第1章离散时间信号与系统的时域分析
数字信号处理(第三版)第1章习题答案
第 1 章 时域离散信号和时域离散系统
1.1.1
(1) 信号: 模拟信号、 时域离散信号、 数字信号三 者之间的区别; 常用的时域离散信号; 如何判断信号是周期 性的, 其周期如何计算等。
(2) 系统: 什么是系统的线性、 时不变性以及因果 性、 稳定性; 线性、 时不变系统输入和输出之 间的关系; 求解线性卷积的图解法(列表法)、 解析法, 以及用MATLAB工具箱函数求解; 线性常系数差分方程的递
x(n-n0)=x(n)*δ(n-n0)
(3)
Xˆ n ( j )
Байду номын сангаас
1 T
X a ( j
k
jks )
这是关于采样定理的重要公式, 根据该公式要求对
信号的采样频率要大于等于该信号的最高频率的两倍以上,
才能得到不失真的采样信号。
xa
(t
)
n
xa
(nt
)
sin[π(t nT ) / T π(t nT ) / T
第 1 章 时域离散信号和时域离散系统
第1章 时域离散信号和时域离散系统
1.1 学习要点与重要公式 1.2 解线性卷积的方法 1.3 例题 1.4 习题与上机题解答
第 1 章 时域离散信号和时域离散系统
1.1 学习要点与重要公式
本章内容是全书的基础。 学生从学习模拟信号分析与处 理到学习数字信号处理, 要建立许多新的概念。 数字信号 和数字系统与原来的模拟信号和模拟系统不同, 尤其是处理 方法上有本质的区别。 模拟系统用许多模拟器件实现, 数 字系统则通过运算方法实现。 如果读者对本章关于时域离散 信号与系统的若干基本概念不清楚, 则学到数字滤波器时, 会感到“数字信号处理”这门课不好掌握, 总觉得学习的不 踏实。 因此学好本章是极其重要的。
数字信号处理知识点总结
数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
数字信号处理第一章离散时间信号和离散时间
离散卷积的计算
计算它们的卷积的步骤如下: (1)折叠:先在哑变量坐标轴k上画出x(k)和h(k),将h(k)以纵坐标为对称轴折 叠成 h(-k)。 (2)移位:将h(-k)移位n,得h(n-k)。当n为正数时,右移n;当n为负数时,左 移n。 (3)相乘:将h(n-k)和x(k)的 对应取样值相乘。 (4)相加:把所有的乘积累加 起来,即得y(n)。
第一章 时域离散信号和时域离散系统
内容提要
离散时间信号和离散时间系统的基本概念 –序列的表示法和基本类型 –用卷积和表示的线性非移变系统 –讨论系统的稳定性和因果性问题 –线性常系数差分方程 –介绍描述系统的几个重要方式
离散时间信号的傅里叶变换和系统的频率响应 模拟信号的离散化
–讨论了模拟信号、取样信号和离散时间信号(数字 序列)的频谱之间的关系
根据线性系统的叠加性质 y(n) x(m)T[ (n m)] m
根据时不变性质:T[ (n m)] h(n m)
y(n) x(m)h(n m) x(n) h(n) m=-
(1.3.7)
通常把式(1.3.7)称为离散卷积或线性卷积。这一关系常用符 号“*”表示,即:
y(n n0 ) T[kx(n n0 )], 是移不变系统 (2) y(n) nx(n), 即y(n n0 ) (n n0 )x(n n0 ) 而T[x(n n0 )] nx(n n0 ) y(n n0 ),不是移不变系统
1.3.3 线性时不变系统及输入与输出的关系 既满足叠加原理,又满足非移变条件的系统,被称为线性 非移变系统。这类系统的一个重要特性,是它的输入与输 出序列之间存在着线性卷积关系。
§1. 2 时域离散信号
数字信号处理-原理实现及应用(高西全-第3版)第1章 时域离散信号和系统
2020/7/5
信息与通信工程系—数字信号处理
14
时域离散信号的表示
用图形表示
直观
1
0.5
xaT(n)
0
-0.5
-1
-4
-2
0
2
4
6
n
为了醒目,在每一条竖线的顶端加一个小黑点。
2020/7/5
信息与通信工程系—数字信号处理
15
Matlab 语言中的序列表示
t=-0.025:0.001:0.025; xat=0.9*sin(50*pi*t); subplot(2,1,1); plot(t,xat);axis([-0.025,0.03,-1,1]); xlabel('t'); ylabel('xat(t)');
a nun
1 a 0
1 1 O 1
23
4n
2020/7/5
信息与通信工程系—数字信号处理
24
正弦序列
x(n) Asin(nT ) Asin(n )
T 采样间隔 ; 模拟信号的角频率
数字域的数字频率
T 1
x(n)
0
2 /10
-1
-10 -5
0
5 10
n
2020/7/5
信息与通信工程系—数字信号处理
信号的产生、传输和处理需要一定的物理装置,这样 的物理装置常称为系统。
系统的基本作用是对输入信号进行加工和处理,将其
转换为所需要的输出信号。
2020/7/5
信息与通信工程系—数字信号处理
6
1.1 引言
信号、系统数学描述的意义
为了把握信号与系统的特征参数
系统输出的预测
离散时间信号和系统的时域分析
离散时间信号和系统的时域分析河南工业大学实验报告课程名称:数字信号处理开课实验室:6316实验报告撰写要求:认真总结实验,规范撰写实验报告。
实验报告内容应包括实验目的、实验要求、实验过程、实验总结,其中实验过程应附必要的截图,给出详细说明,对本实验中自行完成的较复杂网络拓扑的配置实现,应用表格给出各设备的主要参数配置(见下表),最后,对实验中遇到的问题和解决进行描述和剖析,总结收获。
并完成思考题。
实验一:离散时间信号和系统的时域分析一、实验目的:掌握用Matlab分析离散时间信号和系统的时域特性的方法。
二、实验环境:1. 运行Windows 2000 / 2007 / XP操作系统的PC一台;2. Matlab仿真环境;三、实验内容与要求:用Matlab在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本运算,用Matlab仿真一些简单的离散时间系统,研究它们的时域特性。
四、实验步骤:Q1.23 产生长度为50、频率为0.08、振幅为2.5、相移为90度的正弦序列并显示它n = 0:50;f = 0.08;phase =90;A = 2.5;arg = 2*pi*f*n - phase;x = A*cos(arg);clf; % Clear old graphstem(n,x); % Plot the generated sequenceaxis([0 40 -3 3]);grid;title('Sinusoidal Sequence');xlabel('Time index n');ylabel('Amplitude');axis;Q 2.20 修改程序2.1,clf;N = 45;num = [0.9 -0.45 0.35 0.002];den = [1 0.71 -0.46 -0.62];y = impz(num,den,N);% Plot the impulse responsestem(y);xlabel('Time index n'); ylabel('Amplitude');title('Impulse Response'); grid;五、实验结果Q1.23运行结果Q2.1运行结果六、实验心得。
数字信号处理课后习题答案(全)1-7章
x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2
故
第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果
|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM,
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
实验一离散时间信号与系统时域分析
实验一离散时间信号与系统时域分析实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令一实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令tem()和plot()。
实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。
其基本原理分别如下:对一个模拟信号某(t)进行采样离散化某(n),为了不失真地从采样信号某(n)中恢复原始信号某(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2倍。
一个离散时间系统,输入信号为某(n),输出信号为y(n),运算关系用T[﹒]表示,则输入与输出的关系可表示为y(n)=T[某(n)]。
(1)线性时不变(LTI)系统的输入输出关系可通过h(n)表示:y(n)=某(n)某h(n)=式中某表示卷积运算。
(2)LTI系统的实现可物理实现的线性时不变系统是稳定的、因果的。
这种系统的单位脉冲响应是因果的(单边)且绝对可和的,即:h(n)0,n0;nh(n)0在MATLAB语言中采用conv实现卷积运算,即:Y=conv(某,h),它默认从n=0开始。
常系数差分方程可以描述一个LTI系统,通过它可以获得系统的结构,也可以求信号的瞬态解。
利用MATLAB 自带的filter(),可以代替手工迭代运算求解系统的差分方程,求解的过程类似于对输入信号进行滤波处理。
三、实验内容1、试画出如下序列的波形(1)某(n)3(n3)(n2)2(n1)4(n1)2(n2)3(n3)(2)某(n)0.5R10(n)解:用MATLAB描述波形1(1)某=[3120-42-3];%矩阵输入某n=-3:1:3;%输入自变量n,以间隔为1从-3到3变化n实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令tem(n,某);%tem()函数绘制火柴杆图,注意n,某元素个数必须相等某label('n');%横坐标显示nylabal('某(n)');%纵坐标显示某(n)grid;%绘制网格1(2)n=0:9;某=0.5.^n;tem(n,某);某label('n');ylabel('某(n)');gri实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令2、用MATLAB计算序列{-201–13}和序列{120-1}的离散卷积,即计算某(n)2(n)(n2)(n3)3(n4)与h(n)(n)2(n1)(n3)解:用MATLAB描述波形。
数字信号处理习题答案
n
2π [ ( 0 2kπ) δ( 0 2kπ)]
式中
k
ω0=Ω0T=0.5π rad 上式推导过程中, 指数序列的傅里叶变换仍然不存在, 只有引入奇异函
数δ函数才能写出它的傅里叶变换表示式。
解: (1) x(n)序列的波形如题2解图(一)所示。 (2) x(n)=-3δ(n+4)-δ(n+3)+δ(n+2)+3δ(n+1)+6δ(n) +6δ(n-1)+6δ(n-2)+6δ(n-3)+6δ(n-4)
第1章 时域离散信号与时域离散系统
(3) x1(n)的波形是x(n)的波形右移2位,再乘以2, 画出图形如题2解图 (二)所示。
n
1=n+1
m0
3
1=8-n
mn4
④ n>7时, y(n)=0
题8解图(1)
最后结果为 0 n<0或n>7
y(n)= n+1 0≤n≤3 8-n 4≤n≤7
y(n)的波形如题8解图(1)所示。 (2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2) = 2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5)
y(n)=(2-0.5n)R5(n)+31×0.5nu(n-5)
第1章 时域离散信号与时域离散系统
13. 有一连续信号xa(t)=cos(2πft+j), 式中, f=20 Hz, j=π/2
(1) 求出xa(t)
(2) 用采样间隔T=0.02 s对xa(t)进行采样, 试写出采样信号xˆa (t)
实验报告 实验3 离散时间系统的时域分析
数字信号处理实验三离散时间系统的时域分析学院:信息与通信学院专业:电子信息工程学号:0900220418姓名:梁芝铭1.实验目的(1)理解离散时间信号的系统及其特性。
(2)对简单的离散时间系统进行分析,研究其时域特性。
(3)利用MATLAB 对离散时间系统进行仿真,观察结果,理解其时域特性。
2.实验原理离散时间系统,主要是用于处理离散时间信号的系统,即是将输入信号映射成的输出的某种运算,系统的框图如图所示:(1)线性系统当该系统的输入信号为12()()ax n bx n +时,其中a,b 为任意常数,输出为121212[()()][()][()]()()T a x n b x n a T x n b T x n a y n b y n+=+=+(2)时不变系统若()[()]y n T x n =,则[()]()T x n k y n k -=-。
3.实验内容及其步骤(1)复习离散时间系统的主要性质,掌握其原理和意义。
(2)一个简单的非线性离散时间系统的仿真在MATLAB 中输入:n = 0:200; x = cos(2*pi*0.05*n); x1 = [x 0 0]; x2 = [0 x 0]; x3 =[0 0 x]; y = x2.*x2-x1.*x3; y = y(2:202); subplot(2,1,1); plot(n, x); xlabel('Time index n'); ylabel('Amplitude');title('Input Signal');subplot(2,1,2);plot(n,y);xlabel('Time index n'); ylabel('Amplitude');title('Output signal'); 结果如下:(3)线性与非线性系统的仿真在MATLAB中输入:n = 0:40; a = 2; b = -3;x1 = cos(2*pi*0.1*n); x2 = cos(2*pi*0.4*n);x = a*x1 + b*x2;num = [2.2403 2.4908 2.2403];den = [1 -0.4 0.75];ic = [0 0]; y1 = filter(num,den,x1,ic);y2 = filter(num,den,x2,ic); y = filter(num,den,x,ic);yt = a*y1 + b*y2; d = y - yt; subplot(3,1,1);stem(n,y); ylabel('Amplitude');title('Output Due to Weighted Input: a \cdot x_{1}[n] + b \cdot x_{2}[n]');subplot(3,1,2);stem(n,yt); ylabel('Amplitude');title('Weighted Output: a \cdot y_{1}[n] + b \cdot y_{2}[n]');subplot(3,1,3);stem(n,d); xlabel('Time index n'); ylabel('Amplitude');title('Difference Signal');结果如下:(4)时不变与时变系统的仿真在MA TLAB中输入:% Generate the input sequencesclf; n = 0:40; D = 10; a = 3.0; b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);xd = [zeros(1,D) x]; num = [2.2403 2.4908 2.2403]; den = [1 -0.4 0.75];ic = [0 0]; % Set initial conditions% Compute the output y[n]y = filter(num,den,x,ic);% Compute the output yd[n]yd = filter(num,den,xd,ic);% Compute the difference output d[n]d = y - yd(1+D:41+D);subplot(3,1,1); stem(n,y); ylabel('Amplitude'); title('Output y[n]'); grid;subplot(3,1,2); stem(n,yd(1:41)); ylabel('Amplitude');title(['Output due to Delayed Input x[n - ', num2str(D),']']); grid;subplot(3,1,3); stem(n,d); xlabel('Time index n'); ylabel('Amplitude');title('Difference Signal'); grid;结果如下:4.思考题(1)离散时间系统有何特点。
(完整版)数字信号处理-原理实现及应用(高西全—第3版)第1章时域离散信号和系统
·1·第1章 时域离散信号和系统1.1 引 言本章内容是全书的基础。
学生从学习模拟信号分析与处理到学习数字信号处理,要建立许多新的概念,数字信号和数字系统与原来的模拟信号和模拟系统不同,尤其是处理方法上有本质的区别。
模拟系统用许多模拟器件完成,数字系统用运算方法完成。
如果对本章中关于数字信号与系统的若干基本概念不清楚,那么在学习数字滤波器时,会感到不好掌握,因此学好本章是很重要的。
1.2 本章学习要点(1) 关于信号● 模拟信号、时域离散信号、数字信号三者之间的区别。
● 如何由模拟信号产生时域离散信号。
● 常用的时域离散信号。
● 如何判断信号是周期性的,其周期如何计算。
(2) 关于系统● 什么是系统的线性、时不变性,以及因果性、稳定性;如何判断。
● 线性、时不变系统输入和输出之间的关系;求解线性卷积的图解法、列表法、解析法,以及用MA TLAB 工具箱函数求解。
● 线性常系数差分方程的递推解法。
● 用MA TLAB 求解差分方程。
● 什么是滑动平均滤波器,它的单位脉冲响应是什么。
1.3 习题与上机题解答1.1 用单位脉冲序列及其加权和表示图P1.1所示的序列。
解:()(2)(1)2()(1)2(2)3(3)(4)2(6)x n n n n n n n n n δδδδδδδδ=+-+++-+-+-+-+-1.2 给定信号24,4≤≤1()4,0≤≤40,n n x n n +--⎧⎪=⎨⎪⎩其他(1) 画出x (n )的波形,标上各序列值;(2) 试用延迟的单位脉冲序列及其加权和表示x (n )序列; (3) 令1()2(2)x n x n =-,画出1()x n 的波形; (4) 令2()(2)x n x n =-,画出2()x n 的波形。
·2·解:(1) 画出x (n )的波形,如图S1.2.1所示。
图P1.1 图S1.2.1(2) ()4(4)2(3)2(1)4()4(1)4(2)4(3)4(4)x n n n n n n n n n δδδδδδδδ=+-+++++-+-+-+--。
离散时间信号与系统的时域分析实验报告
离散时间信号与系统的时域分析实验报告报告⼆:⼀、设计题⽬1.绘制信号)()(1k k f δ=和)2()(2-=k k f δ的波形2.绘制直流信号)()(1k k f ε=和)2(2-=k f ε的波形3绘制信号)()(6k G k f =的波形⼆实验⽬的1.掌握⽤MATLAB 绘制离散时间信号(序列)波形图的基本原理。
2.掌握⽤MATLAB 绘制典型的离散时间信号(序列)。
3.通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。
三、设计原理离散时间信号(也称为离放序列)是指在时间上的取值是离散的,只在⼀些离放的瞬间才有定义的,⽽在其他时间没有定义,简称离放信号(也称为离散序列) 序列的离散时间间隔是等间隔(均匀)的,取时间间隔为T.以f(kT)表⽰该离散序列,k 为整数(k=0,±1.±2,...)。
为了简便,取T=1.则f(kT)简记为f(k), k 表⽰各函数值在序列中出现的序号。
序列f(k)的数学表达式可以写成闭合形式,也可逐⼀列出f(k)的值。
通常,把对应某序号K0的序列值称为序列的第K0个样点的“样点值”。
四、设计的过程及仿真1clear all; close all; clc;k1=-4;k2=4;k=k1:k2;n1=0;n2=2;f1=[(k-n1)==0];f2=[(k-n2)==0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('δ(k)')axis([k1,k2,-0.1,1.1]);subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);ylabel('f_2(k)');title('δ(k-2)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:2c lear all; close all; clc;k1=-2;k2=8;k=k1:k2;n1=0;n2=2; %阶跃序列开始出现的位置f1=[(k-n1)>=0]; f2=[(k-n2)>=0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('ε(k)')axis([k1,k2+0.2,-0.1,1.1])subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);xlabel('k');ylabel('f_2(k)');title('ε(k-2)')axis([k1,k2+0.2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:3clear all; close all; clc;k1=-2;k2=7;k=k1:k2; %建⽴时间序列n1=0;n2=6; f1=[(k-n1)>=0];f2=[(k-n2)>=0];f=f1-f2;stem(k,f,'fill','-k','linewidth',2);xlabel('k');ylabel('f(k)');title('G_6(k)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:五、设计的结论及收获实现了⽤matlab绘制离散时间信号, 通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。
数字信号处理实验离散时间 LTI 系统的时域分析与 Z 域分析
实验一离散时间LTI系统的时域分析与Z域分析一、实验目的1、掌握用MATLAB求解离散时间系统的零状态响应、单位脉冲响应和单位阶跃响应;2、掌握离散时间系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的稳定性。
二、实验原理1、离散时间系统的时域分析(1)离散时间系统的零状态响应离散时间LTI系统可用线性常系数差分方程来描述,即MATLAB中函数filter可对式(1-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter的语句格式为:y=filter(b,a,x)其中,x为输入的离散序列;y为输出的离散序列;y的长度与x的长度一样;b与a分别为差分方程右端与左端的系数向量。
(2)离散时间系统的单位脉冲响应系统的单位脉冲响应定义为系统在 (n)激励下系统的零状态响应,用h(n)表示。
MATLAB求解单位脉冲响有两种方法:一种是利用函数filter;另一种是利用函数impz。
impz函数的常用语句格式为impz(b,a,n),其中b和a的定义见filter,n表示脉冲响应输出的序列个数。
(3)离散时间系统的单位阶跃响应系统的单位阶跃响应定义为系统在ε(n)激励下系统的零状态响应。
MATLAB求解单位脉冲响应有两种方法:一种是利用函数filter,另一种是利用函数stepz。
stepz函数的常用语句格式为stepz(b,a,N)其中,b和a的定义见filter,N表示脉冲响应输出的序列个数。
2、离散时间系统的Z域分析(1)系统函数的零极点分析离散时间系统的系统函数定义为系统零状态响应的z变换与激励的z变换之比,即如果系统函数H(z)的有理函数表示式为那么,在MATLAB中系统函数的零极点就可通过函数roots得到,也可借助函数tf2zp得到。
roots的语法格式为:Z=roots(b)%计算零点b=[b1b2…bmbm+1]P=roots(a)%计算极点a=[a1a2…anan+1]tf2zp的语句格式为[Z,P,K]=tf2zp(b,a)其中,b与a分别表示H(z)的分子与分母多项式的系数向量。
离散信号与系统的时域和频域分析
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
实验一 时域离散信号与系统分析(实验报告)-2015
《数字信号处理》 实验报告学院 专业 电子信息工程 班级 姓名 学号 时间实验一 时域离散信号与系统分析一、实验目的1、熟悉连续信号经理想采样后的频谱变化关系,加深对时域采样定理的理解。
2、熟悉时域离散系统的时域特性,利用卷积方法观察分析系统的时域特性。
3、学会离散信号及系统响应的频域分析。
4、学会时域离散信号的MATLAB 编程和绘图。
5、学会利用MATLAB 进行时域离散系统的频率特性分析。
二、实验内容1、序列的产生(用Matlab 编程实现下列序列(数组),并用stem 语句绘出杆图。
(要求标注横轴、纵轴和标题)(1). 单位脉冲序列x(n)=δ(n ) (2). 矩形序列x(n)=R N (n) ,N=10nδ(n )nR N (n )图1.1 单位脉冲序列 图1.2 矩形序列(3) . x(n)=e (0.8+3j )n ; n 取0-15。
4n|x (n )|201321111053 陈闽焜n<x (n )/R a d图1.3 复指数序列的 模 图1.4 复指数序列的 相角(4). x(n)=3cos (0. 25πn +0.3π)+2sin (0.125πn +0.2π) n 取0-15。
ny (n )图1.4 复合正弦实数序列(5). 把第(3)小题的复指数x(n)周期化,周期20点,延拓3个周期。
4m|y (m )|201321111053 陈闽焜图1.5 第(3)的20点周期延拓杆图(6). 假设x(n)= [1,-3,2,3,-2 ], 编程产生以下序列并绘出杆图:y(n) y(n)= x(n)-2x(n+1)+x(n-1)+x(n-3);5201321111053 陈闽焜图1.6 y(n)序列杆图(7)、编一个用户自定义matlab 函数,名为stepshf (n0,n1,n2)实现单位阶跃序列u[n -n1]。
其中位移点数n1在起点n0和终点n2之间任意可选。
自选3个入口参数产生杆图。
实验一离散信号与系统时域分析的Matlab实现
实验1 离散信号与系统时域分析的Matlab实现一、实验目的1.掌握用Matlab表示常用离散信号的方法;2.掌握用Matlab求解离散系统的单位取样响应与零状态响应;3.掌握用Matlab实现离散信号卷积的方法;二、实验原理与内容1. Matlab基本操作打开Matlab 6.5,只保留命令窗口(Command Window),点击文本编辑窗口(M-file)创建、编辑M程序。
图1命令窗口在文本编辑窗口输入指令程序。
当输入完整程序后,点击DEBUG→RUN运行程序,或用键盘F5键直接运行。
另外,也可点击窗口快捷运行程序键。
图2文本编辑窗口编辑完成一个程序后,第一次运行或另存为时,需要保存M程序,保存的路径为命令窗口所示的当前目录路径(Current Directory),该路径可自行设置。
图3当前目录路径注意:M 文件在命名时有一定规则,错误命名时会使M 文件不能正常运行。
(1)M 文件名首字符不能是数字或下划线。
(2)M 文件名不能与Matlab 的内部函数名相同(3)M 文件名中不能有空格,不能含有中文。
一般应采用英文或拼音对M 文件命名。
2.离散信号的Matlab 表示表示离散时间信号x(n)需要两个行向量,一个是表示序号n=[ ],一个是表示相应函数值x=[ ],画图指令是stem 。
(1)正、余弦序列正、余弦序列为MATLAB 内部函数,可直接调用,文件名为sin 和cos 。
例1-1 画出()sin()4x n n π=的波形。
打开文本编辑窗口,输入波形程序:n=0:40;xn=sin(pi*n/4);stem(n,xn,'.')title('sin(pi*n/4)')运行,输出波形如下图4。
图4 ()x n 的波形图对于0cos()n ωϕ+或0sin()n ωϕ+,当2/πω是整数或有理数时,才是周期信号。
练习:(1)把上述程序中第三行分别改为stem(n,xn)、stem(n,xn,'*') 、stem(n,xn,' filled ') 后依次运行,看输出波形有何变化。
离散信号与系统的时域分析实验报告
离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。
本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。
在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。
2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。
通过设置函数发生器的频率和振幅,我们可以产生不同的信号。
接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。
使用合适的采样率,我们可以准确地获取模拟信号的离散样本。
最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。
2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。
通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。
通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。
2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。
例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。
通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。
此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。
3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。
例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。
而当信号频率小于采样率的一半时,可以还原原始信号。
此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。
4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。
数字信号处理实验报告
实验报告课程名称:数字信号处理授课班级:学号:姓名:指导老师:实验一离散时间信号及系统的时域分析实验类别:基础性实验1实验目的:(1)了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境。
(2)熟悉MA TLAB中产生信号和绘制信号的基本命令,学会用MA TLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。
(3)通过MA TLAB仿真一些简单的离散时间系统,并研究它们的时域特性。
(4)通过MA TLAB进行卷积运算,利用卷积方法观察分析系统的时域特性。
2. 实验报告要求●简述实验原理及目的。
●结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。
●记录调试运行情况及所遇问题的解决方法。
3.实验内容:思考题:9.2.1 运行程序P9.2.1,哪个参数控制该序列的增长或衰减:哪个参数控制该序列的振幅?若需产生实指数序列,应对程序作何修改?9.2.2运行程序P9.2.1,该序列的频率是多少?怎样改变它?哪个参数控制该序列的相位?哪个参数可以控制该序列的振幅?该序列的周期是多少?9.2.3 运行程序P9.2.3,对加权输入得到的y(n)与在相同权系数下输出y1(n)和y2(n)相加得到的yt(n)进行比较,这两个序列是否相等?该系统是线性系统吗?9.2.4 假定另一个系统为y(n)=x(n)x(n-1)修改程序,计算这个系统的输出序列y1(n),y2(n)和y(n)。
比较有y(n)和yt(n)。
这两个序列是否相等?该系统是线性系统吗?(提高部分)9.2.5运行程序P9.2.4,并比较输出序列y(n)和yd(n-10)。
这两个序列之间有什么关系?该系统是时不变系统吗?9.2.6 考虑另一个系统:修改程序,以仿真上面的系统并确定该系统是否为时不变系统。
(选做)n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);[x1,n1]=sigmult(n,n,x,n)[x2,n2]=sigshift(x,n,1)[y,ny1]= sigadd(x1,n1,x2,n2)[y1,ny11]= sigshift(y,ny1,D)[sx,sn]= sigshift(x,n,D)[sx1,sn1]=sigmult(n,n, sx,sn)[sx2,sn2]=sigshift(sx,sn,1)[y2,ny2]= sigadd(sx1,sn1,sx2,sn2)D= sigadd(y1,ny11,y2,ny22)六、实验心得体会:实验时间批阅老师实验成绩实验二 FFT 实现数字滤波实验类别:提高性实验 1.实验目的(1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32 /79
把离散信号 x和(n) 的h变n量 ,都n用m置换,作出
的波形x(。m)和h(m) 2)反转
以 m为对0 称轴,将 反h转(m,) 得到 。 h(m)
3)移位
把 h(移m位) ,变为 h。(n m,) 把n 0向右移h位(;m) , 把 向左n 移0位。 h(m)
第1章离散时间信号与系统的时域分析
两序列的乘积指同序号 (n) 的序列值逐项 对应相乘而构成一个新的序列,表示为
z(n) x(n) y(n)
第1章离散时间信号与系统的时域分析
x(n)
22 /79
例 已知序列
x(n)
1 2
(
1 2
)n
,
n 1
0,
n 1
2n, n 0
,
y(n)
n 1, n 0
求序列
z1(n) x(n) y(n)
RN (n)
0 n N 1
1
其他n
01
2
N 1 n
RN (n) u(n) u(n N)
N 1
RN (n) (n m) m0 (n) (n 1) n (N 1)
第1章离散时间信号与系统的时域分析
9 /79
4.正弦型序列
x(n) Asin(n0 ) 其中,0为数字频率。
x(n)
n
第1章离散时间信号与系统的时域分析
7.周期序列
12 /79
如果存在一个最小的正整数N,满足
x(n) x(n N)
则序列 x(n)为周期性序列,N为周期。
下图为周期序列示意图
第1章离散时间信号与系统的时域分析
讨论一般正弦序列的周期性
13 /79
x(n) Asin(0n )
x(n N ) Asin[0 (n N ) ] Asin(0n 0N )
37 /79
列表法
3
例 已知
x(n)
2 1
0
(n 0)
(n ,1)
(n 2) (other)
2 n 1
h(n)
求13
n0 n 1
4 n 2
5 n 3
y(n) x(n)*h(n)
h(1) h(0) h(1) h(2) h(3)
23145
x(0) 3 6 9 3 12 15 x(1) 2 4 6 2 8 10 x(2) 1 2 3 1 4 5
第1章离散时间信号与系统的时域分析
3 /79
1.1离散时间信号—序列
时间为离散变量的信号称为离散时间信号, 它只在离散时间上给出函数值,是时间上不连续的 序列,常用{x(n)}表示。
许多时候为了方便,直接用x(n)来代表序列全 体{x(n)}。本书中,离散时间信号与序列将不予区
分。这里 x(n) 既指序列的第 n 个数,又指整个序列。
7 时间尺度变换
27 /79
序列的尺度变换类似于连续时间信号的时域伸缩 变换,包括抽取和插值两类。
抽取:令 y(n) x(Mn),M为正整数,称 y(n)是由 x(n) 作M倍的抽取所产生的,即从 x(n) 中每隔M-1点取1
点。
第1章离散时间信号与系统的时域分析
28 /79
其分解过程见下例 如图所示,
项依次x(延n) 时 (右移)位m;而 则指 逐x(n项依m)次
超前x(n)(左移)位,当 m=1时称为单位延时m 。这里
为整数。
m
第1章离散时间信号与系统的时域分析
例
x(n)
1 2
(
1 2
)n
,
0,
n 1 n 1
x(n
1)
1
4
(
1 2
)n
,
n
2
0, n 2
x(n
1)
(
1 2
)n
,
n
例 一序列的抽取和插值的过程。
x(n)
x(n)
30 /79
y1(n) x(2n)
n
n
y2 (n) x(n / 2)
n
n
x1(n) y1(n / 2)
x2 (n) y2 (2n)
n
n
作抽取运算时,每2点(每隔1点)取1点;作
插值运算时,每2点之间插入1点,插入值是0。
第1章离散时间信号与系统的时域分析
取M=3,则y(n)= ?
解: y(-1)= x(-1·3) y(0)= x(0·3)
y(1)= x(1·3) …
第1章离散时间信号与系统的时域分析
29 /79
插值:令 y(n) x(,n /LL为) 正整数,称 是由y(n作) L倍x的(n) 插值所产生的。
分解过程如下:
第1章离散时间信号与系统的时域分析
第1章离散时间信号与系统的时域分析
17 /79
例:
x(n) sin( 3 2 n)
14
0
3 14
2
2 14 N T0 0 3 k T
当14T 3T0时,x(n)为周期为14的周期序列
第1章离散时间信号与系统的时域分析
18 /79
1.1.2 序列的基本运算
1.移位
设某一序列 x,(n当) 为正m时, 指x(原n 序m列) 逐
n
n
6. 累加
第1章离散时间信号与系统的时域分析
25 /79
设某一序列为 x(n,) 则 x的(n累) 加序列定义为
n
y(n) x(k) k
该定义表示序列 y(n) 在 n 时刻的值等于 n 时刻x(n) 的值以及 n 时刻以前所有 x(n) 值的累加和。序列的累
加运算类似于连续信号的积分运算。
第1章离散时间信号与系统的时域分析
1 /79
第1章离散时间信号与系统的时域分析
1.1 离散时间信号—序列 1.2序列的卷积和 1.3线性移不变系统 1.4线性常系数差分方程 1.5连续信号的抽样 1.6离散线性相关
第1章离散时间信号与系统的时域分析
2 /79
内容提要
本章首先介绍了离散时间信号的基本概念、常 用序列和基本运算;其次介绍了序列的卷积和及其 求解方法;然后着重讨论了线性移不变系统的特性 和差分方程的时域解法;最后介绍了相关函数的基 本概念,讨论了相关函数和线性卷积的关系。
0
0, n 0
x(n) x(n 1) x(n 1)
19 /79
n n n
第1章离散时间信号与系统的时域分析
2.反褶(反转)
20 /79
若有序列 x,(n)用 置换n 为对 x(的n)反褶信x(号n),此时 形以 x为(n)轴翻转得到n。 0
例
x(n)
1 2
(
1 2
)n
,
n 1
0,
n 1
x(n)
前向差分和后向差分运算可相互转换,即 x(n 1) x(n)
第1章离散时间信号与系统的时域分析
24 /79
例 已知序列 x(n) {0,0,1,,1,1则,1,0,0}前向差x(n分) 和后向差分
如下图
x(n)
x(n)
n
n
x(n 1)
x(n 1)
n x(n) x(n 1) x(n)
n x(n) x(n) x(n 1)
5 /79
x(n其) 他表示方法:
•数的集合{·}的形式 例如: x(n) {0,0,1,1,1,1,0,0}
•表达式 例如: x(n) 2n
•图形 例如: 图中横坐标n表示离 散的时间坐标,且 仅在n为整数时才有 意义;纵坐标代表 信号样点的值。
第1章离散时间信号与系统的时域分析
6 /79
第1章离散时间信号与系统的时域分析
例 已知序列
x(n)
1 2
(
1 2
)n
,
n 1 ,则
0,
n 1
y(n)
n
x
k
,
n 1
k
0,
n 1
x(n)
n
yy((nn))
3
2
-2
0
2
n n
z (n) x(n) y(n)
26 /79
第1章离散时间信号与系统的时域分析
1 2
(
1 2
)n
,
n 1
0,
n 1
中的x(自n) 变量 ,定义n 的波形相当x(于n)将 的波
x(n)
n x(n)
n
第1章离散时间信号与系统的时域分析
3 序列的加减
21 /79
两序列的加、减指同序号 (n)的序列值逐项对应 相加、减而构成一个新的序列,表示为
z(n) x(n) y(n)
4 乘积
要使x(n N ) x(n),即x(n)为周期为N的周期序列
则要求0 N
2 k,即N
2 0
k,N,k为整数,
且k的取值保证N是最小的正整数
第1章离散时间信号与系统的时域分析
14 /79
sin[0 (n N )] sin 0n
0N 2 k N 2 k 0
sin
n
10
N=20
sin
3 n
第1章离散时间信号与系统的时域分析
4 /79
x(n) 是由一个连续时间信号 x(t)的抽样样得到的。 若 x(t) 表示一个连续时间信号,以 TS 采样间隔对其 进行周期抽样得到离散时间信号 x(nTs )(n 取整数)。 通常,TS 为常量,所以 x(nTs ) 就记为 x(n) 。
第1章离散时间信号与系统的时域分析
31 /79
1.2 序列的卷积和
1.2.1 卷积和的定义及计算
设序列 x(n、) h它(n)们的卷积和 定y(义n)为