混凝土简支梁桥的计算
第2篇第6章 简支梁桥的计算--6挠度预拱度的计算
ηө ——扰度长期增长系数,
1.
对悬臂体系的桥梁
f 可变
l' ≤ 300
•
2. 3.
C40以下:1.60 C40:1.45;C80及以上:1.35;其他内插 计算预应力混凝土简支梁的反拱时:2.0ຫໍສະໝຸດ •武汉理工大学交通学院
武汉理工大学交通学院
1
6.6 挠度、预拱度的计算 3.挠度计算公式
1) 钢筋混凝土简支梁(一般带裂缝工作),按荷载短期 效应组合作用下跨中短期扰度计算的一般式为:
第二篇 混凝土梁式桥
6.6 挠度、预拱度的计算 1. 极限状态设计法回顾
第六章 简支梁桥的计算
两种极限状态 z 承载能力极限状态 z 正常使用极限状态 正常使用极限状态一般包括如下3项校核: ¾ 限制应力 ¾ 扰度验算 ¾ 裂缝宽度的限制
•
武汉理工大学交通学院
制作:汪国相
•
武汉理工大学交通学院
6.6 挠度、预拱度的计算 2.挠度的概念、产生的原因及限值
可不设预拱度,否则,应按规定设置。 2)预应力混凝土梁:当预应力产生的反拱值大于f 时,不设;当预应力产生的反拱值小于f 时,设的值为 两者之差。
•
M cr = (σ pc + γf tk )W0
•
武汉理工大学交通学院
武汉理工大学交通学院
2
6.6 挠度、预拱度的计算 4. 预拱度的方法
对钢筋混凝土结构 预拱度的大小按结构自重和1/2可变频遇值产生的长期扰度,即 M s= MGK +M可变频遇 /2计算
f = 1.6
5 M sl 2 48 B
梁底做成平顺曲线 P115 例题自学
•
武汉理工大学交通学院
混凝土简支梁桥的计算
1/19/2019
• 着重理解计算原理,掌握如何应用数学、力学方 法求解具体答案,把原抽象结构简化成简单的计
算图式。
• 混凝土梁桥结构设计计算的项目一般有:主梁、 横隔梁和桥面板。 • 本章以混凝土简支T梁桥为例,讲述桥面板、主 梁和横隔梁的受力特点、最不利内力及其内力组 合的计算。
1/19/2019
当 t / h 1/ 4 时(即主梁抗扭能力较大):
跨中弯矩: 支点弯矩:
c.荷载靠近支承边处
ax a ' 2x a
x—荷载离支承边缘的距离。 说明:荷载从支点处向跨中移 动时,相应的有效分布宽度可 近似地按45°线过渡。 按上述公式算得的所有分布宽 度,均不得大于板的全宽度。
1/19/2019
②悬臂板的荷载有效分布宽度a 根据弹性薄板理论, 当荷载 P 作用在板边时 悬臂根部最大负弯矩:
1/19/2019
一般主梁间距比横隔梁的间距小,桥面板属于单向板。
1/19/2019
二、桥面板的受力分析
1.车轮荷载在板上的分布 车轮均布荷载— a2 b2 (纵、横) 桥面铺装的分布作用:按450 角分布。 沿行车方向 沿横向
a1 a2 2H
b1 b2 2H
当有一个车轮作用于桥面板上时,作用于板面上的局部分 布荷载为:
三、行车道板的内力计算
行车道板一般由弯矩控制设计,计算时,通常取单位 宽板条来进行计算。由板的有效工作宽度,可以得到板条 上的荷载集度及其内力。
(1)多跨连续单向板的内力计算 (2)悬臂板的内力计算 (3)铰接悬臂板内力
1/19/2019
1、多跨连续单向板的内力 • 从构造上看,行车道板与主梁梁肋是整体连结 在一起的,因此当板上有荷载作用而变形时, 主梁也发生相应的变形,而这种变形反过来又 会影响板的内力。
第6讲 简支梁计算 第一部分桥面板计算
3. 桥面板计算中何时需要考虑多个车轮作用?(横向 和纵向问题);
4.桥面板内力计算中实际结构简化为力学计算模式时存 在哪些误差?
5.桥面板计算的主要步骤
桥梁工程
2016-03
40
第四次作业,请于3月26日前提交
根据以下桥例基本资料,进行该桥行车道板设计内力 计算:
1. 桥梁跨径及桥宽:标准跨径40m (墩中心距离),主梁全长 39.96m;计算跨径39.00m; 桥面净空:14m+2×1. 75m=17. 5m。
-1 μ p
l
0
-
b
1
4a 4
140 2
0.82
-1.3
0.71 -
4 3.24
4
-14.18kN m
作用于每米宽板条上的剪力为:
3.内力组合
Q Ap 1 μ p
140 2 1.3
28.09kN
4a
4 3.24
(1)承载能力极限状态内力组合计算
Mud 1.2M Ag 1.4M Ac 1.2(1.35)1.4(14.18)21.47kN m
桥梁工程
2016-03
32
第三章 第一节 桥面板的计算
2.汽车车辆荷载产生的内力
将汽车荷载后轮作用于铰缝轴线上,
后轴作用力为P=140kN,轮压分布宽
度如图所示。车辆荷载后轮着地长
度为a2=0.20m,宽度为b2=0.60m,则
a a 2H 0.20 20.11 0.42m
1
2
b b 2H 0.60 20.11 0.82m
(c)荷载靠近板的支承处
= + 2 ≤ (8)
*注意:算得有效分布宽度 不能大于板的全宽
混凝土简支梁桥的计算
第四章混凝土简支梁桥的计算习题一、填空题:1、设置横隔梁的作用:。
2、为消除梁桥的恒载挠度而设置预拱度,其值通常取为:。
3、偏压法计算横隔梁内力的力学模型是:。
二、名词解释:1、荷载横向分布影响线2、板的有效分布宽度3、预拱度4、单向板三、简答题:1、偏心压力法计算荷载横向分布系数的基本假定和适用条件。
2、杠杆原理法计算荷载横向分布系数的基本假定和适用条件。
3、试述荷载横向分布计算的铰接板法的基本假定和适用条件。
4、设计桥梁时,为什么要设置预拱度,如何设置?四、计算题:1、如图所示T梁翼缘板之间为铰接连接。
试求该行车道板在公路—Ⅰ级荷载作用下的计算内力,已知铺装层的平均厚度12cm,容重22.8kN/m3,T梁翼缘板的容重为25kN/m3。
(依《桥规》,车辆荷载的前轮着地尺寸a1=0.2m,b1=0.3m,中、后轮着地尺寸a1=0.2m,b1=0.6m)2、某五梁式简支梁桥,标准跨径25.0m,计算跨径为24.20m,两车道,设有六道横隔梁(尺寸如图所示),设计荷载为公路—Ⅱ级荷载,已求得2#主梁的跨中及支点截面的横向分布系数分别为m cq=0.542、m oq=0.734,。
试求:1)画图说明2#梁的横向分布系数沿跨径的一般变化规律。
2)在公路—Ⅱ级荷载作用下,2#梁的跨中最大弯矩及支点最大剪力。
答案一、填空题:1、设置横隔梁的作用:保证各根主梁相互连接成整体,共同受力。
2、为消除梁桥的恒载挠度而设置预拱度,其值通常取为:全部恒载和一半静活载所产生的竖向挠度值。
3、偏压法计算横隔梁内力的力学模型是:将桥梁的中横隔梁近似的视做竖向支承在多根弹性主梁的多跨弹性支承连续梁。
二、名词解释:1、荷载横向分布影响线:单位荷载沿桥面横向作用在不同位置时,某梁所分配的荷载比值变化曲线。
2、板的有效分布宽度:行车道板在荷载作用下,除了直接承受荷载的板条外,相邻板条也发生挠曲变形而承受部分弯矩,弯矩的实际图形呈曲线形分布,最大弯矩为m xmax。
8m钢筋混凝土空心板简支梁 计算书
8m钢筋混凝土空心板简支梁计算书8m钢筋混凝土空心板简支梁桥上部结构计算书一、设计基本资料1、跨度和桥面宽度标准跨径:8m计算跨径:7.6m桥面宽度:4.5m,净宽:3.9m2、技术标准设计荷载:公路Ⅱ级×0.7,人群荷载取3kN/m2设计安全等级:二级3、主要材料混凝土:混凝土空心板和铰接缝采用C30混凝土;桥面铺装采用10~12cm C40混凝土。
混凝土的重度按26 kN/m2计算。
二、构造形式及截面尺寸本桥为C30钢筋混凝土简支板,由4块宽度为0.99m的空心板连接而成。
桥上横坡根据桥面铺装来进行控制。
空心板截面参数:单块板高0.42m,宽0.99m,板件预留1cm的缝隙用于灌注砂浆。
C30混凝土空心板抗压强度标准值f=20.1Mpa,抗压强度设计值ckf=13.8Mpa,抗拉强度标准值tk f=2.01Mpa,抗拉强度设计值cf=1.39Mpa,C30混凝土的弹性模量为c E=3×104Mpa。
t图1 桥梁横断面构造及尺寸图式(单位:cm)三、空心板截面几何特性计算1、毛截面面积计算空心板剖面图详见图2,A=83×42+(4×26/2+4×8/2+12×8-3.14×222/4)×2=3054.12cm2图2 中板截面构造及尺寸(单位:cm)2、毛截面中心位置2834221(426/2(262/316)48/2(41/312)1283054.126 3.1422/423)2d ⨯⨯+⨯⨯⨯++⨯⨯⨯++⨯⨯-⨯⨯⨯==19.90cm (即毛截面重心离板下边缘距离为19.90cm )3、毛截面惯性矩计算324221183428342(2119.90)2(2222/4(2319.90))1264I ππ=⨯⨯+⨯⨯--⨯⨯⨯+⨯⨯- =4.86×105cm 4空心板截面的抗扭刚度可简化为如图3所示的箱型截面近似计算所以得到抗扭刚度为:2222641244(9918)(428) 1.731022(428)(9918)22818T b h I cm h b t t ⨯-⨯-===⨯--+⨯+⨯图三 抗扭惯性矩简化计算图(单位:cm )四、 主梁内力计算 1、 永久作用效应计算a 、空心板自重(一期结构自重)G 1 G 1=3054.12×10-4×26=7.94kN/mb 、桥面自重(二期结构自重)G 2桥面栏杆自重线密度可按照单侧8kN/m 计算。
混凝土简支梁桥的计算
例题:如图,计算2号和3号主梁r-r截面上的弯矩和靠近1号主梁除截面的剪 力Q右,荷载等级为公路=II级
Pk
qk
l 4.85 a
l 4.85 a
1.0
y1
1
1
1
Poq 2 (qk Pk y1) 2 qkla 2 Pk y1
计算弯矩时:Poq=108.35 计算剪力时:Poq=126.2
否
是否通过 是
计算结束
第一节 桥面板计算
一、桥面板的力学模型 桥面板的作用——直接承受车轮荷载、把荷载传递给主梁 分类
单向板 双向板 悬臂板 铰接板
二、桥面板的受力分析
1、车轮荷载的分布 车轮均布荷载——a2b2(纵、横) 桥面铺装的分布作用
轮压
2、桥面板的有效工作宽度 1、计算原理
与铰接板法的区别:
变位系数中增加桥面板变形项,板端挠度为:
f
d13 3EI1
4d13 Eh13
4. 刚接梁法
适用条件: 1.翼缘板间刚性连接的肋梁桥 2.整体式板桥 3.荷载作用在跨中 基本假定:连接缝处传递剪力和弯矩
假定各主梁间除
传递剪力外,还 传递弯矩
与铰接板、梁的区别 未知数增加一倍,力法方程数增加一倍
在梁式桥上,
s P (x, y) P 1(x) 2( y)
二、荷载横向分布计算方法分类
1.杠杆原理法 2.偏心压力法(刚性横梁法) 3.铰接板(梁)法 4.刚接梁法 5.比拟正交异性板法
1、杠杆原理法
基本假定: (1)各主梁之间无横向连接; (2)桥面板在主梁上部断开; (3)板看做支承在主梁上的多跨简支梁。 适用范围: 荷载作用于梁端近支座处
1、多跨连续单向板的内力 1)弯矩计算模式假定
桥梁工程课程设计(t型简支梁的计算)
装配式钢筋混凝土简支T梁桥计算一 .基本设计资料(一).跨度及桥面宽度二级公路装配式简支梁桥,双车道,计算跨径为13m,桥面宽度为净7.0+2×2+2×0.5=12m,主梁为钢筋混凝土简支T 梁,桥面由7片T梁组成,主梁之间的桥面板为铰接,沿梁长设置3道横隔梁。
(二).技术标准设计荷载:公路—Ⅱ级,人群荷载3.0KN/m2。
汽车荷载提高系数1.3(三).主要材料钢筋:主筋用HRB335级钢筋,其他用R235级钢筋。
混凝土:C50,容重26kN/m3;桥面铺装采用沥青混凝土;容重23kN/m3;(四).设计依据⑴《公路桥涵设计通用规范》(JTJ D60—2004)⑵《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ D62—2004);(五).参考资料⑴结构设计原理:叶见曙,人民交通出版社;⑵桥梁工程:姚玲森,人民交通出版社;⑶混凝土公路桥设计:⑷桥梁计算示例丛书《混凝土简支梁(板)桥》(第三版) 易建国主编.人民交通出版社(5)《钢筋混凝土及预应力混凝土简支梁桥结构设计》闫志刚主编.机械工业出版社(六).构造形式及截面尺寸1. 主梁截面尺寸:根据《公路桥涵设计通用规范》(JTGD60-2004),梁的高跨比的经济范围在1/11到1/16之间,此设计中计算跨径为13m,拟定采用的梁高为1.0m,翼板宽2.0m。
腹板宽0.18m。
2. 主梁间距和主梁片数:桥面净宽:7.0+2×2+2×0.5=12m,采用7片T型主梁标准设计,主梁间距为2.0m。
全断面7片主梁,设3道横隔梁,横隔板厚0.15m,高度取主梁高的3/4,即0.75m。
路拱横坡为双向2%,由C50沥青混凝土垫层控制,断面构造形式及截面尺寸如图所示。
二 .主梁的计算(一).主梁的荷载横向分布系数计算1.跨中荷载弯矩横向分布系数(按G —M 法)(1)主梁的抗弯及抗扭惯矩x I 和Tx I 求主梁界面的的重心位置x a (图2): 平均板厚:()11913112h cm =+= 主梁截面的重心位置:cma x 568.261810011)18200(50181005.511)18200(=⨯+⨯-⨯⨯+⨯⨯-=主梁抗弯惯矩:)(10487.3)(229.3486992)568.262100(1001810018121)211568.26(11200112001214242323m cm I x -⨯==-⨯⨯+⨯⨯+-⨯⨯+⨯⨯=主梁抗扭惯矩: 31ii mi i T t b c I ∑==对于翼板:1.0055.02001111≤==b t 查表得 1/3c =对于肋板:18.01001822==b t 由线性内插 295.0=c)(10608.2)(3.26077718100295.0112003143433m cm I T -⨯==⨯⨯+⨯⨯=单位宽度抗弯及抗扭惯矩:)(10304.120010608.2)(10744.120010487.3453442cm m b I J cm m b I J TxTx xx ----⨯=⨯==⨯=⨯==(2)横梁的抗弯及抗扭惯矩 翼板有效宽度λ的计算,计算图3所示横梁长度取两边主梁的轴线间距,即:cmb cm h cmc cmb l 15753052)15625(8004='='=-===381.0800305==l c 查表得当 381.0=l c 时 531.0=cλ 则 cm 162531.0305=⨯=λ横隔梁界面重心位置ya : cm a y 178.1315751116222751575211111622=⨯+⨯⨯⨯⨯+⨯⨯⨯=横隔梁抗弯惯矩:)(10007.8)178.13275(75157515121)5.5178.13()111622(11)1262(12143323--⨯=-⨯⨯+⨯⨯+-⨯⨯⨯+⨯⨯⨯=m I y 横隔梁的抗扭惯矩:33111222Ty I c b h c b h =+由1.00176.06251111≤==b h , 故 11/3c =,由于连续桥面板的单宽抗扭惯矩只有独立宽扁板的一半,可取11/6c =。
混凝土简支梁桥的计算 (2)
2008-4-6
桥梁工程
对于某根主梁某一截面的内力值就可以表示为:
S P (x, y) P 1(x) 2 ( y)
(x, y) :空间计算中某梁的内力影响面
1(x) :单梁在x 轴方向某一截面的内力影响线 2 ( y) :单位荷载沿桥面横向作用在不同位置时,某梁所
分配的荷载比值变化曲线,也称做对某梁的荷载 分布影响线。 Pη2( y)是当P作用于点a(x, y)时沿横向分配给某梁的荷载, 以p′表示,即p′= Pη2( y) 。
2008-4-6
桥梁工程
(a) (b)为单向板; ( c)悬臂板;(d)铰接板
2008-4-6
桥梁工程
a2 b2
二、车轮荷载的分布
车轮均布荷载— a2 b2 (纵、横)
桥 面 铺 装 的 分 布 作 用 : 按 450 角分布。
a1 a2 2H
b1 b2 2H
加重车后轮轮压:
2008-4-6
桥梁工程
2)考虑有效工作宽度后的跨中弯矩
M
0
—按简支梁计算的荷载组合内 力,它是 M0p 和 M0g两部分的
内力组合。
活载弯矩:
l
汽车荷载在1m宽简支板条中所
产生的跨中弯矩 M 0 p为:
单向板内力计算图式
2008-4-6
M0p
(1
) P
8a
(l
b1 ) 2
恒载弯矩:
桥梁工程
1)弯矩计算模式假定
实际受力状态:弹性支承连续梁,各根主梁的不均匀弹 性下沉和梁肋本身的扭转刚度会影响桥面板的内力。
2008-4-6
桥梁工程
一般简化
对于弯矩:先算出一个跨度相同的简支板在恒载和活载作用
8m钢筋混凝土空心板简支梁桥上部结构计算书完整版
8m钢筋混凝土空心板简支梁桥上部结构计算书完整版8m 钢筋混凝土空心板简支梁桥上部结构计算书7.1设计基本资料 1.跨度和桥面宽度标准跨径:8m (墩中心距) 计算跨径:7.6m桥面宽度:净7m (行车道)+2×1.5m (人行道)2技术标准设计荷载:公路-Ⅱ级,人行道和栏杆自重线密度按照单侧8kN/m 计算,人群荷载取3kN/m 2环境标准:Ⅰ类环境 设计安全等级:二级3主要材料混凝土:混凝土空心板和铰接缝采用C40混凝土;桥面铺装采用0.04m 沥青混凝土,下层为0.06m 厚C30混凝土。
沥青混凝土重度按23kN/m 3计算,混凝土重度按25kN/m 3计算。
钢筋:采用R235钢筋、HRB335钢筋2.构造形式及截面尺寸本桥为c40钢筋混凝土简支板,由8块宽度为1.24m 的空心板连接而成。
桥上横坡为双向2%,坡度由下部构造控制空心板截面参数:单块板高为0.4m ,宽1.24m ,板间留有1.14cm 的缝隙用于灌注砂浆C40混凝土空心板抗压强度标准值Mpa f ck 8.26=,抗压强度设计值Mpa f cd 4.18=,抗拉强度标准值Mpa f tk 4.2=,抗拉强度设计值Mpa f td 65.1=,c40混凝土的弹性模量为Mpa E C 41025.3⨯=图1 桥梁横断面构造及尺寸图式(单位:cm )7.3空心板截面几何特性计算1.毛截面面积计算如图二所示2)-4321⨯+++=S S S S S A (矩形215.125521cm S =⨯⨯=2cm 496040124=⨯=矩形S 225.1475)5.245(cm S =⨯+= 235.2425.2421cm S =⨯⨯=2475.1575.421cm S =⨯⨯=解得:233.3202cm A =图2 中板截面构造及尺寸(单位:cm)2毛截面重心位置全截面对21板高处(即离板上缘20cm 处)的静矩为 []44332211212L S L S L S L S S ⨯+⨯+⨯+⨯⨯=板高31167.41)355(5521cm L S =-⨯⨯⨯=⨯322375.774)25.2920(55.29cm L S =-⨯⨯=⨯33367.32)5.24315.1020)((5.24221cm L S -=⨯---⨯⨯⨯=⨯34425.173)5.432620)((5.4721cm L S -=⨯---⨯⨯⨯=⨯代入得板高21S =1595.253cm 由于铰缝左右对称所以铰缝的面积为:)24321S S S S A +++⨯=(铰=400.52cm毛截面重心离板高的距离为:AS d 板高21==33.320225.1595=0.5cm (即毛截面重心离板上缘距离为20.5cm)3毛截面惯性矩计算铰缝对自身重心轴的惯性矩为:41032.37176016.185882cm I =⨯=空心板毛截面对其重心轴的惯性矩为:⎥⎦⎤⎢⎣⎡+⨯⨯-⨯-⎪⎪⎭⎫ ⎝⎛⨯⨯∏+⨯∏⨯-⨯⨯+⨯=222223)5.0983.3(5.4002016.1858825.012642435.0401241240124I =45106011.5cm ⨯空心板截面的抗扭刚度可简化为如图三所示的箱型截面近似计算所以得到抗扭刚度为:2122224t b t h h b I T +=16)16124(28)840(2)840()16124(42-⨯+-⨯-⨯-⨯==46102221.2cm ⨯图三 抗扭惯性矩简化计算图(单位:cm)7.4主梁内力计算1永久作用效应计算a.空心板自重(一期结构自重)2G :251033.320241⨯⨯=-G=0.8005825kN/mb.桥面系自重(二期结构自重)2G :桥面设计人行道和栏杆自重线密度按照单侧8kN/m 计算。
《简支梁计算》PPT课件
– 上部结构—桥面板、主梁、横梁 – 支座 – 下部结构—桥墩、桥台
07:34
2/73
• 计算过程
前言
开始 拟定尺寸 内力计算 截面配筋验算
07:34
否
是否通过 是
计算结束
3/73
第三章 混凝土简支梁桥的计算
第一节 桥面板计算 第二节 主梁内力计算 第三节 主梁内力横向分布计算 第四节 横梁内力计算 第五节 主梁变形计算 第六节 简支梁桥施工简介
度相等
07:34
48/73
第四节 主梁内力横向分布计算
➢ 反力分布图 选定荷载位置,分别计算各主梁的反力
➢ 横向分布影响线 选定主梁,分别计算荷载作用在不同位置时的反力
在横向分布影响线上用规范规定的车轮横向间距 按最不利位置加载
偏心受压法忽略了主梁的抗扭刚度,导致边梁受 力计算偏大,中梁偏小
07:34
➢ 求解板在半波正弦荷载下的挠度 ➢ 利用挠度比与内力比、荷载比相同的关系计算横向分布影响线
07:34
52/73
第四节 主梁内力横向分布计算
(1) 铰 接 板 法
07:34
53/73
(1) 铰接板法
第四节 主梁内力横向分布计算
Pij:第i号板的荷载横向分布影响线竖标值根据功的互等定理 pij =pji
07:34
54/73
(2) 铰接梁法
第四节 主梁内力横向分布计算
假定: 各主梁除刚 体位移外, 还存在截面 本身的变形
07:34
24/73
第三节 主梁内力计算
三、内力组合
07:34
25/73
第三节 主梁内力计算
四、内力包络图
沿梁轴的各个截面处的控制设计内力值的连线
第四章-简支梁设计计算(1)
第四章 简支梁(板)桥设计计算第一节 简支梁(板)桥主梁内力计算对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。
对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为:)(42maxx l x lM M x -=(4-1) 式中:x M —主梁距离支点x 处的截面弯矩值;m ax M —主梁跨中最大设计弯矩值;l —主梁的计算跨径。
对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。
如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。
一 永久作用效应计算钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。
因此,设计人员要准确地计算出作用于桥梁上的永久作用。
如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。
在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。
因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。
如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。
对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。
对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。
pA混凝土简支梁桥的计算
Ri''
I
i
w
" i
Iiai
tg
Iiai
4、内外力平衡
1)竖向位移时的平衡
n
n
Ri'
aw
' i
Ii P
i 1
i 1
aw
' i
P
n
Ii
i 1
2)转动时的平衡
n
Ri" ai
a
2 i
I
i
Pe
i 1
i 1
Pe ai2 I i
i 1
Ri'
Ii
n
P
Ii
i 1
Ri Ri' R
Ii P Iiai Pe
1号 板 2号 板 3号 板 4号 板 5号 板
p11 1 g1
p21 p31
g1 g2
g2 g3
p41
g3
g4
p51 g4
传递剪力根据板缝间的变形协调计算
11 g1 12 g2 13 g3 14 g4 1 p 0 21 g1 22 g2 23 g3 24 g4 2 p 0 31 g1 32 g2 33 g3 34 g4 3 p 0 41 g1 42 g2 43 g3 44 g4 4 p 0
• 轮压
p P 2a1b1
第二节 行车道板计算
三、有效工作宽度 1、计算原理
外荷载产生的分布弯矩——mx
外荷载产生的总弯矩—— M mxdy
分布弯矩的最大值——mxmax
第二节 行车道板计算
设板的有效工作宽度为a 假设
M mxdy a mxmax
可得
a M m x max
钢筋混凝土简支T形梁桥设计计算书
钢筋混凝土简支T 形梁桥设计计算书一、基本设计资料 1. 跨度和桥面宽度(1) 标准跨径:20m (桥墩中心距离) (2) 计算跨径:19.5m (3) 主梁全长:19.96m(4) 桥面宽度(桥面净空):净7.5m (行车道)+2X1.0m (人行道) 2. 技术标准设计荷载:公路——I 级,人行道和栏杆自重线密度按照单侧6KN/m 计算,人群荷载为3 KN/m 2 环境标准:I 类环境 设计安全等级:二级 3. 主要材料(1) 混凝土:混凝土简支T 形梁及横梁采用C40混凝土;桥面铺装上层采用0.03m 沥青混凝土,下层为后0.06-0.135m 的C30混凝土,沥青混凝土重度按23KN/m 3计,混凝土重度按25KN/m 3计。
(2) 钢材:采用R235钢筋,HRB335钢筋。
4. 构造形式及截面尺寸(如下图)如图所示,全桥共由五片T 形梁组成,单片T形梁高为1.4m ,宽1.8m ,桥上横坡为双向2%,坡度由C30混凝土桥面铺装控制;设有5根横梁。
二、主梁的计算 2.1 主梁荷载横向分布系数计算1.跨中荷载横向分布系数如前所述,桥跨内设有五道横隔梁,具有可靠的横向联系,且承重结构的宽跨比为:B/L=9.5/19.5=0.487<0.5,故可以按修正的刚性横梁法来绘制横向影响线和计算横向分布系数m c 。
(1)计算主梁的抗弯及抗扭惯性矩I 和TI1)求主梁截面的重兴位置x翼缘板厚度按平均厚度计算,其平均板厚为则,()()1314022180-1813+14018180-1813+14018x=cm=41.09cm ⨯⨯⨯⨯⨯⨯ 2)抗弯惯性矩为对于T 形梁截面,抗扭惯性矩可近似按下式计算:式中,i i b t -、单个矩形截面的宽度和高度i c -矩形截面抗扭刚度系数100180180i=1.5%10100180750180110140%i=1.5沥青砼厚3cmC30混凝土厚6-13cm 18桥梁横断面图181401618010x主梁抗弯及抗扭惯性矩计算图示m -梁截面划分为单个矩形截面的个数T I 计算过程及结果见下表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)悬臂板 悬臂板在荷载作用下除了直接受载的板条
外,相邻板条也发生挠曲变形而承受部分弯矩 荷载作用在板边时
mxmin -0.465P
取a=2l0 通过与上述单向板的类似分析可知,悬臂板的有
效工作宽度接近于两倍悬臂长度,也就是说,荷 载可接近按45°角向悬臂板支承分布。
规范规定 a = a1+2b’=a2+2H+2b’
实际受力状态:弹性支承连续梁
先计算同跨简支板跨中弯矩,再修正。 简化计算公式:
当t/h<1/4时 :
跨中弯矩 Mc = +0.5M0 支点弯矩 Ms = -0.7M0
当t/h1/4时 :
跨中弯矩 Mc = +0.7M0 支点弯矩 Ms = -0.7M0 M0——按简支梁计算的跨中弯矩
2)考虑有效工作宽度后的跨中弯矩 1m宽简支板
2、两端嵌固单向板
1)荷载位于板的中央地带 单个荷载作用
多个荷载作用 各有效分布宽度发生重叠 时,应按相邻靠近的荷载一起计算其共有的 有效分布宽度。
2)荷载位于支承边处
3)荷载靠近支承边处
ax = a’+2x
当荷载由 支承处向 跨中移动 时,相应 的有效分 布宽度时 近似按45° 线过度的。
ai 2 Ii
i 1
i 1
反力分布图
–选定荷载位置,分别计算各主梁的反力
横向分布影响线
–选定主梁,分别计算荷载作用在不同位置时的反力
6. 横向分布系数 令P=1依次变化e,则可求出第i根主梁荷载 横向分布影响线纵标η。 在横向分布影响线上用规范规定的车轮
横向间距按最不利位置加载
7. 本方法的精度 边梁偏大,中梁偏小
横向分布系数——杠杆原理法
挂车 汽车 人群
二、横向分布计算原理
1. 整体桥梁 结构必须采用影 响面加载计算最 不利荷载
2. 为简化计 算,采用近似影 响面来加载
近似影响 面纵横方向分别 相似
12
1 2
11
1 2
12 22
11 22
3.加载过程
相当于1#梁分配到的荷 载 横向分布系数
4.近似方法总结——内力横向分布转化为 荷载横向分布
4、履带车不计有效工作宽度
四、桥面板内力计算 1、多跨连续单向板的内力
1)弯矩计算模式假定
①若主梁的抗扭刚度很大,板的行为就接近 于固端梁。
②若主梁的抗扭刚度极小,板与梁肋的连接 就接近于自由转动的铰接,板的受力就类似 多跨连续梁体系
若实际上,行车道板和主梁梁肋的连接情况 既不是固接,也不是铰接,而应是考虑为弹 性固接
各纵向影响线比例关系
轴重与轮重的关系
轴重
5.影响面加载精确方法
各纵向影响线在不同位 置的比例关系
轴重与轮重的关系
轴重
6.近似方法的近似程度
– 近似的原因——纵向各截面取相同的横向分 配比例关系
– 近似程度
对于弯矩计算一般取跨中的横向分配比例关系 跨中车轮占加载总和的75%以上 活载只占总荷载的30%左右
3. 铰接梁法
假定各 主梁除刚体位 移外,还存在 截面本身的变 形
与铰接板法的区别: 变位系数中增加桥面板变形项
4. 刚接梁法
假定各 主梁间除传递 剪力外,还传 递弯矩
与铰接板、梁的区别 未知数增加一倍,力法方程数增加一倍
五、比拟正交异性板法
1、计算原理 将由主梁、连续的桥面板和多横隔梁所
开始 拟定尺寸 内力计算 截面配筋验算
否
是否通过 是
计算结束
第二节 行车道板计算
一、行车道板的类型 行车道板的作用——直接承受车轮荷载、
把荷载传递给主梁
有横隔梁时 与横梁,主梁整体相连传递荷载 无横隔梁时 各梁之间结合整体,传递荷载的作
用主要由其来承担
常规梁桥的行车道板在构造上与主梁和横隔梁联 结在一起,形成复杂的梁格体系,按其支情况 可分为:
3. 各主梁位移与内力的关系
1)与竖向位移的关系根据材料力学,作用于简支
梁跨中的荷载(即梁所分担的荷载)与挠度的关系为
2)与转角的关系
48E l3
常数
Ii ——桥梁横截面内各主梁的惯性矩。
根据反力与挠度成 正比的关系,有
( tan)
4. 内外力平衡
1)竖向位移时的平衡
R'i
I
i
' i
2)转动时的平衡
R
'' i
Ii
ai
tan
ai Ii
5.反力分布图与横向分布影响线
各主梁刚度相等
偏心力矩为e 的单位荷载P=1对各主梁的总作用
为
Rie
Ii
n
eai Ii
n
Ii
ai 2 Ii
i 1
i 1
当P=1位于i号梁轴上时 e=ai 对k号主梁的总作
用为:
ki Rki
Ik
n
aiak Ii
n
Ii
注意
①当横截面沿桥纵轴线对称时,只需取一半主梁 (包括位于桥纵轴线上的主梁)作为分析对象;
②荷载沿横向的布置(车轮至路缘石的距离,各车 横向间距等)应满足有关规定(见第三章);
③各类荷载沿横向的布置及取舍按最不利原则进 行,即所求出的值应为最大值;
④对双车道或多车道桥梁,汽车加载时应以轴重 (而不是轮重)为单位,即一辆汽车横向的两个轮重 应同时加载或同时不加载。
(一)单边支承 (二)两边支承 (三)三边支承
(四)四边支承
受力分类
–单向板 长边/短边≥2 荷载绝大部分沿短跨方 向传递可视为单由短跨承载的单向板;
–双向板 力
长边/短边<2 需要考虑两个方向受
–铰接板 相邻翼缘板在端部做成铰接接缝的情况
–悬臂板 翼板端边自由(即三边支承板),可 作为沿短跨一端嵌固,而另一端自由的悬臂板
活载
恒载
2)悬臂板
活载
恒载
对于悬臂板,计算梁肋处最大弯 矩时,应将汽车车轮靠板的边缘 布置,此时
或 侧)
b1=b2+h(无人行道一侧) b1=b2+2h(有人行道一
第三节 主梁内力横向分布计算
(其实质是“内力”横向分布)
桥梁结构一般由多片主梁组成,并通过一定的横向 联结连成一个整体。当一片主梁受到荷载作用后, 除了这片主梁承担一部分荷载外,还通过主梁间 的横向联结把另一部分荷载传到其他各片主梁上 去,因此对每个荷载而言,梁是空间受力结构, 对其求解需要建立空间的内力影响面来进行分析。
组成的梁桥,比拟简化为一块矩形的平 板; 求解板在半波正弦荷载下的挠度 利用挠度比与内力比、荷载比相同的关 系计算横向分布影响线
2、比拟原理
弹性板的挠曲面微分方程
内外力平衡
应力应变关系
应变位移关系
均质弹性板的挠曲微分方程
正交异性板
应力应变关系
应变位移关系
正交异性板的挠曲微分方程
土结构课程解决
– 变形计算
简支梁桥的计算构件
– 上部结构——主梁、横梁、桥面板 – 支座 – 下部结构——桥墩、桥台
主梁 主要承重结构 设计内力 施工内力
桥面板 (行车道板) 直接承受车辆集中荷载 同时是主梁的
受压翼缘 影响到行车质量(变形)和主梁受 力(横向分布) 横梁 弹性地基梁
计算过程
需要解决的问题: mxmax的计算 荷载中心出的最大弯矩值,可以按弹性薄板理 论分析求解。
影响mxmax的因素:
1)支承条件:双向板、单向板、悬臂板
2)荷载长度:单个车轮、多个车轮作用
3)荷载到支承边的距离
通过对不同支承条件、不同荷载性质以及不同 荷载位置情况下,随承压面大小变化的板有效 工作宽度与跨径的比值a/l的分析,可知两边固 结的板的有效工作宽度要比简支的板小 30%~40%左右,全跨满布的条形荷载的有效分 布宽度也比局部分布荷载的小些。另外,荷载 愈靠近支承边时,其有效工作宽度也愈小。
8、考虑主梁抗扭刚度的修正刚性横梁法
a3 θ
竖向反力与扭矩的关系
转动时的扭矩平衡
四、铰(刚)接板(梁)法
▪主梁之间连接采用 砼铰式键连接
1. 基本假定
将多梁式桥梁简化
为数根并列而相互间横向
铰接的狭长板(梁)
各主梁接缝间传递
剪力、弯矩、水平压力、
水平剪力 用半波正弦荷载
P
sin
x
作用在某一板上,计算各板(梁)
•比拟正交异性板挠曲微分方程
比拟正交异性板的挠曲微分方程 正交异性板的挠曲微分方程
比拟原理
任何纵横梁格系结构比拟成的异性板,可以 完全仿照真正的材料异性板来求解,只是方 程中的刚度常数不同
板条上移动计算 各板块相同时,根据位移互等定理,荷载作用在
某一板条时的内力与该板条的横向分布影响线相同
位移互等定理 板条相同
横向分布系数 在横向分布影响线上加栽
列表计算、刚度参数计算 为计算方便,对于 不同梁数、不同几何尺寸的铰
接板桥的计算结果可以列为表格,供设计时查用
引入刚度参数
半波正弦荷载引起的变形
桥梁较窄时(B/L<0.5)横梁基本不变形。
偏心压力法计算荷载横向分布适用于桥上具有可 靠的横向联接,桥的宽跨比小于或接近0.5的情况 (一般称为窄桥),用于计算跨中截面荷载横向分 布系数mc。
偏心压力法的分析过程
将偏心力P分解为通过扭转中心的P及M=Pe I.中心荷载P=l的作用
II. 偏心力矩的作用
活载弯矩
恒载弯矩
3)考虑有效工作宽度后的支点剪力 车轮布置在支承附近
2、悬臂板的内力 1)计算模式假定
铰接悬臂板——车轮作用在铰缝上 悬臂板——车轮作用在悬臂端