北京市海淀区清华大学附属中学2018-2019学年七年级下学期期末数学试题
北京市海淀区第二学期七年级数学期末考试及答案
海淀区第二学期七年级期末考试 数 学 试 卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. ( )1.不等式组3x -2>4的解集是( )A .x >2B .x >3 C. x <3 D . x <2( )2.若 a >b ,则下列结论中正确的是( )A .4 a <4 bB .a +c >b +cC .a -5<b -5D .-7a >-7b ( )3.下列计算中,正确的是( ) A .(m +2)2=m 2+4B .(3+y )( 3-y )= 9-y 2C .2x (x -1)= 2x 2-1D .(m -3)(m +1)= m 2-3( )4.如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E .若∠1=25°,则的度数为( )A .15°B .50°C .25°D .12.5°( )5.下列从左到右的变形正确进行因式分解的是( )A.(x +5)(x -5)=x 2-25B.x 2+x +1=x (x +1)+1C.-2x 2-2xy =-2x (x +y )D.3x +6xy +9xz =3x (2y +9z )( )6. 如图所示,点在AC 的延长线上,下列条件中能判断( )A.∠3=∠4B.C. D.( )7.9的平方根是( ).A .B .C .D .( )8.若,则点P (,)所在的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限 ( )9.下列各数中的无理数是( ).A .B .C .D . ( )10.关于,的二元一次方程组的解满足, 则的取值范围是( ) A . B . C . D .BAF ∠E CD AB // 180=∠+∠ACD D DCE D ∠=∠21∠=∠81±3±3-30<m 32m 140.35-38x y 3,354x y a x y a -=⎧⎨-=-⎩x y <a 35a >13a <3a 5<53a >二、填空题(本题共30分,每小题3分) 11.把方程写成用含x 的代数式表示y 的形式,则y = .12如果一个角等于54°,那么它的余角等于 度.13.在方程中,当时,y = . 14. 在平面直角坐标系中,点A 的坐标为(,).若线段AB ∥x 轴,且AB 的长为4,则点B 的坐标为 .15.已知 是关于x ,y 的方程组的解,那么的值是 . 16.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD =26°,则∠AOC = .17.语句“x 的3倍与10的和小于或等于7”用不等式表示为 .18.已知23(2)0a b ++-=,则2011)a b (+的值为19.在直角三角形ABC 中,∠B =90°,则它的三条边AB ,AC ,BC 中,最长的边是 .20.在平面直角坐标系xOy 中,直线l 经过点A (,),点A 1,A 2,A 3,A 4,A 5,……按如图所示的规律排列在直线l 上.若直线l 上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,则A 8的坐标为 ;若点A n (为正整数)的横坐标为2014,则= .三、解答题(本题共40分,每小题5分)1.解不等式.2. 解方程组310x y +-=231x y =--32x =-3-21,2x y =-⎧⎨=⎩31,24ax y x by +=⎧⎨-=⎩a b +1-0n n +4463x x x -≤-233,327.x y x y -=⎧⎨-=⎩3. 解不等式组.4.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,∠1=50︒,求∠2的度数.5.已知:如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠B=40°,∠1=60°,求∠OFE的度数.6.为了防控冬季呼吸道疾病,我校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共100瓶,其中甲种每瓶6元,乙种每瓶9元,如果购买这两种消毒液共花去780元,求甲、乙两种消毒液各购买了多少瓶?4(1)78,25,3x xxx+≤-⎧⎪-⎨-<⎪⎩7.如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A (,),B (,),C (,).将△ABC 向右平移5个单位长度,再向下平移4个单位长度,得到△,其中点,,分别为点A ,B ,C 的对应点.(1)请在所给坐标系中画出△,并直接写出点的坐标;(2)若AB 边上一点P 经过上述平移后的对应点为(,),用含,的式子表示点P 的坐标;(直接写出结果即可)(3)求△的面积.解:(1)点的坐标为 ;(2)点P 的坐标为 ;(3)8.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得m 分,回答错误或放弃回答扣n 分.当甲、乙两人恰好都答完12个题时,甲答对了9个题,得分为39分;乙答对了10个题,得分为46分.(1)求m 和n 的值;(2)规定此环节得分不低于60分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?解:5-14-41-1-'''A B C 'A 'B 'C '''A B C 'C 'P x y x y '''A B C 'C。
2018年北京市海淀区七年级数学期末试卷-含答案
2018年北京市海淀区七年级数学期末试卷学校 班级 姓名 成绩 一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个. 1. 5-的相反数是( )A .15B .15- C .5 D .5-2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应为 ( )A .517.410⨯B .51.7410⨯C .417.410⨯D .60.17410⨯ 3. 下列各式中,不相等...的是( )A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32- 4. 下列是一元一次方程的是( )A .2230x x --=B .25x y +=C .112x x+= D .10x += 5. 如图,下列结论正确的是( )A. c a b >>B.11b c > C. ||||a b <D. 0abc >6. 下列等式变形正确的是( )A. 若35x -=,则35x =-B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+ D. 若3(1)21x x +-=,则3321x x +-=7. 下列结论正确的是 ( )A. 23ab -和2b a 是同类项B.π2不是单项式 C. a 比a -大D. 2是方程214x +=的解8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( )A. B. C. D.9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是 ( )A. 点A 在线段BC 上B. 点B 在线段AC 上C. 点C 在线段AB 上D.点A 在线段CB 的延长线上10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是 ( )A. 6B. 5C. 4D. 3二、填空题(每小题2分,共16分) 11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费 元.(用含a ,b 的代数式表示)13.已知,则= .14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站, 经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC = °.15. 若2是关于x 的一元一次方程的解,则a = ________. 16. 规定图形表示运算a b c --,图形表示运算x z y w --+.则+=________________(直接写出答案). 17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为 .2|2|(3)0a b -++=a b b c azy wx 1324576北ACB从正面看从上面看BC18. 在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次 变化,再对图(2)的每个边做相同的变化, 得到图形如图(3),称为第二次变化.如此 连续作几次,便可得到一个绚丽多彩的雪花 图案.如不断发展下去到第n 次变化时,图 形的面积是否会变化,________(填写“会” 或者“不会”),图形的周长为 .三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分) 19.计算:(1)()()21862⎛⎫-⨯-+- ⎪⎝⎭;(2)()411293⎛⎫-+-÷--- ⎪⎝⎭.20.解方程:(1) 3(21)15x -=; (2)71132x x-+-=. 21.已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值.22. 作图题:如图,已知点A ,点B,直线l 及l 上一点M .(1)连接MA ,并在直线l 上作出一点N ,使得点N 在点M 的左边, 且满足MN =MA ;(2)请在直线l 上确定一点O ,使点O 到点A 与点O 到点B 的距 离之和最短,并写出画图的依据. 23.几何计算:如图,已知∠AOB =40°,∠BOC =3∠AOB ,OD 平分∠AOC ,求∠COD 的度数. 解:因为∠BOC =3∠AOB ,∠AOB =40°所以∠BOC =__________°所以∠AOC =__________ + _________ =__________° + __________° =__________° 因为OD 平分∠AOC第二次变化第一次变化(3)(2)(1)AMA所以∠COD =12__________=__________°24. 如图1, 线段AB =10,点C , E , F 在线段AB 上.(1)如图2, 当点E , 点F 是线段AC 和线段BC 的中点时, 求线段EF 的长;(2)当点E , 点F 是线段AB 和线段BC 的中点时,请你 写出线段EF 与线段AC 之间的数量关系并简要说明理由.25. 先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠。
北京市海淀区七年级下学期期末历年数学试卷及解析汇总
2012-2013学年北京市海淀区七年级(下)期末数学试卷一、选择题:(本题24分)1.(3分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.4个B.3个C.2个D.1个2.(3分)在,,,3.1415926,()2,3.030030003…(相邻两个3之间0的个数逐渐多1)中,无理数的个数是()A.个B.2个C.3个D.4个3.(3分)不等式的解集是()A.B.C.x<﹣15D.﹣x>15 4.(3分)已知在△ABC中,∠A=70°﹣∠B,则∠C等于()A.35°B.70°C.110°D.140°5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°6.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN ()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN7.(3分)如图,在△ABC中,∠B、∠C的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有()①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个B.2个C.3个D.4个8.(3分)如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A.(35,44)B.(36,45)C.(37,45)D.(44,35)二、填空题:(本题16分)9.(2分)△ABC和△DEF全等,且A,B,C分别与D,E,F为对应顶点,如果AB=3,∠C=60°,则DE=.10.(2分)已知点A(1,﹣2),若A、B两点关于x轴对称,则B的坐标是.11.(2分)一个多边形的内角和是540°,则它的边数是.12.(2分)64的立方根为.13.(2分)一个等腰三角形有两边分别为4和9,则周长是.14.(2分)不等式x﹣8>3x﹣5的最大整数解是.15.(2分)已知+|b+3|=0,则(a﹣b)2=.16.(2分)如图,已知:在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC=8,△ABE的周长是14,AB的长是.三.解答题:17.(5分)解下列不等式:3x﹣<+1.18.(5分)解不等式组,并把它的解集在数轴上表示出来.19.(8分)(1)计算:4﹣2(1+)+;(2)解方程(3x+2)2=16.20.(5分)已知:如图,BE=CF,AB=DE,AC=DF,求证:△ABC≌△DEF.21.(7分)如图,已知在平面直角坐标系中,△ABC的位置如图.(1)请在图中画出△ABC关于y轴对称的△A′B′C″;(2)若以A′C″为边作一个等腰三角形△A′C″D,使点D落在第一象限的格点上,请你标出点D的位置,并写出点D的坐标.22.(6分)如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.23.(6分)如图:△ABC是等边三角形,O是∠B、∠C两角平分线的交点,EO⊥BO,FO ⊥CO.求证:△AEF的周长等于BC的长.24.(5分)如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.25.(5分)阅读下列解题过程:,,请回答下列回题:(1)观察上面的解答过程,请直接写出=;(2)根据上面的解法,请化简:.26.(8分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB =90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.2012-2013学年北京市海淀区七年级(下)期末数学试卷一、选择题:(本题24分)1.(3分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形的概念对各图形分析判断后即可得解.【解答】解:(1)是轴对称图形;(2)不是轴对称图形;(3)是轴对称图形;(4)是轴对称图形;所以,是轴对称图形的共3个.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,本题仔细观察图形是解题的关键.2.(3分)在,,,3.1415926,()2,3.030030003…(相邻两个3之间0的个数逐渐多1)中,无理数的个数是()A.个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得无理数.【解答】解:,3.030030003…(相邻两个3之间0的个数逐渐多1)是无限不循环小数,故选:B.【点评】本题考查了无理数,注意带根号的数不一定是无理数,无理数是无限不循环小数.3.(3分)不等式的解集是()A.B.C.x<﹣15D.﹣x>15【分析】根据不等式的性质不等式的两边都乘以﹣3,不等号的方向改变后即可得到答案.【解答】解:,不等式的两边都乘以﹣3得:x<﹣15.故选:C.【点评】本题主要考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能熟练地根据不等式的性质解一元一次不等式是解此题的关键.4.(3分)已知在△ABC中,∠A=70°﹣∠B,则∠C等于()A.35°B.70°C.110°D.140°【分析】结合已知条件,根据三角形的内角和为180°求解.【解答】解:∵∠A=70°﹣∠B,∴∠A+∠B=70°,∴∠C=180°﹣(∠A+∠B)=180°﹣70°=110°(三角形的内角和为180°).故选:C.【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.【点评】此题主要考查了等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.6.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN ()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【解答】解:A、符合ASA定理,故本选项错误;B、符合SAS定理,故本选项错误;C、不符合全等三角形的判定定理,故本选项正确;D、∵AM∥CN,∴∠A=∠NCD,符合AAS定理,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定和平行线的性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.7.(3分)如图,在△ABC中,∠B、∠C的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有()①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个B.2个C.3个D.4个【分析】结合角平分线的性质和平行线的性质,即可证明△BDF和△CEF是等腰三角形,然后根据线段的和差分析其它结论.【解答】解:①∵∠B、∠C的平分线相交于F,∴∠DBF=∠CBF,∠ECF=∠BCF.∵DE∥BC,∴∠BFD=∠CBF,∠CFE=∠BCF,∴∠DBF=∠BFD,∠CFE=∠ECF,∴BD=FD,CE=EF.∴△BDF,△CEF都是等腰三角形.故①正确;②根据①得DE=DF+EF=DB+CE.故②正确;③根据②得AD+DE+AE=AD+BD+AE+CE=AB+AC.故③正确;④AB和AC不一定相等,∴BF和CF不一定相等.故④错误.故选:C.【点评】此题综合运用了角平分线的性质、平行线的性质以及等腰三角形的判定.8.(3分)如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A.(35,44)B.(36,45)C.(37,45)D.(44,35)【分析】要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…(44,44)点处粒子运动了44×45=1980分钟!此时粒子会将向下移动,进而得出答案.【解答】解:要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…于是会出现:(44,44)点处粒子运动了44×45=1980分钟,此时粒子会将向下移动.从而在运动了1989分钟后,粒子所在位置为(44,35).故选:D.【点评】本题是考查了点的坐标的确定.本题也是一个阅读理解并猜想规律的题目,解答此题的关键是总结规律首先确定点所在的大致位置,然后就可以进一步推得点的坐标.二、填空题:(本题16分)9.(2分)△ABC和△DEF全等,且A,B,C分别与D,E,F为对应顶点,如果AB=3,∠C=60°,则DE=3.【分析】根据已知得出DE=AB,代入求出即可.【解答】解:∵△ABC和△DEF全等,且A,B,C分别与D,E,F为对应顶点,∴DE=AB,∵AB=3,∴DE=3,故答案为:3.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等,题目比较好,难度不是很大.10.(2分)已知点A(1,﹣2),若A、B两点关于x轴对称,则B的坐标是(1,2).【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.【解答】解:∵A、B两点关于x轴对称,∴点B的坐标是(1,2).故答案为:(1,2).【点评】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.11.(2分)一个多边形的内角和是540°,则它的边数是5.【分析】根据n边形的内角和为(n﹣2)180°列出关于n的方程,解方程即可求出边数n的值.【解答】解:设这个多边形的边数是n,则:(n﹣2)180°=540°,解得n=5,故答案为:5.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.12.(2分)64的立方根为4.【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故答案为:4.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.13.(2分)一个等腰三角形有两边分别为4和9,则周长是22.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①若4为腰长,9为底边长,由于4+4<9,则三角形不存在;②若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故答案为22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.14.(2分)不等式x﹣8>3x﹣5的最大整数解是﹣2.【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x﹣8>3x﹣5的解集为x<﹣;所以其最大整数解是﹣2.【点评】解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.15.(2分)已知+|b+3|=0,则(a﹣b)2=36.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣3=0,b+3=0,解得a=3,b=﹣3,所以,(a﹣b)2=[3﹣(﹣3)]2=62=36.故答案为:36.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(2分)如图,已知:在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC=8,△ABE的周长是14,AB的长是6.【分析】利用垂直平分线的性质和已知的周长计算.【解答】解:∵DE是BC的中垂线,∴BE=EC,则AC=EC+AE=BE+EA=8,又∵△ABE的周长为14,∴AB=14﹣8=6,故答案为:6.【点评】本题考查的是线段垂直平分线的性质的应用,注意:垂直平分线上任意一点,和线段两端点的距离相等,难度适中.三.解答题:17.(5分)解下列不等式:3x﹣<+1.【分析】不等式去分母,去括号,移项合并,将x系数化为1,求出解集.【解答】解:去分母得:18x﹣2x﹣4<21x+6,移项合并得:﹣5x<10,解得:x>﹣2.【点评】此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解集.18.(5分)解不等式组,并把它的解集在数轴上表示出来.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.【解答】解:不等式组解不等式①,得:x≤3,解不等式②,得:x>﹣2,∴原不等式组得解集为﹣2<x≤3.用数轴表示解集如图所示:.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.(8分)(1)计算:4﹣2(1+)+;(2)解方程(3x+2)2=16.【分析】(1)原式第二项去括号,最后一项利用二次根式的性质化简,合并即可得到结果;(2)方程利用平方根的定义开方即可求出解.【解答】解:(1)原式=4﹣2﹣2+2=2;(2)开方得:3x+2=4或3x+2=﹣4,解得:x1=,x2=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(5分)已知:如图,BE=CF,AB=DE,AC=DF,求证:△ABC≌△DEF.【分析】先求出BC=EF,再根据全等三角形的判定定理SSS推出即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.21.(7分)如图,已知在平面直角坐标系中,△ABC的位置如图.(1)请在图中画出△ABC关于y轴对称的△A′B′C″;(2)若以A′C″为边作一个等腰三角形△A′C″D,使点D落在第一象限的格点上,请你标出点D的位置,并写出点D的坐标.【分析】(1)利用关于y轴对称点坐标性质进而得出对应点位置,进而得出答案;(2)利用等腰三角形的性质得出符合题意的图形即可.【解答】解:(1)如图所示:(2)如图所示:符合题意的点为:(2,4),(4,2),(3,3),(5,4),(3,5).【点评】此题主要考查了等腰三角形的性质以及关于y轴对称点的性质,熟练利用等腰三角形的性质是解题关键.22.(6分)如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.【分析】由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.【解答】解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.【点评】此题主要考查了三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.23.(6分)如图:△ABC是等边三角形,O是∠B、∠C两角平分线的交点,EO⊥BO,FO ⊥CO.求证:△AEF的周长等于BC的长.【分析】根据等边三角形性质求出∠EBO和∠FCO都等于30°,设OE=a,求出BE、CF,求出等边三角形EOF,求出EF,求出等边三角形AEF,求出即可.【解答】证明:设OE=a,因为△ABC是等边三角形,且OB,OC平分∠ABC、∠ACB,所以BE=CF=2a,由勾股定理得:OB=a,又因为EO⊥BO,FO⊥CO,所以∠EOF=60°,所以△EOF为等边三角形,∴∠OEF=∠OFE=∠EOF=60°,∴∠AEF=∠AFE=60°,∴三角形AEF是等边三角形,∴AE=AF=EF=a,所以EF=OE=a,BC=3a,AE+AF+EF=AB﹣BE+AC﹣CF+EF=3a﹣2a+3a﹣2a+a=3a=BC.即△AEF的周长等于BC的长.【点评】本题主要考查对等边三角形的性质和判定,含30度角的直角三角形,够多了等知识点的理解和掌握,能求出等边三角形AEF、EOF是解此题的关键.24.(5分)如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.【分析】根据中垂线和轴对称及三角形的三边关系求解.【解答】解:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等知,作出AB的中垂线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP 是最小的.【点评】本题利用了中垂线的性质,轴对称的性质,三角形三边的关系求解.25.(5分)阅读下列解题过程:,,请回答下列回题:(1)观察上面的解答过程,请直接写出=﹣;(2)根据上面的解法,请化简:.【分析】(1)根据题目提供的信息,最后结果等于分母的有理化因式;(2)先把每一项都分母有理化,然后相加减即可得解.【解答】解:(1)=﹣;(2)+++…++,=﹣1+﹣+﹣+…+﹣+﹣,=﹣1,=10﹣1,=9.故答案为:(1)﹣,(2)9.【点评】本题考查了分母有理化,读懂题目信息,得出每一个分式化简的最后结果等于分母的有理化因式是解题的关键.26.(8分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB =90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【分析】(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了;(2)解题思路和辅助线的作法与(1)完全一样;(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.【解答】(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)不成立.证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴△BCF≌△BEF(HL),∴CF=EF;∵△ABC≌△DBE,∴AC=DE,∴AF=AC+FC=DE+EF.【点评】本题考查了全等三角形的判定和性质,通过构建全等三角形来得出简单的线段相等是解题的关键.2013-2014学年北京市海淀区七年级(下)期末数学模拟试卷一、选择题(本大题10小题,每题3分,共30分)1.(3分)已知a<b,下列四个不等式中不正确的是()A.3a<3b B.﹣3a>﹣3b C.a+3<b+3D.2﹣a<2﹣b 2.(3分)方程组的解是()A.B.C.D.3.(3分)若是方程3x﹣ky=10的解,则k的值是()A.一B.4C.一4D.164.(3分)下列条件中,能判定a,b,c三条线段可以组成三角形的是()A.a+b>c,b+c>a,a+c>b B.b>c﹣a,c>a﹣b,b<a﹣cC.b+c>0,且a是最大边D.b﹣a<c,且a是最小边5.(3分)下列说法中,错误的是()A.除三角形外的多边形都有对角线B.任意四边形的内角和等于外角和C.过n边形的一个顶点有(n﹣3)条对角线D.(n+1)边形的内角和比n边形的内角和大360°6.(3分)把x=1代入方程x﹣2y=4…①,那么方程①变成()A.关于y的一元一次方程B.关于x的一元一次方程C.关于y的二元一次方程D.关于x的二元一次方程7.(3分)满足二元一次方程2x+3y=13的正整数x、y的值一共有()A.6对B.4对C.3对D.2对8.(3分)若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A.B.C.D.9.(3分)某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元10.(3分)小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了.作业过程如下(涂黑部分即污损部分)已知:如图,OP平分∠AOB,MN∥OB求证:OM=NM证明:因为OP平分∠AOB所以又因为MN∥OB所以故∠1=∠3所以OM=NM小颖思考:污损部分应分别是以下四项中的二项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的结果应是()A.①④B.②③C.①②D.③④二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)已知|m﹣2|+|3﹣n|=0,则﹣n m=.12.(3分)“a的3倍与4的差不大于1”列出不等式是.13.(3分)在△ABC中,∠A=90°,∠B﹣∠C=14°,则∠B=°,∠C=°.14.(3分)解方程组时,由于粗心,张华看错了方程组中的a,而得解为,刘平看错了方程组中的b,而得解为,则原方程组正确的解为.15.(3分)一个两位数,十位数字比个位数字大5,且这个两位数比两个数位上的数字之和的8倍还大5.如果设个位上的数为x,则可列方程.16.(3分)一个n边形除一个内角外,其余各个内角的和为1680度,那么这个多边形的边数是,这个内角是度.三、解方程(组)(本大题共2小题,每题4分,共8分)17.(4分)解方程:.18.(4分)解不等式组,并将解集表示在数轴上.四、简答题(本大题共3小题,第19、20各6分,第21题7分,共19分)19.(6分)已知|x﹣y+2|+(2x+y+4)2=0.求x y的值.20.(6分)已知:△ABC的周长为36cm,a,b,c是它的三条边长,a+b=2c,a:b=1:2.求a,b,c的值.21.(7分)如图,已知线段CD垂直平分线AB,AB平分∠CAD,问AD与BC平行吗?请说明理由.五、本题(本大题共2小题,第22题7分,第23题8分,共15分)22.(7分)已知△ABC,求证:∠A+∠B+∠C=180°.23.(8分)小华家距离学校2.4千米.某一天小华从家中出发去上学,恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?六、本题分(本题共10分)24.(10分)为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如右表:经预算,该企业购买设备的资金不高于105万元.A型B型价格(万元/台)1210处理污水量(吨/月)240200年消耗费(万元/台)11(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)2013-2014学年北京市海淀区七年级(下)期末数学模拟试卷、一、选择题(本大题10小题,每题3分,共30分)1.(3分)已知a<b,下列四个不等式中不正确的是()A.3a<3b B.﹣3a>﹣3b C.a+3<b+3D.2﹣a<2﹣b【分析】根据不等式的性质,可得答案.【解答】解:A、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故A正确;B、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故B正确;C、不等式的两边都加或减同一个整式,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故D错误.故选:D.【点评】本题考查了不等式的性质,不等式的两边都乘以或除以同一个负数,不等号的方向改变.2.(3分)方程组的解是()A.B.C.D.【分析】用加减法解方程组即可.【解答】解:,(1)+(2),得2x=6,x=3,(1)+(2),得2y=4,y=2,∴原方程组的解.故选:B.【点评】本题考查了二元一次方程组的解法,是比较简单的题目.3.(3分)若是方程3x﹣ky=10的解,则k的值是()A.一B.4C.一4D.16【分析】把代入方程3x﹣ky=10的,即可求出k的值.【解答】解:把代入方程3x﹣ky=10,得k=﹣4.故选:C.【点评】本题主要考查了二元一次方程的解,解题的关键是把代入方程3x﹣ky=10求解.4.(3分)下列条件中,能判定a,b,c三条线段可以组成三角形的是()A.a+b>c,b+c>a,a+c>b B.b>c﹣a,c>a﹣b,b<a﹣cC.b+c>0,且a是最大边D.b﹣a<c,且a是最小边【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、满足三角形的三边关系,故A正确;B、由b<a﹣c得b+c<a,故B错误;C、错误,如2,1,1不能构成三角形;D、错误,不能满足任意两边之差小于第三边,故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5.(3分)下列说法中,错误的是()A.除三角形外的多边形都有对角线B.任意四边形的内角和等于外角和C.过n边形的一个顶点有(n﹣3)条对角线D.(n+1)边形的内角和比n边形的内角和大360°【分析】根据多边形的内角和与外角和公式以及对角线的求法判断即可.【解答】解:A、除三角形外的多边形都有对角线,故A正确;B、任意四边形的内角和等于外角和都为360°,故B正确;C、过n边形的一个顶点有(n﹣3)条对角线,故C正确;D、(n+1)边形的内角和为:(n+1﹣2)•180°=(n﹣1)•180°,n边形的内角和为:(n﹣2)•180°,(n﹣1)•180°﹣(n﹣2)•180°=180°,故D错误.由于该题选择错误的,故选:D.【点评】本题考查了多边形的内角和与外角和公式以及对角线的求法,熟练掌握性质及求法是解题的关键.。
2019-2020学年北京市海淀区清华附中七年级下学期期末数学试卷 (解析版)
2019-2020学年北京市海淀区清华附中七年级第二学期期末数学试卷一、选择题1.16的算术平方根是()A.8B.﹣8C.4D.±42.若三角形的两条边的长度是4cm和7cm,则第三条边的长度可能是()A.2cm B.3cm C.8cm D.12cm3.下列各数中,不是不等式2(x﹣5)<x﹣8的解的是()A.5B.﹣5C.﹣3D.﹣44.如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.5.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°6.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(1,7)B.(1,7)或(1,﹣3)C.(6,2)D.(6,2)或(﹣4,2)7.在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c8.为节约用电,某市根据每户居民每月用电量分为三档收费.第一档电价:每月用电量低于240度,每度0.4883元;第二档电价:每月用电量为240~400度,每度0.5383元;第三档电价:每月用电量高于400度,每度0.7883元.小灿同学对该市有1000户居民的某小区居民月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理的是()A.本次抽样调查的样本容量为50B.该小区按第二档电价交费的居民有17户C.估计该小区按第一档电价交费的居民户数最多D.该小区按第三档电价交费的居民比例约为6%9.如图,点D是∠BAC的外角平分线上一点,且满足BD=CD,过点D作DE⊥AC于点E,DF⊥AB交BA的延长线于点F,则下列结论:①DE=DF;②△CDE≌△BDF;③CE=AB+AE;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个10.在平面直角坐标系中,点A(0,a),点B(0,4﹣a),且A在B的下方,点C(1,2),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0<a≤1C.1≤a<2D.﹣1≤a≤1二.填空题(每小题3分,共24分)11.若是关于x,y的二元一次方程mx+y=﹣3的一个解,则m的值为.12.已知a>b,则﹣4a+5﹣4b+5.(填>、=或<)13.如图,∠ACB=∠DBC,那么要得到△ABC≌△DCB,可以添加一个条件是(填一个即可),△ABC与△DCB全等的理由是.14.已知|2x+y|+=0,则+的值为.15.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=8,CD=3,则△ABD的面积是.16.如图,在五边形ABCDE中,∠A+∠B+∠E=320°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是.17.某中学七年级甲、乙、丙三个班中,每班的学生人数都为40名.某次数学考试的成绩统计如下:(如图,每组分数含最小值,不含最大值)根据图、表提供的信息,则80~90分这一组人数最多的班是班18.阅读下面求(m>0)近似值的方法,回答问题:①任取正数a1<;②令a2=(a1+),则<<a2;③a3=(a2+),则<<a3;…以此类推n次,得到<<a n.其中a n,称为的n阶过剩近似值,称为的n阶不足近似值.仿照上述方法,求的近似值.①取正数a1=3<.②于是a2=;则<<a2.③的3阶不足近似值是.三.解答题(本题共46分,第19-26每小题5分,第27题6分)19.计算:+|﹣|+﹣()2.20.解不等式组:.21.解方程组:.22.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.23.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=100°,求∠1的度数.24.七年级1班计划购买若干本课外读物奖励在数学竞赛中获奖的同学.若每人送4本,则还余5本;若每人送6本,则最后一人得到的课外读物不足3本,求该班级需购买课外读物的本数.25.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)请直接写出AD,BE,DE之间的数量关系:.26.已知关于x,y的二元一次方程组.(1)若该方程组的解是,求关于x,y的二元一次方程组的解.(2)若y<0,且m≤n,求x的最小值.27.已知AB∥CD,点M,N分别在直线AB、CD上,E是平面内一点,∠AME和∠CNE 的平分线所在的直线相交于点F.(1)如图1,当E、F都在直线AB、CD之间且∠MEN=80°时,∠MFN的度数为;(2)如图2,当E在直线AB上方,F在直线CD下方时,探究∠MEN和∠MFN之间的数量关系,并证明你的结论;(3)如图3,当E在直线AB上方,F在直线AB和CD之间时,直接写出∠MEN和∠MFN之间的数量关系.四、填空题(共5小题,每小题4分,满分20分)28.如图,图中以BC为边的三角形的个数为.29.已知BD是△ABC的中线,AB=7,BC=3,且△ABD的周长为15,则△BCD的周长为.30.如图,BD=BC,BE=CA,∠DBE=∠C=60°,∠BDE=75°,则∠AFE的度数等于.31.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN 在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM﹣ON的值不变;(3)△OMN的周长不变;(4)四边形PMON的面积不变,其中正确的序号为.32.已知在平面直角坐标系xOy中,点A的坐标为(﹣1,2),点B的坐标为(1,1),点C(t,0)是x轴上的一个动点,设三角形ABC的面积为S.(1)当S=2时,点C的坐标为;(2)若S的最小值为2,最大值为3,请直接写出点C的横坐标t的取值范围.参考答案一.选择题(每小题3分,共30分)1.16的算术平方根是()A.8B.﹣8C.4D.±4【分析】根据算术平方根的定义求解可得.解:∵(±4)2=16,∴16的算术平方根是4,故选:C.2.若三角形的两条边的长度是4cm和7cm,则第三条边的长度可能是()A.2cm B.3cm C.8cm D.12cm【分析】首先设第三条边的长度为xcm,根据三角形的三边关系定理可得7﹣4<x<7+4,解出x的范围,再确定答案即可.解:设第三条边的长度为xcm,由题意得:7﹣4<x<7+4,即3<x<11,四个选项中只有8cm符合,故选:C.3.下列各数中,不是不等式2(x﹣5)<x﹣8的解的是()A.5B.﹣5C.﹣3D.﹣4【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.解:2(x﹣5)<x﹣8,2x﹣10<x﹣8,2x﹣x<10﹣8,x<2,故选:A.4.如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.解:A,C,D都不是△ABC的边AB上的高,故选:B.5.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.6.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(1,7)B.(1,7)或(1,﹣3)C.(6,2)D.(6,2)或(﹣4,2)【分析】根据平行于x轴的直线是上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:D.7.在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【分析】根据平行线的性质和判定逐个判断即可.解:A、∵a∥b,b∥c,∴a∥c,故本选项符合题意;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合题意;D、当a∥b,b∥c时,a∥c,故本选项不符合题意;故选:A.8.为节约用电,某市根据每户居民每月用电量分为三档收费.第一档电价:每月用电量低于240度,每度0.4883元;第二档电价:每月用电量为240~400度,每度0.5383元;第三档电价:每月用电量高于400度,每度0.7883元.小灿同学对该市有1000户居民的某小区居民月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理的是()A.本次抽样调查的样本容量为50B.该小区按第二档电价交费的居民有17户C.估计该小区按第一档电价交费的居民户数最多D.该小区按第三档电价交费的居民比例约为6%【分析】将各组数据相加可得样本容量;样本中第1、2、3组频数和占总数的比例可判断B选项;总户数乘以样本中第4、5户数和所占比例可判断C;用样本中第6组频数除以总户数可得.解:A、本次抽样调查的样本容量为4+12+14+11+6+3=50,故本选项不合题意;B、该小区按第二档电价交费的居民有1000×=340户,故本选项符合题意;C、样本中第一档电价户数为4+12+14=30户,所以估计该小区按第一档电价交费的居民户数最多,故本选项不合题意;D、该小区按第三档电价交费的居民比例约为×100%=6%,故本选项不合题意.故选:B.9.如图,点D是∠BAC的外角平分线上一点,且满足BD=CD,过点D作DE⊥AC于点E,DF⊥AB交BA的延长线于点F,则下列结论:①DE=DF;②△CDE≌△BDF;③CE=AB+AE;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据角平分线的性质对①进行判断;利用“HL”可对②进行判断;由△CDE ≌△BDF得到CE=BF,同理可证明△ADE≌△ADF得到AF=AE,则可对③进行判断;利用△CDE≌△BDF得到∠FBD=∠ECD,则可根据三角形内角和可对④进行判断.解:∵点D是∠BAC的外角平分线上一点,DE⊥AC,DF⊥AB,∴DE=DF,所以①正确;∵∠CED=∠BFD=90°,CD=BD,DE=DF,∴Rt△CDE≌Rt△BDF(HL);所以②正确;∴CE=BF,同理可证明△ADE≌△ADF,∴AF=AE,∴CE=BF=AB+AF=AB+AE,所以③正确;∵△CDE≌△BDF,∴∠FBD=∠ECD,∵∠1=∠2,∴∠BDC=∠BAC.所以④正确.故选:D.10.在平面直角坐标系中,点A(0,a),点B(0,4﹣a),且A在B的下方,点C(1,2),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0<a≤1C.1≤a<2D.﹣1≤a≤1【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.解:∵点A(0,a),点B(0,4﹣a),且A在B的下方,∴a<4﹣a,解得:a<2,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A,B,C的坐标分别是(0,a),(0,4﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB上,∴3≤4﹣a<4.解得:0<a≤1,故选:B.二.填空题(每小题3分,共24分)11.若是关于x,y的二元一次方程mx+y=﹣3的一个解,则m的值为.【分析】把x与y的值代入方程计算即可求出m的值.解:把代入方程得:3m﹣2=﹣3,解得m=.故答案为:.12.已知a>b,则﹣4a+5<﹣4b+5.(填>、=或<)【分析】根据不等式的基本性质即可解决问题.解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.13.如图,∠ACB=∠DBC,那么要得到△ABC≌△DCB,可以添加一个条件是AC=BD (或∠A=∠D或∠ABC=∠DCB)(填一个即可),△ABC与△DCB全等的理由是SAS(或AAS或ASA).【分析】根据全等三角形的判定方法,可根据SAS或AAS或ASA添加条件.解:∵∠ACB=∠DBC,BC=CB,∴当添加AB=DC时,根据“SAS”可判断,△ABC≌△DCB;当添加∠A=∠D时,根据“AAS”可判断,△ABC≌△DCB;当添加∠ABC=∠DCB时,根据“ASA”可判断,△ABC≌△DCB.故答案为AC=BD(或∠A=∠D或∠ABC=∠DCB);SAS(或AAS或ASA).14.已知|2x+y|+=0,则+的值为0.【分析】直接利用非负数的性质进而得出x,y的值,进而得出答案.解:∵|2x+y|+=0,∴,解得,∴+=.故答案为:0.15.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=8,CD=3,则△ABD的面积是12.【分析】作DE⊥AB于E,如图,根据角平分线的性质得DE=DC=3,然后根据三角形的面积公式计算S△ABD.解:作DE⊥AB于E,如图,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=DC=3,∴S△ABD=×8×3=12.故答案为12.16.如图,在五边形ABCDE中,∠A+∠B+∠E=320°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是70°.【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=320°,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠CPD的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=320°,∴∠BCD+∠CDE=540°﹣320°=220°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=110°,∴∠CPD=180°﹣110°=70°.故答案是:70°.17.某中学七年级甲、乙、丙三个班中,每班的学生人数都为40名.某次数学考试的成绩统计如下:(如图,每组分数含最小值,不含最大值)根据图、表提供的信息,则80~90分这一组人数最多的班是甲班【分析】根据题意和统计图表中的信息,可以得到甲、乙、丙三个班中80~90分这一组人数,然后比较大小,即可解答本题.解:甲班80~90分这一组有40﹣2﹣5﹣8﹣12=13(人),乙班80~90分这一组有40×(1﹣5%﹣10%﹣35%﹣20%)=12(人),丙班80~90分这一组有11人,∵13>12>11,∴80~90分这一组人数最多的是甲班,故答案为:甲.18.阅读下面求(m>0)近似值的方法,回答问题:①任取正数a1<;②令a2=(a1+),则<<a2;③a3=(a2+),则<<a3;…以此类推n次,得到<<a n.其中a n,称为的n阶过剩近似值,称为的n阶不足近似值.仿照上述方法,求的近似值.①取正数a1=3<.②于是a2=;则<<a2.③的3阶不足近似值是.【分析】根据材料中的公式,将a1的值代入求出a2,a3即可解答.解:a2=(a1+)==;==,a3=(+)=,=.故答案为:②=;;③.三.解答题(本题共46分,第19-26每小题5分,第27题6分)19.计算:+|﹣|+﹣()2.【分析】直接利用绝对值的性质以及立方根的性质和二次根式的性质分别化简得出答案.解:原式=+﹣2﹣=﹣2.20.解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解:,解不等式①得:x<﹣3,解不等式②得:x>﹣5,则不等式组的解集为﹣5<x<﹣3.21.解方程组:.【分析】原式利用加减消元法求出解即可.解:,①+②×3得:10x=30,解得:x=3,把x=3代入②得:y=﹣2,则方程组的解为.22.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:(3,1);(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.【分析】(1)利用清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2)画出直角坐标系;(2)根据点的坐标的意义描出中国人民大学所表示的坐标.解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:23.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=100°,求∠1的度数.【分析】(1)欲证明AB∥CD,只要证明∠1=∠3即可.(2)根据∠1+∠4=90°,想办法求出∠4即可解决问题.【解答】(1)证明:∵FG∥AE,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥CD.(2)解:∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=100°,∴∠ABD=180°﹣∠D=80°,∵BC平分∠ABD,∴∠4=∠ABD=40°,∵FG⊥BC,∴∠1+∠4=90°,∴∠1=90°﹣40°=50°.24.七年级1班计划购买若干本课外读物奖励在数学竞赛中获奖的同学.若每人送4本,则还余5本;若每人送6本,则最后一人得到的课外读物不足3本,求该班级需购买课外读物的本数.【分析】设该班在数学竞赛中获奖的有x人,则该班级需购买课外读物(4x+5)本,根据“若每人送6本,则最后一人得到的课外读物不足3本”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可得出x的值,再将其代入(4x+5)中即可求出结论.解:设该班在数学竞赛中获奖的有x人,则该班级需购买课外读物(4x+5)本,依题意,得:,解得:4<x<.又∵x为正整数,∴x=5,∴4x+5=25.答:该班级需购买课外读物25本.25.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)请直接写出AD,BE,DE之间的数量关系:AD=BE+DE.【分析】(1)由“AAS”可证△BCE≌△CAD;(2)由全等三角形的性质可得BE=DC,AD=CE,即可求解.【解答】证明:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA,在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)∵△BCE≌△CAD,∴BE=DC,AD=CE,∴AD=CE=CD+DE=BE+DE,故答案为:AD=BE+DE.26.已知关于x,y的二元一次方程组.(1)若该方程组的解是,求关于x,y的二元一次方程组的解.(2)若y<0,且m≤n,求x的最小值.【分析】(1)根据两个方程组中各项系数的对应关系可知,解出方程组的解;(2)先分别求出m和n的值,再根据m≤n可得不等式:≤,解不等式即可得结论.解:(1)∵二元一次方程组的解是,∴,解得:;(2),由①得:m=,由②得:n=,∵m≤n,∴≤,∵y<0,∴2x﹣1≥10﹣3x,x≥2.2,∴x的最小值是2.2.27.已知AB∥CD,点M,N分别在直线AB、CD上,E是平面内一点,∠AME和∠CNE 的平分线所在的直线相交于点F.(1)如图1,当E、F都在直线AB、CD之间且∠MEN=80°时,∠MFN的度数为45°;(2)如图2,当E在直线AB上方,F在直线CD下方时,探究∠MEN和∠MFN之间的数量关系,并证明你的结论;(3)如图3,当E在直线AB上方,F在直线AB和CD之间时,直接写出∠MEN和∠MFN之间的数量关系∠E+∠MFN=180°.【分析】(1)过E作EH∥AB,FG∥AB,根据平行线的性质得到∠BME=∠MEH,∠DNE=∠NEH,根据角平分线的定义得到∠BMF+∠DNF=(∠BME+∠DNE)=45°,于是得到结论;(2)根据三角形的外角的性质得到∠E=∠EGB﹣∠EMB,根据平行线的性质得到∠EGB=∠END,∠FHB=∠FND,根据角平分线的定义得到∠EMB=2∠FMB,∠END =2∠FND,于是得到结论;(3)根据平行线的性质得到∠5=∠END,根据角平分线的定义得到∠5=∠END=2∠4,∠BME=2∠1=∠E+∠5=∠E+2∠4,根据三角形的外角的性质和四边形的内角和即可得到结论.解:(1)如图1,过E作EH∥AB,FG∥AB,∵AB∥CD,∴EH∥CD,FG∥CD,∴∠BME=∠MEH,∠DNE=∠NEH,∴∠BME+∠DNE=∠MEH+∠NEH=∠MEN=90°,同理∠MFN=∠BMF+∠DNF,∵ME平分∠BMF,FN平分∠CNE,∴∠BME+∠DNF=(∠BME+∠DNE)=45°,∴∠MFN的度数为45°;故答案为:45°;(2)∵∠EGB=∠EMB+∠E,∴∠E=∠EGB﹣∠EMB,∵AB∥CD,∴∠EGB=∠END,∠FHB=∠FND,∴∠E=∠END﹣∠EMB,∵MF、NF分别平分∠BME和∠DNE,∴∠EMB=2∠FMB,∠END=2∠FND,∴∠E=2∠FND﹣2∠FMB=2(∠FND﹣∠FMB),∵∠FHB=∠FMB+∠F,∴∠F=∠FHB﹣∠FMB,=∠FND﹣∠FMB,∴∠MEN=2∠MFN;(3)∠E+∠MFN=180°,证明:如图3,∵AB∥CD,∴∠MGE=∠ENC,∵NF平分∠ENC,∴∠MGE=∠ENC=2∠FNG,∵MF平分∠AME,∴∠AME=2∠1=∠E+∠MGE=∠E+2∠FNG,∴∠FMG=∠1=∠E+∠FNG,∵∠E+∠MFN=360°﹣∠FNG﹣∠FMG﹣∠EMG=360°﹣∠FNG﹣(180°﹣∠E﹣2∠FNG)﹣(∠E+∠FNG)=180°+∠E,∴∠MFN+∠E=180°.故答案为:∠E+∠MFN=180°.四、填空题(共5小题,每小题4分,满分20分)28.如图,图中以BC为边的三角形的个数为4.【分析】根据三角形的定义即可得到结论.解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,∴以BC为公共边的三角形的个数是4个.故答案为:4.29.已知BD是△ABC的中线,AB=7,BC=3,且△ABD的周长为15,则△BCD的周长为11.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.解:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为15,AB=7,BC=3,∴△BCD的周长是15﹣(7﹣3)=11,故答案为:1130.如图,BD=BC,BE=CA,∠DBE=∠C=60°,∠BDE=75°,则∠AFE的度数等于150°.【分析】由三角形内角和定理可得∠E=45°,由“SAS”可证△ABC≌△EDB,可得∠A=∠E=45°,由三角形的外角性质可求∠AFD=30°,即可求解.解:∵∠DBE=60°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=45°,∵BD=BC,BE=CA,∠DBE=∠C=60°,∴△ABC≌△EDB(SAS),∴∠A=∠E=45°,∵∠BDE=∠A+∠AFD=75°,∴∠AFD=30°,∴∠AFE=150°,故答案为:150°.31.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN 在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM﹣ON的值不变;(3)△OMN的周长不变;(4)四边形PMON的面积不变,其中正确的序号为(1)(4).【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在△POE和△POF中,,∴Rt△POE≌Rt△POF(HL),∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN(ASA),∴EM=NF,PM=PN,故(1)正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故(4)正确,∵OM﹣ON=OE+EM﹣(OF﹣FN)=2EM,不是定值,故(2)错误,∵OM+ON=OE+ME+OF﹣NF=2OE=定值,在旋转过程中,△PMN是等腰三角形,形状是相似的,因为PM的长度是变化的,所以MN的长度是变化的,所以△OMN的周长是变化的,故(3)错误,故答案为(1)(4).32.已知在平面直角坐标系xOy中,点A的坐标为(﹣1,2),点B的坐标为(1,1),点C(t,0)是x轴上的一个动点,设三角形ABC的面积为S.(1)当S=2时,点C的坐标为(7,0)或(﹣1,0);(2)若S的最小值为2,最大值为3,请直接写出点C的横坐标t的取值范围7≤t≤9或﹣3≤t≤﹣1.【分析】(1)利用待定系数法求得直线AB的解析式,然后根据三角形的面积公式构建方程即可解决问题.(3)求得S=2和S=3时t的值,即可解决问题.解:(1)设直线AB的解析式为y=kx+b,∵点A的坐标为(﹣1,2),点B的坐标为(1,1),∴,解得,∴直线AB的解析式为y=﹣x+,令y=0,则x=3,∴直线AB与x轴的交点为(3,0),∵点C(t,0)是x轴上的一个动点,∴S△ABC=|t﹣3|×2﹣|t﹣3|×1=2,∴|t﹣3|=4,解得t=7或﹣1,∴C(7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S的最小值为2,最大值为3,解S=|t﹣3|×2﹣|t﹣3|×1=3,得t=9或﹣3,∵当S=2时,得t=7或﹣1,∴若S的最小值为2,最大值为3,点C的横坐标t的取值范围为7≤t≤9或﹣3≤t≤﹣1;故答案为7≤t≤9或﹣3≤t≤﹣1.。
2018~2019学年北京海淀区人大附中初一下学期期末数学试卷(详解)
.
,向右平移 个单位,横坐标为
https:///#/print?id=c9e6efdac6a1412aba0bc051a82f1c5d&type=analyze
5/20
2020/5/8
故本题答案为:
.
教研云资源页
16. 如图, 是
的边 上的中线, 是
,则
②得
③,
将③代入①得
,
∴方程组的解为
.
(3)
① ,
②
化简①得
,即
,
化简②得
,即
,
∴
,
满足条件的整数解有 , , .
四、解答题(本大题共3小题,每小题6分,共18分)
25. 已知:如图, 为 上一点,点 , 分别在 两侧.
,
,
.
求证:
.
https:///#/print?id=c9e6efdac6a1412aba0bc051a82f1c5d&type=analyze
.
【答案】 【解析】 若
则
在实数范围内有意义,
,得
.
14. 用一组 , 的值说明命题“若
的值)
.
,则
【答案】 ,
【解析】
,但
.
故答案为: , .
”是错误的,这组值可以是(按顺序分别写出 、
15. 点
向下平移 个单位,再向右平移 个单位后的点的坐标为
.
【答案】
【解析】 点
向下平移 个单位,纵坐标为
,
所以平移后点 坐标为
2/20
2020/5/8
【解析】 ⻄单坐标是
,雍和宫坐标是 教研,云资源页
所以一个格代表 ,
2018-2019学年北京市海淀区清华附中普通班七年级(下)期末数学试卷
2018-2019学年北京市海淀区清华附中普通班七年级(下)期末数学试卷一.选择题(每小题3分,共24分)1.(3分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.2.(3分)下列各项调查中合理的是()A.对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈B.为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查C.“长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况D.采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受3.(3分)如图,x的值是()A.80B.90C.100D.1104.(3分)方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为,那么这个方程可以是()A.3x﹣4y=16B.2(x+y)=6x C.x+y=0D.﹣y=05.(3分)图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D6.(3分)把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本7.(3分)关于x,y的二元一次方程组有正整数解,则满足条件的整数m的值有()个.A.1B.2C.3D.48.(3分)为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③二.填空题(每小题3分,共24分)9.(3分)已知a>b,则﹣4a+5﹣4b+5.(填>、=或<)10.(3分)两根木棒的长度分别为7cm和10cm,要选择第三根木棒,把它们钉成一个三角形框架,则第三根木棒的长度可以是cm(写出一个答案即可).11.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y 文钱,可列方程组是.12.(3分)若一个多边形的内角和是它的外角和的2倍,则经过这个多边形的一个顶点最多可以画条对角线.13.(3分)如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=P A,PD=PB,连接CD.测得CD长为10m,则池塘宽AB为m.理由是.14.(3分)已知方程组的解满足不等式x﹣y>0,则实数m的取值范围是.15.(3分)如图,CE是△ABC的外角∠ACD的平分线,且CE交BC的延长线于点E;则用等式表示∠BAC与∠B、∠E的关系为.16.(3分)某次的测试均为判断题,如果认为该题的说法正确,就在答案框的题号下填“√”,否则填“×”.测试共10道题,每题10分,满分100分.图中的小明,小红,小刚三张测试卷.小明和小红两张已判了分数,则该判小刚分.小明:12345678910得分××√×√××√√×90小红:12345678910得分×√√√×√×√√√40小刚:12345678910得分×√√√×××√√√三.解答题(本题共52分,第17,18则每题10分,第19~22题每题6分,第23题8分)17.(10分)解方程组:(1);(2);18.(10分)(1)解不等式:x+4>3(x﹣2)并把解集在数轴上表示出来.(2)x取哪些整数时,不等式5x﹣1<3(x+1)与﹣1≥﹣2都成立.19.(6分)如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE.垂足为F.(1)线段BF=(填写图中现有的一条线段);(2)证明你的结论.20.(6分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.21.(6分)某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;级别A B C D E F 月均用水量x(t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户)612m1042(1)本次调查采用的方式是(填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是,表格中m的值是,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?22.(6分)(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B 表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△ABC及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F的坐标;若不存在请说明理由.23.(8分)已知CA=CB,CD是经过∠BCA顶点C的一条直线.E,F是直线CD上的两点,且∠BEC=∠CF A=α.(1)若直线CD在∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA数量关系的条件,使①中的两个结论仍然成立,补全图形并证明.(2)如图3,若直线CD在∠BCA的外部,∠BCA=α,请用等式直接写出EF,BE,AF 三条线段的数量关系.(不要求证明)附加题(本题共20分,第24,25题每题3分,第26,27题每题4分,第28题6分)24.(3分)小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少?25.(3分)已知AD是△ABC的中线,若△ABD与△ACD的周长分别是14和12.△ABC 的周长是20,则AD的长为.26.(4分)油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计行驶的公里数至少为多少公里?27.(4分)已知锐角三角形ABC的三个内角满足∠A>∠B>∠C,α是∠A﹣∠B,∠B﹣∠C以及90°﹣∠A中的最小者,则当∠B=度时,α的最大值为.28.(6分)如图,在平面直角坐标系中,B点坐标为(﹣2,0),A点坐标为(a,b),且b ≠0.(1)若b>0,且∠ABO:∠BAO:∠AOB=10:5:21,在AB上取一点C,使得y轴平分∠COA.在x轴上取点D,使得CD平分∠BCO,过C作CD的垂线CE,交x轴于E.①依题意补全图形;②求∠CEO的度数;(2)若b是定值,过O作直线AB的垂线OH,垂足为H,则OH的最大值是.(直接写出答案)2018-2019学年北京市海淀区清华附中普通班七年级(下)期末数学试卷一.选择题(每小题3分,共24分)1.(3分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.2.(3分)下列各项调查中合理的是()A.对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈B.为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查C.“长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况D.采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈,调查具有局限性,故此选项错误;B、为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查,错误,适合全面调查;C、“长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况,错误,适于全面调查;D、采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受,故此选项正确.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)如图,x的值是()A.80B.90C.100D.110【分析】根据四边形的内角和=360°列方程即可得到结论.【解答】解:根据四边形的内角和得,x+x+10+60+90=360,解得:x=100,故选:C.【点评】此题主要考查了多边形的内角与外角,关键是掌握四边形的内角和等于360°.4.(3分)方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为,那么这个方程可以是()A.3x﹣4y=16B.2(x+y)=6x C.x+y=0D.﹣y=0【分析】把已知方程与各项方程联立组成方程组,使其解为x=2,y=4即可.【解答】解:A、联立得:,解得:,不合题意;B、联立得:,解得:,合题意;C、联立得:,解得:,不合题意;D、联立得:,不合题意;故选:B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.5.(3分)图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【分析】根据全等三角形的性质和已知图形得出即可.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点评】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.6.(3分)把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本【分析】根据不等式表示的意义解答即可.【解答】解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.【点评】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.7.(3分)关于x,y的二元一次方程组有正整数解,则满足条件的整数m的值有()个.A.1B.2C.3D.4【分析】根据方程组有正整数解,确定出整数m的值.【解答】解:,①﹣②×2得:(m+4)y=4,解得:y=,把y=代入②得:x=,由方程组有正整数解,得到x与y都为正整数,得到m+4=1,2,4,解得:m=﹣3,﹣2,0,共3个,故选:C.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.(3分)为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③【分析】①求出80元以上的人数,由75~80元的人数不能确定可以判断此结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60﹣120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.【解答】解:①∵200+100+80+50+25+25+15+5=500,而75~80元的人数不能确定,∴在所调查的1000人中一定有一半或超过一半的人月均花费超过小明,此结论错误;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为②③,故选:C.【点评】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.二.填空题(每小题3分,共24分)9.(3分)已知a>b,则﹣4a+5<﹣4b+5.(填>、=或<)【分析】根据不等式的基本性质即可解决问题.【解答】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点评】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.10.(3分)两根木棒的长度分别为7cm和10cm,要选择第三根木棒,把它们钉成一个三角形框架,则第三根木棒的长度可以是答案不唯一,如8cm(写出一个答案即可).【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.第三边的取值范围是大于10﹣7而小于10+7,即大于3而小于17.【解答】解:10﹣7<x<10+7,即3<x<17.故答案为答案不唯一,如8【点评】考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.11.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.12.(3分)若一个多边形的内角和是它的外角和的2倍,则经过这个多边形的一个顶点最多可以画3条对角线.【分析】首先设这个多边形有n条边,由题意得方程(n﹣2)×180=360×2,再解方程可得到n的值,然后根据n边形从一个顶点出发可引出(n﹣3)条对角线可得答案.【解答】解:设这个多边形有n条边,由题意得:(n﹣2)×180=360×2,解得;n=6,从这个多边形的一个顶点出发的对角线的条数是6﹣3=3,故答案为:3.【点评】此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.13.(3分)如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=P A,PD=PB,连接CD.测得CD长为10m,则池塘宽AB为10m.理由是全等三角形的对应边相等.【分析】这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB =CD.方案的操作性强,需要测量的线段和角度在陆地一侧即可实施.【解答】解:在△APB和△DPC中,∴△APB≌△DPC(SAS);∴AB=CD=10米(全等三角形的对应边相等).故池塘宽AB为10m.理由是全等三角形的对应边相等.故答案为:10,全等三角形的对应边相等.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.14.(3分)已知方程组的解满足不等式x﹣y>0,则实数m的取值范围是m <1.【分析】将两个方程相减可得x﹣y=﹣2m+2,结合x﹣y>0得出关于m的不等式,解之可得.【解答】解:将两个方程相减可得x﹣y=﹣2m+2,∵x﹣y>0,∴﹣2m+2>0,解得:m<1,故答案为:m<1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤和熟练运用等式的基本性质是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.(3分)如图,CE是△ABC的外角∠ACD的平分线,且CE交BC的延长线于点E;则用等式表示∠BAC与∠B、∠E的关系为∠BAC=2∠E+∠B.【分析】根据角平分线的定义得到∠ACE=∠DCE,根据三角形的外角性质计算即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∴∠ACE=∠DCE,由三角形的外角性质可知,∠BAC=∠E+∠ACE,∠DCE=∠E+∠B,∴∠BAC=2∠E+∠B,故答案为:∠BAC=2∠E+∠B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16.(3分)某次的测试均为判断题,如果认为该题的说法正确,就在答案框的题号下填“√”,否则填“×”.测试共10道题,每题10分,满分100分.图中的小明,小红,小刚三张测试卷.小明和小红两张已判了分数,则该判小刚50分.小明:小红:小刚:【分析】仔细观察B、C的答案,可发现只有第6题答案不一样,因此可以讨论6的答案,结合A试卷及其得分,可得出答案.【解答】解:①假设第6题正确答案为×,则A、C二人做正确,B做错,那么A与B 应该有5个题的选择答案不一样,对比刚好满足;而B与C只有第6题答题不一样,所以C比B多做对第6题这一题,该判C为50分;②假设第6题正确答案为√,则A、C二人做错,B做正确,那么B还答对了另外3题,也即是A与B应该还有3个题的选择答案不一样,对比得出假设不存立;综上可得判C得50分.故答案为:50.【点评】本题属于应用类问题,解答本题需要我们仔细观察三份试卷的相同之处与不同之处,注意利用假设、论证的思想.三.解答题(本题共52分,第17,18则每题10分,第19~22题每题6分,第23题8分)17.(10分)解方程组:(1);(2);【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①×3+②得:5x=15,解得:x=3,把x=3代入①得:y=2,则方程组的解为;(2)方程组整理得:,①﹣②得:6y=﹣18,解得:y=﹣3,把y=﹣3代入①得:x=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(10分)(1)解不等式:x+4>3(x﹣2)并把解集在数轴上表示出来.(2)x取哪些整数时,不等式5x﹣1<3(x+1)与﹣1≥﹣2都成立.【分析】(1)依据解不等式的基本步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)x+4>3x﹣6,x﹣3x>﹣6﹣4,﹣2x>﹣10,x<5,将不等式的解集表示在数轴上如下:(2)解不等式5x﹣1<3(x+1),得:x<2,解不等式﹣1≥﹣2,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,所以不等式组的整数解为﹣2、﹣1、0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(6分)如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE.垂足为F.(1)线段BF=AE(填写图中现有的一条线段);(2)证明你的结论.【分析】(1)由已知得BF=AE;(2)由AD与BC平行得到一对内错角相等,再由一对直角相等,且BE=CB,利用AAS 得到△AEB≌△FBC,利用全等三角形对应角相等即可得证.【解答】解:(1)BF=AE,故答案为:AE;(2)证明:∵CF⊥BE,∴∠A=∠BFC=90°,∵AD∥BC,∴∠AEB=∠FBC,在△AEB和△FBC中,,∴△AEB≌△FBC(AAS),∴BF=AE.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.(6分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.21.(6分)某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;级别A B C D E F 月均用水量x(t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户)612m1042(1)本次调查采用的方式是抽样调查(填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是50,表格中m的值是16,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?【分析】(1)由“随机调查了该小区部分家庭”可得答案;(2)用B级别户数除以其所占比例可得样本容量,用总户数减去其它级别户数求出C 级别户数m的值;(3)利用样本估计总体思想求解可得.【解答】解:(1)由于是随机调查了该小区部分家庭,所以本次调查采用的方式是抽样调查,故答案为:抽样调查;(2)本次调查的样本容量是10÷=50,m=50﹣(6+12+10+4+2)=16,补全频数分布直方图如下:故答案为:50、16;(3)该小区月均用水量超过15t的家庭大约有500×=160(户).【点评】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.22.(6分)(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是0,若点B′表示的数是2,则点B 表示的数是3;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△ABC及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F的坐标;若不存在请说明理由.【分析】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a,根据题意列出方程求解即可得到点B表示的数,设点E表示的数为b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F的坐标为(x,y),根据平移规律列出方程组求解即可.【解答】解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意,得:,解得:,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+2=x,y+2=y,解得x=y=4,所以,点F的坐标为(4,4),∵点F的坐标为(4,4)不在△ABC内,故△ABC内部不存在点F,使得点F经过上述操作后得到的对应点F′与点F重合.【点评】本题考查了坐标与图形的变化,数轴上点右边的总比左边的大的性质,读懂题目信息是解题的关键.23.(8分)已知CA=CB,CD是经过∠BCA顶点C的一条直线.E,F是直线CD上的两点,且∠BEC=∠CF A=α.(1)若直线CD在∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA数量关系的条件α+∠BCA=180°,使①中的两个结论仍然成立,补全图形并证明.(2)如图3,若直线CD在∠BCA的外部,∠BCA=α,请用等式直接写出EF,BE,AF 三条线段的数量关系EF=BE+AF.(不要求证明)【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.【解答】解:(1)①∵∠BCA=90°,∠α=90°,。
2018-2019学年北京大学附中七年级(下)期末数学试卷
2018-2019学年北京大学附中七年级(下)期末数学试卷一、选择题(在每小题给出的四个选项中,只有一个是正确的,每小题3分,本题共30分)1.(3分)4的平方根是()A.2B.﹣2C.±D.±22.(3分)点A(2,1)关于x轴对称的点为A′,则点A′的坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)3.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.164.(3分)下列调查方式,你认为最合适的是()A.了解某种奶制品中蛋白质的含量,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民日平均用水量,采用全面调查方式D.了解北京市每天的流动人口数,采用抽样调查方式5.(3分)如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为()A.40°B.80°C.120°D.不能确定6.(3分)如图,边长相等的正方形、正六边形的一边重合,则∠1的度数为()A.20°B.25°C.30°D.35°7.(3分)将△ABC沿BC方向平移3个单位得△DEF,若△ABC的周长等于8个单位,则四边形ABFD的周长为()A.8B.12C.14D.168.(3分)如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若∠1=129°,则∠2的度数为()A.49°B.50°C.51°D.52°9.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b10.(3分)若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x>n﹣m的解集是()A.x<﹣B.x>﹣C.x<D.x>二、填空题(每空3分,共计39分)11.(3分)如果代数式﹣的值是非正数,则x的取值范围是.12.(3分)计算2(﹣1)﹣+的结果为.13.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=128°,则∠DBC 的度数为.14.(3分)若一个多边形的每一个外角都等于40°,则这个多边形的边数是.15.(3分)在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是格点.若格点P(2m﹣1,m+2)在第二象限,则m的值为.16.(12分)服装厂为了估计某校七年级学生穿每种尺码校服的人数,从该校七年级学生中随机抽取了50名学生的身高数据(单位:cm),绘制成了下面的频数分布表和频数分布直方图身高x频数145≤x<15010150≤x<15511155≤x<160m160≤x<1657165≤x<170n170≤x<1752(1)表中m=n=;(2)身高x满足160≤x<170的校服记为L号,则需要订购L号校服的学生占被调查学生的百分数为;若共有七年级学生400人,估计需要订购L号校服的学生人数.17.(3分)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)18.(6分)在电路图中,“1”表示开关合上,“0”表示电路断开,“⊕”表示并联,“⊗”表示串联.如用算式表示为0⊗1=0;用算式表示为0⊕1=1.则图a用算式表示为:;图b用算式表示为:;根据图b的算式可以说明图b的电路是(填“连通”或“断开”).19.(3分)“直角”在初中几何学习中无处不在.课堂上李老师提出一个问题:如图1,已知∠AOB.判断∠AOB是否为直角(仅限用直尺和圆规).小丽的方法如图2,在OA、OB上分别取点C,D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E.若OE=OD,则∠AOB=90°.李老师说小丽的作法正确,请你写出她作图的依据:.三、解答题(本题共31分)20.(5分)解二元一次方程组:21.(5分)解不等式组并求它的所有整数解.22.(6分)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P的坐标;若不存在,说明理由.23.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M(1)求证:AP平分∠CAB;(2)若∠ACD=114°,求∠MAB的度数;(3)若CN⊥AM,垂足为N,求证:△CAN≌△CMN.24.(7分)已知:如图,∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B(1)在图1中,过点C作CE⊥CB,与直线MN交于点E,①依题意,补全图形;②证明:CE=CB(补充知识:等腰直角三角形三边长的比例为1:1:)请利用上述补充知识回答下列问题:③图1中,线段BD+AB与线段CB满足的数量关系是(直接写出结果即可)(2)当MN绕点A旋转到如图2和图3两个位置时,其它条件不变.在图2中,线段BD、AB、CB满足的数量关系是(直接写出结果即可)在图3中,线段BD、AB、CB满足的数量关系是(直接写出结果即可)2018-2019学年北京大学附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(在每小题给出的四个选项中,只有一个是正确的,每小题3分,本题共30分)1.【解答】解:4的平方根是:±=±2.故选:D.2.【解答】解:根据轴对称的性质,得点A(2,1)关于x轴对称点A′的坐标是(2,﹣1),故选:A.3.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.4.【解答】解:A、了解某种奶制品中蛋白质的含量,具有破坏性,应用抽样调查,故A错误;B、旅客上飞机前的安检,事关重大,采用普查方式,故B错误;C、了解北京市居民日平均用水量,采用抽样调查方式,故C错误;D、了解北京市每天的流动人口数,采用抽样调查方式,故D正确.故选:D.5.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵∠BAE=120°,∠BAD=40°,∴∠BAC=∠BAE﹣∠CAE=120°﹣40°=80°.故选:B.6.【解答】解:正方形的内角和为360°,每一个内角为90°;正六边形的内角和为720°,每一个内角为120°,则∠1=120°﹣90°=30°,故选:C.7.【解答】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF,∵△ABC的周长等于8,∴AB+BC+AC=8,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=8+3+3=14,故选:C.8.【解答】解:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∵∠A+∠B+∠C=180°,∴∠DOE+∠HOG+∠EOF=180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选:C.9.【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选:B.10.【解答】解:∵关于x的不等式mx﹣n>0的解集是x<,∴m<0,=,解得m=5n,∴n<0,∴解关于x的不等式(m+n)x>n﹣m得,x<,∴x<=﹣,故选:A.二、填空题(每空3分,共计39分)11.【解答】解:由题意知﹣≤0,则3(2﹣x)≥0,6﹣3x≥0,﹣3x≥﹣6,x≤2,故答案为:x≤2.12.【解答】解:原式=2﹣2﹣+4=+2,故答案为:2+13.【解答】解:∵矩形直尺沿直线断开并错位,∴∠E=∠ADE=128°,∠DBC=180°﹣∠E,=180°﹣128°,=52°.故答案为:52°.14.【解答】解:360÷40=9,即这个多边形的边数是9.15.【解答】解:∵格点P(2m﹣1,m+2)在第二象限,∴,解不等式①得,m<,解不等式②得,m>﹣2,∴不等式的解集为﹣2<m<,∵点的横、纵坐标均为整数,∴m是整数,∴m的值为﹣1或0.故答案为:﹣1或0.16.【解答】解:(1)由题意m=15,n=50﹣10﹣11﹣15﹣7﹣2=5,故答案为15,5.(2)需要订购L号校服的学生占被调查学生的百分数为==10%,400×10%=40(人),故答案为10%,40人.17.【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案可以是:DF=DE.18.【解答】解:图a用算式表示为:1⊗(0⊕1)=1⊗1=1;图b用算式表示为:(0⊗0)⊕(0⊕1)=0⊕1=1;图b的算式可以说明图b的电路是连通.故答案为:1⊗(0⊕1)=1⊗1=1;(0⊗0)⊕(0⊕1)=0⊕1=;连通.19.【解答】解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠COD=90°,故答案为等腰三角形的三线合一.三、解答题(本题共31分)20.【解答】解:由(1)×6得:3x+2y=36(3),由(2)×3得:3x﹣3y=﹣9(4),由(3)﹣(4)得:y=9,把y=9代入(2)得:x=6.∴方程组的解为.21.【解答】解:,由①得,x≥4,由②得,x<,所以,不等式组的解集是4≤x<,所以,它的整数解为:4,5,6.22.【解答】解:(1)如图所示:(2)由图可知,A'(0,4),B'(﹣1,1);(3)存在.设P(0,y),则y=1或y=﹣5,故点P的坐标是(0,1)或(0,﹣5).23.【解答】(1)证明:连接PE、PF,如图,由作法得AE=AF,PE=PF,而AP=AP,∴△AEP≌△AFP(SSS),∴∠EAP=∠F AP,即AP平分∠CAB;(2)解:∵CD∥AB,∴∠BAC+∠ACD=180°,∴∠BAC=180°﹣114°=66°,∵AP平分∠CAB,∴∠MAB=∠BAC=33°;(3)解:∵CD∥AB,∴∠BAM=∠CMA,∵∠CAM=∠BAM,∴∠CAM=∠CMA,∴CA=CM,∵CN⊥AM,∴∠CNA=∠CNM,在△CAN和△CMN中∴△CAN≌△CMN(AAS).24.【解答】解:(1)①依题意补全图形如图1,②证明:如图2,∵∠ACD=90°,又∵CE⊥CB,∴∠ECB=90°=∠ACD,∴∠1=∠2.∵DB⊥MN于点B,∴∠ABD=90°,∴∠BAC+∠D=180°.又∵∠BAC+∠EAC=180°,∴∠D=∠EAC.∴△CAE≌△CDB,∴CE=CB.③如图3,过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN∴∠ABC+∠CBD=90°,∵CE⊥CB∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB,故答案为BD+AB=CB;(2)①如图4,过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°﹣∠DCE,∠BCD=90°﹣∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AB﹣AE,∴BE=AB﹣BD,∴AB﹣BD=CB.②BD﹣AB=CB.如图5,过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠BCE=90°,∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE﹣AB,∴BE=BD﹣AB,∴BD﹣AB=CB.故答案为AB﹣BD=CB,BD﹣AB=CB.。
<合集试卷3套>2019年北京某附属名校中学七年级下学期数学期末监测试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.打折前购买A商品40件与购买B商品30件所花的钱一样多,商家打折促销,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,则打折前A商品和B商品每件的价格分别为( )A.75元,100元B.120元,160元C.150元,200元D.180元,240元【答案】C【解析】设打折前A商品价格为x元,B商品为y元,根据题意列出关于x与y的方程组,求出方程组的解即可得到结果.【详解】设打折前A商品价格为x元,B商品为y元,根据题意得:4030400.8600300.9x yx y=⎧⎨⨯+=⨯⎩,解得:150200 xy=⎧⎨=⎩,则打折前A商品价格为150元,B商品为200元.故选:C.【点睛】此题考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系时解决问题的关键. 2.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【答案】B【解析】解:∵一个正方形的面积是15,∴该正方形的边长为15,∵9<15<16,∴3<15<1.故选B.3.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A.22cm B.20cm C.18cm D.15cm【答案】A【解析】试题分析:根据翻折变换的性质可得AD=CD,AE=CE,然后求出△ABD的周长=AB+BC,再代入数据计算即可得解.试题解析:∵△ABC的边AC对折,使顶点C和点A重合,∴AD=CD,AE=CE=4cm,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵△ABC的周长为30cm,∴AB+BC+AC=30cm,∴AB+BC=30-4×2=22cm,∴△ABD的周长是22cm.故选A.考点:翻折变换(折叠问题).4.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1 B.2 C.3 D.4【答案】C【解析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC =2∠ABF∴∠BAG =2∠ABF 故①正确.∵AB ⊥AC ,∴∠ABC+∠ACB =90°,∵AG ⊥BG ,∴∠ABG+∠GAB =90°∵∠BAG =∠ABC ,∴∠ABG =∠ACB 故③正确.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键. 5.下面因式分解正确的是( )A .222()a b a b +=+B .22()()a b a b a b +=+-C .223(3)(1)x x x x +-=+-D .2(3)(3)9x x x +-=-【答案】C【解析】分别利用完全平方公式以及平方差公式分解因式进而判断得出即可.【详解】A 、a 2+b 2,无法分解因式,故此选项不符合题意;B 、a 2+b 2,无法分解因式,故此选项不符合题意;C 、x 2+2x−3=(x +3)(x−1)故此选项符合题意;D 、(x +3)(x−3)=x 2−9,是多项式乘法,不是因式分解,故此选项不符合题意;故选:C .【点睛】本题考查分解因式,熟练掌握分解因式的方法和平方差公式的结构特点是解题的关键.6. “杨絮”纤维的直径约为0.0000107米,则0.0000107用科学记数法表示为:( )A .51.0710-⨯B .40.10710-⨯C .40.10710⨯D .51.0710⨯ 【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000107=51.0710-⨯,故选A.【点睛】本题考查科学记数法表示较小的数,需注意对于一般形式a ×10-n ,1≤a<10,n 等于原数左边起第一个不为零的数字前面的0的个数.7.四边形的内角和等于x°,五边形的外角和等于y°,则下列关系成立的是()A.x=y B.x=2y C.x=y+180 D.y=x+180【答案】A【解析】根据多边形的内角和与外角和的关系分别求出x,y即可比较.【详解】∵四边形的内角和等于360°,故x=360,五边形的外角和等于360°,故y=360,∴x=y,选A.【点睛】此题主要考查多边形的内角和与外角和,解题的关键是熟知其公式进行求解.8.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.【答案】D【解析】试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.考点:函数的图象.9.在数轴上表示:-1≤x≤2,正确的是( )A.B.C.D.【答案】C【解析】数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.【详解】解:根据题意,从-1出发向右画出的线且-1处是实心圆,表示x≥-1;从2出发向左画出的线且2处是实心圆,表示x≤2;∴符合题意的为:C ;故选:C .【点睛】本题考查了在数轴上表示不等式的解集.不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.下列计算正确的是( )A .3412a a a ⋅=;B .3412a a a ⋅=;C .3412()a a -= ;D .623a a a ÷=;【答案】C【解析】分析:根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.详解:A 、应为3a•4a=12a 2,故本选项错误;B 、应为a 3×a 4=a 7,故本选项错误;C 、(-a 3)4=a 12,正确;D 、应为a 6÷a 2=a 6-2=a 4,故本选项错误.故选C .点睛:本题主要考查同底数幂乘、除法的运算性质和幂的乘方的性质,需要熟练掌握并灵活运用.二、填空题题11.如图a 是长方形纸带,15DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是___.【答案】135°【解析】试题分析:根据图示可知∠CFE=180°﹣3×15°=135°.故答案为135°.考点:翻折变换(折叠问题).12.如图,直线AB ,CD ,EF 交于点O ,OG 平分BOF ∠,且CD EF ⊥,70AOE ∠=︒,则DOG ∠=______.【答案】55︒【解析】首先根据对顶角相等可得∠BOF =70︒,再根据角平分线的性质可得∠GOF =35︒,然后再算出∠DOF =90︒,进而可以根据角的和差关系算出∠DOG 的度数.【详解】∵∠AOE =70︒,∴∠BOF =70︒,∵OG 平分∠BOF ,∴∠GOF =35︒,∵CD ⊥EF ,∴∠DOF =90︒,∴∠DOG =90︒−35︒=55︒,故答案为:55︒.【点睛】此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13.计算:12216(2)+-=_________.【答案】6【解析】根据分类指数幂的意义以及二次根式的性质逐一进行化简,然后再进行计算即可. 【详解】12216(2)+-=4+2=6,故答案为:6.【点睛】本题考查了实数的运算,涉及了分数指数幂、二次根式的化简,熟练掌握相关的运算法则是解题的关键. 14.分解因式:2412x x --= _____________________.【答案】(6)(2)x x -+【解析】因为-6×2=-12,-6+2=-4,所以利用十字相乘法分解因式即可..【详解】因为-6×2=-12,-6+2=-4,所以x 2-4x-12=(x-6)(x+2).故答案是:()()62x x -+.【点睛】考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、尝试,并体会它实质是二项式乘法的逆过程.15.三个连续的正整数的和大于333,则满足条件的最小的三个正整数是_______.【答案】111,112,113【解析】设出三个连续的正整数中间一个为x ,表示另外两个,列出不等式求解即可.【详解】解:设这个三连整数是1x -,x ,1x +,则11333x x x -+++>,解得111x >.112x ∴=,故最小的三个正整数是111,112,113.故答案为:111,112,113【点睛】本题考查的是不等式的简单应用,根据题意列出正确的不等式是解题关键.16.一个调查样本,被分成两个组,已知第一组的频数为56,频率为0.8,则第二组的频数是________.【答案】1【解析】根据第一组的频数为56,频率为0.8,可得样本容量,即可得到第二组的频数.【详解】解:∵样本容量=56÷0.8=70,∴第二组的频数=70×(1−0.8)=1,故答案为:1.【点睛】此题主要考查了频率,频率是指每个对象出现的次数与总次数的比值(或者百分比).17.点P(-2,-5)到x 轴的距离是______.【答案】5【解析】根据坐标的表示即可得到点P 到x 轴的距离.【详解】点P 到x 轴的距离就等于纵坐标的绝对值,因此可得55-=故答案为5.【点睛】本题主要考查点的坐标的含义,这是最基本的知识点.三、解答题18.填空完成推理过程:如图,∠1=∠2,∠A=∠D , 求证:∠B=∠C .证明:∵∠1=∠2(已知),∠1=∠3(),∴∠2=∠3(等量代换).∴AF∥________().∴∠D=∠4(两直线平行,同位角相等).∵∠A=∠D(已知),∴∠A=∠4(等量代换).∴AB∥CD(内错角相等,两直线平行).∴∠B=∠C().【答案】对顶角相等;DE;同位角相等,两直线平行;两直线平行,内错角相等.【解析】先根据已知条件,判定AF∥DE,进而得出∠A=∠4,再判定AB∥CD,最后根据平行线的性质,即可得出∠B=∠C.【详解】证明:∵∠1=∠2(已知),∠1=∠3 (对顶角相等)∴∠2=∠3(等量代换)∴AF∥DE(同位角相等,两直线平行)∴∠D=∠4(两直线平行,同位角相等)∵∠A=∠D(已知),∴∠A=∠4(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等)【点睛】本题主要考查了平行线的性质与判定的综合应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.19.如下图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为3102y x=-+.①求点C的坐标;②根据图象,求关于x的不等式0<-32x+10<x的解集;(2)如下图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,ΔOAC的面积为9,且OA=6,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.【答案】(1)①C(4,4) ,②4<x<203;(2) AQ+PQ存在最小值,最小值为3.【解析】(1)①根据直线AB和直线OC相交于点C,将两个函数解析式联立,解方程组即为C(4,4);②先求出A点坐标,观察图像即可得出不等式的解集为4<x<203;(2)首先在OC上截取OM=OP,连接MQ,通过SAS定理判定△POQ≌△MOQ,从而得出PQ=MQ,进行等式变换AQ+PQ=AQ+MQ,,即可判断当A、Q、M在同一直线上,且AM⊥0C时,AQ+MQ最小,即AQ+PQ存在最小值;再由ASA定理判定△AEO≌ΔCEO,最后由OC=OA=6,ΔOAC的面积为9,得出AM=3.【详解】(1)①由題意,3102y xy x⎧=-+⎪⎨⎪=⎩解得:44xy=⎧⎨=⎩所以C(4,4)②把y=0代入3102y x=-+,解得203x=所以A 点坐标为(203,0), ∵C (4,4), 所以观察图像可得:不等式的解集为4<x<203; (2)由题意,在OC 上截取OM=OP,连接MQ ,∵ON 平分∠AOC,∴∠AOQ=∠COQ ,又OQ=OQ.∴△POQ ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A 、Q 、M 在同一直线上,且AM ⊥OC 时,AQ+MQ 最小,即AQ+PQ 存在最小值∴AB ⊥ON,所以∠AEO=∠CEO,∴△AEO ≌ΔCEO(ASA),∴OC=OA=6,∵ΔOAC 的面积为9,∴12OC·AM=9, ∴AM=3,:AQ+PQ 存在最小值,最小值为3.【点睛】此题涉及到的知识点有一次函数的性质,根据图像求一次函数不等式的解集,三角形全等判定,熟练运用即可得解.20.已知42++a b b 2b +的算术平方根,1--a b a 1a -323-a b【答案】2【解析】利用平方根、立方根定义列出方程组,求出方程组的解得到a 与b 的值,确定出所求即可.【详解】解:由题意得423a b a b +=⎧⎨-=⎩,解得12a b =⎧⎨=-⎩, ∴23213(2)8a b -=⨯-⨯-=, ∴332382-==a b .【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.已知,如图,AB =CD ,AB ∥CD ,BE =FD ,问△ABF 与△CDE 全等吗?【答案】△ABF 与△CDE 全等;理由见解析.【解析】根据平行线的性质可得∠B =∠D,然后再利用SAS 判定△ABF ≌△CDE 即可【详解】解:△ABF 与△CDE 全等,理由如下:∵AB ∥CD ,∴∠B =∠D ,∵BE =DF ,∴BE+EF =DF+EF ,即BF =DE ,在△ABF 和△CDE 中,AB DC B D BF DE =⎧⎪=⎨⎪=⎩∠∠ , ∴△ABF ≌△CDE(SAS)【点睛】此题考查全等三角形的判定,掌握判定法则是解题关键22.某家商店的账目记录显示,某天卖出6件甲商品和3件乙商品,收入108元;另一天,以同样价格卖出5件甲商品和1件乙商品,收入84元.问每件甲商品和乙商品的售价各是多少元?【答案】每件甲商品的售价为16元,每件乙商品的售价为4元.【解析】分析:设甲种商品每件进价是x 元,乙种商品每件进价是y 元,根据“卖出6件甲商品和3件乙商品,收入108元;同样价格卖出5件甲商品和1件乙商品,收入84元”列出方程组解答即可; 详解:设每件甲商品的售价为x 元,每件乙商品的售价为y 元.根据题意,得63108584.x y x y +=⎧⎨+=⎩,解得16,4. xy=⎧⎨=⎩答:每件甲商品的售价为16元,每件乙商品的售价为4元.点睛:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.23.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,连接CG,∠ABE=∠CBE.(1)求证:BH=AC;(2)若BG=5,GE=4,求线段AE的长.【答案】(1)见解析;(2)3.【解析】分析:(1)由已知条件易得∠BDC=∠BEC=∠CDA=90°,结合∠ABC=45°,可得∠BCD=∠ABC,由此可得BD=CD,再证得∠DBH=∠DCA即可证得△DBH≌△DCA,由此即可得到BH=AC;(2)由F是BC的中点,结合(1)中所得BD=CD可得DF是BC的垂直平分线,由此可得BG=CG,结合∠BEC=90°在Rt△CGE中由勾股定理即可求得CE=3,然后再证△ABE≌△CBE,即可得到AE=CE=3.详解:(1)∵CD⊥AB,BE⊥AC,∴∠BDC =∠BEC=∠CDA=90°,∴∠A+∠DCA=90°,∠A+∠ABE=90°,∴∠ABE=∠DCA,∵∠ABC=45°,∴∠BCD=45°=∠ABC,∴DB=DC,∵在△DBH和△DCA中,∵∠DBH=∠DCA,∠BDH=∠CDA,BD=CD,∴△DBH≌△DCA,∴BH=AC.(2)∵F 为BC 的中点,DB=DC ,∴DF 垂直平分BC ,∴CG=BG=5,∵在Rt △CGE 中,∠GEC=90°,CG=5,GE=4,∴CE=22543-=,∵BE ⊥AC ,∴∠BEC=∠BEA=90°,又∵BE=BE ,∠CBE=∠ABE ,∴△ABE ≌△CBE ,∴AE=CE=3.点睛:本题是一道综合考查“全等三角形的判定与性质、线段垂直平分线的性质和勾股定理”的几何题,熟悉“全等三角形的判定与性质、线段垂直平分线的性质和勾股定理的内容”是解答本题的关键. 24.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中第七卷《盈不足》记载了一道有趣的数学问题:“今有大器五、小器一容三斛;大器-、小器五容二斛.向大、小器各容几何?” 译文:“今有大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛.向大容器、小容器的容积各是多少斛?”【答案】大器容1324斛,小器容724斛. 【解析】设大容器的容积是x 斛,小容器的容积是y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设大器容x 斛,小器容y 斛,根据题意,列出方程组5352x y x y +=⎧⎨+=⎩解得:1324724x y ⎧=⎪⎪⎨⎪=⎪⎩答:大器容1324斛,小器容724斛. 【点睛】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.25.如图,在正方形网格中有一个格点△ABC,(即△ABC的各顶点都在格点上),按要求进行下列作图:(1)画出△ABC中AB边上的高CD;(提醒:别忘了标注字母!)(2)画出将△ABC向上平移3格后的△A′B′C′;(3)连接AA’、CC’,四边形AA′C′C的面积是.【答案】(1)答案见解析;(2)答案见解析;(3)15.【解析】(1)直接利用钝角三角形高线的作法得出答案;(2)利用平移的性质得出各对应点位置进而得出答案;(3)利用割补法求四边形的面积得出答案.【详解】(1)如图所示:CD即为所求;(2)如图所示:△A′B′C′,即为所求;(3)四边形AA′C′C的面积=5×5-12522⨯⨯⨯=25-10=15.【点睛】本题主要考查作图-平移变换,用到的知识点为:一边上的高为这边所对的顶点向这边所引的垂线段;图形的平移要归结为各顶点的平移.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( ) A . B . C . D .【答案】A【解析】根据轴对称图形的概念,找出沿一条直线折叠,直线两旁的部分能够完全重合的字即可解答.【详解】根据轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,可得A 是轴对称图形.故选A.【点睛】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴; 2.已知不等式组无解,则的取值范围是( )A .B .C .D .【答案】D【解析】根据“大大小小,则无解”即可得到m 的取值范围.【详解】解:∵不等式组无解, ∴.故选D. 【点睛】本题主要考查不等式组的解集,熟练掌握口诀“同大取大,同小取小,大小小大取中间,大大小小则无解”是解此题的关键.3.若2a 16=3-b -2=,则a+b 的值是( )A .12B .12或4C .12或±4D .-12或4【答案】B【解析】先根据平方和立方根求出a ,b 的值,再求出a+b 的值即可.【详解】∵2a 16=,3-b -2=∴a=±4,b=8,当a=4,b=8时,a+b=12,当a=-4,b=8时,a+b=4.故选B.【点睛】此题主要考查了代数式求值,关键是求出a和b的值.4.如图,直线BC,DE相交于点O,AO⊥BC于点O. OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数是A.20°B.25°C.40°D.50°【答案】A【解析】首先根据AO⊥BC可得∠AOC=90°, 然后根据∠COE=90°-∠AOE求出∠COE的度数,由对顶角相等可得∠BOD=∠COE,再根据角的平分线的定义求得∠BOM即可.【详解】∵AO⊥BC,∴∠AOC=90°,∴COE=90°-∠AOE=90°-50°=40°,∴∠BOD=∠COE=40°.∵OM平分∠BOD,∴∠BOM=12∠BOD =12×40°=20°.故选A.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠BOD的度数是关键.5.为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A.400B.被抽取的400名考生C.被抽取的400名考生的中考数学成绩D.内江市2018年中考数学成绩【答案】C【解析】分析:直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而进行分析得出答案.详解:为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的400名考生的中考数学成绩.故选:C .点睛:此题主要考查了样本的定义,正确把握定义是解题的关键.6.若()2231x m x +-+是完全平方式,x n +与2x +的乘积中不含x 的一次项,则m n 的值为 A .-4B .16C .4或16D .-4或-16【答案】C 【解析】利用完全平方公式,以及多项式乘以多项式法则确定出m 与n 的值,代入原式计算即可求出值.【详解】解:∵x 2+2(m ﹣3)x+1是完全平方式,(x+n )(x+2)=x 2+(n+2)x+2n 不含x 的一次项, ∴m ﹣3=±1,n+2=0,解得:m =4,n =﹣2,此时原式=16;m =2,n =﹣2,此时原式=4,则原式=4或16,故选C .【点睛】此题考查了完全平方式,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.7.不等式1433x ->的解集为( ) A .49x >- B .49x <- C .4x <- D .4x >- 【答案】C【解析】系数化为1即可得. 【详解】解:不等式1433x ->的解集为x <−4, 故选:C .【点睛】 本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8.如图,在平面直角坐标系中,点A 的坐标为(1,3),点B 的生标,(2,1),将线段AB 沿某一方向平移后,若点A 的对应点'A 的坐标为(-2,0),则点B 的对应点B′的坐标为( )A .(5,2)B .(-1,-2)C .(-1,-3)D .(0,-2)【答案】B 【解析】点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,点B 的平移规律和点A 一样,由此可知点B′的坐标.【详解】解:因为点A (1,3)平移到点'A (-2,0),横坐标减3,纵坐标减3,故点B (2,1)平移到点B′横、纵坐标也都减3,所以B′的坐标为(-1,-2).故选:B【点睛】本题考查了平面直角坐标系中图形的平移变化规律,根据一组对应点的平移找准平移规律是解题的关键. 9.分解因式3a a -的结果是A .2a(a 1)-B .2a(a 1)-C .a(a 1)(a 1)+-D .2(a a)(a 1)+- 【答案】C【解析】先提取公因式a 后继续应用平方差公式分解即可.【详解】解::()()()32a a a a 1a a 1a 1-=-=+-.故选C . 10.如图,下列说法中,正确的是( )A .如果32180∠+∠=︒,那么//AB CD B .如果12∠=∠,那么//AB CDC .如果24∠∠=,所以//AB CDD .如果15∠=∠,那么//AB CD【答案】D【解析】依据平行线的判定方法对各选项进行分析,即可得到正确结论.【详解】A .如果∠3+∠2=180°,那么不能得到AB ∥CD ;B.如果∠2=∠4,那么不能得到AB∥CD;C.如果∠1+∠3=180°,那么不能得到AB∥CD;D.如果∠1=∠5,那么AB∥CD,故D选项正确.故选D.【点睛】本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行.二、填空题题11.如图,中,,,图中等于的角是:______.【答案】,【解析】根据直角三角形两锐角的关系与同角的余角相等即可得解.【详解】解:∵,∴∠A+∠EDA=90°,∠ECD+∠CDE=90°,∵,∴∠A+∠ACD=90°,∠B+∠BCD=90°,又∵,∴∠A+∠B=90°,∴∠A=∠BCD=∠CDE.故答案为:,.【点睛】本题主要考查直角三角形两锐角的关系,同角的余角相等,解此题的关键在于熟练掌握其知识点. 12.某中学为了了解本校3500学生视力情况,在全校范围内随机抽取200名学生进行调查,本次抽样调查的样本容量是_________.【答案】1【解析】找到样本,根据样本容量的定义解答.【详解】样本是在全校范围内随机抽取的1名学生的运动服尺码,故样本容量为1.故答案为:1.【点睛】样本容量是指样本中包含个体的数目,没有单位,一般是用样本中各个数据的和÷样本的平均数,可以求得样本的容量.13.如图:已知AD=DB=BC,∠C=25º,那么∠ADE=_______度;【答案】1【解析】根据等边对等角的性质求出∠BDC的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和求出∠ABD的度数,∠A=∠ABD,再利用三角形的一个外角等于和它不相邻的两个内角的和即可求出∠ADE.【详解】∵DB=BC,∠C=25°,∴∠BDC=∠C=25°,∴∠ABD=∠BDC+∠C=50°,∵AD=DB,∴∠A=∠ABD=50°,∴∠ADE=∠A+∠C=50°+25°=1°.故答案是:1.【点睛】考查了等腰三角形的性质,及三角形外角的性质;通过三角形内角和结合外角的性质求解角度是比较重要的方法,注意掌握.14.用“>”、“<”或“=5________2.【答案】>【解析】把2变成根号的形式再比较两个数的大小即可.>【详解】54>52∴故答案为:>【点睛】本题考查实数大小的比较,解题关键在于熟练掌握比较方法.15.分解因式:4x﹣x3=_____.【答案】x(2+x)(2﹣x)【解析】原式提取x,再利用平方差公式分解即可.【详解】原式=x(4﹣x 2)=x(2+x)(2﹣x),故答案为:x(2+x)(2﹣x)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.在一块长为30m ,宽为20m 的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m ),则草地的面积为_________.【答案】5602m【解析】在小路转折处作水平线,则将小路划分为多个平行四边形.平行四边形的面积=底×高,其中平行四边形的底为2,而所有平行四边形的高合起来即为矩形的宽.用矩形面积减小路面积即为草地面积.【详解】S S S =-草地矩形小路=2030220⨯-⨯=560故答案为:5602m【点睛】本题考查了不规则图形面积,通常利用割补法,将图形转化为规则图形,再进行求解,本题即将图形转化为矩形和平行四边形.17.不等式组30,-40,-70x x x +>⎧⎪>⎨⎪<⎩的解集为____.【答案】4<x<7【解析】依次求出各不等式的解集,再求出其公共解集即可.【详解】解析:由①得x>-3;由②得x>4;由③得x<7.根据“大大取大”,得x>4,根据大小取中间,得4<x<7.【点睛】此题主要考查不等式组的解集,解题的关键是熟知不等式的性质.三、解答题18.计算346432927-【答案】833-【解析】试题分析:直接利用立方根以及算术平方根的定义、绝对值的性质先分别进行化简,然后再按顺序进行计算即可.试题解析:原式=332﹣3=32 19.一个正数x 的两个平方根是2a-3与5-a ,求x 的值.【答案】x=49【解析】试题分析:根据一个正数的平方根有两个,它们是互为相反数可得: 2a-3+5-a=0,可求出a=2-,即可求出这个正数的两个平方根是-7和7,根据平方根的意义可求出x.试题解析: 因为一个正数x 的两个平方根是2a-3与5-a,所以2a-3+5-a=0,解得a=2-,所以2a-3=7-,所以49x =.20.学校提倡练字,小冬和小红一起去文具店买钢笔和字帖,小冬在文具店买1支钢笔和3本字帖共花了38元,小红买了2支钢笔和4本字帖共花了64元.(1)每支钢笔与每本字帖分别多少元?(2)帅帅在六一节当天去买,正巧碰到文具店搞促销,促销方案有两种形式:①所购商品均打九折②买一支钢笔赠送一本字帖帅帅要买5支钢笔和15本字帖,他有三种选择方案:(Ⅰ)一次买5支钢笔和15本字帖,然后按九折付费;(Ⅱ)一次买5支钢笔和10本字帖,文具店再赠送5本字帖;(Ⅲ)分两次购买,第一次买5支钢笔,文具店会赠送5本字帖,第二次再去买10本字帖,可以按九折付费;问帅帅最少要付多少钱?【答案】(1)每支钢笔20元,每本字帖6元;(2)帅帅最少要付154元钱.【解析】(1)设每支钢笔x 元,每本字帖y 元,由1支钢笔和3本字帖共花了38元,2支钢笔和4本字帖共花了64元,列出方程组求解即可;(2)先分别求出三种选择方案需要的钱数,再比较大小即可求解.【详解】解:(1)设每支钢笔x 元,每本字帖y 元,依题意有3382464x y x y +=⎧⎨+=⎩, 解得206x y =⎧⎨=⎩. 故每支钢笔20元,每本字帖6元;(2)方案(Ⅰ):(20×5+6×15)×0.9=171(元);方案(Ⅱ):20×5+6×10=160(元);方案(Ⅲ):20×5+6×10×0.9=154(元);154<160<171,故帅帅最少要付154元钱.【点睛】本题考查了二元一次方程组的应用和方案选择问题,准确理解题意列出方程组并熟练求解是解题的关键. 21.计算:(1)(a ﹣3)(a+3)(a 2+9);(2)9972(利用完全平方公式计算);(3)4x 3y ÷2y •(﹣3xy 2)2【答案】 (1)a 1﹣81;(2)991009;(3)18x 5y 1.【解析】(1)原式利用平方差公式计算即可求出值;(2)原式变形后,利用完全平方公式计算即可求出值;(3)原式利用幂的乘方与积的乘方运算法则,以及单项式乘除单项式法则计算即可求出值.【详解】(1)原式=(a 2﹣9)(a 2+9)=a 1﹣81;(2)原式=(1000﹣3)2=1000000﹣6000+9=991009;(3)原式=2x 3•9x 2y 1=18x 5y 1.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22.(1)解方程组或不等式组①解方程组()()()1523254345m n m n ⎧+=+⎪⎨+-+=⎪⎩②解不等式组()112241x x x -⎧-⎪⎨⎪-<+⎩①②把解集在数轴上表示出来,并写出不等式组的负整数解.(2)甲、乙两位同学一起解方程组51542ax y x by +=⎧⎨=-⎩①②,由于甲看错了方程①中的a ,得到的解为31x y =-⎧⎨=-⎩,乙看错了方程②中的b ,得到的解为54x y =⎧⎨=⎩,试计算的20192018110a b ⎛⎫+- ⎪⎝⎭值. 【答案】(1)①13383m n ⎧=-⎪⎪⎨⎪=-⎪⎩;②23x -<≤,负整数解为1-;(2)0. 【解析】(1)①先对方程组的两个等式进行移项化简,再用加减消元法去求解;②分别求出不等式组中两个的解,再求解集;(2)把31x y =-⎧⎨=-⎩代入②,把54x y =⎧⎨=⎩代入①,即可得到a ,b 的值,再进行计算即可得到答案.。
(汇总3份试卷)2019年北京某附属名校中学七年级下学期数学期末质量检测试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( ) A .(﹣3,4)B .( 3,﹣4)C .(﹣4,3)D .( 4,﹣3)【答案】C【解析】由点且到x 轴的距离为2、到y 轴的距离为1,得|y|=2,|x|=1.由P 是第二象限的点,得x=-1,y=2.即点P 的坐标是(-1,2),故选C .2.下列调查中,适宜采用全面调查方式的是( )A .调查妫河的水质情况B .了解全班学生参加社会实践活动的情况C .调查某品牌食品的色素含量是否达标D .了解一批手机电池的使用寿命【答案】B【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、调查妫河的水质情况,适合抽样调查,不合题意;B 、了解全班学生参加社会实践活动的情况,适合全面调查,符合题意;C 、调查某品牌食品的色素含量是否达标,适合抽样调查,不合题意;D 、了解一批手机电池的使用寿命,适合抽样调查,不合题意.故选:B .【点睛】此题考查抽样调查和全面调查的区别,解题关键在于掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图,ABC 为等边三角形,D 是BC 边上一点,在AC 上取一点F ,使=CF BD ,在AB 边上取一点E ,使BE DC =,则EDF ∠的度数为( )A .30B .45C .60D .70【答案】C 【解析】根据等边三角形的性质及已知条件易证△EDB ≌△DFC ,由全等三角形的性质可得∠BED=∠CDF ,由三角形的内角和定理可得∠BED+∠BDE= 120°,即可得∠CDF+∠BDE= 120°,根据平角的定义即可求得∠EDF=60°.【详解】∵ABC 是等边三角形,∴∠B=∠C=60°,在△EDB 和△DFC 中,60BD CF B C BE CD =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△EDB ≌△DFC ,∴∠BED=∠CDF ,∵∠B=60°,∴∠BED+∠BDE= 120°,∴∠CDF+∠BDE= 120°,∴∠EDF=180°-(∠CDF+∠BDE )=180°-120°=60°.故选C.【点睛】本题考查了等边三角形的性质及全等三角形的判定与性质,证得△EDB ≌△DFC 是解决问题的关键. 4.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2-6a+9C .x 2+5yD .x 2-5y 【答案】B【解析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、C 、D 都不能把一个多项式转化成几个整式积的形式,故A 、C 、D 不能因式分解; B 是完全平方公式的形式,故B 能分解因式;故选B .5.如图,在ABC ∆和DEF ∆中,AB DE =,AC DF =,BE CF =,且5BC =,70A ∠=︒,75B ∠=︒,2EC =,则下列结论中错误的是( )A .3BE =B .35F ∠=︒C .5DF =D .//AB DE【答案】C 【解析】根据平行四边形的性质和平移的性质,对选项进行判断.【详解】∵△ABC 沿BC 方向平移得到△DEF ,∴BC=EF ,∴BC-EC=EF-EC ,即BE=CF.∵CF=3,∴BE=3.所以A 选项正确.∵BC=5,∠A=70°,∠B=75°,∴EF=5,∠D=70°,∠DEF=75°,∴DF >5(大角对大边).所以C 选项不正确,B 选项正确.又∵∠B=∠DEF=75°,∴AB ∥DE.故D 选项正确.故选C.【点睛】本题考查平行四边形性质和平移的性质,解题关键在于熟练掌握其性质.6.将0.0000019用科学计数法表示为( )A .1.9×10-6B .1.9×10-5C .19×10-7D .0.19×10-5【答案】A【解析】利用科学计数法,表达的形式a ×10n ,其中0≤|a|<10,n 是负整数,其n 是原数前面0的个数,包括小数点前面的0.【详解】1.9×10-6 【点睛】本题考查:小于1的正数也可以利用科学记数法表示,一般形式为 a ×10n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.7.(2016云南省曲靖市)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x ﹣2)=44C .9(x +2)=44D .9(x +2)﹣4×2=44【答案】A【解析】根据题意可以列出相应的方程,从而可以解答本题.解:由题意可得,5x+(9﹣5)×(x+2)=44,化简,得5x+4(x+2)=44,故选A .8.人体一根头发的直径约为0.00005米,这个数据用科学记数法表示为( )A .5510⨯B .5510-⨯C .40.510-⨯D .4510-⨯【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00001,这个数据用科学记数法表示为1×10−1.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图,其中其他部分对应的圆心角是36°,则步行部分所占百分比是( )A .10%B .35%C .36%D .40%【答案】D 【解析】先根据“其他”部分所对应的圆心角是36°,算出“其他”所占的百分比,再计算“步行”部分所占百分比即可. 【详解】∵其他部分对应的百分比为:36360×100%=10%, ∴步行部分所占百分比为1﹣(35%+15%+10%)=40%,故选:D .【点睛】熟知“扇形统计图中各部分所占百分比的计算方法和各部分所占百分比间的关系”是解答本题的关键. 10.已知面积为10的正方形的边长为x ,那么x 的取值范围是( )A .13x <<B .23x <<C .34x <<D .45x <<【答案】C【解析】根据正方形的面积公式,求得正方形的边长,再进一步根据数的平方进行估算.【详解】解:由面积为10的正方形的边长为x ,得210x =, ∴10x =∵9<10<16,∴3104<<,故选:C .【点睛】此题考查了求一个数的算术平方根和无理数的估算方法,解题的关键是熟悉1至20的整数的平方.二、填空题题11.如图是一个可以自由转动的转盘,被等分成六个扇形.请在转盘适当的扇形区域内涂上阴影,使自由转动的该转盘停止转动时,指针指向阴影区域的概率是_____.【答案】12【解析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值.【详解】如图所示:因为整个圆面被平均分成6个部分,其中阴影部分占3份时,指针落在阴影区域的概率为:3162=, 【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.12.在图中,x 的值为__________.【答案】135【解析】103o 的邻补角=(180-103)o =77o ,∵四边形的内角和为360度,即x o +65 o +83 o +77 o =360 o∴x=360-65-83-77=135.故答案是:135.13.若x <y ,且(m ﹣2)x >(m ﹣2)y ,则m 的取值范围是_____.【答案】m <1【解析】原不等式两边同时乘以m-1后不等号改变方向,则m-1<0,则m <1.【详解】∵若x <y ,且(m-1)x >(m-1)y ,∴m-1<0,则m <1;故答案为m <1.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(1)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.14.(13)0=______. 【答案】1【解析】根据零指数幂的性质计算.【详解】解:原式=1故答案为:1【点睛】此题考查零指数幂,解题关键在于掌握运算法则.15.进价为380元的商品,按标价的九折出售,可获利47.5元,则该商品的标价为_______.【答案】475【解析】这是商品销售问题,设标价为x 元,则·0.938047.5x =+,475x =16.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A 等级的扇形的圆心角的大小为 .【答案】108°.【解析】试题分析:根据C等级的人数与所占的百分比计算出参加中考的人数,再求出A等级所占的百分比,然后乘以360°计算即可得解.试题解析:参加中考的人数为:60÷20%=300人,A等级所占的百分比为:90300×100%=30%,所以,表示A等级的扇形的圆心角的大小为360°×30%=108°.考点:扇形统计图.17.等腰三角形的底边长为6cm,一腰上的中线把三角形分成的两部分周长之差为4cm,则这个等腰三角形周长为_____cm.【答案】1【解析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为4cm,可得x﹣6=4或6﹣x=4,继而可求得答案.【详解】解:设腰长为xcm,根据题意得:x﹣6=4或6﹣x=4,解得:x=10或x=2(舍去),∴这个等腰三角形的周长为10+10+6=1cm.故答案为:1.【点睛】考核知识点:等腰三角形.理解三角形中线的意义是关键.三、解答题18.《希腊文选》中有这样一题:“驴和骡驮着货物并排走在路上,驴子不停地埋怨驮的货物太重,压得受不了.骡子对它说:‘你发什么牢骚啊!我驮的比你驮的更重.倘若你的货物给我一袋,我驮的货比你驮的货重l倍;而我若给你一口袋,咱俩才刚好一样多,’驴和骡各驮几口袋货物?”(请用方程组解答)【答案】驴驮5口袋货物,骡子驮7口袋货物【解析】本题中的等量关系是:2×(驴子驮的-1袋)=骡子驮的+1袋;驴子驮的+1袋=骡子驮的-1袋,据此可列方程组求解.【详解】解:设驴驮x口袋货物,骡子驮y口袋货物根据题意列方程组:12(1)11y xy x+=-⎧⎨-=+⎩解得57x y =⎧⎨=⎩ 答:驴驮5口袋货物,骡子驮7口袋货物.故答案为驴驮5口袋货物,骡子驮7口袋货物.【点睛】本题考查二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.19.解不等式4x+3≤3(2x -1),并把解集表示在数轴上.【答案】3x ≥【解析】去括号,移项,合并同类项,系数化成1即可.【详解】433(21)x x +≤-4363x x +≤-4633x x -≤--26x -≤-3x ≥ 在数轴上表示不等式的解集为:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式(组)的解集的应用,主要考查学生的计算能力. 20.如图1,平面直角坐标系中,直线AB 与x 轴负半轴交于点A (a ,1),与 y 轴正半轴交于点B (1,b ),且6a ++|b ﹣4|=1.(1)求△AOB 的面积;(2)如图2,若P 为直线AB 上一动点,连接OP ,且2S △AOP ≤S △BOP ≤3S △AOP ,求P 点横坐标x P 的取值范围; (3)如图3,点C 在第三象限的直线AB 上,连接OC ,OE ⊥OC 于O ,连接CE 交y 轴于点D ,连接AD 交OE 的延长线于F ,则∠OAD 、∠ADC 、∠C EF 、∠AOC 之间是否有某种确定的数量关系?试证明你的结论.【答案】(1)12;(2)﹣4.5≤x P≤﹣4或﹣12≤x P≤﹣2;(3)∠CEF+∠ADC﹣∠OAD﹣∠AOC=21°.【解析】(1)利用非负数的性质即可解决问题;(2)过点P作PH⊥y轴于H,∴PH=|x P|.分三种情形讨论即可①点P在第一象限时,S△BOP<S△AOP,结论不成立;②点P在第二象限时,PH=|x P|=-x P,S△BOP=-2x P,S△AOP=12+2x P,列出不等式即可解决问题.③P 在第三象限时,列出不等式即可;(3)如图,作AM∥OF交CD于M,DN∥OF交OC于N,利用平行线的性质,等式的性质即可解决问题. 【详解】(1)∵6a++|b﹣4|=1,又∵6a+≥1,|b﹣4|≥1,∴a=﹣6,b=4,∴A(﹣6,1),B(1,4)∴S△AOB=12×6×4=12;(2)如图,过点P作PH⊥y轴于H,∴PH=|x P|.由图形可知,①点P在第一象限时,S△BOP<S△AOP,结论不成立;②点P在第二象限时,PH=|x P|=﹣x P,S△BOP=﹣2x P,S△AOP=12+2x P∴2(12+2x P)≤﹣2x P≤3(12+2x P),解得﹣4.5≤x P≤﹣4;③P在第三象限时,2(﹣2x P﹣12)≤﹣2x P≤3(﹣2x P﹣12),解得﹣12≤x P≤﹣2.综上,P点横坐标x P的取值范围是﹣4.5≤x P≤﹣4或﹣12≤x P≤﹣2.(3)如图,作AM∥OF交CD于M,DN∥OF交OC于N,∴AM∥OF∥DN,∴∠AMD=∠CEF,∠ADN=∠DAM,∠AMD+∠ADC+∠ADN=181°①,∠FOC+∠AOC+∠OAD+∠DAM=181°,又∵∠FOC=21°,∴∠OAD+∠AOC+∠DAM=21°②,由①得∠ADN=181°﹣∠AMD﹣∠ADC;由②得∠DAM=21°﹣∠OAD﹣∠AOC,又∠ADN=∠DAM,∴181°﹣∠AMD﹣∠ADC=21°﹣∠OAD﹣∠AOC,又∵∠AMD=∠CEF,∴∠CEF+∠ADC﹣∠OAD﹣∠AOC=21°.(或∠CEF+∠ADC=21°+∠OAD+∠AOC类似结论均可)【点睛】本题考查三角形综合题、非负数的性质、不等式组、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.21.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.(1)△BDF是什么三角形?请说明理由;(2)设AD=x,CF=y,试求y与x之间的函数关系式;(不用写出自变量x的取值范围)(3)当移动点D使EF∥AB时,求AD的长。
2018年清华附中初一下期末数学试卷(平行班)
EDC B A C B A 初一第二学学期期末 (平行班)数学(清华附中初17级) 2018年7月 一、选择题(每题3分,共24分) 1、36的平方根是( )A 、6±B 、 6C 、-6D 、6± 2、如图,在正方形网格中建立平面直角坐标系,若A (0,2),B (1, 1)则点C 的坐标为( ) A 、(1,-2)B 、(1,-1)C 、(2,-1)D 、(2, 1)3.2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是( )A . 1月份销量为2.2万辆B . 从2月到3月的月销量增长最快C . 4月份销量比3月份增加了1万辆D . 1~4月新能源乘用车销量逐月增加4、不等式组4261x x m ->-⎧⎨->-⎩无解,则m 的取值范围是( )A 、5m ≥B 、6m ≥C 、6m >D 、6m ≤5、如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于点O ,连接AO ,则图中共有全等的三角形的对数为( )A 、3对B 、4对C 、5对D 、6对6、有公共顶点A 、B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A 、144°B 、74°C 、84°D 、54°7、某种袜子原零售价每双5元,凡购买2双以上(含两双)。
商场推出两种优惠销售办法:第一种是“一双按原价,其余按原价七折优惠”,第二种是“全部按原价的八折优惠”,你在购买相同数量的情况下要使第一种办法比第二种办法得到的优惠多,最少需要购买袜子( )双。
A 、5双 B 、4双 C 、3双 D 、2双8、∠AOB 的平分线为OC ,点D 、E 分别在射线OA 、OB 上,P 在射线OC 上。
(1)PD ⊥OA ,PE ⊥OB (2)OD =OE (3)DE ⊥OP (4)∠DPO =∠EPO 其中能够使得PD =PE 的条件有( )A 、1个B 、2个C 、3个D 、4个 二、填空题(每题3分,共24分)9、正多边形的一个内角为156°,它的边数是_________.10、如图,在平面直角坐标系xoy中,点A,点B的坐标分别为(0, 2),(-1, 0将线段AB沿x轴的正方形平移,若点B的对应点的坐标为'B(2,0),则点A的对应点为________.11、已知△ABC的两条边长分别为3和5,则第三边C的取值范围是_________.12、陈红同学要用一根铁丝制作一个有两条边长分别为15cm和30cm那么陈红应该准备________cm长的铁丝。
北京市清华大学附属中学七年级下册数学期末试卷测试卷(含答案解析)
北京市清华大学附属中学七年级下册数学期末试卷测试卷(含答案解析)一、解答题1.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.2.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.3.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)4.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.5.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系; (2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .二、解答题6.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D . ①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.7.已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上.(1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则∠=CAB ________.(用含α的代数式表示) 8.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的: 过点E 作//,EF AB 则有,BEF B ∠=∠ 因为//,AB CD 所以//.EF CD ① 所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠ 即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).9.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.10.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.三、解答题11.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 12.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC . (1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小; (3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .13.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.14.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵180BDC DBC BCD ∠+∠+∠=︒,(______) ∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质) ∵12180A DBC BCD ∠+∠+∠+∠+∠=︒, ∴12180A DBC BCD ∠+∠+∠=︒-∠-∠, ∴12BDC A ∠=∠+∠+∠.(______) (2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.15.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数;(3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN 度数.【参考答案】一、解答题1.(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可; (3)由(1)的结论和三角形的角的关系解答即可. 【详解】证明:(1)∵AB ∥CD ,EF ∥CD , ∴AB ∥EF , ∴∠ABF =∠BFE , ∵EF ∥CD , ∴∠DCF =∠EFC ,∴∠BFC =∠BFE +∠EFC =∠ABF +∠DCF ; (2)∵BE ⊥EC , ∴∠BEC =90°, ∴∠EBC +∠BCE =90°,由(1)可得:∠BFC =∠ABE +∠ECD =90°, ∴∠ABE +∠ECD =∠EBC +∠BCE , ∵BE 平分∠ABC , ∴∠ABE =∠EBC , ∴∠ECD =∠BCE , ∴CE 平分∠BCD ;(3)设∠BCE =β,∠ECF =γ, ∵CE 平分∠BCD , ∴∠DCE =∠BCE =β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.2.(1)P B′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.3.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM =∠DAP .(两直线平行,内错角相等),∵CD ∥EF (已知),∴PM ∥CD (平行于同一条直线的两条直线互相平行),∴∠MPB =∠FBP .(两直线平行,内错角相等),∴∠APM +∠MPB =∠DAP +∠FBP .(等式性质) 即∠APB =∠DAP +∠FBP =40°+70°=110°. (2)结论:∠APB=∠DAP +∠FBP .理由:见(1)中证明.(3)①结论:∠P=2∠P 1;理由:由(2)可知:∠P =∠DAP +∠FBP ,∠P 1=∠DAP 1+∠FBP 1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP , = 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 4.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B , ∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180°∴∠BCF =135°-4a ,∴∠AFC =∠BCF =135°-4a ,又∵AM //CN ,∴∠AFC +∠ NCF =180°,即:∠AFC +∠BCN +∠BCF =180°,∴135°-4a +135°-4a +2a =180,解得a =15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.5.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC =90°,∴∠A +∠AOB =90°,∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM ,∴DB ⊥BG ,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.二、解答题6.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥解析:(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)见解析;(2)见解析;(3)见解析;.【分析】(1)过点C作,得到,再根据,,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据(2)结论得到∠D解析:(1)见解析;(2)见解析;(3)见解析;2 .【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ;(2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF =∠ECA =α,进而得到=90BC AC A B α=∠︒-∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF =∠ECA =α,∵90ACB ACE ∠+∠=︒,∴∠ACB =90α︒-,∴ =90BC AC A B α=∠︒-∠,∴∠A =180°-A ABC CB -∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.8.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠ ∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+, 故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒,∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.9.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.10.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC ∠=∠,理由如下://DE BA ,EDF BFD ∴∠=∠,//DF CA ,BA BFD C ∴∠=∠,EDF BAC ∴∠=∠;(2)//DE BA ,理由如下:如图,延长BA 交DF 于点O ,//DF CA ,BAC BOD ∴∠=∠,EDF BAC ∠=∠,EDF BOD ∴∠=∠,//DE BA ∴;(3)由题意,有以下两种情况:①如图3-1,EDF BAC ∠=∠,理由如下://DE BA ,180E EAF ∴∠+∠=︒,//DF CA ,180E EDF ∴∠+∠=︒,EAF EDF ∴∠=∠,由对顶角相等得:BAC EAF ∠=∠,EDF BAC ∴∠=∠;②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.三、解答题11.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.12.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t =40,综上所述,△ABC 绕点A 顺时针旋转的时间为10s 或30s 或40s 时,线段BC 与△DEF 的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.14.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F , ∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.15.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。
2018-2019学年北京人大附中七年级(下)期末数学试卷参考答案与试题解析
2018-2019学年北京人大附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)1.(3分)平面直角坐标系内,点P(﹣3,﹣4)到y轴的距离是()A.3B.4C.5D.﹣3或7【分析】根据点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:点P(﹣3,﹣4)到y轴的距离是3,故选:A.【点评】本题考查了点的坐标,点到x轴的距离是点的纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值.2.(3分)下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若a>b,则1+a>b﹣1【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加c不等号的方向不变,故A不符合题意;B、两边都减c不等号的方向不变,故B不符合题意;C、c=0时,ac2=bc2,故C符合题意;D、a>b,则1+a>b+1>b﹣1,故D不符合题意;故选:C.【点评】本题考查了不等式的性质,熟记不等式的性质是解题关键.3.(3分)下列各选项的结果表示的数中不是无理数的是()A.如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,点A表示的数B.5的算术平方根C.9的立方根D.【分析】根据题意,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,则原点到点A的长为圆的周长,求圆的周长即可判断选项A;通过算术平方根和立方根的计算即可判断其它选项.【解答】解:A、由题意可知原点到点A的长是圆的周长,而圆的周长=πd=π×1=π,所以点A表示的数是π.是无理数,这个选项错误;B、5的算术平方根是无理数,这个选项错误;C、9的立方根是无理数,这个选项错误;D、=12,12是有理数,这个选项正确;故选:D.【点评】本题考查的是数轴上两点间的距离、算术平方根和立方根,正确理解题意,明确原点到点A长度的实际意义是解决本题的关键.4.(3分)如果多边形的每一个内角都是150°,那么这个多边形的边数是()A.8B.10C.12D.16【分析】设这个多边形的边数为n,根据多边形的外角和是360度求出n的值即可.【解答】解:∵多边形的各个内角都等于150°,∴每个外角为30°,设这个多边形的边数为n,则30°n=360°,解得n=12.故选:C.【点评】本题考查的是多边形的内角与外角,解答此类问题时要找到不变量,即多边形的外角和是360°这一关键.5.(3分)如图是北京市地铁部分线路示意图.若分别以正东、正北方向为x轴,y轴的正方向建立平面直角坐标系,表示西单的点的坐标为(﹣4,0),表示雍和宫的点的坐标为(4,6),则表示南锣鼓巷的点的坐标是()A.(5,0)B.(5,3)C.(1,3)D.(﹣3,3)【分析】由西单和雍和宫的坐标建立平面直角坐标系,然后写出坐标即可.【解答】解:根据题意可建立如下所示平面直角坐标系,则表示南锣鼓巷的点的坐标是(1,3),故选:C.【点评】此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x,y轴的位置.6.(3分)如图,A处在B处的北偏东45°方向,A处在C处的北偏西15°方向,则∠BAC 等于()A.30°B.45°C.50°D.60°【分析】根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,即可求解.【解答】解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,故选:D.【点评】本题主要考查了方向角的定义,正确理解定义是解题的关键.7.(3分)下列等式正确的是()A.=﹣3B.=±12C.=﹣2D.﹣=﹣5【分析】原式利用平方根定义及二次根式的性质判断即可得到结果.【解答】解:A、原式=|﹣3|=3,错误;B、原式=12,错误;C、原式没有意义,错误;D、原式=﹣5,正确,故选:D.【点评】此题考查了算术平方根,以及平方根,熟练掌握各自的定义是解本题的关键.8.(3分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【分析】根据图示,可得不等式组的解集,可得答案.【解答】解:由图示得A>1,A<2,故选:A.【点评】本题考查了在数轴上表示不等式的解集,先求出不等式的解集,再在数轴上表示出来,注意,不包括点1、2,用空心点表示.9.(3分)若一个等腰三角形的两边长分别为4和10,则这个三角形的周长为()A.18B.22C.24D.18或24【分析】根据等腰三角形的两边长分别为4和10,分两种情况讨论:4为腰时;10为腰时;再由三角形的三边关系定理得出结论.【解答】解:∵一个等腰三角形的两边长分别为4和10,∴当4为腰时,三边长分别为4,4,10,∵4+4=8<10,∴不成立;当10为腰时,三边长分别为4,10,10,∴三角形的周长为24cm.故选:C.【点评】本题考查了等腰三角形的性质及三角形的三边关系定理;分类讨论后一定要进行验证这是正确解答本题的关键.10.(3分)已知点M(1﹣2m,m﹣1)在第二象限,则m的取值范围是()A.m>1B.C.D.【分析】根据点的坐标得出不等式组,再求出不等式组的解集即可.【解答】解:∵点M(1﹣2m,m﹣1)在第二象限,∴,解得:m>1,故选:A.【点评】本题考查了解一元一次不等式组和点的坐标,能根据题意得出不等式组是解此题的关键.11.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.12.(3分)不等式组无解,则m的取值范围是()A.m<1B.m≥1C.m≤1D.m>1【分析】先把m当作已知条件求出各不等式的解集,再根据不等式组无解求出m的取值范围即可.【解答】解:,由①得,x>﹣1,由②得,x<m﹣2,∵原不等式组无解,∴m﹣2≤﹣1,解得m≤1.故选:C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本题共22分,每题2分)13.(2分)代数式在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(2分)用一组a,b的值说明命题“若a>b,则a2>b2”是错误的,这组值可以是﹣1、﹣2.(答案不唯一).(按顺序分别写出a、b的值)【分析】举出一个反例:a=﹣1,b=﹣2,说明命题“若a>b,则a2>b2”是错误的即可.【解答】解:当a=﹣1,b=﹣2时,满足a>b,但是a2<b2,∴命题“若a>b,则a2>b2”是错误的.故答案为:﹣1、﹣2.(答案不唯一)【点评】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.15.(2分)点P(﹣2,1)向下平移3个单位,再向右平移5个单位后的点的坐标为(3,﹣2).【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得.【解答】解:点P(﹣2,1)向下平移3个单位,再向右平移5个单位后的点的坐标为(﹣2+5,1﹣3),即(3,﹣2),故答案为:(3,﹣2).【点评】此题主要考查了坐标与图形的变化,关键是掌握点的坐标平移后的变化规律.16.(2分)如图,AD是△ABC的边BC上的中线,BE是△ABD的边AD上的中线,若△ABC的面积是16,则△ABE的面积是4.【分析】根据题意和△ABC的面积是16,可以得到△ABE的面积,本题得以解决.【解答】解:∵AD是△ABC的边BC上的中线,BE是△ABD的边AD上的中线,∴△ABD的面积等于△ADC的面积,△ABE的面积等于△BDE的面积,∵△ABC的面积是16,∴△ABD的面积和△ADC的面积都是8,∴△ABE的面积和△BDE的面积都是4,故答案为:4.【点评】本题考查三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.17.(2分)如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为10°.【分析】由等腰直角三角形的性质和平行线的性质求出∠ACD=55°,即可得出∠2的度数.【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∵a∥b,∴∠ACD=180°﹣125°=55°,∴∠2=∠ACD﹣∠ACB=55°﹣45°=10°;故答案为:10°【点评】本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.18.(2分)已知:m、n为两个连续的整数,且m<<n,则m+n=7.【分析】先估算出的取值范围,得出m、n的值,进而可得出结论.【解答】解:∵9<11<16,∴3<<4,∴m=3,n=4,∴m+n=3+4=7.故答案为:7.【点评】本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.19.(2分)某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要16.8平方米.【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积.【解答】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为5.8米,2.6米,所以地毯的长度为2.6+5.8=8.4米,地毯的面积为8.4×2=16.8平方米.故答案是:16.8.【点评】考查了生活中的平移现象.解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.20.(2分)关于x,y的二元一次方程经的解满足x<y,则a的取值范围是a<﹣5.【分析】向将两个方程相加得出x﹣y=,由x<y知<0,解之可得.【解答】解:两方程相加可得4x﹣4y=a+5,则x﹣y=,∵x<y,∴x﹣y<0,则<0,解得a<﹣5,故答案为:a<﹣5.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤和解二元一次方程组的依据.21.(2分)如图△ABC≌△ADE,若∠DAE=80°,∠C=30°,∠DAC=35°,AC、DE 交于点F,则∠CFE的度数为75°.【分析】先根据已知条件求出∠EAC,根据全等得出∠E=∠C=30°,然后利用三角形的外角的性质即可得出答案.【解答】解:∵∠DAE=80°,∠DAC=35°,∴∠F AE=∠DAE﹣∠DAC=45°,∵△ABC≌△ADE,∴∠E=∠C=30°,∵∠CFE=∠CAE+∠E=45°+30°=75°,故答案为:75°.【点评】本题考查了全等三角形的性质和三角形内角和定理的应用,注意:全等三角形的对应角相等,对应边相等.22.(2分)阅读下面材料.数学课上,老师提出如下问题:小明解答如图所示,其中他所画的弧MN是以E为圆心,以CD长为半径的弧老师说:“小明作法正确.”请回答小明的作图依据是:SSS【分析】利用“SSS“可证明△BEF≌△OCD,从而可得到∠EBF=∠COD.【解答】解:由作法得OC=OD=BE=BF,EF=CD,所以△BEF≌△OCD(SSS).所以∠EBF=∠COD,故答案为SSS.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).23.(2分)已知m,n为互质(即m,n除了1没有别的公因数)的正整数,由m×n个小正方形组成的矩形,如图示意,它的对角线穿过的小正方形的个数记为f.小明同学在方格图中经过动手试验,在下面的表格中填入不同情形下的各个数值,于是猜想f与m,n 之间满足线性的数量关系.m n f2343464710请你模仿小明的方法,填写上表中的空格,并写出f与m,n的数量关系式为m+n﹣1=f.【分析】根据表格的信息,即可发现m+n﹣1=f,即可求解.【解答】解:根据表格信息,即可发现m+n﹣1=f.故第一空为10,数量关系为:m+n﹣1=f.故答案为:10;m+n﹣1=f.【点评】本题考查观察能力,和寻找规律的能力,属于拔高训练题.三、计算与求解(本题共12分,每小题12分)24.(12分)(1)计算:+|3﹣|+;(2)解方程组:;(3)解不等式组,并求它的所有整数解.【分析】(1)化简二次根式和三次根式,根据绝对值的性质化简,然后合并即可;(2)利用加减消元法求解即可;(3)先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【解答】解:(1)原式=2+3﹣﹣5+=0;(2)①×2﹣②×3得:﹣5x=﹣15,解得x=3,把x=3代入①得6﹣3y=3,解得y=1,故方程组的解为;(3)解①得:x≥4,解②得:x<,则不等式的解集为:4≤x,它的所有整数解是4,5,6.【点评】本题考查了解一元一次不等式(组),解答本题的关键是掌握不等式的解法,注意求解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、解答题:(本题共18分,每题6分)25.(6分)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.【分析】根据AB∥ED推出∠B=∠E,再利用SAS判定△ABC≌△CED从而得出AC=CD.【解答】证明:∵AB∥ED,∴∠B=∠E.在△ABC和△CED中,,∴△ABC≌△CED(SAS).∴AC=CD.【点评】本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显.26.(6分)如图,∠ADC=130°,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,交对边于F、E,且∠ABF=∠AED,过E作EH⊥AD交AD于H.(1)在右下图中作出线段BF和EH(不要求尺规作图);(2)求∠AEH的大小;小亮同学请根据条件进行推理计算,得出结论,请你在括号内注明理由证明:∵BF、DE分别平分∠ABC与∠ADC,(已知)∴∠ABF=∠ABC,∠CDE=∠ADC.(角平分线的定义)∵∠ABC=∠ADC,(已知)∴∠ABF=∠CDE,(等式的性质)∠ABF=∠AED,(已知)∴∠CDE=∠AED.(等量代换)∴AB∥CD.(内错角相等,两直线平行)∵∠ADC=130°(已知)∴∠A=180°﹣∠ADC=50°(两直线平行,同旁内角互补)∵EH⊥AD于H(已知)∴∠EHA=90°(垂直的定义)∴在Rt△AEH中,∠AEH=90°﹣∠A(三角形内角和定理)=40°【分析】(1)利用几何语言画出对应的几何图形;(2)先利用角平分线定义得到∠ABF=∠ABC,∠CDE=∠ADC,再利用等量代换得到∠CDE=∠AED,则可判断AB∥CD,利用平行线的性质得到∠A=180°﹣∠ADC =50°,然后根据三角形内角和计算∠AEH的度数.【解答】解:(1)如图,BF、EH为所作;(2)小亮同学请根据条件进行推理计算,得出结论,请你在括号内注明理由证明:∵BF、DE分别平分∠ABC与∠ADC,(已知)∴∠ABF=∠ABC,∠CDE=∠ADC.(角平分线的定义)∵∠ABC=∠ADC,(已知)∴∠ABF=∠CDE,(等式的性质)∠ABF=∠AED,(已知)∴∠CDE=∠AED.(等量代换)∴AB∥CD.(内错角相等,两直线平行)∵∠ADC=130°(已知)∴∠A=180°﹣∠ADC=50°(两直线平行,同旁内角互补)∵EH⊥AD于H(已知)∴∠EHA=90°(垂直的定义)∴在Rt△AEH中,∠AEH=90°﹣∠A(三角形内角和定理)=40°.故答案为角平分线的定义;等量代换;内错角相等,两直线平行;三角形内角和定理.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).27.(6分)在一次活动中,主办方共准备了3600盆甲种花和2900盆乙种花,计划用甲、乙两种花搭造出A、B两种园艺造型共50个.搭造要求的花盆数如下表所示:造型甲乙A90盆30盆B40盆100盆请问符合要求的搭造方案有几种?请写出具体的方案.【分析】设需要搭造x个A种造型,则需要搭造B种造型(50﹣x)个,根据A造型搭配的方法、B造型搭配的方法及甲乙花卉的数量可列出不等式组,求出不等式组的解即可.【解答】解:设需要搭造x个A种造型,则需要搭造B种造型(50﹣x)个,依据题意得,,解得:30≤x≤32,∵x只能取整数,∴x=30、31或32;第一种方案:A种造型30个,B种造型20个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型32个,B种造型18个.【点评】本题考查了一元一次不等式组的应用,与实际结合得比较紧密,根据A、B造型的搭配方法得出不等式组是解答本题的关键,另外得出x的范围后要分类讨论,不要遗漏.五、解答题[本题12分,每题6分)28.(6分)已知在△ABC中,∠BAC=α,∠ABC=β,∠BCA=γ,△ABC的三条角平分线AD,BE,CF交于点O,过O向△ABC三边作垂线,垂足分别为P,Q,H,如图所示(1)若α=78°,β=56°,γ=46°,求∠EOH的大小;(2)用α,阝,γ表示∠EOH的表达式为∠EOH=α+﹣90°;(要求表达式最简)(3)若α≥β≥γ,∠EOH+∠DOP+∠FOQ=β,判断△ABC的形状并说明理由.【分析】(1)根据四边形的内角和与平角的定义可得∠EOH的度数;(2)同理可得∠EOH的度数;(3)同理表示∠DOP和∠FOQ,代入∠EOH+∠DOP+∠FOQ=β,可得结论.【解答】解:(1)四边形ABHO中,∵BE平分∠ABC,∴∠ABO===28°,∵OH⊥AC,∴∠AHO=90°,∵∠BAC=78°,∴∠BOH=360°﹣28°﹣78°﹣90°=164°,∴∠EOH=180°﹣164°=16°;(2)四边形ABHO中,∵BE平分∠ABC,∴∠ABO=,∵OH⊥AC,∴∠AHO=90°,∵∠BAC=α,∴∠BOH=360°﹣α﹣﹣90°=270°﹣α﹣,∴∠EOH=180°﹣∠BOH=α+β﹣90°;故答案为:α+β﹣90°;(3)△ABC是直角三角形,理由是:由(2)知:∠EOH=α+β﹣90°;四边形ABOP中,同理∠AOP=360°﹣α﹣β﹣90°=270°﹣α﹣β,∴∠DOP=180°﹣∠AOP=β+α﹣90°;同理得:∠FOQ=α+γ﹣90°,∵∠EOH+∠DOP+∠FOQ=β,且α+β+γ=180°,∴α+﹣90°+α﹣90°+α+γ﹣90°=β,5α+β+γ=540°,∴4α=360°,α=90°,∵α≥β≥γ,∴△ABC是直角三角形.【点评】本题考查了三角形内角和定理:三角形内角和为180°.也考查了三角形角平分线与四边形的内角和以及三角形外角性质.29.(6分)平面直角坐标系内,已知点P(3,3),A(0,b)是y轴上一点,过P作P A的垂线交x轴于B(a,0),则称Ω(a,b)为点P的一个关联点.(1)写出点P的不同的两个关联点的坐标是(3,3)、(2,4);(2)若点P的关联点Q(x,y)满足5x﹣3y=14,求出Q点坐标;(3)已知C(﹣1,﹣1).若点A、点B均在所在坐标轴的正半轴上运动,求△CAB的面积最大值,并说明理由.【分析】(1)根据关联点的定义可得点P的两个关联点;(2)作辅助线证明△PCA≌△PDB(ASA),得AC=BD,列方程组,解出可得Q的坐标;(3)作辅助线,利用面积差可得△ABC的面积,利用二次函数的最值可得结论.【解答】解:(1)如图1,过P作P A⊥y轴于A,PB⊥x轴于B,∴A(0,3),B(3,0),即a=3,b=3,∴Q(3,3)是点P的一个关联点,同理得:Q(2,4)也是点P的一个关联点;故答案为:(3,3),(2,4);(2)如图2,过P作PC⊥y轴于C,PD⊥x轴于D,易得△PCA≌△PDB(ASA),∴AC=BD,∵点P的关联点是Q(x,y),∴B(x,0),A(0,y),∴x﹣3=3﹣y,x+y=6①,∵5x﹣3y=14②,由①②得:x=4,y=2,∴Q(4,2);(3)如图3,作AG∥x轴,作CG⊥AG于G,作CH∥x轴,作BH⊥CH于H,∵A(0,b),B(a,0),由(2)同理得:a+b=6,∴b=6﹣a,S△ABC=S矩形AGCM+S梯形ABHM﹣S△ACG﹣S△BCH,=1×(1+b)+×a×(1+b+1)﹣﹣,=1+b+ab+a﹣﹣b﹣﹣a,=a+b+ab,=a++,=﹣+3a+3,=﹣(a﹣3)2+,∵﹣<0,∴当a=3时,S△ABC有最大值是.【点评】本题是三角形和二次函数综合题,解(1)的关键是利用关联点的定义;解(2)的关键是利用关联点定义得出方程组;解(3)的关键是与二次函数相结合解决问题.六、附加题加题分6分计入总分,但总分不超过100分30.综合性学习小组设计了如图1所示四种车轮,车轮中心的初始位置在同一高度,现将每种车轮在水平面上进行无滑动滚动,若某个车轮中心的运动轨迹如图2所示,请利用刻度尺、量角器等合适的工具作出判断,该轨迹对应的车轮是C.【分析】观察图象2可知,显然车轮不是A.根据圆心角∠AOB的大小即可判断.当∠AOB=90°时,对应的车轮是B,当∠AOB=72°时,对应的车轮C,当∠AOB=60°时,对应的车轮是D.【解答】解:通过测量可知∠AOB=72°,所以对应的车轮是C,故答案为C.【点评】本题考查轨迹,正多边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.31.在△ABC中,∠A≤∠B≤C,若∠A=20°,且△ABC能分为两个等腰三角形,则∠C =90°或120°或100°.【分析】在△ABC中构建一截线,满足把△ABC分成两个等腰三角形,分四种情况画图讨论:分别过顶点C和B,如图所示,分别求出∠C的度数.【解答】解:如图1,刀痕为BD时,则CD=BC,AD=BD,∴∠ABD=∠A=20°,∠CDB=∠CBD=40°∴∠C=180°﹣40°﹣40°=100°如图2,刀痕为CD时,则AC=AD,CD=BD,∴∠ACD=∠ADC==80°∵∠B=∠BCD,∠ADC=∠B+∠BCD∴∠B=∠BCD=40°∴∠ACB=∠ACD+∠BCD=80°+40°=120°如图3,刀痕为CD时,则CD=BC,AD=CD,∴∠ACD=∠A=20°,∠CDB=∠CBD=40°,∴∠BCD=180°﹣40°﹣40°=100°,∴∠ACB=∠ACD+∠BCD=100°+20°=120°,如图4,刀痕为CD时,则CD=BD,AD=CD,∴∠ACD=∠A=20°,∠CDB=40°,∠DCB==70°,∴∠ACB=∠ACD+∠BCD=20°+70°=90°,综上所述,则∠C的度数:90°或120°或100°.故答案为:90°或120°或100°.【点评】本题考查了等腰三角形的性质和三角形的外角定理,熟练掌握等边对等角,等角对等边是本题的关键;明确三角形的一个外角等于与它不相邻的两个内角的和.32.规定:满足(1)各边互不相等且均为整数:(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为比高三角形,其中k叫做比高系数.根据规定解答下列问题:(1)周长为13的比高三角形的比高系数k=2或3;(2)比高三角形△ABC三边与它的比高系数k之间满足BC﹣AC=AC﹣AB=k2,求△ABC的周长的最小值.【分析】(1)根据定义结合三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析;(2)设BC=a,AC=b,AB=c,根据题干条件和比高三角形的知识,可得2k2﹣kc+c=0,然后解方程,根据方程有整数根,进一步解得a、b、c的值.并通过三角形两边之和大于第三边,三角形两边之差小于第三边验证.【解答】解:(1)根据定义和三角形的三边关系,知:此三角形的三边是2,5,6或3,4,6.则k=2或3.(2)∵a﹣b=b﹣c=k2①,∴a>b>c,且a=kc,∴2b=a+c=kc+c,即b=(kc+c),又b﹣c=k2,将b=(kc+c)代入并化简得2k2﹣kc+c=0 ②.方程②有整数根,所以△=c2﹣8c=0为完全平方数,当△≠0时,设c2﹣8c=m2(m为正整数)③.方程③有整数根,所以△=64+4m2为完全平方数,设64+4m2=n2(n为正整数).∴(n+2m)(n﹣2m)=64∴或,解得或(非正整数,舍去).∴m=3,代入方程③解得c=9,代入方程②,解得k=3.∴c=9,a=kc=27,b=(kc+c)=18.∵b+c=a,∴不符合三角形三边关系,题目无解;当△=0,即c=8或c=0(不合题意,舍去)时,由方程②解得,k=2;∴a=kc=2×8=16,即a=16;∴b=(kc+c)=12;又∵16﹣12<8<16+12,16﹣8<12<16+8,12﹣8<16<12+8,∴a、b、c满足题意,∴a+b+c=36.故答案为:(1)2或3.【点评】本题主要考查三角形三边关系的知识点,解答本题的关键是理解题干条件:比高三角形的概念,根据比高三角形的知识可以解答第一问,第二问难度有点大,主要是利用方程的整数根的知识点进行解答,此题难度较大.。
2018-2019学年度北京市七年级数学第二学期期末考试卷及答案有详细解析
2018-2019学年度北京市七年级数学第二学期期末考试卷一、选择题1、若把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .2、PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.0000025米,把0.0000025用科学记数法表示为()A .2.5×106B .0.25×10-5C .2.5×10-6D .25×10-73、将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是( )A .30°B .45°C .60°D .65° 4、已知,则下列不等式一定成立的是( )A .B .C .D .5、下列计算正确的是( )A .2a+3a=6aB .a 2+a 3=a 5C .a 8÷a 2=a 6D .(a 3)4= a 76、是二元一次方程的一个解,则a 的值为( )A .1B .31C .3D .-1 7、下列因式分解正确的是( ) A . B .C .D .8、小文统计了本班同学一周的体育锻练情况,并绘制了直方图 ①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8. 根据图中信息,上述说法中正确的是( )……订…………○线※※内※※答※※题※※……订…………○A.①②B.②③C.③④D.①④9、某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是()A.100 B.396 C.397 D.40010、用小棋子摆出如下图形,则第n个图形中小棋子的个数为()A.n B.2n C.n2D.n2+1二、填空题11、因式分解:=__________________。
2018~2019学年北京海淀区人大附中初一下学期期末数学试卷(详解)
2/20
2020/5/8
【解析】 ⻄单坐标是
,雍和宫坐标是 教研,云资源页
所以一个格代表 ,
南锣鼓巷是从雍和宫左移 个单位,下移 个单位故其坐标为
.
故选: .
6. 如图, 处在 处的北偏东 方向, 处在 处的北偏⻄ 方向.则
等于( ).
北
北
A.
B.
C.
D.
【答案】 D
【解析】 依题可知,
.
7. 下列等式正确的是( ).
3/20
2020/5/8
【答案】 A
教研云资源页
【解析】 由所给天平可知,物体 的质量
.
在数轴上表示如下:
故选 .
9. 若一个等腰三⻆形的两边⻓分别为 和 ,则这个三⻆形的周⻓为( ).
A.
B.
C.
D. 或
【答案】 C
【解析】 ∵等腰三⻆形的两边分别是 和 ,
∴应分为两种情况:① 为底, 为腰,则
【解析】 正多边形每个内⻆为 故选 .
,则每个外⻆为 ,边数
D. .
5. 如图是北京市地铁部分线路示意图.若分别以正东、正北方向为 轴, 轴的正方向建立平面直
⻆坐标系,表示⻄单的点的坐标为
,表示雍和宫的点的坐标为 ,则表示南锣鼓巷的
点的坐标是( ).
A.
B.
C.
D.
【答案】 B
https:///#/print?id=c9e6efdac6a1412aba0bc051a82f1c5d&type=analyze
的面积是
.
的边 上的中线,若
的面积是
【答案】
【解析】 ∵ 是
的边 上的中线,且
2018~2019学年北京海淀区人大附中初一下学期期末数学试卷
2018~2019学年北京海淀区⼈⼤附中初⼀下学期期末数学试卷⼀、选择题(本⼤题共12⼩题,每⼩题3分,共36分)1.A.B.C.D.或平⾯直⻆坐标系内,点到轴的距离是( ).2. A.若,则B.若,则C.若,则D.若,则下列说法不⼀定成⽴的是( ).3. A.B.C.D.下列各选项的结果表示的数中,不是⽆理数的是( ).如图,直径为单位的圆从数轴上的原点沿着数轴⽆滑动地顺时针滚动⼀周到达点,点表示的数的算术平⽅根的⽴⽅根4. A.B.C.D.若正多边形的⼀个内⻆是,则该正多边形的边数是( ).5.如图是北京市地铁部分线路示意图.若分别以正东、正北⽅向为轴,轴的正⽅向建⽴平⾯直⻆坐标系,表示⻄单的点的坐标为,表示雍和宫的点的坐标为,则表示南锣⿎巷的点的坐标是( ).A. B. C. D.6. A. B. C. D.如图,处在处的北偏东⽅向,处在处的北偏⻄⽅向.则等于( ).北北7. A.B.C.D.下列等式正确的是( ).8. A. B.C. D.如图天平右盘中的每个砝码的质量都是,则物体的质量的取值范围,在数轴上可表示为( ).9. A.B.C.D.或若⼀个等腰三⻆形的两边⻓分别为和,则这个三⻆形的周⻓为( ).10.A.B.C.D.已知点在第⼆象限,则的取值范围是( ).2020/5/8教研云资源页已知右图中的两个三⻆形全等,则等于( ).11.A. B. C. D.12.不等式组⽆解,则的取值范围是( )A. B. C. D.⼆、填空题(本⼤题共11⼩题,每⼩题2分,共22分)13.若在实数范围内有意义,则实数的取值范围是 .14.⽤⼀组,的值说明命题“若,则”是错误的,这组值可以是(按顺序分别写出、的值) .15.点向下平移个单位,再向右平移个单位后的点的坐标为 .16.如图,是的边上的中线,是的边上的中线,若的⾯积是,则的⾯积是 .17.如图,等腰直⻆三⻆板的顶点,分别在直线,上.若,,则的度数为 .18.已知:、为两个连续的整数,且,则 .2020/5/8教研云资源页19.某宾馆在重新装修后,准备在⼤厅主楼梯上铺设某种红⾊地毯,主楼梯道宽⽶,其侧⾯如图所示,则购买地毯⾄少需要 平⽅⽶.20.关于,的⼆元⼀次⽅程组,的解满⾜,则的取值范围是 .21.如图≌,若,,,、交于点,则的度数为 .22.阅读下⾯材料:数学课上,⽼师提出如下问题:尺规作图:作⼀⻆等于已知⻆.已知:.求作:,使得.⼩明解答如右图所示,其中他所画的弧是以为圆⼼,以⻓为半径的弧.⽼师说:“⼩明作法正确.”请回答⼩明的作图依据是: .23.2020/5/8教研云资源页已知,为互质(即,除了没有别的公因数)的正整数,由个⼩正⽅形组成的矩形,如左下图示意,它的对⻆线穿过的⼩正⽅形的个数记为.⼩明同学在右下⽅的⽅格图中经过动⼿试验,在左下的表格中填⼊不同情形下的各个数值,于是猜想与,之间满⾜线性的数量关系.请你模仿⼩明的⽅法,填写上表中的空格,并写出与,的数量关系式为 .三、解答题(本⼤题共12分)24.(1)(2)(3)请回答下列各题:计算:.解⽅程组:.解不等式组,并求它的所有整数解.四、解答题(本⼤题共3⼩题,每⼩题6分,共18分)25.已知:如图,为上⼀点,点,分别在两侧.,,.求证:.26.(1)(2)如图,,,、分别平分与, 交对边于、,且,过作交于.在右下图中作出线段和(不要求尺规作图).求的⼤⼩.⼩亮同学请根据条件进⾏推理计算,得出结论,请你在括号内注明理由.证明:∵、分别平分与,(已知)∴,.( )∵,(已知)∴.(等式的性质)∵,(已知)∴.( )∴.( )∵,(已知)∴,(两直线平⾏,同旁内⻆互补)∵于,(已知)∴, (垂直的定义)∴在中,.( )27.在⼀次活动中,主办⽅共准备了盆甲种花和盆⼄种花,计划⽤甲、⼄两种花搭造出、两种园艺造型共个,搭造要求的花盆数如下表所示:造型甲⼄盆盆盆盆五、解答题(本⼤题共2⼩题。
精品解析:北京市海淀区清华大学附属中学2019-2020学年七年级下学期期末数学试题(解析版)
7. 在同一平面内,a、b、c 是直线,下列说法正确的是( )
A. 若 a∥b,b∥c 则 a∥c C. 若 a∥b,b⊥c,则 a∥c
B. 若 a⊥b,b⊥c,则 a⊥c D. 若 a∥b,b∥c,则 a⊥c
【答案】A 【解析】 【分析】 根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除法求解. 【详解】解:A.在同一平面内,若 a∥b,b∥c,则 a∥c 正确,故本选项正确; B.在同一平面内,若 a⊥b,b⊥c,则 a∥c,故本选项错误; C.在同一平面内,若 a∥b,b⊥c,则 a⊥c,故本选项错误; D.在同一平面内,若 a∥b,b∥c,则 a∥c,故本选项错误. 故选:A. 8. 为节约用电,某市根据每户居民每月用电量分为三档收费. 第一档电价:每月用电量低于 240 度,每度 0.4883 元; 第二档电价:每月用电量为 240~400 度,每度 0.5383 元; 第三档电价:每月用电量高于 400 度,每度 0.7883 元. 小灿同学对该市有 1000 户居民的某小区居民月用电量(单位:度)进行了抽样调查,绘制了如图所示的统 计图.下列说法不合理的是( )
4. 如图,用三角板作 ABC 的边 AB 上的高线,下列三角板的摆放位置正确的是( )
ห้องสมุดไป่ตู้A.
B.
C.
D.
【答案】B 【解析】 【分析】 从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.根据高线的定义即可得出结 论. 【详解】解:A.作出的是△ABC 中 BC 边上的高线,故本选项错误; B.作出的是△ABC 中 AB 边上的高线,故本选项正确; C.不能作出△ABC 中 AB 边上的高线,故本选项错误; D.作出的是△ABC 中 AC 边上的高线,故本选项错误; 故选:B. 【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键. 5. 如图,AB∥DF,AC⊥CE 于 C,BC 与 DF 交于点 E,若∠A=20°,则∠CEF 等于( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…………装…………○……校:___________姓名:___________班级:_…………装…………○……绝密★启用前北京市海淀区清华大学附属中学2018-2019学年七年级下学期期末数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是( )A .B .C .D .2.下列各项调查中合理的是( )A .对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈B .为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查C .“长征﹣3B 火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况D .采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受 3.如图,x 的值是( )…………订………………○……※订※※线※※内※※答※※题※…………订………………○……A .80B .90C .100D .1104.方程x ﹣y =﹣2与下面方程中的一个组成的二元一次方程组的解为24x y =⎧⎨=⎩,那么这个方程可以是( ) A .3x ﹣4y =16B .2(x +y )=6xC .14x +y =0 D .4x﹣y =0 5.图中的小正方形边长都相等,若△MNP ≌△MEQ ,则点Q 可能是图中的( )A .点AB .点BC .点CD .点D6.把一些书分给几名同学,若每人分11本,则有剩余,若( ),依题意,设有x 名同学,可列不等式7(x +4)>11x . A .每人分7本,则剩余4本B .每人分7本,则剩余的书可多分给4个人C .每人分4本,则剩余7本D .其中一个人分7本,则其他同学每人可分4本 7.关于,x y 的二元一次方程组2420x my x y +=⎧⎨-=⎩有正整数解,则满足条件的整数m 的值有( )个 A .1B .2C .3D .48.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是( )…………线…………○………………线…………○……①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣. A .①② B .①③C .②③D .①②③第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题9.已知a >b ,则﹣4a +5_____﹣4b +5.(填>、=或<)10.两根木棒的长度分别为7cm 和10cm ,要选择第三根木棒,把它们钉成一个三角形框架,则第三根木棒的长度可以是..._________cm (写出一个答案即可). 11.《孙子算经》是中国古代重要的数学著作之一,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱.设甲原有x 文钱,乙原有y 文钱,可列方程组是________.12.若一个多边形的内角和是它的外角和的2倍,则经过这个多边形的一个顶点最多可以画_____条对角线.13.如图所示,要测量池塘AB 宽度,在池塘外选取一点P ,连接AP ,BP 并分别延长,使PC =PA ,PD =PB ,连接CD .测得CD 长为10m ,则池塘宽AB 为_____m .理由是_____.订…………○…………○……※※答※※题※※订…………○…………○……14.已知方程组33224x y mx y m+=-+⎧⎨+=⎩的解满足不等式x﹣y>0,则实数m的取值范围是_____.15.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E;则用等式表示∠BAC与∠B、∠E的关系为_____.16.某次的测试均为判断题,如果认为该题的说法正确,就在答案框的题号下填“√”,否则填“×”.测试共10道题,每题10分,满分100分.图中的小明,小红,小刚三张测试卷.小明和小红两张已判了分数,则该判小刚_____分.小明:小红:小刚:17.已知AD是△ABC的中线,若△ABD与△ACD的周长分别是14和12.△ABC的周…………外……………装………………订___姓名:________________考…………内……………装………………订长是20,则AD 的长为 .18.已知锐角三角形ABC 的三个内角满足∠A >∠B >∠C ,α是∠A ﹣∠B ,∠B ﹣∠C 以及90°﹣∠A 中的最小者,则当∠B = 度时,α的最大值为 三、解答题19.解方程组: (1)12312x y x y -=⎧⎨+=⎩;(2)223346x yx y ⎧+=-⎪⎨⎪-=⎩;20.(1)解不等式:x +4>3(x ﹣2)并把解集在数轴上表示出来.(2)x 取哪些整数时,不等式5x ﹣1<3(x +1)与2x﹣1≥﹣2都成立. 21.如图,AD ∥BC ,∠BAD =90°,以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过C 点作CF ⊥BE .垂足为F .(1)线段BF = (填写图中现有的一条线段); (2)证明你的结论.22.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠CAB=50°,∠C=60°,求∠DAE 和∠BOA 的度数.23.某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;外………………○…………订……在※※装※※订※※线※※内※※答※内………………○…………订……(1)本次调查采用的方式是 (填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x ≤20”组对应的圆心角度数是72°,则本次调查的样本容量是 ,表格中m 的值是 ,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t 的家庭大约有多少户?24.(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴t ,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.如图1,若点A 表示的数是﹣3,则点A ′表示的数是 ,若点B ′表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '点E 重合,则点E 表示的数是 .(2)在平面直角坐标系xOy 中,已知△ABC 的顶点A (﹣2,0),B (2,0),C (2,4),对△ABC 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a ,将得到的点先向右平移m 单位,冉向上平移n 个单位(m >0,n >0),得到△ABC 及其内部的点,其中点A ,B 的对应点分别为A ′(1,2),B ′(3,2).△ABC 内部是否存在点F ,使得点F 经过上述操作后得到的对应点F ′与点F 重合,若存在,求出点F……○…………装………○…………线…………○…学校:___________姓名:_______……○…………装………○…………线…………○…的坐标;若不存在请说明理由.25.已知CA =CB ,CD 是经过∠BCA 顶点C 的一条直线.E ,F 是直线CD 上的两点,且∠BEC =∠CF A =α.(1)若直线CD 在∠BCA 的内部,且E ,F 在射线CD 上,请解决下面两个问题: ①如图1,若∠BCA =90°,α=90°,则BE CF ;EF |BE ﹣AF |(填“>”,“<”或“=”);②如图2,若0°<∠BCA <180°,请添加一个关于α与∠BCA 数量关系的条件 ,使①中的两个结论仍然成立,补全图形并证明.(2)如图3,若直线CD 在∠BCA 的外部,∠BCA =α,请用等式直接写出EF ,BE ,AF 三条线段的数量关系 .(不要求证明)26.小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。
原来两个加数是多少? 27.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:…装…………○……不※※要※※在※※装※※订※※…装…………○……某人计划购入一辆上述品牌的汽车.他估算了用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计行驶的公里数至少为多少公里?28.如图,在平面直角坐标系中,B 点坐标为(﹣2,0),A 点坐标为(a ,b ),且b ≠0. (1)若b >0,且∠ABO :∠BAO :∠AOB =10:5:21,在AB 上取一点C ,使得y 轴平分∠COA .在x 轴上取点D ,使得CD 平分∠BCO ,过C 作CD 的垂线CE ,交x 轴于E .①依题意补全图形; ②求∠CEO 的度数;(2)若b 是定值,过O 作直线AB 的垂线OH ,垂足为H ,则OH 的最大值是 .(直接写出答案)参考答案1.A【解析】【分析】根据高线的定义即可得出结论.【详解】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点睛】本题考查的是作图−基本作图,熟知三角形高线的定义是解答此题的关键.2.D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈,调查具有局限性,故此选项错误;B、为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查,错误,适合全面调查;C、“长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况,错误,适于全面调查;D、采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受,故此选项正确.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.C【解析】【分析】根据四边形的内角和=360°列方程即可得到结论.【详解】解:根据四边形的内角和得,x+x+10+60+90=360,解得:x=100,故选:C.【点睛】本题考查多边形的内角和定理,掌握(n-2)•180°(n≥3)且n为整数)是解题的关键. 4.B【解析】【分析】把已知方程与各项方程联立组成方程组,使其解为x=2,y=4即可.【详解】解:A、联立得:34162x yx y-=⎧⎨-=-⎩,解得:2422xy=-⎧⎨=-⎩,不合题意;B、联立得:2()62x y x x y+=⎧⎨-=-⎩,解得:24xy=⎧⎨=⎩,符合题意;C、联立得:10 42x yx y⎧+=⎪⎨⎪-=-⎩,解得:8525xy⎧=-⎪⎪⎨⎪=⎪⎩,不合题意;D、联立得:42yxx y⎧-=⎪⎨⎪-=-⎩,不合题意;故选:B.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.5.D【解析】【分析】根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.6.B【解析】【分析】根据不等式表示的意义解答即可.【详解】解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.【点睛】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.7.C【解析】【分析】根据方程组有正整数解,确定出整数m的值.【详解】解:2420x myx y+=⎧⎨-=⎩①②,①-②×2得:(m+4)y=4,解得:y=44m+,把y=44m+代入②得:x=84m+,由方程组有正整数解,得到x与y都为正整数,得到m+4=1,2,4,解得:m=-3,-2,0,共3个,故选:C.【点睛】此题考查二元一次方程组的解,解题关键在于掌握方程组的解即为能使方程组中两方程都成立的未知数的值.8.C【解析】【分析】①求出80元以上的人数,由75~80元的人数不能确定可以判断此结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60−120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.【详解】解:①∵200+100+80+50+25+25+15+5=500,而75~80元的人数不能确定,∴在所调查的1000人中一定有一半或超过一半的人月均花费超过小明,此结论错误;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为②③,故选:C.【点睛】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.9.<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.10.答案不唯一,如8.【解析】【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,则第三根木棒应>两边之差即3cm,而<两边之和17cm.【详解】设第三边木棒的长度为xcm,根据三角形的三边关系,得10-7<x<10+7,3<x<17.故答案是:答案不唯一,如8.【点睛】考查了三角形三边关系,能够熟练运用三角形的三边关系(“任意两边之和>第三边,任意两边之差<第三边”)求得第三边的取值范围.11.1482248 3x yx y⎧+=⎪⎪⎨⎪+=⎪⎩【解析】【分析】此题等量关系为:甲+乙的一半=48;甲的23+乙=48,据此可列出方程组.【详解】解:设甲原有x文钱,乙原有y文钱,由题意可得,1482248 3x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.12.3【解析】【分析】首先设这个多边形有n条边,由题意得方程(n−2)×180=360×2,再解方程可得到n的值,然后根据n边形从一个顶点出发可引出(n−3)条对角线可得答案.【详解】解:设这个多边形有n条边,由题意得:(n﹣2)×180=360×2,从这个多边形的一个顶点出发的对角线的条数是6﹣3=3,故答案为:3.【点睛】此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式. 13.10; 全等三角形的对应边相等【解析】【分析】这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB =CD .方案的操作性强,需要测量的线段和角度在陆地一侧即可实施.【详解】在△APB 和△CPD 中PA PC APB CPD PB PD =⎧⎪∠=∠⎨⎪=⎩,∴△APB ≌△CPD (SAS );∴AB =CD =10米(全等三角形的对应边相等).故池塘宽AB 为10m .理由是全等三角形的对应边相等.故答案为:10,全等三角形的对应边相等.【点睛】此题考查全等三角形的判定及性质,根据所给条件即可依据SAS 证明三角形全等,利用全等的性质是解决实际问题的一种方法.14.m <1【解析】【分析】将两个方程相减可得x−y =−2m +2,结合x−y >0得出关于m 的不等式,解之可得.【详解】解:将两个方程相减可得x ﹣y =﹣2m +2,∵x ﹣y >0,∴﹣2m +2>0,故答案为:m<1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤和熟练运用等式的基本性质是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.∠BAC=2∠E+∠B【解析】【分析】根据角平分线的定义得到∠ACE=∠DCE,根据三角形的外角性质计算即可.【详解】解:∵CE是△ABC的外角∠ACD的平分线,∴∠ACE=∠DCE,由三角形的外角性质可知,∠BAC=∠E+∠ACE,∠DCE=∠E+∠B,∴∠BAC=2∠E+∠B,故答案为:∠BAC=2∠E+∠B.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16.50【解析】【分析】仔细观察小红、小刚的答案,可发现只有第6题答案不一样,因此可以讨论6的答案,结合小明试卷及其得分,可得出答案.【详解】解:①假设第6题正确答案为×,则小明、小刚二人做正确,小红做错,那么小明与小红应该有5个题的选择答案不一样,对比刚好满足;而小红与小刚只有第6题答题不一样,所以小刚比小红多做对第6题这一题,该判小刚为50分;②假设第6题正确答案为√,则小明、小刚二人做错,小红做正确,那么小红还答对了另外3题,也即是小明与小红应该还有3个题的选择答案不一样,对比得出假设不存立;综上可得判小刚得50分.故答案为:50.【点睛】本题属于应用类问题,解答本题需要我们仔细观察三份试卷的相同之处与不同之处,注意利用假设、论证的思想.17.3【解析】【分析】根据三角形的周长公式列式计算即可得解.【详解】解:∵△ABD与△ACD的周长分别是14和12,∴AB+BC+AC+2AD=14+12=26,∵△ABC的周长是20,∴AB+BC+AC=20,∴2AD=26−20=6,∴AD=3.故答案为3.【点睛】本题考查了三角形的中线,熟记三角形的周长公式是解题的关键.18.60,15°【解析】【分析】由题意得出90°−∠A≥α,90°−∠B=90°−∠A+∠A−∠B≥2α,90°−∠C=90°−∠A+∠A−∠B +∠B−∠C≥3α,得出90°=270°−(∠A+∠B+∠C)≥6α,得出α≤15°,即可得出结果.【详解】解:∵90°﹣∠A≥α,90°﹣∠B=90°﹣∠A+∠A﹣∠B≥2α,90°﹣∠C=90°﹣∠A+∠A﹣∠B+∠B﹣∠C≥3α,∴90°=270°﹣(∠A+∠B+∠C)≥6α,∴α≤15°,当α=15°时,∠A=75°,∠B=60°,∠C=45°,满足已知条件,故答案为:60,15°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.19.(1)32xy=⎧⎨=⎩;(2)23xy=-⎧⎨=-⎩【解析】【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)12312x yx y-=⎧⎨+=⎩①②,①×3+②得:5x=15,解得:x=3,把x=3代入①得:y=2,则方程组的解为32 xy=⎧⎨=⎩;(2)方程组整理得:3212 346x yx y+=-⎧⎨-=⎩①②,①﹣②得:6y=﹣18,解得:y=﹣3,把y=﹣3代入①得:x=﹣2,则方程组的解为23 xy=-⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(1)x<5,数轴见解析;(2)﹣2、﹣1、0、1【解析】【分析】(1)依据解不等式的基本步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)x +4>3x ﹣6,x ﹣3x >﹣6﹣4,﹣2x >﹣10,x <5,将不等式的解集表示在数轴上如下:(2)解不等式5x ﹣1<3(x +1),得:x <2, 解不等式2x ﹣1≥﹣2,得:x ≥﹣2, 则不等式组的解集为﹣2≤x <2,所以不等式组的整数解为﹣2、﹣1、0、1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(1)AE ;(2)见解析【解析】【分析】(1)由已知得BF=AE ;(2)由AD 与BC 平行得到一对内错角相等,再由一对直角相等,且BE=CB ,利用AAS 得到△AEB ≌△FBC ,利用全等三角形对应角相等即可得证.【详解】解:(1)BF =AE ,故答案为:AE ;(2)证明:∵CF ⊥BE ,∴∠A =∠BFC =90°,∵AD ∥BC ,∴∠AEB =∠FBC ,在△AEB 和△FBC 中,,BAD BFC AEB FBC BE BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴△AEB ≌△FBC (AAS ),∴BF =AE .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.22.∠DAE =5°,∠BOA =120°.【解析】【分析】先利用三角形内角和定理可求∠ABC ,在直角三角形ACD 中,易求∠DAC ;再根据角平分线定义可求∠CBF 、∠EAF ,可得∠DAE 的度数;然后利用三角形外角性质,可先求∠AFB ,再次利用三角形外角性质,容易求出∠BOA .【详解】∵∠A =50°,∠C =60° ∴∠ABC =180°−50°−60°=70°,又∵AD 是高,∴∠ADC =90°,∴∠DAC =180°−90°−∠C =30°,∵AE 、BF 是角平分线,∴∠CBF =∠ABF =35°,∠EAF =25°,∴∠DAE =∠DAC −∠EAF =5°,∠AFB =∠C +∠CBF =60°+35°=95°,∴∠BOA =∠EAF +∠AFB =25°+95°=120°,∴∠DAC =30°,∠BOA =120°. 故∠DAE =5°,∠BOA =120°. 23.(1)抽样调查;(2)50、16;(3)160户【解析】【分析】(1)由“随机调查了该小区部分家庭”可得答案;(2)用B 级别户数除以其所占比例可得样本容量,用总户数减去其它级别户数求出C 级别户数m 的值;(3)利用样本估计总体思想求解可得.【详解】解:(1)由于是随机调查了该小区部分家庭,所以本次调查采用的方式是抽样调查,故答案为:抽样调查;(2)本次调查的样本容量是10÷72360=50,m =50﹣(6+12+10+4+2)=16, 补全频数分布直方图如下:故答案为:50、16;(3)该小区月均用水量超过15t 的家庭大约有500×104250++=160(户). 【点睛】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.24.(1)0,3,32;(2)(4,4) 【解析】【分析】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.【详解】解:(1)点A ′:﹣3×13+1=﹣1+1=0,设点B 表示的数为a ,则13a +1=2, 解得a =3,设点E 表示的数为b ,则13b +1=b , 解得b =32; 故答案为:0,3,32; (2)根据题意,得:212302a m a m a n -+=⎧⎪+=⎨⎪⋅+=⎩, 解得:1222a m n ⎧=⎪⎪=⎨⎪=⎪⎩,设点F 的坐标为(x ,y ),∵对应点F ′与点F 重合, ∴12x +2=x ,12y +2=y , 解得x =y =4,所以,点F 的坐标为(4,4).【点睛】本题考查了坐标与图形的变化,数轴上点右边的总比左边的大的性质,读懂题目信息是解题的关键.25.(1)①=,=;②α+∠BCA =180°,补全图形和证明见解析;(2)EF =BE +AF【解析】【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE =AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.【详解】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A,∴△BCE≌△CAF(ASA),∴BE=CF,EF=|CF﹣CE|=||BE﹣AF;故答案为:=、=;②α+∠BCA=180°,补全图形如下:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣α,∵∠BCA=180°﹣α,∴∠BCA=∠CBE+∠BCE,又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,又∵EF=CE﹣CF,∴EF=|BE﹣AF|;故答案为:α+∠BCA=180°.(2)EF=BE+AF,如图3,∵∠BEC=∠CF A=α,α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF =180°,∴∠BCE=∠CAF.又∵BC=CA,∴△BCE≌△CAF(AAS),∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.故答案为:EF=BE+AF.【点睛】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.26.21,32;【解析】试题分析:在后面多写一个0,实际就是扩大了10倍.两个等量关系为:10×一个加数+另一个加数=242;一个加数+10×另一个加数=341.试题解析:设一个加数为x,另一个加数为y.根据题意得1024210341x yx y+⎧⎨+⎩==解得2132 xy⎧⎨⎩==.答:原来两个加数分别是21,32.27.行驶的公里数至少为10000公里【解析】【分析】设平均每年行驶的公里数为x公里,根据购买的单价和每百公里燃油的成本列出不等式,再进行求解即可.【详解】解:设平均每年行驶的公里数为x公里,根据题意得:174800+31100x≤159800+46100x,解得:x≥10000.答:行驶的公里数至少为10000公里.【点睛】此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系,列出不等式;注意每百公里燃油成本是31元,不是一公里是31元.28.(1)①见解析;②12.5°;(2)2【解析】【分析】(1)①根据要求画出图形即可.②如图1中,延长DC交y轴于T.利用三角形的内角和定理求出∠A,再证明∠T=12∠A即可解决问题.(2)利用垂线段最短即可解决问题.【详解】解:(1)①图形如图1所示.②如图1中,延长DC交Y轴于T.∵∠ABO:∠BAO:∠AOB=10:5:21,∴∠A=536×180°=25°,∵CD平分∠BCO,OT平分∠AOC,设∠B CD=∠O CD=x,∠AOT=∠COT=y,则有2x=∠A+2y,x=y+∠OTC,∴∠OTC=12∠A=12.5°,∵EC⊥CD,∴∠ECT=90°,∴∠CEO=∠OTC=12.5°.(2)如图2中,作OH⊥AB于H.∵B(﹣2,0),∴OB=2,∵OH≤OB,∴OH≤2,∴OH的最大值为2.故答案为2.【点睛】本题考查作图−复杂作图,坐标与图形的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。