培优 易错 难题二次函数辅导专题训练附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数真题与模拟题分类汇编(难题易错题)

1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.

(1)求抛物线的解析式;

(2)求点P在运动的过程中线段PD长度的最大值;

(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.

【答案】(1)y=x2﹣4x+3;(2)9

4

;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣

3).

【解析】

试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;

(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;

(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;

(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.

试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),

930

10

b c

b c

++=

++=

,解得

4

3

b

c

=-

=

,∴抛物线解析式为y=x2﹣4x+3;

(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣

(x﹣3

2

)2+

9

4

.∵a=﹣1<0,∴当x=

3

2

时,线段PD的长度有最大值

9

4

(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).

综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;

(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析

式为y=kx+b(k≠0),则

3

k b

b

+=

=

,解得:

3

3

k

b

=-

=

,∴直线BC的解析式为y=﹣

3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.

点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.

2.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.

(1)判断顶点M是否在直线y=4x+1上,并说明理由.

(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.

(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(1

4

,y1),D(

3

4

,y2)

都在二次函数图象上,试比较y1与y2的大小.

【答案】(1)点M在直线y=4x+1上;理由见解析;(2)x的取值范围是x<0或x>

5;(3)①当0<b<1

2

时,y1>y2,②当b=

1

2

时,y1=y2,③当

1

2

<b<

4

5

时,y1<

y2.

【解析】

【分析】

(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案;(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;

(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.【详解】

(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,

∴M的坐标是(b,4b+1),

把x=b代入y=4x+1,得y=4b+1,

∴点M在直线y=4x+1上;

(2)如图1,

直线y=mx+5交y轴于点B,

∴B点坐标为(0,5)又B在抛物线上,

∴5=﹣(0﹣b)2+4b+1=5,解得b=2,

二次函数的解析是为y=﹣(x﹣2)2+9,

当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,

∴A(5,0).

由图象,得

当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;

(3)如图2,

∵直线y=4x+1与直线AB交于点E,与y轴交于F,

A(5,0),B(0,5)得

直线AB的解析式为y=﹣x+5,

联立EF,AB得方程组

41

5 y x

y x

=+

=-+

解得

4

5

21

5

x

y

=

⎪⎪

⎪=

⎪⎩

∴点E(4

5,

21

5

),F(0,1).

点M在△AOB内,

1<4b+1<21

5

相关文档
最新文档