的路径。
沃舍尔算法的基本思想是通过一系列的传递操作,将图中的传递闭包逐步构建出来。
算法的核心是一个二维的邻接矩阵,用来表示有向图的边。
假设邻接矩阵为A,A[i][j]=1表示存在从vi到vj的边,A[i][j]=0表示不存在。
算法的步骤如下:1. 初始化邻接矩阵A,将A[i][j]赋值为1当且仅当存在从vi到vj的边。
2. 对于每一个节点vk∈V,遍历所有的节点vi,vj∈V,如果发现存在路径vi→vk并且vk→vj,则将A[i][j]置为13.重复步骤2,直到没有新的节点对需要更新为止。
通过这样的传递操作,最终邻接矩阵A将表示有向图的传递闭包。
算法的时间复杂度为O(n^3),其中n是图中节点的数量。
下面我们通过一个具体的例子来演示沃舍尔算法的运行过程。
考虑以下有向图:```V1→V4↓↑V2←V3```初始的邻接矩阵A为:```0011101001010001```按照算法的步骤,我们进行传递操作:```A[1][3]=A[1][3]OR(A[1][2]ANDA[2][3])=1A[2][1]=A[2][1]OR(A[2][3]ANDA[3][1])=1A[3][4]=A[3][4]OR(A[3][1]ANDA[1][4])=1A[4][1]=A[4][1]OR(A[4][3]ANDA[3][1])=1A[4][3]=A[4][3]OR(A[4][3]ANDA[3][3])=1```更新后的邻接矩阵A为:```0011101011011011```经过多次传递操作之后,邻接矩阵A表示的就是原图的传递闭包。
离散数学知识点
离散数学知识点WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】说明:定义:红色表示。
定理性质:橙色表示。
公式:蓝色表示。
算法:绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(?,?,?,?,?),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P规则,T规则, CP规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,?-规则(US),?+规则(UG),?-规则(ES),?+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, ?, ? , ?, 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补, 对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包 r(R),对称闭包 s(R),传递闭包 t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。
离散数学知识点(可编辑修改word版)
1.内容及范围主要来自 ppt,标签对应书本2.可能有错,仅供参考离散数学知识点说明:定义:红色表示。
定理性质:橙色表示。
公式:蓝色表示。
算法: 绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(⌝,∧,∨,→,↔),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P 规则,T 规则, CP 规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,∀-规则(US),∀+规则(UG),∃-规则(ES),∃+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, ∈, ⊆, ⊂, 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补, 对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包 r(R),对称闭包 s(R), 传递闭包 t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。
离散数学知识点总结
总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数为2种不同的关系;mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种不同的关系,有m n种不同的函1.若|X|=m,|Y|=n,则从X到Y有mn数;2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2.集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3.判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶 avb≥aA^b≤b 对偶 avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶 av(bvc)=(avb)vc7)等幂律a^a=a 对偶 ava=a8) 吸收律a^(avb)=a 对偶 av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶 a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=> av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则 v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
离散数学知识点整理
离散数学一、逻辑和证明1.1命题逻辑命题:是一个可以判断真假的陈述句。
联接词:A、V、一、f「。
记住“p仅当q”意思是“如果p,则q",即p-。
记住“q除非p”意思是“」p-q”。
会考察条件语句翻译成汉语。
构造真1.2语句翻译系统规范说明的一致性是指系统没有可能会导致矛盾的需求,即若pq无论取何值都无法让复合语句为真,则该系统规范说明是不一致的。
1.3命题等价式逻辑等价:在所有可能情况下都有相同的真值的两个复合命题,可以用真值表或者构造新的逻辑等价式。
证逻辑等价是通过p推导出q,证永真式是通过p推导出T。
(p—r)A(q-r) = (pVq)-r(p—q)V(p-r) = p—(qVr)(p—r)V(q-r) = (pAq)-r双条件命题等价式pf = (pfq) A (qfp)pf = -pfqpf Q (pAq) V(-pA-q)「(pf) = pfq1.4量词谓词+量词变成一个更详细的命题,量词要说明论域,否则没有意义,如果有约束条件就直接放在量词后面,如V x>0P(x)。
当论域中的元素可以一一列举,那么V xP(x)就等价于P(x1)AP(x2)...A P(xn)。
同理,3 xP(x)就等价于 P(x1)VP(x2)...VP(xn)。
两个语句是逻辑等价的,如果不论他们谓词是什么,也不论他们的论域是什么,他们总有相同的真值,如V x(P(x)AQ(x))和(V xP(x)) A (V xQ(x))。
量词表达式的否定:「V xP(x) Q 3 x-P(x),「3 xP(x) Q V x-P(x)。
1.5量词嵌套我们采用循环的思考方法。
量词顺序的不同会影响结果。
语句到嵌套量词语句的翻译,注意论域。
嵌套量词的否定就是连续使用德摩根定律,将否定词移入所有量词里。
1.6推理规则一个论证是有效的,如果它的所有前提为真且蕴含着结论为真。
但有效论证不代命题和量化命题的组合使用。
二、集合、函数、序列、与矩阵2.1集合£说的是元素与集合的关系,^说的是集合与集合的关系。
离散数学知识点
离散数学知识点摘要:离散数学是计算机科学和数学的一个分支,它专注于非连续结构的研究。
本文旨在概述离散数学的核心知识点,包括集合论、逻辑、关系、函数、图论、组合数学和递归等。
1. 集合论- 集合的基本概念:集合是离散数学的基础,它是一组明确的、无重复的对象的集合。
- 集合运算:包括并集、交集、差集、补集等。
- 幂集:一个集合所有子集的集合。
- 笛卡尔积:两个集合所有可能的有序对的集合。
2. 逻辑- 命题逻辑:研究命题(声明的真值)和它们之间的关系,如合取、析取、否定等。
- 谓词逻辑:使用量词(如全称量词和存在量词)来表达更复杂的逻辑关系。
- 逻辑推理:包括直接证明、间接证明和归谬法等。
3. 关系- 关系的定义:一个集合到另一个集合的有序对的集合。
- 关系的类型:自反性、对称性和传递性等。
- 关系的闭包:在给定关系下,集合的最小闭包。
4. 函数- 函数的定义:一个集合到另一个集合的映射,每个元素有唯一的像。
- 函数的类型:单射、满射和双射。
- 复合函数:两个函数可以组合成一个新的函数。
5. 图论- 图的基本概念:由顶点(节点)和边组成的结构。
- 图的类型:无向图、有向图、连通图、树等。
- 图的算法:如最短路径、最小生成树、图的着色等。
6. 组合数学- 排列和组合:从n个不同元素中取出r个元素的不同排列和组合的数量。
- 二项式定理:描述了二项式的幂展开的系数。
- 生成函数:一种编码序列的方法,用于解决复杂的计数问题。
7. 递归- 递归定义:一个对象通过引用比自己更小的版本来定义。
- 递归函数:在计算机程序中,一个函数调用自身来解决问题。
结论:离散数学为理解和设计计算机系统提供了基础工具和理论。
它的知识点广泛应用于算法设计、数据结构、编程语言理论和数据库等领域。
掌握离散数学对于任何希望在计算机科学领域取得进展的人来说都是至关重要的。
本文提供了一个简洁的离散数学知识点概述,每个部分都直接针对一个主题,避免了不必要的背景信息和解释。
离散数学知识点总结
离散数学知识点总结离散数学是数学中的一个分支,研究离散对象及其关系的数学理论。
它与连续数学形成鲜明的对比,连续数学主要研究连续对象和其性质。
离散数学在计算机科学、信息科学、电子工程等领域具有重要的应用价值。
下面将对离散数学的主要知识点进行总结。
1.命题逻辑:命题逻辑研究由命题符号组成的复合命题及其逻辑关系。
其中命题是一个陈述性的语句,可以是真或假。
命题逻辑包括命题的逻辑运算、真值表、命题的等价、充分必要条件等。
2.谓词逻辑:谓词逻辑是对命题逻辑的扩充,引入了量词、谓词和项。
它的研究对象是命题函数,可以表示个体之间的关系。
谓词逻辑包括谓词的运算、量词的运算、公理化和推理规则等。
3.集合论:集合论是研究集合及其操作的数学分支。
集合是一种由确定的对象组成的整体。
集合论包括集合的基本运算(交、并、差、补)、集合的关系(包含、相等、子集、真子集)以及集合的运算律和推导定理等。
5.组合数学:组合数学是研究物体的组合与排列问题的数学分支。
它包括排列、组合、分配、生成函数等内容,经常应用于计数和概率问题中。
6.图论:图论是用来描述物体间其中一种关系的图形结构的数学理论。
它研究的对象是由顶点和边构成的图,包括无向图、有向图、带权图等。
图论研究的内容包括图的性质、连通性、路径、回路、树、图的着色等。
7.代数系统:代数系统是一种由一组元素及其相应的运算规则构成的数学结构。
常见的代数系统有群、环、域、格等,它们分别研究了集合上的不同运算规律和结构。
8.布尔代数:布尔代数是一种应用于逻辑和计算机的代数系统。
它以真和假为基础,通过逻辑运算(与、或、非)构成了布尔代数。
布尔代数在计算机硬件设计和逻辑推理中广泛应用。
9.图的同构与图的着色:图的同构是指两个图在结构上相同,也就是说,它们具有相同的顶点和边的连接关系。
图的同构判断是一个NP难问题,需要借助于图的着色等方法来判断。
图的着色是给图的顶点分配颜色,使得相邻顶点的颜色不同。
精品课程《离散数学》PPT课件(全)
言1
为什么学习离散数学?
离散数学是现代数学的一个重要分支,是计算机科学与技术 的理论基础,所以又称为计算机数学,是计算机科学与技术 专业的核心、骨干课程。
它以研究离散量的结构和相互间的关系为主要目标,其研 究对象一般是有限个或可数个元素,因此它充分描述了计算 机科学离散性的特点。
离散数学是什么课?
真值为1
25
1.1 命题符号化及联结词
以下命题中出现的a是给定的一个正整数: (3) 只有 a能被2整除, a才能被4整除。
(4) 只有 a能被4整除, a才能被2整除。
解: 令r: a能被4整除, s: a能被2整除。 真值不确定 (3)符号化为 s r (4)符号化为 r s
真值为1
26
19
1.1 命题符号化及联结词
3.析取词 设p,q为二命题,复合命题“p或q” 称为p与q的析取式,记作p ∨ q,符号∨称 为析取联结词。 运算规则:
p 0 0 1 1 q 0 1 0 1 p∨q 0 1 1 1
20
1.1 命题符号化及联结词
析取运算特点:只有参与运算的二命题全为假时,运算结果才 为假,否则为真。 相容或:二者至少有一个发生,也可二者都发生 排斥或:二者只有一个发生,即非此即彼 例如: (1)小王爱打球或爱跑步。 设p:小王爱打球。 q:小王爱跑步。 则上述命题可符号化为:p ∨ q (2)张晓静是江西人或湖南人。 设p:江西人。 q:湖南人。 则上述命题就不可简单符号化为:p ∨ q 而应描述为(p∧ q) ∨( p∧q)(也可用异或联接词∨)
(1)星期天天气好,带儿子去了动物园; (2)星期天天气好,却没带儿子去动物园; (3)星期天天气不好,却带儿子去了动物园; (4)星期天天气不好,没带儿子去动物园。
离散数学知识点全归纳
离散数学知识点全归纳离散数学是数学的一个分支,研究的是离散对象和离散结构。
在计算机科学、信息技术以及其他领域中,离散数学具有重要的应用价值。
以下是离散数学的一些重要知识点的全面总结。
1. 集合论和逻辑- 集合:基本概念、运算、包含关系、并集、交集、差集、幂集等。
- 命题逻辑:命题、命题的连接词、真值表、逻辑等价、析取范式、合取范式等。
- 谓词逻辑:谓词、量词、逻辑推理、存在量词和全称量词等。
2. 证明方法- 直接证明:利用已知事实和逻辑推理,直接得出结论。
- 对证法:从假设的反面出发,利用矛盾推理得出结论。
- 数学归纳法:证明基础情况成立,再证明递推步骤成立。
3. 图论- 图的基本概念:顶点、边、路径、回路、度、连通性等。
- 图的表示:邻接矩阵、邻接表等。
- 最短路径:Dijkstra算法、Floyd-Warshall算法等。
- 最小生成树:Prim算法、Kruskal算法等。
4. 关系与函数- 关系及其性质:自反性、对称性、传递性、等价关系等。
- 函数及其性质:定义域、值域、单射、满射、双射等。
- 逆函数和复合函数:求逆函数、复合函数的定义和性质。
5. 组合数学- 排列和组合:排列、组合的计算公式和性质。
- 递归关系:递推公式、递归算法等。
- 图的着色:色数、四色定理等。
6. 代数系统- 半群、幺半群、群、环、整环和域的定义和性质。
- 同态:同态映射、同构等。
- 应用:编码理论、密码学等。
以上是离散数学的一些重要知识点的概括。
深入理解和掌握这些知识,对于解决实际问题和在相关领域中取得成功非常重要。
在学习过程中,建议结合实际例子和习题进行练习,加深对知识的理解和应用能力。
离散数学知识点总结
离散数学知识点总结1. 集合论- 集合的基本概念:集合、元素、子集、幂集、并集、交集、差集、补集。
- 集合的运算:德摩根定律、分配律、结合律、交换律。
- 有限集合和无限集合:可数与不可数集合、阿列夫零、阿列夫一。
2. 数理逻辑- 命题逻辑:命题、联结词、真值表、逻辑等价、逻辑蕴含、逻辑独立。
- 一阶谓词逻辑:量词、谓词、解释、满足、逻辑公式、全称量词、存在量词。
- 证明方法:直接证明、间接证明、反证法、数学归纳法。
3. 递归关系和函数- 递归定义:递归方程、初始条件、递归函数。
- 递归函数的例子:阶乘、斐波那契数列。
- 函数的性质:单射、满射、双射、复合函数。
4. 图论- 图的基本概念:顶点、边、路径、回路、图的同构。
- 图的类型:无向图、有向图、简单图、多重图、连通图、强连通图。
- 图的算法:欧拉路径、哈密顿回路、最短路径(Dijkstra算法)、最小生成树(Prim算法、Kruskal算法)。
5. 组合数学- 排列与组合:排列数、组合数、二项式定理。
- 组合恒等式:Pascal三角形、组合恒等式。
- 组合问题:计数原理、Inclusion-Exclusion原理。
6. 布尔代数- 布尔运算:AND、OR、NOT、XOR、NAND、NOR、XNOR。
- 布尔表达式的简化:卡诺图、奎因-麦克拉斯基方法。
- 布尔函数的表示:真值表、卡诺图、逻辑表达式。
7. 关系论- 关系的基本概念:笛卡尔积、自反性、对称性、传递性。
- 关系的类型:等价关系、偏序关系、全序关系。
- 关系的闭包:自反闭包、对称闭包、传递闭包。
8. 树和森林- 树的基本概念:节点、边、根、叶、子树、兄弟、祖先、子孙。
- 特殊类型的树:二叉树、平衡树、B树、B+树。
- 树的遍历:前序遍历、中序遍历、后序遍历、层次遍历。
9. 算法复杂度- 时间复杂度:最好情况、最坏情况、平均情况、大O表示法。
- 空间复杂度:算法空间需求的分析。
- 渐进分析:渐进紧确界、大Θ表示法、小o和大O的非正式描述。
离散数学重要公式定理汇总
可满足公式(Satisfaction)公式中的命题变量无 论怎样代入,公式对应的真值总有一种情况为T。
一般命题公式(Contingency)既不是永真公式也不
是永假公式。
欧姆龙2贸02易0/7(/10上海)有限公司
6
Formula
3.重要的重言蕴含式(如教材第43页所示)
I1.P∧QP , I3. PP∨Q
的。
欧姆龙贸易(上海)有限公司
三.对称性 定义:R是集合A中关系,若对任何x, y∈A,如果有
xRy,必有yRx,则称R为A中的对称关系。
R是A上对称的
xy((xAyAxRy) yRx)
❖从关系有向图看对称性:在两个不同的结 点之间,若有边的话,则有方向相反的两 条边。
❖从关系矩阵看对称性:以主对角线为对 称的矩阵。
欧姆龙2贸02易0/7(/10上海)有限公司
17
为了便于记忆,用图形表示上面八个公式。
xyA(x,y)
yxA(x,y)
yxA(x,y) xyA(x,y)
xyA(x,y) yxA(x,y)
yxA(x,y)
xyA(x,y)
欧姆龙2贸02易0/7(/10上海)有限公司
18
第二章 小结
欧姆龙2贸02易0/7(/10上海)有限公司
⑴ A-Φ=A
⑵ Φ-A=Φ
⑶ A-A=Φ
⑷ A-BA
⑸ AB A-B=Φ
⑹ (A-B)-C=(A-C)-(B-C)
⑺ A-(B∩C)=(A-B)∪(A-C)
⑻ A-(B∪C)=(A-B)∩(A-C)
⑼ A∩(B-C)=(A∩B)-(A∩C)
注意:∪对- 是不可分配的,如A∪(A-B)=A 而(A∪A)-(A∪B)=Φ
离散数学知识点归纳
离散数学知识点归纳一、集合论。
1. 集合的基本概念。
- 集合是由一些确定的、彼此不同的对象组成的整体。
这些对象称为集合的元素。
例如,A = {1,2,3},其中1、2、3是集合A的元素。
- 集合的表示方法有列举法(如上述A的表示)和描述法(如B={xx是偶数且x < 10})。
2. 集合间的关系。
- 子集:如果集合A的所有元素都是集合B的元素,则称A是B的子集,记作A⊆ B。
例如,{1,2}⊆{1,2,3}。
- 相等:如果A⊆ B且B⊆ A,则A = B。
- 真子集:如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂ B。
3. 集合的运算。
- 并集:A∪ B={xx∈ A或x∈ B}。
例如,A = {1,2},B={2,3},则A∪B={1,2,3}。
- 交集:A∩ B = {xx∈ A且x∈ B}。
对于上述A和B,A∩ B={2}。
- 补集:设全集为U,集合A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
二、关系。
1. 关系的定义。
- 设A、B是两个集合,A× B的子集R称为从A到B的关系。
当A = B时,R称为A上的关系。
例如,A={1,2},B = {3,4},R={(1,3),(2,4)}是从A到B的关系。
2. 关系的表示。
- 关系矩阵:设A={a_1,a_2,·s,a_m},B={b_1,b_2,·s,b_n},R是从A到B的关系,则R的关系矩阵M_R=(r_ij),其中r_ij=<=ft{begin{matrix}1,(a_i,b_j)∈ R0,(a_i,b_j)∉ Rend{matrix}right.。
- 关系图:对于集合A上的关系R,用节点表示A中的元素,若(a,b)∈ R,则用有向边从a指向b。
3. 关系的性质。
- 自反性:对于集合A上的关系R,如果对任意a∈ A,都有(a,a)∈ R,则R 是自反的。
例如,A={1,2,3},R = {(1,1),(2,2),(3,3)}是自反关系。
离散数学公式大全总结
离散数学公式大全总结离散数学是数学中的一个分支,涵盖了许多概念和公式。
以下是一些离散数学中常见的公式和概念的总结:1. 集合理论:集合并:$A \cup B = {x | x \in A \text{或} x \in B}$集合交:$A \cap B = {x | x \in A \text{且} x \in B}$集合补:$A' = {x | x \notin A}$集合差:$A - B = {x | x \in A \text{且} x \notin B}$幂集:如果$A$有$n$个元素,$P(A)$有$2^n$个子集。
容斥原理:$|A \cup B| = |A| + |B| - |A \cap B|$2. 排列和组合:排列数:$P(n, k) = \frac{n!}{(n - k)!}$组合数:$C(n, k) = \frac{n!}{k!(n - k)!}$二项定理:$(a + b)^n = \sum_{k=0}^{n}C(n, k)a^{n-k}b^k$3. 图论:手握定理:$2 \cdot \text{边数} = \sum \text{度数}$欧拉图:一个连通图是欧拉图,当且仅当每个顶点的度数都是偶数。
哈密顿图:包含图中每个顶点的圈。
图着色:给定图中的顶点,用尽量少的颜色对它们进行着色,使得相邻的顶点颜色不相同。
图的最短路径:Dijkstra算法和Floyd-Warshall算法用于找到图中的最短路径。
4. 布尔代数:布尔变量:$0$表示假,$1$表示真。
逻辑与:$A \land B$逻辑或:$A \lor B$逻辑非:$\lnot A$逻辑与门:$AND$逻辑或门:$OR$逻辑非门:$NOT$布尔恒等定律:$A \land 1 = A$,$A \lor 0 = A$德·摩根定律:$\lnot (A \land B) = \lnot A \lor \lnot B$,$\lnot (A \lor B) = \lnot A \land \lnot B$5. 树和图:树的顶点数与边数关系:$V = E + 1$二叉树的性质:最多有$2^k$个叶子节点,高度为$h$的二叉树最多有$2^{h+1} - 1$个节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-6-24
7、运算顺序 逻辑联结词也称逻辑运算符,以上五种最基本 的联结词组成了一个集合 {, , , , } ,称为 一个联结词集。规定优先级的顺序为, , , , ,若有括号时,先进行括号内运算。 例如: P (Q P ) (Q R ) Q 设P真值为1 ,Q真值为0,R真值为1
真值表:
P Q
0 0 0 1
PQ
1 0 0 1
1
1
0
1
2013-6-24
例1.16、春天到了,燕子南飞。 解: P : 春天到了; Q : 燕子南飞
PQ
2013-6-24
6、逻辑联结词与自然语言中联结词的关系。
否定——不是,没有,非,不。 合取——并且,同时,和,既…又…,不但 …而且…,虽然…但是…。
原子命题 例:4是合数。 例:4是合数,并且3是素数。 复合命题 例:4是合数,并且3是素数,但1既不是素数也 不是合数。 复合命题
2013-6-24
例: 2是有理数是不对的;2是偶素数;
2或4是素数;如果2是素数,则3也是 素数;2是素数当且仅当3也是素数。
解: : 2是有理数 P
Q : 2是素数
R : 2是偶数
S : 3是素数 T : 4是素数
“非 P”;“ Q 并且 R”;“ Q 或 T ”; “如果 Q ,则 S”;“ Q 当且仅当 S” .
2013-6-24
二、逻辑联结词。
常用的联结词有 , , , , 这五种
2013-6-24
P 1、“非 ”称为 p 的否定式,记作 P
例2、将下面命题符号化。 (1)小丽既聪明又用功。 (2)小丽聪明,但不用功。
(3)小丽不但聪明,而且用功。
PQ
P Q
PQ
(4) 小丽不是不聪明,是不用功。 (P ) Q
(5)小刚与小丽都是三好学生。 (6)小刚与王丽是同学。
RS
2013-6-24
T 解:设 P :小丽聪明, Q :小丽用功。 R:小刚是三好学生, S :小丽是三好学生。 T:小刚与王丽是同学
2013-6-24
例7、P:北京比天津人口多,
Q:2+2=4
R:乌鸦是白色的。求下列复合命题的真值。 (1).((P Q ) ( P Q )) R
(2).(Q R ) ( P R ) (3).(P R ) ( P R )
解:P,Q,R的真值分别为1,1,0,所以
PQ
(3) 因为天下雨,所以我在室内活动。 P Q (4) 除非天下雨,否则我不在室内活动。 Q P (5) 如果天不下雨,我就不在室内活动。P Q (6) 仅当天下雨,我才在室内活动。
2013-6-24
QP
5、“P 当且仅当 Q ”称 P, Q的等价式,记作 P Q 。
Q P 是 Q 的充要条件,也是 P 的充要条件。
2013-6-24
数理逻辑的研究内容
现代数理逻辑:逻辑演算、证明论、公理集 合论、递归论和模型论。 逻辑演算是数理逻辑中最成熟的部分,在计 算机科学中应用最为广泛,其中命题逻辑是 数理逻辑的最基础部分,谓词逻辑是在它的 基础上发展起来的,本门课研究命题逻辑与 谓词逻辑。
2013-6-24
第一章 命题逻辑 Proposition Logic
命题变元:真值可以变化的陈述句,也用 P,Q,R,…等表示。命题变元已不在是命题。
2013-6-24
2、命题公式(或合式公式)
定义1.1 通俗地说,命题公式是由命题变元,联结词,
圆括号按一定逻辑关系联结起来的字符串。 (1)单个命题变元是命题公式,并称为原子公式. (2)若A是命题公式,则¬A也称为命题公式. (3)若A,B是命题公式,则(A∧B), (A∨B), (A→B), (A B) 也是命题公式. (4)只有有限次地应用(1)~ (3)形成的符号串才是合式 公式.
真值表
P
0 1
P
1
0
例如: :11是素数; P :11不是素数 P
P 取值1, P 取值0。
2013-6-24
2、“ 并且Q ”称为 P, Q的合取式,记作 P Q 。 P 真值表
P Q
0 0 1 1 0 1 0 1
PQ
0 0ቤተ መጻሕፍቲ ባይዱ0 1
例1.1,小刚和小明都是大学生
解: :小刚是大学生, P
2013-6-24
命题的记法
命题的符号化:P,Q,R,…,Pi, ,Qi ,Ri,… 真值的符号化:1/T表真,0/F表假 例:P: 2是素数,Q:雪是黑色的
2013-6-24
命题的分类
简单命题(原子命题)——不能再分解成更简单的命题 命题 复合命题——由简单命题用联结词联结而成的命题
P 3、“ 或者 Q ”称 P, Q的析取式,记作 P Q 。
真值表
P Q
0 0 1 1 0 1 0 1
PQ
0 1 1 1
例1.5,今晚我在家看电视或听音乐。
解: :今晚我在家看电视, P
Q :今晚我在家听音乐
2013-6-24
命题符号化为:
PQ
注意:
①“∨”的逻辑关系是明确的。即P、Q二命题中至少有
2013-6-24
离散数学的内容十分丰富,最重要,最 核心的是:数理逻辑、集合论、代数系统 和图论。本课程主要讲授以上四个方面的 内容。
2013-6-24
数理逻辑简介
2013-6-24
数理逻辑是用数学方法来研究推 理的形式结构和推理规律的数学学 科,这里所指的数学方法就是引进 一套符号体系的方法,所以数理逻 辑又称符号逻辑。它与数学的其它 分支、计算机科学、人工智能、语 言学等学科均有密切的联系。
2013-6-24
例3、将下列命题符号化
⑴张晓静爱唱歌或爱听音乐; 解:P:张晓静爱唱歌;Q:张晓静爱听音乐 符号化为P∨Q
(2)张晓静是江西人或安徽人; 解:R:张晓静是江西人;S:张晓静是安徽人 可符号化为(R∧¬ S)∨(S ∧¬ R)
(3)张晓静20多岁或30来岁. 解:这里的或是一个模糊的数据。
2013-6-24
2 、 用P表示命题“天下雪”, Q表示命题 “我将去镇上”,R表示命题“我有时间”。 以符号形式写出下列命题:
(a)如果天不下雪和我有时间,那么我将去镇上. (b)我将去镇上,仅当我有时间.
(c)天不下雪 (d)天下雪,那么我不去镇上
2013-6-24
第1.2节 命题公式及真值表
(1)的真值为1, (2)的真值为1, (3)的真值为0。
2013-6-24
习题解析
1、指出下列语句哪些是命题,哪些不是命题, 如果是命题指出真值 a) 离散数学是计算机科学系的一门必修课 b) Π>2 吗? c) 明天我去看电影 d) 请勿随地吐痰 ! e) 不存在最大质数
2013-6-24
f) 如果我掌握了英语,法语,那么学习其他欧 洲的语言就容易多了 g) 9+5<12 h) x<3 i) 月球上有水
②数理逻辑中的联结词是对日常语言中的联结词的
一种逻辑抽象,自然语言中联结词所联结的句子 之间是有一定内在联系的,但在数理逻辑中,联 结词所联结的命题可以毫无关系。
2013-6-24
例、
P :天下雨,Q :我在室内活动。
(1) 如果天下雨,那么我在室内活动。 P Q
(2) 只要天下雨,我就在室内活动。
第1.1节 命题及联结词
2013-6-24
内容:命题,逻辑联结词,命题符号化 重点: (1)掌握命题概念 (2)掌握联结词含义及真值表 (3)掌握命题符号化方法
2013-6-24
一、命题的概念
命题是研究思维规律的科学中的一项基本要素, 它是一个判断的语言表达。 命题:能判断真假的陈述句。 说明:一切没有判断内容的句子,无所谓是非的 命题真值:命题所表达的判断结果。 句子,如感叹句、疑问句、祈使句等都不是命题。
2013-6-24
内容:命题公式,24组重要等值式,命题公式的类型
重点:(1) 掌握命题公式的定义及公式的真值表。 (2) 掌握两公式等值的定义;掌握24个重要 等值式,并能利用其进行等值演算。 (3) 掌握重言式和矛盾式的定义及使用真 值表进行判断。
2013-6-24
一、命题公式
1、命题常元、命题变元 命题常元:简单命题。
计算机软件 离散数学
Discrete Mathematics
主讲教师:任美睿
2013-6-24
离散数学是现代数学的一个重要分支。 是计算机科学中基础理论的核心课程,为 计算机科学提供了有力的理论基础和工具。 离散数学的基本思想、概念和方法广泛地 渗透到计算机科学与技术发展的各个领域, 而且其基本理论和研究成果更是全面而系 统地影响和推动着其发展。
(6) 地球外的星球上也有人。
2013-6-24
例1、判断下列句子中哪些是命题。 (7) 明天有课吗? (9) 我正在说假话。
× √?
(8) 小明和小林都是三好生。 (10) 2020年春节是晴天。
×悖论,无法判断真值
√?
2013-6-24
命题的判断
判断一个语句是否为命题,关键: ①首先看是否为陈述句; ②再看其真值是否唯一。 要注意两点: ①一个陈述句在客观上能判断真假,而不受人的知识 范围的限制; ②一个陈述句暂时不能确定真值,但到了一定时候就 可以确定,与一个陈述句的真值不能唯一确定是不 结论:1、命题一定是陈述句,陈述句未必是命题。 同的。 2、命题的真值有时可以明确给出,但有时还需要依靠 环境、条件和实际环境时间才能确定其真值。