姚启钧光学第二章答案
光学-姚启钧第四版
![光学-姚启钧第四版](https://img.taocdn.com/s3/m/d38cca986037ee06eff9aef8941ea76e58fa4ab0.png)
k Rh2k ,
r0
Rhk
kr0
k 与P在轴上旳位置(r0)有关。
讨论:
▲ 对 P 点若 S 恰好提成 k 个半波带时:
Ak
1 2
(a1
ak
)
K 为奇数
Ak
1 2
(a1
ak
)
K 为偶数
Ak
1 2
(a1
ak
)
最大 最小
▲ 对 P 点若 S 中还具有不完整旳半波带时:
光强介于最大和最小之间
试验证明: 拟定观察点P,变化R,P点旳光强发生变化 拟定圆孔半径Rh ,P点在对称轴上移动,光
s
s’
直线传播规律
成功 很好旳解释光旳 反射折射规律
r = vt
之处
双折射现象
s
s’
不足 之处
不能解释光旳干涉、衍射现象
不能解释干涉、衍射光旳振幅大小变化 不能解释衍射光场中光强旳重新分布
惠更斯—菲涅耳原理
波面 S 上每个面元 ds 都可看成新旳振动中心,它们 发出次波,空间某一点 P 旳光振动是全部这些次波在该 点旳相干叠加。
▲ 若 对P点,圆孔仅够提成一种半波带
A1 a1 2 Ap 2 A
Rhk
I1 4 I p 4I
Rhk
▲ 要发生衍射,光源 O 旳线度要足够小。
2.2.4 圆屏衍射
P点旳振幅:
圆屏遮蔽了个K半波带
·O
B0
从K+1个半波带
P
到最终旳半波带(a∞→0)
在 P 点叠加,合振幅为:
A ak1 2
2r0h
kr0
2r0h
在ΔBAO中:
Rh2k R2 (R h)2 R2 R2 2Rh h2 2Rh
光学教程第四版姚启钧课后题答案
![光学教程第四版姚启钧课后题答案](https://img.taocdn.com/s3/m/6b1691735b8102d276a20029bd64783e09127de1.png)
光学教程第四版姚启钧课后题答案第一章:光的自然现象与光的波动性第一节:光的自然现象光的自然现象是我们日常生活中常见的一种现象,例如光的折射、反射、散射等。
这些现象是由于光的特性造成的,其中最基本的特性之一就是光的波动性。
第二节:光的波动性光的波动性指的是光是一种电磁波,其传播过程符合波动方程。
光的波动性是由光的电场和磁场交替变化所引起的。
根据麦克斯韦方程组,光的传播速度为真空中的光速,即约为3.00×10^8 m/s。
第三节:光的波动方程光的波动方程描述了光波在空间中的传播情况。
光的波动方程可表示为d^2E/dt^2=c^2(d^2E/dx^2),其中E为电场强度,t为时间,x为空间坐标,c为光速。
通过解光的波动方程,我们可以得到光波的传播速度、传播方向等信息。
第二章:光的几何光学第一节:光的几何模型光的几何模型是基于光的直线传播特性而建立的模型。
根据光的几何模型,光线传播遵循直线传播路径,光的传播速度在不同介质中会发生改变。
第二节:光的反射定律光的反射定律是光的几何光学中的重要定律之一。
根据光的反射定律,入射角等于反射角,同时入射光线、反射光线和法线处于同一平面上。
光的反射定律在镜面反射和平面镜成像等方面有着重要应用。
第三节:光的折射定律光的折射定律是光的几何光学中的另一个重要定律。
根据光的折射定律,入射角的正弦与折射角的正弦之比在两个介质中是常数。
光的折射定律在透明介质之间的传播中起着关键作用,例如在棱镜的折射、光的全反射等现象中都能看到光的折射定律的应用。
第三章:光的色散現象與光的干涉第一节:光的色散現象光的色散現象是指不同频率的光在透明介质中传播时速度不同而产生的现象。
色散可以分为正常色散和反常色散两种。
正常色散是指频率越高的光速度越快,反常色散则相反。
第二节:光的干涉光的干涉是指两个或多个光波相遇并产生干涉现象的过程。
根据干涉的性质,干涉可以分为构成干涉和破坏干涉。
在构成干涉的情况下,光波叠加会增强或减弱光的强度,形成明暗相间的干涉条纹。
《光学教程》(姚启钧)课后习题解答之欧阳引擎创编
![《光学教程》(姚启钧)课后习题解答之欧阳引擎创编](https://img.taocdn.com/s3/m/684eaff9b4daa58da1114a41.png)
《光学教程》(姚启钧)习题解答欧阳引擎(2021.01.01)第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm dλ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm dλ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)第二章 光的衍射
![《光学教程》(姚启钧)第二章 光的衍射](https://img.taocdn.com/s3/m/707632dca58da0116c17495a.png)
3. 惠更斯-菲涅耳原理(1818)
菲涅耳对惠更斯原理的改进: 给不同次波赋予相应的相位和振幅,并将次波的干涉 叠加性引入惠更斯原理,得到衍射的定量表达式。
波面S上每个面元dS都是次波源,次波在p点引起振动的振幅与面积dS成正 比,与距离r成反比,且与倾角有关。
A(Q) K ( ) dE( P) dS r
相应的振动相位依次为:
a1 a2 a3 a4 ...... ak ak 1
f1,f1+,f1+2, f1+3,…f1+(k-1),f1+k。
对于轴上光源点 S 和轴上场点 P ,设圆孔恰好分 为 k 个半波带,则有
~ i 1 E1 a1e ~ i 1 E2 a2e ~ i 1 2 E3 a3e
次波中心Q 的光振幅 Q点在p 点引起的 光波振幅 倾斜因子 次波中心附 近的小面元
d · r S Q S(波面)
次波中心 设初相为零
n
dE(p) · p
观 察 点
倾斜因子K()的特点
A(Q) K ( ) dE( p) C dS cos(kr t ) r
0, K K max K ( ) , K 0 2
2
1mm 1000 mm 1000 mm 4 6 1000 mm 1000 mm 500 10 mm
2
半径为0.5mm的圆屏挡住的波带数为:
j
'
0.5mm 1000mm 1000mm 1 1000mm 1000mm 500 106 mm
又:
( h r0 , R)
2 2
R rk (r0 h)
《光学教程》(姚启钧)课后习题解答
![《光学教程》(姚启钧)课后习题解答](https://img.taocdn.com/s3/m/ffedc5514b35eefdc8d333b5.png)
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为的绿光投射在间距为的双缝上,在距离处的光屏500nm d 0.022cm 180cm 上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为的红光投射到此700nm 双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nmλ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nmλ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为:21220.328y y y cm∆=∆-∆=2、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的640nm 0.4mm 距离为,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中50cm 央亮纹为问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强0.1mm 度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯=⑵由光程差公式210sin yr r d dr δθ=-==0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A=P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭01(10.8542I I =+=3、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹1.5所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m-⨯ 解:,设玻璃片的厚度为1.5n =d由玻璃片引起的附加光程差为:()1n dδ'=- ()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为的单色平行光射在间距为的双缝上。
通过其中一个缝的能500nm 0.2mm 量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹250cm 的可见度。
《光学教程》(姚启钧)课后习题解答之欧阳道创编
![《光学教程》(姚启钧)课后习题解答之欧阳道创编](https://img.taocdn.com/s3/m/ddd3b8015022aaea988f0f45.png)
《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04ry cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02ry cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
2023年大学_光学教程第三版(姚启钧著)课后题答案下载
![2023年大学_光学教程第三版(姚启钧著)课后题答案下载](https://img.taocdn.com/s3/m/521b63b2cd22bcd126fff705cc17552706225e7e.png)
2023年光学教程第三版(姚启钧著)课后题答案下载2023年光学教程第三版(姚启钧著)课后题答案下载本教程以物理光学和应用光学为主体内容。
第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。
第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。
光学教程第三版(姚启钧著):内容简介绪论0.1 光学的研究内容和方法0.2 光学发展简史第1章光的干涉1.1 波动的独立性、叠加性和相干性1.2 由单色波叠加所形成的干涉图样1.3 分波面双光束干涉1.4 干涉条纹的可见度光波的时间相干性和空间相干性 1.5 菲涅耳公式1.6 分振幅薄膜干涉(一)——等倾干涉1.7 分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8 迈克耳孙干涉仪1.9 法布里一珀罗干涉仪多光束干涉1.10 光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1 振动叠加的三种计算方法附录1.2 简谐波的表达式复振幅附录1.3 菲涅耳公式的推导附录1.4 额外光程差附录1.5 有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6 有同一相位差的多光束叠加习题第2章光的衍射2.1 惠更斯一菲涅耳原理2.2 菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3 夫琅禾费单缝衍射2.4 夫琅禾费圆孔衍射2.5 平面衍射光栅视窗与链接光碟是一种反射光栅2.6 晶体对X射线的'衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1 夫琅禾费单缝衍射公式的推导附录2.2 夫琅禾费圆孔衍射公式的推导附录2.3 平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1 几个基本概念和定律费马原理3.2 光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3 光在球面上的反射和折射3.4 光连续在几个球面界面上的折射虚物的概念 3.5 薄透镜3.6 近轴物近轴光线成像的条件3.7 共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1 图3-6中P1和JP1点坐标的计算附录3.2 棱镜最小偏向角的计算附录3.3 近轴物在球面反射时物像之间光程的计算附录3.4 空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1 人的眼睛4.2 助视仪器的放大本领4.3 目镜4.4 显微镜的放大本领4.5 望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜4.6 光阑光瞳4.7 光度学概要——光能量的传播视窗与链接三原色原理4.8 物镜的聚光本领视窗与链接数码相机4.9 像差概述视窗与链接现代投影装置4.10 助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11 分光仪器的色分辨本领习题第5章光的偏振5.1 自然光与偏振光5.2 线偏振光与部分偏振光视窗与链接人造偏振片与立体电影 5.3 光通过单轴晶体时的双折射现象 5.4 光在晶体中的波面5.5 光在晶体中的传播方向5.6 偏振器件5.7 椭圆偏振光和圆偏振光5.8 偏振态的实验检验5.9 偏振光的干涉5.10 场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11 旋光效应5.12 偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1 从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1 电偶极辐射对反射和折射现象的解释6.2 光的吸收6.3 光的散射视窗与链接光的散射与环境污染监测6.4 光的色散6.5 色散的经典理论习题第7章光的量子性7.1 光速“米”的定义视窗与链接光频梳7.2 经典辐射定律7.3 普朗克辐射公式视窗与链接诺贝尔物理学奖7.4 光电效应7.5 爱因斯坦的量子解释视窗与链接双激光束光捕获7.6 康普顿效应7.7 德布罗意波7.8 波粒二象性附录7.1 从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2 从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1 光与物质相互作用8.2 激光原理8.3 激光的特性8.4 激光器的种类视窗与链接激光产生106T强磁场8.5 非线性光学8.6 信息存储技术8.7 激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表光学教程第三版(姚启钧著):目录点击此处下载光学教程第三版(姚启钧著)课后题答案。
光学教程第四版姚启钧课后题答案
![光学教程第四版姚启钧课后题答案](https://img.taocdn.com/s3/m/c9596541f7ec4afe04a1dfae.png)
目录第一章光的干涉 (3)第二章光的衍射 (15)第三章几何光学的基本原理 (27)第四章光学仪器的基本原理 (49)第五章光的偏振 (59)第六章光的吸收、散射和色散 (70)第七章光的量子性 (73)第一章光的干涉.波长为的绿光投射在间距d 为的双缝上,在距离处的光屏1nm 500cm 022.0cm 180上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为的红光投射到此双缝上,nm 700两个亮条纹之间的距离又为多少?算出这两种光第级亮纹位置的距离.2解:由条纹间距公式得λd r y y y j j 01=-=∆+cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为nm 640mm 4.0.试求:(1)光屏上第亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为cm 501,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.mm 1.0解:(1)由公式λdr y 0=∆得=λd r y 0=∆cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯由公式得(3)2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆=8536.042224cos18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp .把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所3在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,、到点的光程差,由公式可知为1S 2S P 2rϕπλ∆∆=Δr =215252r r λπλπ-=⨯⨯=现在发出的光束途中插入玻璃片时,点的光程差为1S P ()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I =22122A A=12A A =()()122122/0.94270.941/A A V A A ∴===≈+5.波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
《光学教程》(姚启钧)课后习题解答
![《光学教程》(姚启钧)课后习题解答](https://img.taocdn.com/s3/m/046e556f5bcfa1c7aa00b52acfc789eb172d9e61.png)
《光学教程》(姚启钧)习题解答 【2 】第一章光的干预1.波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干预条纹,求两个亮条纹之间的距离.若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为若干?算出这两种光第2级亮纹地位的距离. 解:1500nm λ=7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹地位的距离为:21220.328y y y cm ∆=∆-∆=2.在杨氏试验装配中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中心亮纹之间的距离;⑵若P 点离中心亮纹为0.1mm 问两束光在P 点的相位差是若干?⑶求P 点的光强度和中心点的强度之比. 解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中心点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3.把折射率为1.5的玻璃片插入杨氏试验的一束光路中,光屏上本来第5级亮条纹地点的地位变为中心亮条纹,试求插入的玻璃片的厚度.已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双缝上.经由过程个中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干预图样,求干预条纹间距和条纹的可见度. 解: 7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干预条纹可见度界说:12min2min1221Max Max A A I I V I I A A ⎛⎫ ⎪-⎝⎭==+⎛⎫+ ⎪⎝⎭由题意,设22122A A =,即12A A =0.94V == 5.波长为700nm 的光源与菲涅耳双镜的订交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干预条纹中相邻亮条纹的距离为1mm ,求双镜平面之间的夹角θ.解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干预条纹间距公式()()()72sin 20180sin 700100.003522200.1r L y r r L r y λθθλ-+∆=++==⨯⨯=∆⨯⨯180sin 0.003560123.14θθ'≈=⨯⨯6.在题1.6 图所示的劳埃德镜试验中,光源S 到不雅察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm .劳埃德镜长40cm ,置于光源和屏之间的中心.⑴若光波波长500nm λ=,问条纹间距是若干?⑵肯定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提醒:产生干预的区域P1P2可由图中的几何干系求得)解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯====①70150500100.018750.190.4r y cm mm d λ-∆==⨯⨯== ②在不雅察屏上可以看见条纹的区域为P1P2间010.750.22 1.160.750.2P P mm -=⨯=+020.750.22 3.450.750.2P P mm +=⨯=-即21 3.45 1.16 2.29P P mm =-=,离屏中心1.16mm 上方的2.29mm 规模内可看见条纹.212.29120.19P P N y ===∆ 7.试求能产生红光(700nm λ=)的二级反射干预条纹的番笕膜厚度.已知番笕膜折射率为1.33,且平行光与法向成300角入射. 解:2700, 1.33nm n λ==由等倾干预的光程差公式:22λδ=222λλ=P 2 P 1 P 0题1.6图426d nm ==8.透镜表面平日镀一层如MgF2( 1.38n =)一类的透明物资薄膜,目标是应用干预来降低玻璃表面的反射.为了使透镜在可见光谱的中间波长(550nm )处产生微小的反射,则镀层必须有多厚?解: 1.38n =物资薄膜厚度使膜高低表面反射光产生干预相消,光在介质高低表面反射时均消失半波损掉.由光程差公式:122nh δλ==555099.611044 1.38h nm cm n λ-====⨯⨯9.在两块玻璃片之间一边放一条厚纸,另一边互相压紧,玻璃片l 长10cm ,纸厚为0.05mm ,从600的反射角进行不雅察,问在玻璃片单位长度内看到的干预条纹数量是若干?设单色光源波长为500nm解:02cos602o n h δ=+相邻亮条纹的高度差为:605005001012cos60212oh nm mm n λ-∆===⨯⨯⨯可看见总条纹数60.0510050010H N h -===∆⨯ 则在玻璃片单位长度内看到的干预条纹数量为:1001010N n l === 即每cm 内10条.10.在上题装配中,沿垂直于玻璃表面的倾向看去,看到相邻两条暗纹间距为1.4mm .已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长.解:当光垂直入射时,等厚干预的光程差公式:22nh λδ=+可得:相邻亮纹所对应的厚度差:2h nλ∆=由几何干系:h H l l ∆=∆,即l h H l ∆∆= 40.1422210.00360.563110563.117.9l n h n H cm nm l λ-∆=∆==⨯⨯⨯=⨯=11.波长为400760nm 的可见光正射在一块厚度为61.210m -⨯,折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强. 解:61.210, 1.5h m n -=⨯=由光正入射的等倾干预光程差公式:22nh λδ=-使反射光最强的光波满:足22nh j λδλ=-=()4172002121nh nm j j λ==⨯++5,654.5j nm λ== 6,553.8j nm λ== 7,480.0j nm λ== 8,423.5j nm λ==12.迈克耳逊干预仪的反射镜M2移动0.25mm 时,看到条纹移过的数量为909个,设光为垂直入射,求所用光源的波长.解:光垂直入射情形下的等厚干预的光程差公式:22nh h δ== 移动一级厚度的转变量为:2h λ∆=60.25109092nmλ⨯=60.25102550.0909nm λ⨯⨯==13.迈克耳逊干预仪的平面镜的面积为244cm ⨯,不雅察到该镜上有20个条纹,当入射光的波长为589nm 时,两镜面之间的夹角为若干?解:由光垂直入射情形下的等厚干预的光程差公式: 22nh h δ== 相邻级亮条纹的高度差:2h λ∆=由1M 和2M '构成的空气尖劈的双方高度差为:2010H h λ∆=⨯∆=710589100.0001472530.3944H rad α-∆⨯⨯''====14.调节一台迈克耳逊干预仪,使其用波长为500nm 的扩大光源照明时会消失齐心圆环条纹.若要使圆环中间处接踵消失1000条圆环条纹,则必须将移动一臂多远的距离?若中间是亮的,试盘算第一暗环的角半径.(提醒:圆环是等倾干预图样,盘算第一暗环角半径时可应用21sin ,cos 12θθθθ≈≈-的关系.)解:500nm λ=消失齐心圆环条纹,即干预为等倾干预M 1M 21M2M '对中间 2h δ=72210001100050010 2.5100.252h h cm mmλ--∆=∆=⨯⨯⨯=⨯= 15.用单色光不雅察牛顿环,测得某一亮环的直径为3mm ,在它外边第5个亮环的直径为4.6mm ,所用平凸透镜的凸面曲率半径为1.03m ,求此单色光的波长. 解:由牛顿环的亮环的半径公式:r =()22132122j R r λ⎛⎫+== ⎪⎝⎭()2224.62(5)122j R r λ⎛⎫++== ⎪⎝⎭以上两式相减得:12.1654R λ=3312.160.590310590.345 1.0310mm nm λ-==⨯=⨯⨯⨯ 16.在反射光中不雅察某单色光所形成的牛顿环,其第2级亮环与第3级亮环间距为1mm ,求第19和20级亮环之间的距离.解:牛顿环的反射光中所见亮环的半径为:r =即:2r =3r =19r =20r =则:)2019320.160.40.4r r r r r mm ∆=-==-== 第2章光的衍射1.单色平面光照耀到一小圆孔上,将其波面分成半波带.求第k 个带的半径.若顶点到不雅察点的距离0r 为1m ,单色光波长为450nm ,求此时第一半波带的半径.解:由公式2011HR k r R λ⎛⎫=+ ⎪⎝⎭对平面平行光照耀时,波面为平面,即:R →∞20H R kr λ=26301450101100.45H R kr λ-==⨯⨯⨯⨯=H R2.平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像拍照机光圈那样转变大小.问:⑴小孔半径应知足什么前提时,才能使得此小孔右侧轴线上距小孔中间4m 的P 点的光强分离得到极大值和微小值;⑵P 点最亮时,小孔直径应为多大?设此光的波长为500nm . 解:⑴04400r m cm ==H R ===当k 为奇数时,P 点为极大值 当C 数时,P 点为微小值⑵由()112P k A a a =±,k 为奇,取“+”;k 为偶,取“-” 当1k =,即仅露出一个半波带时,P 点最亮.10.141,(1)H R cm k ==,0.282D cm =3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个表里半径分离为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强0I 之比.解:()123211900.50.510111115001011H H R mmR k r R λ--=⨯⎛⎫⎛⎫=+=+= ⎪ ⎪⨯⎝⎭⎝⎭ ()223222901110111145001011H H R mmR k r R λ--=⨯⎛⎫⎛⎫=+=+= ⎪ ⎪⨯⎝⎭⎝⎭ 即从透光圆环所透过的半波带为:2,3,4 设1234a a a a a ====234P A a a a a =-+=没有光阑时()111,2,01122P k k PA a a k a A a a '=±→∞→'== 光强之比:2204112I a I a ==⎛⎫ ⎪⎝⎭4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏,试问:⑴屏上正对圆孔中间的P 点是亮点照样暗点?⑵要使P 点变成与⑴相反的情形,至少要把屏分离向前或向后移动若干? 解:由公式2011HR k r R λ⎛⎫=+ ⎪⎝⎭对平面平行光照耀时,波面为平面,即:R →∞2290 2.7623632.8101H R k r λ-⎛⎫ ⎪⎝⎭===⨯⨯, 即P 点为亮点. 则 0113k r R ⎛⎫=⨯+⎪⎝⎭, 注:0,r R 取m 作单位 013k r = 向右移,使得2k =,031.5, 1.510.52r m r m '==∆=-= 向左移,使得4k =,030.75,10.750.254r m r m '==∆=-=5.一波带片由五个半波带构成.第一半波带为半径1r 的不透明圆盘,第二半波带是半径1r 和2r 的透明圆环,第三半波带是2r 至3r 的不透明圆环,第四半波带是3r 至4r 的透明圆环,第五半波带是4r 至无限大的不透明区域.已知1234:::r r r r =用波长500nm 的平行单色光照明,最亮的像点在距波带片1m 的轴上,试求:⑴1r ;⑵像点的光强;⑶光强极大值出如今哪些地位上. 解: 由1234:::r r r r =⑴片具有透镜成像的感化,2HkR f k λ'=波带2129111150010,0.07r m r r cmλλ-=⨯==⨯= ⑵2242,4A a a a I a =+==无光阑时,2201124I a a ⎛⎫== ⎪⎝⎭即:016I I =,0I 为入射光的强度. ⑶因为波带片还有11,35f f ''…等多个核心消失,即光强极大值在轴上11,35m m … 6.波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带(1,3,5,…,199).别的100个不透明偶数半波带.比较用波带片和换上同样焦距和口径的透镜时该像点的强度比0:I I . 解:由波带片成像时,像点的强度为:()2100I a =由透镜成像时,像点的强度为:()20200I a =即014I I = 7.平面光的波长为480nm ,垂直照耀到宽度为0.4mm 的狭缝上,会聚透镜的焦距为60cm .分离盘算当缝的双方到P 点的相位差为/2π和/6π时,P 点离核心的距离. 解:对沿θ倾向的衍射光,缝的双方光的光程差为:sin b δθ= 相位差为:22sin b ππϕδθλλ∆==对使2πϕ∆=的P 点2sin 2b ππϕθλ∆==sin 4bλθ=6148010tan sin 6000.18440.4y f f f mm b λθθ-⨯'''=⨯≈⨯==⨯=⨯对使6πϕ∆=的P`点2sin 6b ππϕθλ∆==sin 12bλθ=6148010tan sin 6000.0612120.4y f f f mm b λθθ-⨯'''=⨯⨯==⨯=⨯8.白光形成的单缝衍射图样中,个中某一波长的第三个次最大值与波长为600nm 的光波的第二个次最大值重合,求该光波的波长.解:对θ方位,600nm λ=的第二个次最大位1sin 22bλθθ⎛⎫≈=+ ⎪⎝⎭对 λ'的第三个次最大位1sin 32b λθθ'⎛⎫≈=+ ⎪⎝⎭即:5722b b λλ'⨯=⨯ 55600428.677nm λλ'==⨯=9.波长为546.1nm 的平行光垂直地射在1mm 宽的缝上,若将焦距为100cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中心到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离分离为若干?解:⑴第一最小值的方位角1θ为:1sin 1b θλ=⋅6111546.110tan sin 10000.551y f f f mm b λθθ-⨯'''=≈==⨯=⑵第一最大值的方位角1θ'为:11sin 12bλθ⎛⎫'=+ ⎪⎝⎭6111546.110tan sin 1.431000 1.430.781y f f f mm b λθθ-⨯''''''=≈=⨯=⨯⨯=⑶第3最小值的方位角3θ为:3sin 3bλθ=⋅6333546.110tan sin 310003 1.651y f f f mm b λθθ-⨯'''=≈=⨯=⨯⨯=10.钠光经由过程宽0.2mm 的狭缝后,投射到与缝相距300cm 的拍照底片上.所得的第一最小值与第二最小值间的距离为0.885cm ,问钠光的波长为若干?若改用X 射线(0.1nm λ=)做此试验,问底片上这两个最小值之间的距离是若干?解:单缝衍射名堂最小值地位对应的方位θ知足:sin ,1,2,3,....kk bλθ==±±±则 11sin 1bλθθ≈=⋅22sin 2bλθθ≈=⋅()21x L Lbλθθ∆=⋅-=40.28.85 5.9105903000b x mm nm L λ-=∆=⨯=⨯=740.110300 1.5100.02x L cm b λ--⨯'∆==⨯=⨯11.以纵坐标表示强度,横坐标表示屏上的地位,粗略地画出三缝的夫琅禾费衍射(包括缝与缝之间的干预)图样.设缝宽为b ,相邻缝间的距离为d ,3d b =.留意缺级问题.12.一束平行白光垂直入射在每毫米50条刻痕的光栅上,问第一级光谱的末尾和第二光谱的始端的衍射角θ之差为若干?(设可见光中最短的紫光波长为400nm ,最长的红光波长为760nm ) 解:每毫米50条刻痕的光栅,即10.0250d mm mm == 第一级光谱的末尾对应的衍射方位角1θ末为111sin 1sin d dθλλθθ=⋅≈=红末红末末第二级光谱的始端对应的衍射方位角2θ始为1sin 22sin d dθλλθθ=⋅≈=2始紫紫2始2始 ()()66321112240010760102100.02rad d θθθλλ---∆=-=-=⨯⨯-⨯=⨯红始末紫 13.用可见光(760400nm )照耀光栅时,一级光谱和二级光谱是否重叠?二级和三级如何?若重叠,则重叠规模是若干?解:光谱线对应的方位角θ:sin kdλθθ≈=2140076021d dθθ=⨯>=⨯始末即第一级光谱与第二级光谱无重叠237601520400120023d d d dθθ=⨯=>=⨯=末始 即第二级光谱与第三级光谱有重叠 由2152015203,506.73nm nm d dλθλ==⨯==末 即第三级光谱的400506.7nm 的光谱与第二级光谱重叠.14.用波长为589nm 的单色光照耀一衍射光栅,其光谱的中心最大值和第二十级主最大值之间的衍射角为01510',求该光栅1cm 内的缝数是若干? 解:第20级主最大值的衍射角由光栅方程决议20sin 20d θλ=2020sin 20dλθθ==15601020180603.14dλ⨯+=⨯ 解得20.4510d cm -=⨯1222/N cm d==条 15.用每毫米内有400条刻痕的平面透射光栅不雅察波长为589nm 的钠光谱.试问:⑴光垂直入射时,最多功效能不雅察到几级光谱?⑵光以030角入射时,最多能不雅察到几级光谱? 解:61,58910400d mm mm λ-==⨯⑴光垂直入射时,由光栅方程:sin d j θλ=6111sin 4.24458910400j d θλ-==⨯=≈⨯即能看到4级光谱⑵光以30o角入射()sin sin 30o d j θλ+=()1sin sin 304162odj θλ⎛⎫=+=+= ⎪⎝⎭16.白光垂直照耀到一个每毫米250条刻痕的平面透射光栅上,试问在衍射角为030处会消失哪些波长的光?其色彩若何? 解:1250d mm =在30o的衍射角倾向消失的光,应知足光栅方程:sin 30od j λ=11111sin 3020002502o d mm nm j j jλ==⨯⨯=⨯3,667j nm λ==4,500j nm λ== 5,400j nm λ==17.用波长为624nm 的单色光照耀一光栅,已知该光栅的缝宽b 为0.012mm ,不透明部分的宽度a 为0.029mm ,缝数N 为310条.求:⑴单缝衍射图样的中心角宽度;⑵单缝衍射图样中心宽度内能看到若干级光谱?⑶谱线的半宽度为若干? 解:0.012,0.029b mm a mm ==0.041d a b mm =+= 1000N =⑴6062410220.1040.012rad b λθ-⨯∆==⨯= ⑵j 级光谱对应的衍射角θ为:11sin sin 1d j dθλλθθ==⨯112 3.43d k bθθ∆===→即在单缝图样中心宽度内能看到()2317⨯+=条(级)光谱 ⑶由多缝干预最小值地位决议公式:sin j Ndλθ'=⋅651262410 1.521010000.041rad Nd λθ--⨯∆===⨯⨯第3章几何光学的根本道理1.证实反射定律相符费马道理 证实:设A 点坐标为()10,y ,B 点坐标为()22,x y 入射点C 的坐标为(),0x 光程ACB为:∆=令2sin sin 0x x d i i dx -∆'==-=即:sin sin i i '=*2.依据费马道理可以导出近轴光线前提下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物像公式.3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm .求物体PQ 的像P`Q`与物体PQ 之间的距离2d 为若干?解:12sin sin i n i =由图:()121211tan tan sin sin 1sin BB d i d i d i i d i n ⎛⎫'=-≈-=-⎪⎝⎭1111130110tan sin 1.5BB BB CE d cm i i n ''⎛⎫⎛⎫=≈=-=-= ⎪ ⎪⎝⎭⎝⎭4.玻璃棱镜的折射角A 为060,对某一波长的光其折射率n 为1.6,盘算:⑴最小倾向角;⑵此时的入射角;⑶能使光线从A 角两侧透过棱镜的最小入射角. 解:⑴ 由()()()1212112211i i i i i i i i i i A θ'''''=-+-=+-+=+- 当11i i '=时倾向角为最小,即有221302o i i A '=== 12i A θ=-121sin sin 1.60.82i n i ==⨯= 15308o i '=25308604616o o o θ''=⨯-=⑵15308oi '=5.(略)6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的地位及高度,(并作光路图) 解:由球面成像公式:112s s r+=' 代入数值1121220s +='-- 得:60s cm '=- 由公式:0y y s s '+='y s y s''=- 6052512s y y cm s '-'=-=-⨯=-- 7.一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像.求⑴此镜的曲率半径;⑵此镜是凸面镜照样凹面镜?解:⑴5,10y cm s cm ==-1y cm '=, 虚像0s '>由y s y s''=- 1510s '=-- 得:2s cm '=⑵由公式112s s r+=' 112210r+=- 5r cm =(为凸面镜)8.某不雅察者经由过程一块薄玻璃板去看在凸面镜中他本身的像.他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一路.若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离为40cm ,问玻璃板距不雅察者眼睛的距离为若干? 解:由题意,凸面镜焦距为10cm ,即10r = 112s s r +=' 11140108s s cm+='-'= 48PP cm '=玻璃板距不雅察者眼睛的距离为1242d PP cm '== 9.物体位于凹面镜轴线上核心之外,在核心与凹面镜之间放一个与轴线垂直的两表面互相平行的玻璃板,其厚度为1d ,折射率为n .试证实:放入该玻璃板后使像移动的距离与把凹面镜向物体移动()11/d n n -的一段距离的后果雷同.证实:设物点P 不动,由成像公式112s s r+=' ()2rss s r '=-由题3可知:11110PP d d n ⎛⎫==-> ⎪⎝⎭入射到镜面上的光线可视为从1P 发出的,即参加玻璃板后的物距为s d +1112s s d r +='+ ()()12r s d s s d r+'=+-反射光线经玻璃板后也要平移d ,所成像的像距为11s s d '''=-放入玻璃板后像移量为:()()()1122r s d rss s s d s d r s r +''''∆=-=--+-- 凹面镜向物移动d 之后,物距为s d + (0,0s d <>)2112s s d r +='+ ()()22r s d s s d r+'=+-2s '相对o 点距离()()222r s d s s d d s d r+'''=-=-+-()()()2222r s d rss s s d s d r s r +''''∆=-=--+-- 10.欲使由无限远发出的近轴光线经由过程透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为若干?解:,1,2s n s r '=-∞==由球面折射成像公式:n n n ns s r''--='2n n nr r''-=解得: 2n '=11.有一折射率为1.5.半径为4cm 的玻璃球,物体在距球表面6cm 处,求:⑴物所成的像到球心之间的距离;⑵像的横向放大率. 解:⑴P 由球面1o 成像为P ',n n n ns s r''--=' 1.51 1.5164s --='- 36s cm '=-P '由2o 球面成像P ''236844s cm =--=-21 1.51 1.5444s --='-- 211s cm '=,P ''在2o 的右侧,离球心的距离11415cm += ⑵球面1o 成像1111y s y s n β''==⋅ (应用P194:y s n y s n ''=⋅') 球面2o 成像222121y s n y s β''==⋅' 121223611 1.5644s s s s βββ''-==⋅=⋅=---12.一个折射率为1.53.直径为20cm 的玻璃球内有两个吝啬泡.看上去一个正好在球心,另一个从比来的倾向看去,似乎在表面与球心连线的中点,求两气泡的现实地位. 解:设气泡1P 经球面1o 成像于球心,由球面折射成像公式:n n ns s r'--=' 11 1.531 1.531010s --=-- 110s cm =-, 即气泡1P 就在球心处另一个气泡2P21 1.531 1.53510s --=-- 2 6.05s cm =-, 即气泡2P 离球心10 6.05 3.95cm -=13.直径为1m 的球形鱼缸的中间处有一条小鱼,若玻璃缸壁的影响可疏忽不计,求缸外不雅察者所看到的小鱼的表不雅地位和横向放大率. 解:由球面折射成像公式:n n n ns s r''--=' 1 1.331 1.335050s --='-- 解得 50s cm '=-,在原处50 1.331.33501s n s n β'-=⋅=⨯='- 14.玻璃棒一端成半球形,其曲率半径为2cm .将它程度地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,应用盘算和作图法求像的地位及横向放大率,并作光路图. 解:由球面折射成像公式:s s r-=' 1.5 1.33 1.5 1.3382s --='- 18.5s cm '=-18.5 1.332.058 1.5s n s n β'-=⋅=⨯='- 15.有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm .一物点在主轴上距镜20cm 处,若物和镜均浸入水中,分离用作图法和盘算法求像点的地位.设玻璃的折射率为1.5,水的折射率为1.33. 解:由薄透镜的物像公式:211212n n n n n ns s r r ---=+' 对两表面均为凸球面的薄透镜:1.33 1.33 1.5 1.33 1.33 1.5201010s ---=+'-- 40.9s cm '=-对两表面均为凹球面的薄透镜:1.33 1.33 1.5 1.33 1.33 1.5201010s ---=+'-- 13.2s cm '=-16.一凸透镜在空气的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为若干(水的折射率为1.33)?若将此透镜置于CS2中(CS2的折射率为1.62),其焦距又为若干? 解:⑴ 薄透镜的像方焦距:21212n f n n n n r r '=⎛⎫--+ ⎪⎝⎭12n n = 时,()111211n f n n r r '=⎛⎫-- ⎪⎝⎭在空气中:()1121111f n r r '=⎛⎫-- ⎪⎝⎭在水中:()2121.33111.33f n r r '=⎛⎫-- ⎪⎝⎭两式比拟:()()12 1.33401.331136.8n f f n -'=='- 解得 1.54n = ⑵12 1.62n n ==1112111n f n n r r '=⋅-⎛⎫- ⎪⎝⎭而:()11211111f n r r '-=⎛⎫- ⎪⎝⎭则:()1.6240 1.541437.41.54 1.62f cm '=⨯⨯-=--第4章 光学仪器的根本道理1.眼睛的结构简略地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于 1.试盘算眼球的两个焦距.用肉眼不雅察月球时月球对眼的张角为01,问视网膜上月球的像有多大? 解:由球面折射成像公式:n n n n s s r''--='令43,5.55 2.22413n s f r cm n n ''=-∞=⋅=⨯='--令1,5.5516.7413n s f r cm n n '=∞=-⋅=-⨯=-'--2 5.550.190.019180y mm cm π'=⨯⨯==2.把人眼的晶状体算作距视网膜2cm 的一个简略透镜.有人能看清距离在100cm 到300cm 间的物体.试问:⑴此人看远点和近点时,眼睛透镜的焦距是若干?⑵为看清25cm 远的物体,需配戴如何的眼镜?解:⑴对于远点:11300,2s cm s cm '=-= 由透镜成像公式:111111s s f -='' 1111123001.987f f cm-='-'= 对于近点:2211121001.961f f cm-='-'= ⑵对于25cm1112251.852f f cm-='-'= 由两光具组互相接触0d =组合整体:21111111.852 1.961f f f f =+''''=+''y '110.030cm f -=''(近视度:300o ) 3.一拍照机瞄准远物时,底片距物镜18cm ,当镜头拉至最大长度时,底片与物镜相距20cm ,求目标物在镜前的比来距离?解:由题意:拍照机瞄准远物时,底片距物镜18cm ,18f cm '=由透镜成像公式:111s s f -=''1112018180s s cm-==- 4.两星所成的视角为4',用千里镜物镜拍照,所得两像点相距1mm ,问千里镜物镜的焦距是若干? 解: 3.14118060rad '=⨯3.1444118060859.585.95f f mmf mm cm '''⨯=⨯⨯=⨯'== 5.一显微镜具有三个物镜和两个目镜.三个物镜的焦距分离为16mm .4mm 和1.9mm ,两个目镜的放大本领分离为5和10倍.设三个物镜造成的像都能落在像距为160cm 处,问这显微镜的最大和最小的放大本领各为若干? 解:由显微镜的放大本领公式:12125l cm l M M f f f =-⋅=-⋅'''目 其最大放大本领:1160108421.9Max l mmM M f mm=-⋅=-⨯='目 其最小放大本领:min 116055016l mm M M f mm=-⋅=-⨯=-'目6.一显微镜物镜焦距为0.5cm ,目镜焦距为2cm ,两镜间距为22cm .不雅察者看到的像在无限远处.试求物体到物镜的距离和显微镜的放大本领. 解:由透镜物像公式:111s s f -=''111200.5s -=解得:0.51s cm =- 显微镜的放大本领:1212252522255500.52s l M f f f f '=-⋅≈-⋅=-⨯=-'''' 7.(略)8.已知千里镜物镜的边缘即为有用光阑,试盘算并作图求入光瞳和出射光瞳的地位. 9. 10.*13.焦距为20cm 的薄透镜,放在发光强度为15cd 的点光源之前30cm 处,在透镜后面80cm 处放一屏,在屏上得到通亮的圆斑.求不计透镜中光的接收时,圆斑的中间照度. 解:1113020s -='- 60s cm '=230Sd Id Iφ=Ω= (S 为透镜的面积) P 点的像点P '的发光强度I '为: 2230460S Id I I S d φ'==='Ω22cos 415000.2I I E lx R α'=== 14.一长为5mm 的线状物体放在一拍照机镜头前50cm 处,在底片上形成的像长为1mm .若底片后移1cm ,则像的弥散斑宽度为1mm .试求拍照机镜头的F 数. 解:由y s y s''= 1550s '= 得10s cm '= 由透镜物像公式:111s s f -=''1111050f -='- 506f '=由图可见,100.11d =1d cm = F 数:508.336f d '== 15.某种玻璃在接近钠光的黄色双谱线(其波长分离为589nm 和589.6nm )邻近的色散率/dn d λ为1360cm --,求由此种玻璃制成的能分辩钠光双谱线的三棱镜,底边宽度应小于若干?解:由色分辩本领:dnP d λδλλ==∆ 589.3nm λ=0.6nm λ∆=mm360dnd λ=- 2.7cm dn d λλδλ∆≥=16.设计一块光栅,请求⑴使波长600nm 的第二级谱线的衍射角小于030,并能分辩其0.02nm 的波长差;⑵色散尽可能大;⑶第三级谱线缺级.求出其缝宽.缝数.光栅常数和总宽度.用这块光栅总共能看到600nm 的几条谱线? 解:由sin d j θλ=326002400 2.410sin 30onmd nm mm -⨯≥==⨯ 由第三级缺级313,0.8103d b d mm b-===⨯由 P jN λλ==∆ 60020.0215000NN == 光栅的总宽度:315000 2.41036L Nd mm -==⨯⨯=由sin 9024004600od j λ=== 能看到0,1,2±±,共5条谱线17.若请求显微镜能分辩相距0.000375mm 的两点,用波长为550nm 的可见光照明.试求:⑴此显微镜物镜的数值孔径;⑵若请求此两点放大后的视角为2',则显微镜的放大本领是若干?解:⑴由显微镜物镜的分辩极限界说0.610sin y n uλ∆=655010sin 06100.8950.000375n u -⨯=⨯=⑵ 3.1418060387.70.000375250M ⨯==18.夜间自远处驶来汽车的两前灯相距1.5m .如将眼睛的瞳孔算作产生衍射的圆孔,试估量目力正常的人在多远处才能分辩出光源是两个灯.设眼睛瞳孔的直径为3mm ,设光源发出的光的波长λ为550nm . 解: 1.5U L=当0.610U Rλθ==才能分辩出1.50.610L Rλ= 61.5550100.610 1.5m mmLm mm-⨯=⨯ 6706 6.7L m km ==19.用孔径分离为20cm 和160cm 的两种千里镜可否分辩清月球上直径为500m 的环形山?(月球与地面的距离为地球半径的60倍,面地球半径约为6370km .)设光源发出的光的波长λ为550nm .解:635001.31060637010U rad -==⨯⨯⨯ 孔径20cm 千里镜:661550101.22 1.22 3.35510200rad D λθ--⨯'==⨯=⨯孔径160cm 千里镜:661550101.22 1.220.419101600rad D λθ--⨯''==⨯=⨯1U θ'<,即用孔径20cm 千里镜不能分辩清 1U θ''>,即用孔径160cm 千里镜能分辩清20.电子显微镜的孔径角028u =,电子束的波长为0.1nm ,试求它的最小分辩距离.若人眼能分辩在明视距离处相距26.710mm -⨯的两点,则此显微镜的放大倍数是若干?解: 3.144sin sin 4180on u u u ⨯====660.610.1100.87100.873.144180y mm nm --⨯⨯∆==⨯=⨯2466.7107.7100.8710mm mmβ--⨯==⨯⨯ 第五章光的偏振1.试肯定下面两列光波()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦的偏振态.解:①()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+--⎪⎢⎥⎝⎭⎣⎦()10cos x E A t kz ω=-()100cos sin 2y E A t kz A t kz πωω⎛⎫=--=- ⎪⎝⎭有:222110x y E E A +=剖析()(),0000,2x y x y E A t kz A E E t kz A E Aωπω=⎧⎪-=⎨=⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光②()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+--⎪⎢⎥⎝⎭⎣⎦()20sin x E A t kz ω=-()200sin cos 2y E A t kz A t kz πωω⎛⎫=--=-- ⎪⎝⎭有:222110x y E E A +=剖析()()0,,002x y x y E t kz A E A E A t kz A E ωπω=⎧⎪-=-⎨=-⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光2.为了比较两个被天然光照耀的表面的亮度,对个中一个表面直接进行不雅察,另一个表面经由过程两块偏振片来不雅察.两偏振片的透振倾向的夹角为060.若不雅察到两表面的亮度雷同.则两表面现实的亮度比是若干?已知光经由过程每一块偏振片后损掉入射光能量的0010.解:因为被光照耀的表面的亮度与其反射的光的光强成正比.设直接不雅察的表面临应的光强为1o I ,经由过程两偏振片不雅察的表面的光强为2o I 经由过程第一块偏振片的光强为:1210.92o I I =⨯ 经由过程第二块偏振片的光强为:22122110.9cos 600.90.90.124o o I I I I ==⨯⨯⨯⨯=由1220.1o o I I I == 则:120.1ooI I = 3.两个尼科耳N1和N2的夹角为060,在它们之间放置另一个尼科耳N3,让平行的天然光经由过程这个体系.假设各尼科耳对异常光均无接收,试问N3和N1的透振倾向的夹角为何值时,经由过程体系的光强最大?设入射光强为0I ,求此时所能经由过程的最大光强. 解:1012I I =223101cos cos 2I I I αα==()()2222301cos 60cos cos 602o I I I ααα=-=⋅-令:20dId α=得:()tan tan 60αα=-30o α= ()222220019cos 30cos 6030232I I I =⋅-= 4.在两个公理的幻想偏听偏振片之间有一个偏振片以匀角速度ω绕光的传播倾向扭转(见题5.4图),若入射的天然光强为0I ,试证实透射光强为()011cos 416I I t ω=- 证实:1012I I =21cos I I t ω'=1N 2N3N60oα1N2NNt ω()()22222000cos 90sin 111cos sin sin 21cos 42816I I t I tI t t I t I t ωωωωωω''=-=⋅=⋅==- 5.线偏振光入射到折射率为1.732的玻璃片上,入射角是060,入射光的电矢量与入射面成030角.求由分界面上反射的光强占入射光强的百分比. 解:设入射线偏振光振幅为A ,则入射光强为20I A = 入射光平行分量为:1cos 30oP A A = 入射光垂直分量为:1sin 30oS A A =由:21sin603sin i =得:230oi =由:()()()()121112tan 6030tan 0tan tan 6030oPo P i i A A i i --'===++ ()()()()121112sin 6030sin 1sin 2sin 6030o S o S i i A A i i --'=-=-=-++ 111124S S A A A '== 014I I '=6.一线偏振光垂直入射到一方解石晶体上,它的振动面和主截面成030角.两束折射光经由过程在方解石后面的一个尼科耳棱镜,其主截面与入射光的振动倾向成050角.盘算两束透射光的相对强度. 解:601sin 302o o A A A ==cos30o e A A A ==当光振动面与N 主截面在晶体主截面同侧:02cos80cos802o e e A A A ==21sin80sin802o o o o A A A ==22222222sin 8010.723cos 80oe e o o o I A I A ===⋅ 当光振动面与N 主截面在晶体主截面两侧:02cos 20cos 20o e e A A A ==21cos70sin 202o o o o A A A ==22222222sin 200.0443cos 20oe e o o o I A I A ===⋅7.线偏振光垂直入射到一块光轴平行于表面的方解石波片上,光的振动面和波片的主截面成030角.求:⑴透射出来的平常光和异常光的相对强度为若干?⑵用钠光入时如要产生090的相位差,波片的厚度应为若干?(589nm λ=)解:⑴1sin 302oo A A A ==214o I A =cos302o e A A A ==234e I A = 13o e I I = ⑵ 方解石对钠光 1.658 1.486o e n n ==由()2o e n n d πϕλ∆=-()22o e n n d ππλ-=()58.7104o e d cm n n λ-==⨯-8.有一块平行石英片是沿平行于光轴倾向切成一块黄光的14波片,问这块石英片应切成多厚?石英的01.552, 1.543,589e n n nm λ===. 解:()2o e n n d πϕλ∆=-()()2212o e n n d k ππλ-=⋅+()()()321211.64104o e k d k cm n n λ-+==+⨯-9.⑴线偏振光垂直入射到一个表面和光轴平行的波片,透射出来后,本来在波片中的平常光及异常光产生了大小为π的相位差,问波片的厚度为若干?0 1.5442, 1.5533,500e n n nm λ===⑵问这块波片应如何放置才能使透射出来的光是线偏振光,并且它的振动面和入射光的振动面成090的角? 解:⑴()()221o e n n d k πϕπλ∆=-=+()()()321212.75102o e k d k cm n n λ-+==+⨯-⑵振动倾向与晶体主截面成45o角10.线偏振光垂直入射到一块表面平行于光轴的双折射波片,光振动面和波片光轴成025角,问波片中的平常光和异常光透射出来后的相对强度若何? 解:cos 25o e A A = sin 25o o A A =222tan 250.22o o e e oI A I A ===11.在两正交尼科耳棱镜N1和N2之间垂直插入一块波片,发明N2后面有光射出,但当N2绕入射光向顺时针转事后020, N2的视场全暗,此时,把波片也绕入射光顺时针转过020,N2的视场又亮了,问:⑴这是什么性质的波片;⑵N2要转过多大角度才能使N2的视场以变为全暗. 解:⑴由题意,当2N 绕入射光向顺时针迁移转变20o 后,2N 后的视场全暗,解释A '与1N 夹角为20o.只有当波片为半波片时,才能使入射线偏振光出射后仍为线偏振光.⑵把波片也绕入射光顺时针转过020,2N 要转过040才能使2N 后的视场又变为全暗 12.一束圆偏振光,⑴垂直入射1/4波片上,求透射光的偏振状况;⑵垂直入射到1/8波片上,求透射光的偏振状况.解:在xy 平面上,圆偏振光的电矢量为:()()cos sin x y E A t kz e A t kz e ωω=-±- +为左旋;-为右旋圆偏振光设在波片入射表面上为()cos x E A t kz ω=-()sin y E A t kz ω=- ⑴波片为14波片时,2πϕ∆= ()cos xo E A t kz ω=-()sin cos 2yo E A t kz A t kz πωω⎛⎫=-+=- ⎪⎝⎭ 即透射光为振动倾向与晶片主截面成45o 角的线偏振光 ⑵波片为18波片时,4πϕ∆= ()cos xo E A t kz ω=-sin 4yo E A t kz πω⎛⎫=-+ ⎪⎝⎭ 即透射光为椭圆偏振光.13.试证实一束左旋圆偏振光和一束右旋圆偏振光,当它们的振幅相等时,合成的光是线偏振光. 解:左旋圆偏振光()()1cos sin x y E A t kz e A t kz e ωω=-+-右旋圆偏振光()()2cos sin x y E A t kz e A t kz e ωω=---()122cos x E E E A t kz e ω=+=-即E 为线偏振光14.设一方解石波片沿平行光轴倾向切出,其厚度为0.0343mm ,放在两个正交的尼科耳棱镜间,平行光束经由第一尼科耳棱镜后,垂直地射到波片上,对于钠光(589.3nm )而言,晶体的折射率为1.658, 1.486o e n n ==.问经由过程第二尼科耳棱镜后,光束产生的干预是增强照样削弱?假如两。
光学教程姚启钧课后习题解答
![光学教程姚启钧课后习题解答](https://img.taocdn.com/s3/m/9e23033377232f60ddcca1a8.png)
光学教程姚启钧课后习题解答Newly compiled on November 23, 2020《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式 ⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
《光学教程》(姚启钧)课后习题解答
![《光学教程》(姚启钧)课后习题解答](https://img.taocdn.com/s3/m/83e1c70ef01dc281e53af09d.png)
《光学教程》(姚启钧)课后习题解答 - 百度文库《光学教程》(姚启钧)习题解答第一章光的干涉1 、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2 级亮纹位置的距离。
解:改用两种光第二级亮纹位置的距离为:2 、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第 1 亮条纹和中央亮纹之间的距离;⑵若 P 点离中央亮纹为问两束光在 P 点的相位差是多少?⑶求 P 点的光强度和中央点的强度之比。
解:⑴⑵由光程差公式⑶中央点强度:P 点光强为:3 、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第 5 级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4 、波长为的单色平行光射在间距为的双缝上。
通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:由干涉条纹可见度定义:由题意,设,即代入上式得5 、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角。
解:由菲涅耳双镜干涉条纹间距公式6 、在题 1.6 图所示的劳埃德镜实验中,光源 S 到观察屏的距离为,到劳埃德镜面的垂直距离为。
劳埃德镜长,置于光源和屏之间的中央。
⑴若光波波长,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域 P 1 P 2 可由图中的几何关系求得)解:由图示可知:①②在观察屏上可以看见条纹的区域为 P 1 P 2 间即,离屏中央上方的范围内可看见条纹。
7 、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。
已知肥皂膜折射率为,且平行光与法向成 30 0 角入射。
《光学教学教程》[姚启钧]课后知识题解答
![《光学教学教程》[姚启钧]课后知识题解答](https://img.taocdn.com/s3/m/b9602cd6a417866fb84a8ef5.png)
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-==0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
光学教程习题解
![光学教程习题解](https://img.taocdn.com/s3/m/ca7512f6dd3383c4bb4cd275.png)
光学教程习题解————————————————————————————————作者:————————————————————————————————日期:[《光学教程》(姚启钧)]习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭0122(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
光学教程习题解
![光学教程习题解](https://img.taocdn.com/s3/m/2da0a707b8f67c1cfbd6b83e.png)
[《光学教程》〔姚启钧〕]习题解答第一章 光的干预1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干预条纹,求两个亮条纹之间的距离。
假设改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵假设P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(10.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干预图样,求干预条纹间距和条纹的可见度。
光学教程习题解答
![光学教程习题解答](https://img.taocdn.com/s3/m/cf68d04065ce05087732130d.png)
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比.解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. 解:
= 0.006(cm ) Q 次最大值公式:
20
sin θ sin θ
4
30
λ 5λ ≈ b 2b λ 7λ = ± 3 . 47 ≈ b 2b = ± 2 . 46
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
kλr
0 2
2.76 ×10 2 ≈3 ∴ k = ρ λr = 6328 ×10 ×1 Q k = 3为奇数, ∴中央为亮点。
−3 2 k 0 −10
(2)欲使其与(1)相反,即为暗点,K 为偶数
Q r =ρ
0 '
2 k
kλ
2 −3 2
2.76 × 10 ρ 2 = ∴ r = (k − 1)λ (3 − 1) × 6328 × 10
0 1 2 2 3 4 200 1 2 0 0 1 4 2 1 4 2 0 1 '
'
λ f ⋅ ⋅ ∆ϕ y = 2π b 4800 × 10 × 600 π ⋅ = 2π × 0.4 2 = 0.18(m m )
' 1 1 −7
= 0.018(cm ) λ f ⋅ ⋅ ∆ϕ y = 2π b 4800 × 10 × 600 π ⋅ = 2π × 0.4 6 = 0.06(m m )
' ' ' 0 j
I A 4 π = = sin j I ( A N ) πj 4 1 .6 π sin j ≈ j 4 I ∴ ≈ 0.80 I
2 j j 2 2 0 0 2 2 1 0
2
I = 0.40 I
2 0
I = 0.09 I
3 0
I =0 I
4 0
I = 0.03 I
5 0
8
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
I = 0.04 I
6 0
I = 0.02 I
7 0
I =0 I
8 0
其大致图形如上所示( 仅画出正值) 12. 解: Q d sin θ = jλ jλ 1 ∴ sin θ = d = d N jλ ∴ sin θ = = 50 × 1 × 7600 × 10 = 0.038 d θ ≈ 2.18
10
o o
即: 2λ = 3λ
1
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
对中央最大值,j = 0, sin θ = 0, θ = 0
0
sin θ = 对第二十级主最大,
20
j λ d
20
∴ ∆θ = θ − 0 = sin
20
7λ 5λ =± 2b 2b 5 5 ∴ λ = λ = × 6000 ≈ 4286 A 7 7 2.46 或: λ = × 6000 ≈ 4254 A 3.47 ∴ ±
1 1 2 o 2 o 1
9. 解:
(1)
Q sin θ = k
k
λ b
y = tg θ ⋅ f
1
'
tg θ ≈ sin θ
1
1
∴ y=k
红 2 o 紫 3 3 2
o
其重叠范围计算如下: 对重叠部分,有: j λ = j λ
2 1 3 2
2 × (4000 ~ 7600) = 3 × (4000 ~ 7600) 8000 ~ 15200 = 12000 ~ 22800 可见重叠部分是: 12000 ~ 15200 = 12000 ~ 15200 其相交 的波长是: 6000 ~ 7600 与4000 ~ 5076 即: 二级光谱的 6000 ~ 7600 A 与三级光谱的4000 ~ 5067 A 重叠 jλ Q d sin θ = jλ , sin θ = d 14. 解:
10 ' −7 ' −7 k ' ' 3 3 3
'
10. 解:
λ f b 5461× 10 = 3× × 100 1 ≈ 0.164(cm ) λ Q sin θ = k b (1) = 3×
−7 k
y = tg θ ⋅ f ' tg θ ≈ sin θ
Y= k λ f ' /b
6
PDF 文件使用 "pdfFactory Pro" 试用版本创建
± f 7 ……
'
故,光强极大值出现在轴上
6. 解:
1 3, 1 5, 1 7, …… 1 (2k + 1) 等处 Q 此即将所有偶数半波带挡住了,
而只有所有奇数的半波带透过 ∴ 在考察点的振幅为 1 A = (a + a ) ≈ a 2 即: I = A = a
k 1 199 1 2 2 0 k 1
1
I = A = 10 a
2 4
2
1
当移去波带片使用透镜后, 透镜对所有光波的相
3
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
位延迟一样,所以 a1 , a2 , a3 , K , a200 的方向是 一致的,即:
7. 解
A = a + a + a + L + a ≈ 200a I = A = 4 × 10 a I 10 a 1 = ∴ = I 4 × 10 a 4 2π 2π 2π 2π y Q ∆ϕ = δ= b sin θ ≈ b tgθ = b λ λ λ λ f λ f ∴ y= ⋅ ⋅ ∆ϕ 2π b
A
o
λ 1 × 10 × 300 ∆y = y − y = f = b 0.2 (2) = 1.5 ×10 (cm)
' −7 ' ' ' ' 2 1 −4
11. 解:
Q N = 3, 缝宽为b, 相邻缝间不透明
7
PDF 文件使用 "pdfFactory Pro" 试用版本创建
1 2 3
0
r :r :r :r = k : k : k : k
4 1 2 3 1 2 3 4 −10
4
∴ k = 1, k = 2, k = 3, k = 4, r = 1 × 5000 × 10 × 1 = 0.707(mm )
1
(2) 由题意知,该屏对于所参考的点只让偶数半波 带透光,故:
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
−1
j λ d
20
j λ = sin∆θ d j λ ∴ d= sin∆θ 20 × 5890 × 10 = sin 15 10 ≈ 4.5 × 10 (cm ) 1 1 故: N = = ≈ 222(条 cm ) d 4.5 × 10 15. 解: Q d (sin θ ± sin θ ) = jλ ( 1 )当垂直入射时,sinθ = 0,有 d sin θ = jλ 即:
光学教程第四版
13. 解:
Q d sin θ = jλ 即 sin θ =
红
jλ d
o
λ 7600 A = 对 j = 1, sin θ = d d λ 8000 A j = 2, sin θ = 2 = d d 由于 θ > θ , 故第一级和第二级不会重叠
1 o 紫 2 2 1
λ 15200 A 而 j = 2, sin θ = 2 = d d λ 12000 A j = 3, sin θ = 3 = d d 由于 θ < θ , 故第二级和第三级可以重叠。
1 −3 2 −10 −3 2 2 −10 1 3 1 1 ∞ 2 2 1 2 2 0 ∞ 1
(0 .5 × 10 )
1 1 r + R
0
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
4. 解:
(1)Q ρ k =
k 0
−10
=
3 = 1.5 2
∆r = r − r = 1.5 − 1.0 = 0.5(m )
' 1 0 0 1
Q ∆r > 0, ∴向后移动。 2.76 × 10 ρ 2 = 又Q r = (k + 1)λ (3 + 1) × 6328 × 10 ∴ ∆r = r − r = 0.75 − 1.0 = −0.25(m )
−3
= 1.414 k = 0.1414 k
书 P103 倒 12~11 行
mm cm
k 为奇数时,P 点总得极大值, k 为偶数时,P 点总得极小值。 (2) d1 = 2 ρ1 = 0.2828(cm) 3. 解:
ρ Q k= λ
2
k
1 1 + =1 5000 × 10 1 1 (1 × 10 ) 1 + 1 = 4 k = 5000 × 10 1 1 即:实际上仅露出 3个带 1 即: A = (a + a ) ≈ a 2 a 而 A = 2 I A a = = =4 ∴ I A (a / 2 ) ∴ k =
1
λ f b
1
'
∴ y = tg θ ⋅ f = sin θ ⋅ f = 1 ×
' ' 1
λ f b
'
≈ 0.055(cm ) λ 3λ Q sin θ = ±1.43 ≈ ± b 2b (2)
10
5461 × 10 = × 100 1 = 0.05461(cm )