数学中考总复习第一部分数与代数
初中数学中考总复习教案
初中数学中考总复习教案第一章:实数与代数1.1 有理数理解有理数的定义及分类掌握有理数的加减乘除运算规则能够进行有理数的乘方和开方运算1.2 整式与分式理解整式和分式的定义掌握整式和分式的加减乘除运算规则能够进行整式和分式的化简和求值第二章:函数与方程2.1 一次函数和二次函数理解一次函数和二次函数的定义和性质掌握一次函数和二次函数的图像和解析式能够解决一次函数和二次函数的实际问题2.2 一元一次方程和一元二次方程理解一元一次方程和一元二次方程的定义和解法掌握一元一次方程和一元二次方程的解法和应用能够解决一元一次方程和一元二次方程的实际问题第三章:几何与变换3.1 平面几何基本概念理解点、线、面的基本概念和性质掌握线段、射线、直线的性质和运算能够进行线段和角的大小比较3.2 三角形理解三角形的定义和性质掌握三角形的分类和判定方法能够解决三角形的相关问题第四章:统计与概率4.1 统计理解统计的基本概念和方法掌握数据的收集、整理和表示方法能够进行数据的分析和解释4.2 概率理解概率的基本概念和方法掌握事件的分类和概率的计算方法能够解决概率相关问题第五章:综合应用题5.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题5.2 函数与方程的综合应用题能够解决涉及函数与方程的综合应用题5.3 几何与变换的综合应用题能够解决涉及几何与变换的综合应用题5.4 统计与概率的综合应用题能够解决涉及统计与概率的综合应用题第六章:实数与代数的综合应用题6.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题,如面积、体积、距离等问题。
6.2 列代数式与求代数式的值能够根据实际问题列出相应的代数式能够求出代数式的值,包括解含绝对值、平方、立方等的代数式。
第七章:函数与方程的综合应用题7.1 一次函数和二次函数的综合应用题能够解决涉及一次函数和二次函数的综合应用题,如实际问题、图像分析等问题。
7.2 一元一次方程和一元二次方程的综合应用题能够解决涉及一元一次方程和一元二次方程的综合应用题,如实际问题、方程组等问题。
最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第6讲 分式方程
C. 10 - 10=12
1.2x x
B. 10 - 10=0.2
1.2x x
D.10 - 10 =0.2
x 1.2x
返回
数学
6.(2021威海)六一儿童节来临之际,某商店用3 000元购进一批 玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用 3 000元购进的数量比第一次少了10件. (1)第一次每件的进价为多少元? (2)若两次购进的玩具售价均为70元,且全部售完,两次的总利 润为多少元?
(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪 肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
返回
数学
解:(1)设猪肉粽每盒进价 a 元,则豆沙粽每盒进价(a-10)元,
则8
000 a
=
a6-00100,解得
a=40,经检验
a=40
是方程的解.
答:猪肉粽每盒的进价为 40 元,豆沙粽每盒的进价为 30 元.
返回
数学
考点2 分式方程的应用
5.(2021江西)甲、乙两人去市场采购相同价格的同一种商品,
甲用2 400元购买的商品数量比乙用3 000元购买的商品数量
少10件.求这种商品的单价.
解:设这种商品的单价为 x 元/件,由题意得3 000 - 2 400=10,
x
x
解得 x=60,经检验:x=60 是原方程的根.
x+1 x
8.(2010 广东)分式方程 2x =1 的解是 x= 1 .
x+1
返回
数学
9.(2018广东)某公司购买了一批A,B型芯片,其中A型芯片的单 价比B型芯片的单价少9元,已知该公司用3 120元购买A型芯 片的条数与用4 200元购买B型芯片的条数相等. (1)求该公司购买的A,B型芯片的单价各是多少元? (2)若两种芯片共购买了200条,且购买的总费用为6 280元,求 购买了多少条A型芯片?
初中中考数学知识点总结书
初中中考数学知识点总结书一、数与代数1. 有理数的运算- 正数、负数、整数、分数、小数的概念- 有理数的加、减、乘、除运算法则- 乘方、开方的概念及运算- 绝对值的概念及性质2. 整式与分式- 单项式、多项式的概念- 同类项、合并同类项- 整式的加减、乘除运算- 分式的基本性质、约分、通分- 分式的加减、乘除运算3. 代数方程- 一元一次方程、二元一次方程的概念- 方程的解法:移项、合并同类项、系数化为1- 不等式及其解集- 一元二次方程的概念及解法:开平方法、配方法、公式法、因式分解法4. 函数- 函数的概念、表示法- 线性函数、二次函数的图像和性质- 函数的简单运算:加法、减法、数乘- 函数的应用题二、几何1. 平面几何- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类与性质:等边、等腰、直角三角形- 四边形的分类与性质:平行四边形、矩形、菱形、正方形 - 圆的基本性质:圆心、半径、直径、弦、弧、切线2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆- 体积的计算:长方体、正方体、圆柱、圆锥- 相似三角形的性质与应用- 几何图形的变换:平移、旋转、对称3. 解析几何- 坐标系的概念:直角坐标系、坐标点- 点的位置由坐标确定- 直线方程:点斜式、斜截式、两点式- 圆的方程:标准式、一般式三、统计与概率1. 统计- 统计调查的基本概念- 数据的收集、整理、描述- 频数、频率、频数分布表- 平均数、中位数、众数的计算与意义2. 概率- 随机事件的概念- 概率的初步认识- 计算简单事件的概率- 用树状图法解决简单的概率问题四、综合应用题1. 数列- 等差数列的概念、通项公式、求和公式- 等比数列的初步认识2. 应用题- 利用数学知识解决实际问题- 列方程解应用题- 利用函数知识解决优化问题3. 综合题- 结合数与代数、几何、统计与概率的知识解决综合性问题- 培养解决复杂问题的能力附录:常用数学公式- 乘法公式:平方差公式、完全平方公式- 一元二次方程的求根公式- 圆周率π的近似值- 常用三角函数的值:30°、45°、60°的正弦、余弦、正切值本总结书旨在为初中生提供一份全面的中考数学复习资料,涵盖了中考数学的主要知识点。
最新中考数学总复习第一部分数与代数 第一章 数与式 第3讲 代数式、整式与因式分解
数学
8.计算: (1)3x2·5x2= 15x4 ; (2)3a(5a-2b)= 15a2-6ab ; (3)(3x+1)(x+2)= 3x2+7x+2 ; (4)10ab3÷(-5ab)= -2b2 ; (5)(6ab+5a)÷a= 6b+5 .
返回
数学
9.乘法公式 (1)平方差公式:(a+b)(a-b)= a2-b2 . (2)完全平方公式:(a±b)2= a2±2ab+b2 .
返回
数学
11ቤተ መጻሕፍቲ ባይዱ分解因式: (1)a3b-ab= ab(a+1)(a-1) ; (2)3ax2+6axy+3ay2= 3a(x+y)2 .
返回
数学
课堂精讲
考点1 代数式与代数式求值
1.(2021温州)某地居民生活用水收费标准:每月用水量不超过
17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区
返回
数学
课前预习
1.(2021 广州模拟)单项式-3πa2b的系数是
4
-3π
4
,次数是
3
.
2.(2021 汕尾模拟改编)下列说法错误的是( B )
A.3xy 的系数是 3 C.-ab3 的次数是 4
B.2xy2 的次数是2
3
3
D.5x2-2xy-1 是二次三项式
返回
数学
3.(2021 广州)下列运算正确的是( C )
某用户上月用水量为20立方米,则应缴水费为( D )
A.20a元
B.(20a+24)元
C.(17a+3.6)元
最新中考数学总复习第一部分数与代数 第12讲 二次函数
10, 题25
数的
题22,
题25 题25 题25 题25
图象和性质
题25
题25
二次函数的 题12,4 题7,
平移
分
3分
返回
数学
二次函数的
解析式
(待定系数)
二次函数图
象的
顶点坐标、
对称轴
题
25(1),
2分
题7,3分
题
题
25(1),
25(3),
1分
1分
题
23(3),
2
2
∴k= 3 或 k=2,即 k 的值为 2 或 3.
返回
数学
(3)∵函数的对称轴为直线 x=2,当 m<2 时,当 x=m 时,y 有最大
4m
1
值, 3 =- 3 (m-2)+3,解得 m=± 5,∴m=- 5;
4m
当 m≥2 时,当 x=2 时,y 有最大值,∴
3
9
=3,∴m= .
4
9
综上所述,m 的值为- 5或 4.
题
题23(1) 3分
23(2),
(2),6分 题
3分
25(3),
2分
题10,
3分
题
23(3),
1分
返回
数学
二次函数与一元
二次方程、不等
题
题25(1), 题10,3
题23(3),
25(1),
式
5分
分
4分
(与x轴的交点坐
2分
标)
题10,3分
题25(3), 题25(3), 题25(3), 题25(3),
A,B(-1,0)两点,则下列说法正确的是( D )
初中数学总复习
初中数学总复习初中数学总复资料1.数与代数1.1 数与式有理数:有限或循环小数(无理数:无限不循环小数)数轴:三要素相反数绝对值:│a│= a(a≥0)│a│=-a(a<0)倒数指数零指数:a=1(a≠0)负整指数:(a≠0,n是正整数)完全平方公式:(a±b)²=a²±2ab+b²平方差公式:(a+b)(a-b)=a²-b²幂的运算性质:am·an=am+nam÷an=am-nam)n=amnab)n=anbnan/n科学记数法:a×10n(1≤a<10,n是整数)算术平方根、平方根、立方根、1.2 方程与不等式一元二次方程定义及一般形式:ax²+bx+c=0(a≠0)解法:1.直接开平方法.2.配方法3.公式法:x1,2= (-b±√(b²-4ac))/2a4.因式分解法.根的判别式:Δ=b²-4ac>0,有两个解。
Δ=b²-4ac<0,无解。
Δ=b²-4ac=0,有1个解。
维达定理:x1+x2=-b/a,x1×x2=c/a常用等式:x1+x2=-b/a,x1×x2=c/a1.3 应用题1.行程问题:相遇问题、追及问题、水中航行:v顺=船速+水速;v逆=船速-水速2.增长率问题:起始数(1+X)=终止数3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
4.几何问题1.4 分式方程(注意检验)由增根求参数的值:1.将原方程化为整式方程2.将增根带入化间后的整式方程,求出参数的值。
1.5 不等式的性质1.a>b→a+c>b+c2.a>b→ac>bc(c>0)3.a>b→ac<bc(c<0)4.a>b,b>c→a>c5.a>b,c>d→a+c>b+d.2.函数2.1 一次函数1.定义:y=kx+b(k≠0)2.图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。
最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第7讲 一元二次方程及应用
数学
(2)解:∵x2-4mx+3m2=0,即(x-m)(x-3m)=0, ∴x1=m,x2=3m. ∵m>0,且该方程的两个实数根的差为2, ∴3m-m=2, ∴m=1.
返回
数学
考点3 *一元二次方程根与系数的关系
8.(2021 黄石)已知关于 x 的一元二次方程 x2+2mx+m2+m=0 有 实数根. (1)求 m 的取值范围; (2)若该方程的两个实数根分别为 x1,x2,且x12+x22=12,求 m 的值.
返回
数学
14.(2018广东)关于x的一元二次方程x2-3x+m=0有两个不相 等的实数根,则实数m的取值范围是( A )
A.m<9
4
B.m≤9
4
C.m>9
4
D.m≥9
4
返回
数学
15.(2019广东)已知x1,x2是一元二次方程x2-2x=0的两个实 数根,下列结论错误的是( D )
A.x1≠x2
一元二次方 题14,
题4,
程的解 4分
3分
解一元二次 方程
题 题9,3
21(2), 分 2分
题17, 6分
返回
数学
一元二次方程
题9,
题8,
根的判别式
3分
3分
一元二次方程
的应用题
◇链接教材◇人教版:九上第二十一章P1-P26
北师版:九上第二章P30-P58
返回
数学
课前预习
1.(2021深圳)已知方程x2+mx-3=0的一个根是1,则m的值为 2.
2.(2021广州)方程x2-4x=0的实数解是 x1=0,x2=4 .
中考数学分类解析第一篇数与代数
中考数学分类解析第一篇数与代数对于初中数学,如果我们从大的方面去划分,可以把它分为“数与代数”、“图形与几何”、“统计与概率”和“综合与实践”四类。
其中代数一般包括实数、代数式、方程和不等式(组)、函数这四方面的内容。
其中“数与代数”综合题是初中数学中知识覆盖面较广,综合性较强,解题方法较灵活、多样的题型之一。
很多人听到“代数”这一词,脑子浮现的就是计算计算,其实不然,代数综合题蕴含着丰富的数学思想方法,例如化归思想、分类思想、数形结合思想以及代人法、待定系数法等。
纵观近几年的中考试题,“数与代数”综合题是中考试题中较难的题目,要想得高分必须做好这类题,这类题主要以方程(组)、不等式(组)或函数为基础进行综合。
解题时一般用分析综合法解,要认真读题,找准突破口,仔细分析各个已知条件,进行转化,发挥条件整体作用进行解题。
中考中“数与代数”综合题涉及的知识类别通常是“你中有我,我中有你”,因此不易将它们十分明显的分类。
为了复习方便,我们将其分为四类:一、以方程(组)为主的“数与代数”综合题典型例子1。
某小区为了创建国家卫生城市,需要清理一个卫生死角的垃圾,租A、B两辆车,每辆车y-12就可以完成,运费4800元。
已知A、B两辆车单独运送了这堆垃圾,B车运送的车次是A车的两倍,B车运费比A车少200元。
(1)甲乙双方单独运输这堆垃圾需要多少趟?(2)如果单独租车,租哪辆车比较经济?【简析】(1)假设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运2x趟,根据总工作效率1-12得出等式方程求出即可;(2)分别表示出甲、乙两车单独运每一趟所需费用,再根据关键语句“两车各运12趟可完成,需支付运费4800元”可得方程,再解出方程,再分别计算出利用甲或乙所需费用进行比较即可。
【搂抱】本题主要考察分数方程和线性方程的应用。
关键是要正确理解题意,找出题中的等价关系,列出对应的等式。
(自动识别)二、以不等式(组)为主的“数与代数”综合题典型例题2、某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。
初中学课件-数与代数(根据名校名师个性辅导课堂复制整理的精品课件,同步辅导,章节总结,中考复习通用)
2、(2013 大连)-2 的相反数是( A A.-2
1 B.- 2
)
1 C. 2
D.2
思路点拨: 本题考查了相反数的意义,一个数的相反数就是在这个数前面 添上“-”号.一个正数的相反数是负数,一个负数的相反数是正数,0 的 相反数是 0.
1 3、(2013 梅州)四个数-1,0, 2 ,
2 中为无理数的是( D )
★课堂精讲★
考点 1 .实数的有关概念(倒数、绝对值、相反数、无理数) (2008~2013 年考) 1.(2013 北京)
3 4 的倒数是( D )
4 A. 3
3 B. 4
3 C. 4
4 D.- 3
思路点拨: 本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0 没有倒数. 倒数的定义:若两个数的乘积是 1,我们就称这两个数互为倒数.
0 -a
不论有理数 a 取何值,它的绝对值总是非负数.即|a|≥0.
5.倒数:1 除以一个数的商,叫做这个数的倒数,实数 a,b 互为倒数,则 1 ab= .注意 0 没有倒数. 6.实数的运算 混合运算顺序: ①先算 乘方 ,再算 乘除 ,最后算 加减 ,②若有括号,先算括号 里面的;③同级运算,从左到右进行. 7.实数大小的比较 (1)正数大于零,负数小于零;两个正数,绝对值大的较 大 ;两个负数, 小 . 绝对值大的较 (2)作差法:设 a,b 是任意两个有理数,若 a-b>O,则 a>b;若 a-b=O,则 a=b; 若 a-b<O,则 a<b. 8.科学记数法
★课前预习★
1.(2013 福州)2 的倒数是(
1 A.2
A )
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
最新中考数学总复习第一部分数与代数 第二章 方程与不等式 热点专题 方程与不等式应用专题
400 x
=
x5-12400,解得
x=200,
经检验,x=200 是所列分式方程的解,且符合题意.
答:该旅行社到洪洞大槐树的原来门市报价是每人 200 元.
返回
数学
(2)设平均每次的降价率为y,根据题意得200(1-y)2=128, 解得y1=0.2=20%,y2=1.8(不合题意,舍去). 答:平均每次降价的百分率为20%.
返回
数学
(3)方案1所需资金为1.5×5+0.5×5=10(万元); 方案2所需资金为1.5×6+0.5×4=11(万元); 方案3所需资金为1.5×7+0.5×3=12(万元). ∵10<11<12,∴购买方案1所需资金最少,最少资金是10万元.
返回
数学
6.(2021黔南州模拟)在2020年新冠肺炎疫情期间,某中学响应 政府“停课不停学”的号召,充分利用网络资源进行网上学习, 九年级(1)班的全体同学在自主完成学习任务的同时,彼此关 怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果 该班共有48名同学,若每两名同学之间仅通过一次电话,那么 全班同学共通过多少次电话呢?我们可以用下面的方式来解 决问题.
返回
数学
(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是
多少?
解:(1)设购进 1 件甲种农机具需要 x 万元,1 件乙种农机具需要 y
万元,依题意得
2x+y=3.5 ,解得
x=1.5 .
x+3y=3
y=0.5
答:购进 1 件甲种农机具需要 1.5 万元,1 件乙种农机具需要 0.5
返回
数学
用点A1,A2,A3,…,A48分别表示第1名同学、第2名同学、第3名 同学、…、第48名同学,把该班级人数x与通电话次数y之间 的关系用如图所示的模型表示:
中考数学一轮复习第一部分数与代数第三章函数第10讲一次函数课件
A
B
C
D
3.(2020 临沂)点
1
- 2 ,m
大小关系是 m<n .
和点(2,n)在直线 y=2x+b 上,则 m 与 n 的
求一次函数的解析式
4.(2020南通)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点
C(1,m),与x轴交于点B.
(1)求直线l2的解析式;
(2)点M在直线l1上,MN∥y轴,交直线l2于
点N,若MN=AB,求点M的坐标.
解:(1)在 y=x+3 中,令 y=0,得 x=-3,∴B(-3,0),
把 x=1 代入 y=x+3 得 y=4,∴C(1,4),
设直线 l2 的解析式为 y=kx+b,
k+b=4
k=-2
∴
,解得
,
3k+b=0
b=6
∴直线 l2 的解析式为 y=-2x+6.
(2)AB=3-(-3)=6,
(3,0),(0,2),则这个函数的解析式
为
y=-x+2
.
课堂精讲
一次函数的图象和性质
1.(2020镇江)一次函数y=kx+3(k≠0)的函数值y随x的增大而增
大,它的图象不经过的象限是( D )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.(2020荆州)在平面直角坐标系中,一次函数y=x+1的图象是
内,经过点(0, 0 )与点(1, -5 ),y随x的
增大而 减小 ;
(2)一次函数y=2x-2的图象经过第
一、三、四 象限,y随x的增大而
初三中考数学知识点归纳
初三中考数学知识点归纳初三中考数学知识点归纳是帮助学生系统复习和掌握数学基础概念、公式和解题技巧的重要工具。
以下是对初三中考数学知识点的归纳总结:一、数与代数1. 实数:包括有理数和无理数的概念,实数的性质和运算。
2. 代数式:包括代数表达式的简化、合并同类项、因式分解等。
3. 方程与不等式:一元一次方程、一元二次方程的解法,不等式的基本性质和解法。
4. 函数:包括一次函数、二次函数、反比例函数的图像和性质。
5. 指数与对数:指数运算法则,对数的定义和基本性质。
二、几何1. 平面图形:包括线段、角、三角形、四边形、圆等基本几何图形的性质。
2. 相似与全等:相似三角形、全等三角形的判定和性质。
3. 圆的性质:圆周角、切线、弧长、扇形面积等。
4. 立体几何:包括长方体、圆柱、圆锥、球等立体图形的表面积和体积计算。
三、统计与概率1. 数据的收集与处理:数据的收集方法,数据的整理和描述。
2. 统计图表:条形图、折线图、饼图的绘制和解读。
3. 概率:事件的确定性和不确定性,概率的计算方法。
四、解题技巧1. 审题:仔细阅读题目,理解题意。
2. 列式:根据题意列出相应的数学表达式或方程。
3. 计算:准确进行数学运算,注意运算顺序。
4. 检查:解题后要进行结果的检验和验证。
结束语通过以上对初三中考数学知识点的归纳,希望能帮助同学们更好地复习和准备中考。
数学学习需要不断的练习和思考,希望每位同学都能在中考中取得优异的成绩。
记住,数学不仅仅是记忆公式和定理,更重要的是理解其背后的逻辑和原理。
祝你们学习进步,考试顺利!。
最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用
数学
考点2 二元一次方程组及其应用
3.(2021 金华)已知 x=2,是方程 3x+2y=10 的一个解,则 m 的值 y=m
是2 .
返回
数学
4.(2021 眉山)解方程组: 3x-2y+20=0, 2x+15y-3=0.
解:方程组整理得 3x-2y=-20① ,①×15+②×2 得 49x=-294, 2x+15y=3②
第一部分 数与代数
第二章 方程与不等式
第5讲 一次方程(组)及应用
数学
目录
01 命题分析
02 课前预习
03 考点梳理
04 课堂精讲
05 广东中考
06
新题速递(创新思维题)——全国视野
数学
命题分析
广东省卷近年中考数学命题分析
命题点 2021 2020 2019 2018 2017 2016
解一元一次
由题意得 x+y=55 .解得 x=5.9 .
y=9x-4
y=49.1
答:港珠澳大桥的桥梁长度和隧道长度分别为 49.1 km 和
5.9 km.
返回
数学
广东中考
6.(2013深圳)某商场将一款空调按标价的八折出售,仍可获利 10%,若该空调的进价为2 000元,则标价为 2 750 元.
返回
数学
若 a=b,则a = b(d≠0).
dd
(2)解法的一般步骤:
①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数
化为1.
返回
数学
2.解下列方程: (1)4x-2=3-x; x=1
(2)x+2 = x.
54
x=8
数学中考知识点归纳2024
数学中考知识点归纳2024一、数与代数。
(一)有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 能准确区分有理数和无理数,无理数是无限不循环小数,如π、√(2)等。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 减法:减去一个数,等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。
- 除法:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n中,a 叫做底数,n叫做指数。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
- 运算顺序:先算乘方,再算乘除,最后算加减;有括号的先算括号里面的。
(二)实数。
1. 平方根、算术平方根、立方根。
- 平方根:如果x^2 = a(a≥slant0),那么x叫做a的平方根,记作x=±√(a)。
- 算术平方根:正数a的正的平方根叫做a的算术平方根,记作√(a),0的算术平方根是0。
- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x = sqrt[3]{a}。
2. 实数的大小比较。
- 正数大于0,0大于负数,正数大于负数。
- 两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
- 还可以通过数轴比较实数大小,数轴上右边的数总比左边的数大。
(三)代数式。
1. 代数式的概念。
- 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
2020年中考数学总复习初中三年全部必考重点题库(精华版)
2020年中考数学总复习初中三年全部必考重点题库(精华版)目录第一部分数与代数第一章数与式第1讲实数83第2讲代数式84第3讲整式与分式85第1课时整式85第2课时因式分解86第3课时分式87第4讲二次根式89第二章方程与不等式第1讲方程与方程组90第1课时一元一次方程与二元一次方程组90第2课时分式方程91第3课时一元二次方程93第2讲不等式与不等式组94第三章函数第1讲函数与平面直角坐标系97第2讲一次函数99第3讲反比例函数101第4讲二次函数103第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线106第2讲三角形108第1课时三角形108第2课时等腰三角形与直角三角形110第3讲四边形与多边形112第1课时多边形与平行四边形112第2课时特殊的平行四边形114第3课时梯形116第五章圆第1讲圆的基本性质118第2讲与圆有关的位置关系120第3讲与圆有关的计算122第六章图形与变换第1讲图形的轴对称、平移与旋转124第2讲视图与投影126第3讲尺规作图127第4讲图形的相似130第5讲解直角三角形132第三部分统计与概率第七章统计与概率第1讲统计135第2讲概率137第四部分中考专题突破专题一归纳与猜想140专题二方案与设计141专题三阅读理解型问题143专题四开放探究题145专题五数形结合思想147基础题强化提高测试中考数学基础题强化提高测试1149中考数学基础题强化提高测试2151中考数学基础题强化提高测试3153中考数学基础题强化提高测试4155中考数学基础题强化提高测试5157中考数学基础题强化提高测试61592020年中考数学模拟试题(一)1612020年中考数学模拟试题(二)165第一部分 数与代数第一章 数与式 第1讲 实数A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .-1B .0C .1D .22.(2012年浙江湖州)-2的绝对值等于( )A .2B .-2 C.12 D .±23.(2011年贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-14 D.144.(2012年广东深圳)-3的倒数是( )A .3B .-3 C.13 D .-135.无理数-3的相反数是( )A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(2012年山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( )A .21×10-4千克B .2.1×10-6千克C .2.1×10-5千克D .2.1×10-4千克10.(2012年河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.(2012年贵州毕节)实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( )图X1-1-1 A.a<b B.|a|>|b|C.-a<-b D.b-a>012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.(2011年江苏盐城)将1,2,3,6按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0.15.(2012年浙江绍兴)计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.(2012年广东)观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题:(1)按以上规律列出第5个等式:a 5=______________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=______________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.选做题18.(2012年浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =________(用a ,b 的一个代数式表示).第2讲 代数式A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a 万人2.若x =m -n ,y =m +n ,则xy 的值是( )A .2 mB .2 nC .m +nD .m -n3.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.124.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )A .-1B .1C .-5D .55.(2012年浙江宁波)已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( )A .3B .-3C .1D .-16.(2011年河北)若|x -3|+|y +2|=0,则x +y 的值为__________.7.(2010年湖北黄冈)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.9.如图X1-2-1,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).图X1-2-110.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.B 级 中等题11.(2012年云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12 B.12 C .1 D .212.(2012年浙江杭州)化简m 2-163m -12得____________;当m =-1时,原式的值为________.13.(2011年浙江宁波)把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )图X1-2-1A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( )A .①②B .①③C .②③D .①②③15.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2.C 级 拔尖题16.(2012年山东东营)若3x =4,9y =7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2717.一组按一定规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是________(n 为正整数).选做题18.(2010年广东深圳)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭的值.19.(2012年贵州遵义)如图X1-2-3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )图X1-2-3A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2第3讲 整式与分式第1课时 整式A 级 基础题1.(2012年江苏南通)计算(-x )2·x 3的结果是( )A .x 5B .-x 5C .x 6D .-x 62.(2012年四川广安)下列运算正确的是( )A .3a -a =3B .a 2·a 3=a 5C .a 15÷a 3=a 5(a ≠0)D .(a 3)3=a 63.(2012年广东汕头)下列运算正确的是( )A .a +a =a 2B .(-a 3)2=a 5C .3a ·a 2=a 3D .(2a )2=2a 24.(2012年上海)在下列代数式中,系数为3的单项式是( )A .xy 2B .x 3+y 3C .x 3yD .3xy5.(2012年江苏杭州)下列计算正确的是( )A .(-p 2q )3=-p 5q 3B .(12a 2b 3c )÷(6ab 2)=2abC .3m 2÷(3m -1)=m -3m 2D .(x 2-4x )x -1=x -46.(2011年山东日照)下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.(2012年陕西)计算(-5a 3)2的结果是( )A .-10a 5B .10a 6C .-25a 5D .25a 68.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+49.计算: (1)(3+1)(3-1)=____________;(2)(2012年山东德州)化简:6a 6÷3a 3=________.(3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________. 10.化简:(a +b )2+a (a -2b ).B 级 中等题11.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1 B.5x+1C.13x-1 D.13x+112.(2011年安徽芜湖)如图X1-3-1,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().图X1-3-1 A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm213.(2012年湖南株洲)先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.(2012年吉林)先化简,再求值:(a+b)(a-b)+2a2,其中a =1,b= 2.15.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16.(2012年四川宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7C.(x+3)2-11 D.(x+2)2+417.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x 的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.(2012年江苏苏州)若3×9m×27m=311,则m的值为____________.第2课时因式分解A级基础题1.(2012年四川凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y22.(2012年山东济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.(2012年内蒙古呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)4.(2011年湖南邵阳)因式分解:a2-b2=______.5.(2012年辽宁沈阳)分解因式:m2-6m+9=______.6.(2012年广西桂林)分解因式:4x2-2x=________.7.(2012年浙江丽水)分解因式:2x2-8=________.8.(2012年贵州六盘水)分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图X1-3-2(1)],把余下的部分拼成一个矩形[如图X1-3-2(2)],根据两个图形中阴影部分的面积相等,可以验证()图X1-3-2A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 210.若m 2-n 2=6且m -n =3,则m +n =________.B 级 中等题11.对于任意自然数n ,(n +11)2-n 2是否能被11整除,为什么?12.(2012年山东临沂)分解因式:a -6ab +9ab 2=____________. 13.(2012年四川内江)分解因式:ab 3-4ab =______________. 14.(2012年山东潍坊)分解因式:x 3-4x 2-12x =______________. 15.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( )A .(x -1)(x -2)B .x 2C .(x +1)2D .(x -2)216.(2012年山东德州)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题17.(2012年江苏苏州)若a =2,a +b =3,则a 2+ab =________.18.(2012年湖北随州)设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0,则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题19.分解因式:x 2-y 2-3x -3y =______________.20.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.21.(2012年贵州黔东南州)分解因式x 3-4x =______________________.第3课时 分式A 级 基础题1.(2012年浙江湖州)要使分式1x 有意义,x 的取值范围满足( ) A .x =0 B .x ≠0 C .x >0 D .x <02.(2012年四川德阳)使代数式x2x -1有意义的x 的取值范围是( )A .x ≥0B .x ≠12C .x ≥0且x ≠12 D .一切实数3.在括号内填入适当的代数式,是下列等式成立: (1)2ab =( )2xa 2b 2(2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z =____________; x 2-9x 2-2x -3=____________.5.已知a -b a +b=15,则ab =__________.6.当x =______时,分式x 2-2x -3x -3的值为零.7.(2012年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(2012年浙江衢州)先化简x 2x -1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-xx +2,其中x =2.10.(2012年山东泰安)化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=____________________.B 级 中等题11.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1.13.(2011年湖南常德)先化简,再求值. 2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.14.(2012年四川资阳)先化简,再求值:a -2a 2-1÷2111a a a -⎛⎫-- ⎪+⎝⎭,其中a 是方程x 2-x =6的根.C 级 拔尖题 15.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x 2的值.17.(2012年四川内江)已知三个数x ,y ,z 满足xy x +y =-2,yzz +y=34,zx z +x =-34,则xyzxy +yz +zx 的值为____________.第4讲 二次根式A 级 基础题1.下列二次根式是最简二次根式的是( )A.12 B. 4 C.3 D.8 2.下列计算正确的是( ) A.20=2 10 B.2·3= 6 C.4-2= 2 D.(-3)2=-33.若a <1,化简(a -1)2-1=( ) A .a -2 B .2-a C .a D .-a4.(2012年广西玉林)计算:3 2-2=( ) A .3 B. 2 C .2 2 D .4 25.如图X1-3-3,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )图X1-3-3A.-2- 3 B.-1- 3C.-2+ 3 D.1+ 36.(2011年湖南衡阳)计算:12+3=__________.7.(2011年辽宁营口)计算18-2 12=________.8.已知一个正数的平方根是3x-2和5x+6,则这个数是__________.9.若将三个数-3,7,11表示在数轴上,其中能被如图X1-3-4所示的墨迹覆盖的数是__________.图X1-3-4 10.(2011年四川内江)计算:3tan30°-(π-2 011)0+8-|1-2|.B 级 中等题11.(2011年安徽)设a =19-1,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和512.(2011年山东烟台)如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥1213.(2011年浙江)已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( ) A .9 B .±3 C .3 D .514.(2012年福建福州)若20n 是整数,则正整数n 的最小值为________.15.(2011年贵州贵阳)如图X1-3-5,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )图X1-3-5A .2.5B .2 2 C. 3 D. 5 16.(2011年四川凉山州)计算:(sin30°)-2+0352⎛⎫ ⎪-⎝⎭-|3-18|+83×(-0.125)3.C 级 拔尖题17.(2012年湖北荆州)若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( )A .3B .9C .12D .2718.(2011年山东日照)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 011-y 2 011=______.选做题19.(2011年四川凉山州)已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152 D.152第二章 方程与不等式 第1讲 方程与方程组第1课时 一元一次方程与二元一次方程组A 级 基础题1.(2012年山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(2012年广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( )A. 3,0x y =⎧⎨=⎩B.1,2x y =⎧⎨=⎩ C.5,2x y =⎧⎨=-⎩ D.2,1x y =⎧⎨=⎩3.(2012年湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A.50,6()320x y x y +=⎧⎨+=⎩ B.50,610320x y x y +=⎧⎨+=⎩ C.50,6320x y x y +=⎧⎨+=⎩ D.50,106320x y x y +=⎧⎨+=⎩4.(2012年贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________.7.(2012年湖南湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.8.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?B 级 中等题9.(2012年贵州黔西南)已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.10.(2012年山东菏泽)已知2,1x y =⎧⎨=⎩是二元一次方程组的解8,1,mx ny nx my +=⎧⎨-=⎩则2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .411.(2012年湖北咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.12.(2011年内蒙古呼和浩特)解方程组:4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩C 级 拔尖题13.如图X2-1-1,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.图X2-1-114.(2012年江西南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).选做题15.(2011年上海)解方程组:222,230.x y x xy y -=⎧⎨--=⎩16.若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43第2课时 分式方程A 级 基础题1.(2012年广西北海)分式方程7x -8=1的解是( )A .-1B .1C .8D .152.(2012年浙江丽水)把分式方程2x +4=1x化为一元一次方程时,方程两边需同乘以( )A .xB .2xC .x +4D .x (x +4)3.(2012年湖北随州)分式方程10020+v =6020-v的解是( )A .v =-20B .v =5C .v =-5D .v =204.(2012年四川成都)分式方程32x =1x -1的解为( )A .x =1B .x =2C .x =3D .x =4 5.(2012年四川内江)甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依题意列方程正确的是( )A.30x =40x -15B.30x -15=40xC.30x =40x +15D.30x +15=40x6.方程 x 2-1x +1=0的解是________.7.(2012年江苏连云港)今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 __________元.8.(2012年山东德州)解方程:2x 2-1+1x +1=1.9.(2012年江苏泰州)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?10.(2012年北京)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同.求一片国槐树叶一年的平均滞尘量.B 级 中等题11.(2012年山东莱芜)对于非零实数a ,b ,规定a ⊕b =1b -1a .若2⊕(2x -1)=1,则x 的 值为( )A.56B.54C.32 D .-1612.(2012年四川巴中)若关于x 的方程2x -2+x +m 2-x=2有增根,则m 的值是________.13.(2012年山东菏泽改编)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书的本数相等.C 级 拔尖题15.(2012年江苏无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么(注:投资收益率=投资收益实际投资额×100%)?(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?选做题14.(2012年山东日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?15.(2012年湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作8 800 件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2 倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20 天完成,求A,B两车间每天分别能加工多少件.第3课时一元二次方程A级基础题1.(2011年江苏泰州)一元二次方程x2=2x的根是()A.x=2B.x=0C.x1=0,x2=2 D.x1=0,x2=-22.方程x2-4=0的根是()A.x=2B.x=-2C.x1=2,x2=-2D.x=43.(2011年安徽)一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和24.(2012年贵州安顺)已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1 B.-1C.0 D.无法确定5.(2012年湖北武汉)若x1,x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是()A.-2 B.2C.3 D.16.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( )A .m ≤-1B .m ≤1C .m ≤4D .m ≤127.(2012年江西南昌)已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1 C.14 D .-14 8.(2012年上海)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实根,那么c 的取值范围是__________.9.(2011年山东滨州)某商品原售价为289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为________________________________________________________________________.10.解方程: (x -3)2+4x (x -3)=0.B 级 中等题11.(2012年内蒙古呼和浩特)已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两个根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是( )A .a =-3,b =1B .a =3,b =1C .a =-32,b =-1D .a =-32,b =112.(2011年山东潍坊)关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( )A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种13.(2011年山东德州)若x1,x2是方程x2+x-1=0的两个实数根,则x21+x22=__________.14.(2011年江苏苏州)已知a,b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于________.15.(2012年山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?16.(2012年湖南湘潭)如图X2-1-2,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.X2-1-2C 级 拔尖题17.(2012年湖北襄阳)如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0选做题18.(2012年江苏南通)设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=________.19.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是________.第2讲 不等式与不等式组A 级 基础题1.不等式3x -6≥0的解集为( )A .x >2B .x ≥2C .x <2D .x ≤22.(2012年湖南长沙)一个不等式组的解集在数轴上表示出来如图X2-2-1,则下列符合条件的不等式组为( )图X2-2-1A.2,1x x >⎧⎨≤-⎩ B.2,1x x <⎧⎨>-⎩ C.2,1x x <⎧⎨≥-⎩ D.2,1x x <⎧⎨≤-⎩ 3.函数y =kx +b 的图象如图X2-2-2,则当y <0时,x 的取值范围是( )A .x <-2B .x >-2C .x <-1D .x >-1图X2-2-2图X2-3-34.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-25.(2012年湖南湘潭)不等式组11,3x x ->⎧⎨<⎩的解集为__________. 6.若关于x 的不等式组2,x x m ⎧⎨⎩>>的解集是x >2,则m 的取值范围是________.7.(2012年江苏扬州)在平面直角坐标系中,点P (m ,m -2)在第一象限内,则m 的取值范围是________.8.不等式组14,2124x x +⎧≤⎪⎨⎪-<⎩的整数解是____________. 9.(2012年江苏苏州)解不等式组:322,813(1).x x x x -<+⎧⎨-≥--⎩10.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒(用含x的代数式表示)?(2)该敬老院至少有多少名老人?最多有多少名老人?B级中等题11.(2012年湖北荆门)已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()12.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .40%B .33.4%C .33.3%D .30%13.(2012年湖北黄石)若关于x 的不等式组233,35x x x a >-⎧⎨->⎩有实数解,则实数a 的取值范围是____________.14.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?C 级 拔尖题15.试确定实数a 的取值范围,使不等式组1023544(1)33x x a x x a +⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.16.(2012年四川德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A 种板材48 000 m 2和B 种板材24 000 m 2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A 种板材60 m 2或B 种板材40 m 2.请问:应分别安排多少人生产A 种板材和B 种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房 A 种板材/m 2 B 种板材/m 2 安置人数/人甲型 108 61 12乙型 156 51 10问这400间板房最多能安置多少灾民?选做题17.若关于x ,y 的二元一次方程组31,33x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则实数a 的取值范围为______.18.(2011年福建泉州)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别 冰箱 彩电 进价(元/台) 2 320 1 900售价(元/台) 2 420 1 980(1)按国家政策,农民购买“家电下乡”产品享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?第三章函数第1讲函数与平面直角坐标系A级基础题1.(2012年山东荷泽)点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2012年四川成都)在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5) B.(3,5)C.(3,-5) D.(5,-3)3.已知y轴上的点P到x轴的距离为3,则点P的坐标为() A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.(2012年浙江绍兴)在如图X3-1-1所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()图X3-1-1 A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.(2011年山东枣庄)在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2012年湖北孝感)如图X3-1-2,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是()图X3-1-2 A.(-3,2) B.(2,-3)C.(1,-2) D.(3,-1)7.(2012年贵州毕节)如图X3-1-3,在平面直角坐标系中,以原点O为中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A 的坐标是(1,2),则点A′的坐标是()图X3-1-3 A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)8.(2011年浙江衢州)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图X3-1-4).若小亮上坡、平路、下坡的速度分别为v1、v2、v3,且v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()图X3-1-49.(2012年山东潍坊)甲、乙两位同学用围棋子做游戏,如图X3-1-5,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是()[说明:棋子的位置用数对表示,如A点在(6,3)]图X3-1-5 A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)10.(2011年山东德州)点P(1,2)关于原点的对称点P′的坐标为__________.B级中等题11.(2012年四川泸州)将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.12.(2012年四川内江)已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.13.(2012年四川达州)将边长分别为1,2,3,4,…,19,20的正方形置于直角坐标系第一象限,如图X3-1-6中的方式叠放,则按图示规律排列的所有阴影部分的面积之和为__________.图X3-1-6图X3-1-7 14.(2012年江苏南京)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图X3-1-7,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A 的对应点A′的坐标是__________.15.(2012年吉林)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.。
中考数学知识点归纳总结
中考数学知识点归纳总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的运算(加、减、乘、除、乘方、开方)2. 整数- 整数的性质- 整数的四则运算- 整数的比较和排序3. 分数与小数- 分数的基本性质- 分数与小数的互化- 分数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘除运算5. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的性质和解集表示- 一元一次不等式及其解集6. 函数- 函数的概念- 线性函数和二次函数的图像及性质- 函数的基本运算(函数的和、差、积、商)二、几何1. 平面几何- 点、线、面的基本性质- 角的定义和分类(邻角、对角、同位角等)- 三角形的性质(等边、等腰、直角三角形)- 四边形的性质(矩形、菱形、正方形、平行四边形、梯形) - 圆的基本性质和圆的有关计算2. 立体几何- 立体图形的基本概念(体积、表面积)- 常见立体图形的性质(长方体、正方体、圆柱、圆锥、球)3. 图形的变换- 平移、旋转、轴对称、中心对称- 相似图形和全等图形的性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 计算简单事件的概率- 用树状图解决概率问题四、解题技巧与策略1. 解题方法- 列方程解应用题- 利用图形解决几何问题- 分类讨论法2. 考试策略- 时间管理- 题目审题- 检查与复核五、重要公式与定理- 面积公式(三角形、四边形、圆、梯形等)- 体积公式(长方体、正方体、圆柱、圆锥、球)- 勾股定理及其应用- 相似三角形定理- 圆周角定理- 百分比和利润计算以上是中考数学的主要知识点归纳总结。
在实际应用中,学生应根据具体的教学大纲和考试要求,对每个知识点进行深入学习和练习,以确保在考试中能够熟练运用。
山东省数学中考知识点归纳总结
山东省数学中考知识点归纳总结一、数与代数1. 有理数的运算:掌握有理数的加减乘除和乘方运算法则,以及有理数的大小比较。
2. 代数式:理解代数式的基本概念,包括单项式、多项式、同类项等。
3. 整式的加减:掌握整式的加减运算,包括合并同类项和去括号法则。
4. 一元一次方程:解一元一次方程,包括移项、合并同类项、系数化为1等步骤。
5. 一元一次不等式:解一元一次不等式,注意不等式两边同时乘以或除以同一个负数时,不等号方向的变化。
6. 二元一次方程组:解二元一次方程组,掌握加减消元法和代入消元法。
二、几何1. 线段、射线、直线:理解线段、射线、直线的概念及其性质。
2. 角:掌握角的概念,包括锐角、直角、钝角、平角和周角。
3. 平行线:理解平行线的性质,包括同位角、内错角、同旁内角等。
4. 三角形:掌握三角形的分类、性质和计算,如三角形的内角和定理、三角形的面积计算等。
5. 四边形:理解四边形的分类和性质,包括平行四边形、矩形、菱形、正方形等。
6. 圆:掌握圆的基本概念,包括圆心、半径、直径、圆周率等,以及圆的性质和计算,如圆的面积和周长。
三、统计与概率1. 数据的收集与整理:掌握数据的收集、整理和描述方法,如条形图、折线图、扇形图等。
2. 统计量:理解平均数、中位数、众数、方差等统计量的概念和计算方法。
3. 概率:掌握概率的基本概念,包括必然事件、不可能事件、随机事件等,以及概率的计算方法。
四、函数1. 函数的概念:理解函数的定义,包括定义域、值域、函数值等。
2. 一次函数:掌握一次函数的图象和性质,包括斜率、截距等。
3. 二次函数:掌握二次函数的图象和性质,包括顶点、对称轴等。
五、综合应用1. 数学建模:能够运用所学数学知识解决实际问题,如行程问题、工程问题等。
2. 数学思维:培养数学思维能力,如逻辑推理、抽象思维、创新思维等。
通过以上知识点的归纳总结,可以看出山东省数学中考涵盖了数与代数、几何、统计与概率、函数等多个领域,旨在全面考察学生的数学基础知识和应用能力。
学科数学中考知识点总结
学科数学中考知识点总结一、数与代数1. 自然数、整数、有理数、实数和复数的相关概念。
2. 整式的概念,整式的加减乘除以及相关性质。
3. 一元一次方程与一元一次方程组,包括解法、实际问题和应用。
4. 一元一次不等式及其解法。
5. 一元二次方程及其解法,根与系数之间的关系。
6. 实系数多项式的相关概念,多项式的运算、根、系数与项数的关系。
7. 多项式整式的除法,多项式的因式分解以及分解方法。
8. 分式及其相关概念,分式的乘除法、分式方程及其解法。
9. 分式不等式及其解法。
10. 实数的大小比较及实数的绝对值。
11. 实数的实数平方根、实数立方根及其运算。
12. 复数及其相关概念,复数的加减乘除。
13. 多项式与一元一次方程的联系。
二、平面几何与空间几何1. 几何图形的基本性质,例如,各种三角形的性质、四边形的性质等。
2. 圆及其相关概念,圆的面积、周长与圆内接正多边形的面积的计算。
3. 直角坐标系,坐标的概念,点的坐标,距离的计算。
4. 直线和曲线的方程以及它们的相关性质。
5. 多边形的面积和周长的计算。
6. 三角形的面积,三角形的高、中线、角平分线等的相关概念及应用。
7. 直角三角形的三边关系及其应用。
8. 三角形的三边角关系及其证明。
9. 三角形的外心、内心、重心和垂心的相关概念及应用。
10. 圆锥曲线的相关概念,如椭圆、双曲线等。
11. 空间图形的相关概念和性质,如球体、柱体、锥体等的表面积和体积计算。
三、函数与图像1. 函数及相关概念,函数的自变量、因变量、定义域、值域和图像。
2. 一次函数的概念及相关性质,一次函数的表示形式和性质。
3. 一次函数的图像,一次函数的斜率、截距及其应用。
4. 一次函数的应用,如利润、成本、收入等问题的建立和求解。
5. 二次函数及其图像,二次函数的导数、顶点、对称轴及相关性质。
6. 二次函数与一元二次方程的关系,二次函数的最值及相关应用。
7. 二次函数与实际问题的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 数与代数第一章 数与式 第1讲 实数A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .-1B .0C .1D .22.(20XX 年浙江湖州)-2的绝对值等于( )A .2B .-2 C.12 D .±23.(20XX 年贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-14 D.144.(20XX 年广东深圳)-3的倒数是( )A .3B .-3 C.13 D .-135.无理数-3的相反数是( )A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(20XX 年山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( )A .21×10-4千克B .2.1×10-6千克C .2.1×10-5千克D .2.1×10-4千克10.(20XX 年河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.(20XX 年贵州毕节)实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( )图X1-1-1A .a <bB .|a |>|b |C .-a <-bD .b -a >012.北京时间20XX 年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.14.计算:|-3 3|-2cos30°-2-2+(3-π)0.15.(20XX 年浙江绍兴)计算:-22+-113⎛⎫ ⎪⎝⎭-2cos60°+|-3|.第2讲 代数式A级基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a万人,则女生约有() A.(15+a)万人B.(15-a)万人C.15a万人 D.15a万人2.若x=m-n,y=m+n,则xy的值是() A.2 m B.2 n C.m+n D.m-n3.若x=1,y=12,则x2+4xy+4y2的值是()A.2 B.4 C.32 D.124.(20XX年江苏盐城)已知a-b=1,则代数式2a-2b-3的值是()A.-1 B.1 C.-5 D.55.(20XX年浙江宁波)已知实数x,y满足x-2+(y+1)2=0,则x-y等于()A.3 B.-3 C.1 D.-16.(20XX年河北)若|x-3|+|y+2|=0,则x+y的值为__________.7.(20XX年湖北黄冈)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是____________元.8.已知代数式2a3b n+1与-3a m+2b2是同类项,2m+3n=________.9.如图X1-2-1,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是________(用含m,n的式子表示).图X1-2-110.(20XX年浙江丽水)已知2x-1=3,求代数式(x-3)2+2x(3+x)-7的值.第3讲整式与分式第1课时整式A级基础题1.(20XX年江苏南通)计算(-x)2·x3的结果是()A.x5B.-x5C.x6D.-x62.(20XX年四川广安)下列运算正确的是()A.3a-a=3 B.a2·a3=a5C.a15÷a3=a5(a≠0) D.(a3)3=a63.(20XX年广东汕头)下列运算正确的是()A.a+a=a2B.(-a3)2=a5C.3a·a2=a3D.(2a)2=2a24.(20XX 年上海)在下列代数式中,系数为3的单项式是( )A .xy 2B .x 3+y 3C .x 3yD .3xy5.(20XX 年江苏杭州)下列计算正确的是( )A .(-p 2q )3=-p 5q 3B .(12a 2b 3c )÷(6ab 2)=2abC .3m 2÷(3m -1)=m -3m 2D .(x 2-4x )x -1=x -46.(20XX 年山东日照)下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.(20XX 年陕西)计算(-5a 3)2的结果是( )A .-10a 5B .10a 6C .-25a 5D .25a 68.(20XX 年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为() A .(x -2)2+3 B .(x +2)2-4C .(x +2)2-5D .(x +2)2+49.计算: (1)(3+1)(3-1)=____________;(2)(20XX 年山东德州)化简:6a 6÷3a 3=________.(3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________.10.化简:(a +b )2+a (a -2b ).第2课时 因式分解A 级 基础题1.(20XX 年四川凉山州)下列多项式能分解因式的是( )A .x 2+y 2B .-x 2-y 2C .-x 2+2xy -y 2D .x 2-xy +y 22.(20XX 年山东济宁)下列式子变形是因式分解的是( )A .x 2-5x +6=x (x -5)+6B .x 2-5x +6=(x -2)(x -3)C .(x -2)(x -3)=x 2-5x +6D .x 2-5x +6=(x +2)(x +3)3.(20XX 年内蒙古呼和浩特)下列各因式分解正确的是( )A .-x 2+(-2)2=(x -2)(x +2)B .x 2+2x -1=(x -1)C .4x 2-4x +1=(2x -1)2D .x 2-4x =x (x +2)(x -2)4.(20XX 年湖南邵阳)因式分解:a 2-b 2=______.5.(20XX 年辽宁沈阳)分解因式:m 2-6m +9=______.6.(20XX 年广西桂林)分解因式:4x 2-2x =________.7.(20XX 年浙江丽水)分解因式:2x 2-8= ________.8.(20XX 年贵州六盘水)分解因式:2x 2+4x +2=________.9.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )[如图X1-3-2(1)],把余下的部分拼成一个矩形[如图X1-3-2(2)],根据两个图形中阴影部分的面积相等,可以验证( )图X1-3-2A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 210.若m 2-n 2=6且m -n =3,则m +n =________.第3课时 分式A 级 基础题1.(20XX 年浙江湖州)要使分式1x 有意义,x 的取值范围满足( )A .x =0B .x ≠0C .x >0D .x <02.(20XX 年四川德阳)使代数式x 2x -1有意义的x 的取值范围是( ) A .x ≥0 B .x ≠12C .x ≥0且x ≠12D .一切实数 3.在括号内填入适当的代数式,是下列等式成立:(1)2ab =( )2xa 2b 2(2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z =____________;x 2-9x 2-2x -3=____________. 5.已知a -b a +b=15,则a b =__________. 6.当x =______时,分式x 2-2x -3x -3的值为零. 7.(20XX 年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(20XX 年浙江衢州)先化简x 2x -1+11-x ,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-x x +2,其中x =2.10.(20XX 年山东泰安)化简:222m m m m ⎛⎫-⎪+-⎝⎭÷m m 2-4=____________________. 第4讲 二次根式A 级 基础题1.下列二次根式是最简二次根式的是( ) A.12 B. 4 C. 3 D.82.下列计算正确的是( )A.20=2 10B.2·3= 6C.4-2= 2D.(-3)2=-33.若a <1,化简(a -1)2-1=( )A .a -2B .2-aC .aD .-a 4.(20XX 年广西玉林)计算:3 2-2=( )A .3 B. 2 C .2 2 D .4 25.如图X1-3-3,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )图X1-3-3A .-2- 3B .-1- 3C .-2+ 3D .1+ 36.(20XX 年湖南衡阳)计算:12+3=__________.7.(20XX 年辽宁营口)计算18-212=________.8.已知一个正数的平方根是3x -2和5x +6,则这个数是__________.9.若将三个数-3,7,11表示在数轴上,其中能被如图X1-3-4所示的墨迹覆盖的数是__________. 图X1-3-410.(20XX 年四川内江)计算:3tan -(π-2 011)0+8-|1-2|.第二章 方程与不等式第1讲 方程与方程组第1课时 一元一次方程与二元一次方程组A 级 基础题1.(20XX 年山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(20XX 年广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( ) A. 3,0x y =⎧⎨=⎩ B.1,2x y =⎧⎨=⎩ C. 5,2x y =⎧⎨=-⎩ D.2,1x y =⎧⎨=⎩3.(20XX 年湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A. 50,6()320x y x y +=⎧⎨+=⎩ B.50,610320x y x y +=⎧⎨+=⎩ C.50,6320x y x y +=⎧⎨+=⎩ D.50,106320x y x y +=⎧⎨+=⎩4.(20XX 年贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________.w W w .x K b 1.c o M7.(20XX 年湖南湘潭)湖南省20XX 年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.8.(20XX 年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?第2课时 分式方程A 级 基础题1.(20XX 年广西北海)分式方程7x -8=1的解是( ) A .-1 B .1 C .8 D .152.(20XX 年浙江丽水)把分式方程2x +4=1x化为一元一次方程时,方程两边需同乘以( ) A .x B .2xC .x +4D .x (x +4)3.(20XX 年湖北随州)分式方程10020+v =6020-v的解是( ) A .v =-20 B .v =5C .v =-5D .v =204.(20XX 年四川成都)分式方程32x =1x -1的解为( ) A .x =1 B .x =2C .x =3D .x =45.(20XX 年四川内江)甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依题意列方程正确的是( )A.30x =40x -15B.30x -15=40xC.30x =40x +15D.30x +15=40x6.方程 x 2-1x +1=0的解是________. 7.(20XX 年江苏连云港)今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 __________元.8.(20XX 年山东德州)解方程:2x 2-1+1x +1=1.9.(20XX 年江苏泰州)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?10.(20XX 年北京)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同.求一片国槐树叶一年的平均滞尘量.。