反应釜的设计

合集下载

反应釜设计

反应釜设计

7 完成图纸
要求完成一张A1 图纸。
三、制图中应注意的几个问题
1、图面布置
2、图面上应有的内容
3、局部细节 细节1 细节2
细节3
细节1:容器法兰的连接
细节2:接管的画法
细节3:出料口的结构
8 任务及时间安排
本次课程设计采用分散时间进行的方 式,但必需在设计周完成所有的设 计任务
几点需要说明的问题
1)分组 本次课程设计采取学生自愿组合成组的方式进
行,要求每组5名同学,原则上组内同学来自于 一个班级。
2)新技术的应用
所设计设备上需要用到的最新研究成果,如新材 料、新方法、新工艺、新部件等,每组学生需要 上网查阅相关的文献资料(不少于5篇),该技术 需经论证,并尽可能应用到所设计的设备上。
图纸打印与成果提交
打印时间:19周周2上午 打印地点与次序:另行通知(各班分阶段打印) 费用:免费一张/组,超过酌情收费。 成果提交与答辩 纸版设计说明书提交时间:
19周周2上午(各班分阶段提交并答辩)
地点与答辩次序:另行通知。 电子版设计说明书提交时间
19周周3晚12点结束。
设计成果提交
将实际工作压力P与许可工作压力[P]比较 要求: P略小于 [P]
水压试验下的强度和稳定性校核
5 标准件的选择
1)釜体法兰 2)搅拌器、搅拌轴和联轴器 3)搅拌装置和密封装置 4)容器支座的选用 5)人孔、视镜、温度计、压力表接口 6)工艺接口
6 技术要求的提出
对设备设计、制造、安装、检验等图纸上还未 表示清楚的问题用文字说明。
一、课程设计的目的和意义
综合运用所学的知识 培养学生的工程设计能力 熟悉相关的设计规范
二、 设 计 内 容

(完整word版)反应釜设计

(完整word版)反应釜设计

第一章 反应釜釜体与传热装置搅拌设备常被称作搅拌釜(或搅拌槽),当搅拌设备用作反应器时,又被称为搅拌釜式反应器,有时简称反应釜。

釜体的结构型式通常是立式圆筒形,其高径比值主要依据操作容器的装液高径比以及装料系数大小而定。

传热方式有两种:夹套式壁外传热结构和釜体内部蛇管联合使用。

根据工艺需要,釜体上还需要安装各种工艺接管。

所以,反应釜釜体和传热装置设计的主要内容包括釜体的结构和部分尺寸、传热形式和结构、各种工艺接管的安设等。

1.1反应釜釜体1.1.1确定反应釜釜体的直径和高度在已知搅拌器的操作容积后,首先要选择筒体适宜的长径比(H/D i ),以确定筒体直接和高度。

选择筒体长径比主要考虑一下两方面因素:① 长径比对搅拌功率的影响:在转速不变的情况下,P ∝D 5(其中D :搅拌器直径;P :搅拌功率),P 随釜体直径的增大而增大很多,减小长径比只能无谓的损耗一些搅拌功率。

一次一般情况下,长径比应该大一点。

② 长径比对传热的影响:当容积一定时H/D i 越高越有利于传热。

长径比的确定通常采用经验值。

在确定反应釜直径和高度时,还应该根据反应釜操作时所允许的装料程度---装料系数η等予以综合考虑,通常装料系数η可取0.6-0.85.如果物料在反应过程中产生泡沫或沸腾状态,η应取较低值,一般为0.6-0.7;若反应状态平稳,可取0.8-0.85(物料粘度大时可取最大值)。

因此,釜体的容积V 与操作溶积V 0有如下关系:V=V 0/η…………………………………………………………………(1.1) 选取反应釜装料系数η=0.8,由V=V 0/η可得设备容积:V 0=V ×η=1×0.8=0.83m 选取H/D i =1.0,由公式m D H V D ii 08.10.10.14433=⨯⨯==ππ……………………………………(1.2)将计算结果圆整至公称直径标准系列,选取筒体直径D i =1000mm ,查《化工设备机械基础》表8-27,DN=1000mm 时的标准封头曲面高度h=250mm ,直边高度h 2=25mm ,封头容积V h =0.1513m ,由手册查得每一米高的筒体容积为3195.0m V =。

反应釜设计步骤

反应釜设计步骤

反应釜设计步骤反应釜是一种常见的化工设备,用于进行化学反应或物理变化。

在设计反应釜时,需要考虑多种因素,如反应条件、反应物质的性质、釜体材料等。

下面将详细介绍反应釜设计步骤。

一、确定反应条件在设计反应釜之前,需要先确定所需的反应条件,包括温度、压力、搅拌速度等。

这些条件将直接影响到釜体的尺寸和材料选择。

二、选择合适的材料根据所需的反应条件和物质性质,选择适合的材料作为釜体和搅拌器材料。

常见的釜体材料包括不锈钢、玻璃钢、碳钢等;搅拌器材料包括不锈钢、陶瓷等。

三、计算容积和尺寸根据所需的反应量和物质密度计算出所需容积,并据此确定釜体尺寸。

同时还需要考虑搅拌器的直径和长度。

四、设计加热方式根据所需温度和加热方式选择适当的加热方式,并进行相关设计。

常见的加热方式包括电加热、蒸汽加热、导热油加热等。

五、设计搅拌方式根据所需的搅拌速度和物质性质选择适当的搅拌方式,并进行相关设计。

常见的搅拌方式包括框式搅拌器、锚式搅拌器、涡轮式搅拌器等。

六、考虑安全性在设计反应釜时,需要考虑到安全因素。

例如,需要设置安全阀和压力表以确保釜体内部压力不会超过承受能力,还需要考虑到釜体内部可能产生的气体或蒸汽排放问题。

七、进行实验验证在完成反应釜设计后,需要进行实验验证。

通过实验可以检测出设计是否合理,是否存在问题,并及时进行改进和调整。

八、制定操作规程针对所设计的反应釜制定相应的操作规程,包括开机前检查事项、操作流程、安全措施等。

同时还需要对操作人员进行培训和指导,确保其能够正确地操作反应釜并遵守相关规程。

总之,在设计反应釜时,需要综合考虑多种因素,并根据具体情况进行相应的选择和设计。

同时还需要注重安全性和实用性,确保反应釜能够稳定、安全地运行。

反应釜的设计课程设计

反应釜的设计课程设计

反应釜的设计课程设计一、课程目标知识目标:1. 让学生理解反应釜的基本结构及其在化学工业中的应用。

2. 掌握反应釜设计中涉及的关键参数,如温度、压力、搅拌速度等。

3. 学习反应釜的材料选择原则及其对反应过程的影响。

技能目标:1. 培养学生运用所学知识进行反应釜初步设计的能力,包括选型、计算和材料选择。

2. 提高学生通过实验、图表分析等手段解决实际问题的能力。

3. 学会使用专业软件或工具对反应釜设计进行模拟和优化。

情感态度价值观目标:1. 培养学生对化学工程学科的兴趣,激发其创新意识和探索精神。

2. 增强学生的环保意识,使其在设计过程中充分考虑安全、环保和节能等因素。

3. 培养学生的团队协作精神和沟通能力,使其在项目实施过程中能够有效分工与协作。

本课程针对高中化学或物理学科,结合学生年级特点,以提高学生的实践操作能力和创新思维为核心。

课程设计注重理论知识与实践应用的结合,鼓励学生通过实验和案例分析,掌握反应釜设计的基本原理和方法。

通过本课程的学习,期望学生能够达到上述目标,为未来进一步学习相关专业打下坚实基础。

二、教学内容1. 反应釜的基本概念与结构- 介绍反应釜的定义、分类及其在化学工业中的应用。

- 分析反应釜的主要组成部分,如釜体、搅拌装置、加热和冷却系统等。

2. 反应釜设计原理与关键参数- 探讨反应釜设计的基本原则,包括材料选择、热力学和动力学考虑。

- 讲解温度、压力、搅拌速度等关键参数对反应过程的影响。

3. 反应釜设计方法与步骤- 引导学生了解反应釜设计的流程,包括需求分析、选型、计算、材料选择等。

- 指导学生运用相关公式和图表进行反应釜设计计算。

4. 反应釜设计实践案例分析- 分析典型反应釜设计案例,让学生了解实际工程中的应用。

- 组织学生进行小组讨论,分析案例中的设计优缺点。

5. 反应釜设计模拟与优化- 引导学生使用专业软件或工具进行反应釜设计的模拟和优化。

- 指导学生通过调整设计参数,提高反应釜的性能和安全性。

反应釜设计PPT演示课件

反应釜设计PPT演示课件
反应釜设计
1
反应釜设计
反应釜的总体结构 釜体及传热装置设计 搅拌器 传动装置与搅拌轴
搅拌反应器的轴封
2
一、反应釜的总体结构
搅拌设备由主要由釜 体部分、搅拌装置、 轴封、传热装置和传 动装置五大部分组成。
3
一、反应釜的总体结构

釜传传搅体热动拌部装装装分置置置包的一是括作般为筒用由了体是电使,控机各上制、种、反减物 下应速料封过器混头程、合以中联均及的轴匀各热器,种量等常接传组用管递成搅口。。拌等常器。 筒用搅如体外拌桨的置轴式直式用、径夹联涡和套轴轮高或器式度内与、决置减推定式速进釜蛇器式 容管相等积。联各的,有大传不小递同,来的应自尺根电寸据机和工的范艺动围, 要加力可求热。根确介为据定质保被其常证搅长选反拌径用应物比蒸釜料。汽筒的,体粘有空度、
物料粘度较大可取大值。
12
②估算筒体内径D1
釜体全容积 V :
V


4
D12 H1


4
D13
H1 D1
D1

3
4V
i
③确定公称直径DN(查表)
④确定筒体高度 H1 V V封
V 1m
V封-封头容积, V1m-1米高筒体容积(查附表)
⑤修正实际容积
V=V1m×H1+V封
13
2、夹套的几何尺寸计算
①夹套直径D2(mm) ②夹套高度H2
H 2 V V封
V 1m
V封-下封头容积,V1m- 1米高筒体的容积。
夹套直径D2 (mm)
D1 500~600 700~1800 2000~3000
D2
D1+50
D1+100
D1+200

反应釜的设计计算

反应釜的设计计算

反应釜的设计计算
1.反应釜的容积计算:
反应釜的容积计算是根据反应物的质量、浓度、摩尔体积等参数来确定的。

计算方法通常是根据反应物的化学方程式和反应平衡常数,通过平衡恒等式的推导得出。

具体计算方法可以参考化学工程的教材和相关设计规范。

2.反应釜的尺寸计算:
反应釜的尺寸计算主要包括釜体直径、高度、壁厚等参数的确定。

尺寸计算的依据通常是根据反应釜的容积、压力、温度和材料的力学性能等因素来确定的。

壁厚的计算可以使用ASME或其他相关设计规范中给出的公式和方法,以满足压力容器设计的安全要求。

3.反应釜的搅拌装置设计计算:
反应釜的搅拌装置的设计计算主要包括搅拌桨的形状、尺寸、转速等参数的确定。

搅拌装置的设计计算是根据反应液的性质、反应速率以及搅拌对于混合、传质等效果的要求来确定的。

4.反应釜的换热装置设计计算:
反应釜的换热装置主要包括壁面换热和内部换热两种形式。

壁面换热可以通过增加釜体壁厚、增大换热面积等方式来提高传热效率。

内部换热与液相或气相之间的流体传热有关,通常可以通过增加搅拌或循环流动来提高传热效率。

5.其他关键参数的计算:
其他关键参数的计算还包括反应釜的最大操作压力、操作温度、材料的选型等。

这些参数的计算依据主要是根据反应物的性质、反应过程的要求以及压力容器设计和安全规范来确定。

综上所述,反应釜的设计计算是一个复杂的过程,需要考虑多个因素的综合影响,以确保反应釜的性能和安全运行。

在进行设计计算时,需要基于理论和实践经验,并结合相关规范和标准来进行。

同时,还需要进行工程实践和实验验证,以验证设计计算的准确性和可行性。

反应釜设计程序

反应釜设计程序

反应釜设计程序设计程序是指根据一定的规则和要求,将反应釜的各项设计参数进行计算和确定的过程。

反应釜是化工工业中常见的一种设备,用于进行各种化学反应,如合成、分解、聚合等。

反应釜的设计程序一般包括以下几个步骤:确定反应类型、选择反应方程、计算反应热量、确定低温和高温极限、选择反应介质、计算反应物料的物性、计算传热面积、计算搅拌功率等。

下面将逐步介绍反应釜设计程序的具体内容。

一、确定反应类型在进行反应釜设计之前,首先需要确定反应的具体类型,比如合成反应、分解反应、聚合反应等,因为不同类型的反应需要考虑的因素和参数可能不同。

二、选择反应方程选择适当的反应方程是进行反应釜设计的关键步骤之一。

反应方程是根据反应的化学反应原理和反应条件等因素确定的。

选择反应方程需要考虑反应的产物、副产物、反应物料以及所需的温度、压力等因素。

三、计算反应热量反应热量是指反应过程中释放或吸收的热量。

计算反应热量是进行反应釜设计的重要步骤之一,它可以用来确定反应釜的冷却方式、散热面积以及搅拌功率等参数。

计算反应热量需要考虑反应的放热或吸热特性以及反应的热力学数据等因素。

四、确定低温和高温极限确定低温和高温极限是进行反应釜设计的关键步骤之一。

低温和高温极限是指反应釜所能承受的最低温度和最高温度。

确定低温和高温极限需要考虑反应物料的热稳定性以及反应条件等因素。

五、选择反应介质选择合适的反应介质是进行反应釜设计的重要步骤之一。

反应介质可以是液态、气态或固态,选择合适的反应介质需要考虑反应的物理性质、化学性质以及反应的操作条件等因素。

六、计算反应物料的物性计算反应物料的物性是进行反应釜设计的重要步骤之一。

反应物料的物性包括密度、粘度、热导率、热膨胀系数等。

计算反应物料的物性可以通过实验测定或者查阅相关文献来获取。

七、计算传热面积计算传热面积是进行反应釜设计的重要步骤之一。

传热面积是指用于传热的表面积,它可以影响反应的传热效果和反应速率等。

反应釜的设计要求

反应釜的设计要求

反应釜的设计要求反应釜是一种用于进行各种化学反应的设备,广泛应用于化学工业、医药工业、冶金工业等领域。

反应釜的设计要求包括结构设计、安全设计、操作性设计等方面,下面将详细介绍。

一、结构设计:1.釜体结构:反应釜的釜体一般由不锈钢或碳钢制成,要求有足够的强度和刚度,以承受反应过程中的压力和温度变化。

2.釜盖设计:采用容易开启和密封可靠的釜盖,以保证反应过程中的安全性和操作的便捷性。

3.冷却系统:具备冷却系统,能够快速降低反应物料的温度,以避免过高的温度对反应的影响。

4.加热系统:具备加热系统,能够提供适当的加热速率和均匀的加热效果,以满足反应的要求。

5.搅拌装置:设有搅拌装置,能够均匀搅拌反应物料,以提高反应效率和产品质量。

6.排放装置:设有排放装置,能够及时排放反应过程中产生的气体或液体,以保证安全性。

二、安全设计:1.安全阀:设有安全阀,当反应釜内部压力超过设计压力时,能够自动打开,以释放过高的压力,保证正常工作。

2.过压报警系统:设有过压报警系统,一旦反应釜内部压力超过设定值,能够及时发出警报,提醒操作人员采取相应的措施。

3.液位报警系统:设有液位报警系统,一旦反应釜内液位过高或过低,能够及时发出警报,提醒操作人员采取相应的措施。

4.温度报警系统:设有温度报警系统,一旦反应釜内部温度超过设定值,能够及时发出警报,提醒操作人员采取相应的措施。

5.防爆设计:采用防爆结构设计,能够有效防止反应釜内发生爆炸事故,保护操作人员和设备的安全。

三、操作性设计:1.操作面板:操作面板设计简单明了,标识清晰可见,方便操作人员进行操作和调节。

2.控制系统:具备先进的控制系统,能够对釜内的压力、温度等参数进行实时监测和控制,保证反应的准确性和稳定性。

3.观察窗口:设有透明的观察窗口,方便操作人员观察反应的过程和情况,及时调整操作参数。

4.清洗装置:设有清洗装置,便于对反应釜进行及时、彻底的清洗,以避免反应物料交叉污染。

搅拌反应釜的设计

搅拌反应釜的设计

搅拌反应釜的设计
无缺
一、搅拌反应釜简介
二、搅拌反应釜的设计原理
1、反应釜的容积
2、反应釜的结构
反应釜的结构也是很重要的,反应釜的结构分为卧式和立式两种。

反应釜的卧式布置比立式具有较小的体积,占用空间较少;但立式搅拌反应釜搅拌效果较仰角式搅拌反应釜更为理想,可以有效分散反应物料,提高反应效率。

3、搅拌设备
搅拌设备是指在反应釜内部安装的,用于搅拌物料的设备。

它的功能是使物料得到有效的混合和反应。

反应釜的搅拌设备可以采用耐酸碱搅拌机、叶轮式搅拌机、多叶式搅拌机、多极式搅拌机等。

搅拌机的刀叶型式有挖刀式、三叶式、柔性叶片式等。

4、压力。

(整理)反应釜设计

(整理)反应釜设计

反应釜设计的有关内容一、设计条件及设计内容分析由设计条件单可知,设计的反应釜体积为1.03m ;搅拌轴的转速为200/min r ,轴的功率为4kw;搅拌桨的形式为推进式;装置上设有5个工艺接管、2个视镜、4个耳式支座、1个温度计管口。

反应釜设计的内容主要有:(1) 釜体的强度、刚度、稳定性计算和结构设计; (2) 夹套的的强度、刚度计算和结构设计; (3) 设计釜体的法兰联接结构、选择接管、管法兰; (4) 人孔的选型及补强计算; (5) 支座选型及验算; (6) 视镜的选型;(7) 焊缝的结构与尺寸设计; (8) 电机、减速器的选型;(9) 搅拌轴及框式搅拌桨的尺寸设计; (10)选择联轴器; (11)设计机架结构及尺寸; (12)设计底盖结构及尺寸; (13)选择轴封形式;(14)绘总装配图及搅拌轴零件图等。

第一章 反应釜釜体的设计1.1 釜体DN 、PN 的确定 1.1.1 釜体DN 的确定将釜体视为筒体,取L/D=1.1 由V=(π/4)L D i 2,L=1.1i D 则=Di 31.140.1π⨯⨯,m Di 0.1=,圆整mm Di 1000= 由[]1314页表16-1查得釜体的mm DN 1000= 1.1.2釜体PN 的确定由设计说明书知釜体的设计压力PN =0.2MPa 1.2 釜体筒体壁厚的设计 1.2.1设计参数的确定设计压力p1:p1=0.2MPa ;液柱静压力 p1H=10^(-6)×1.0×10^3×10×1.1=0.011MPa 计算压力p1c : p1c=p1+p1H=0.2+0.011=0.211MPa ; 设计温度t1: <100℃ ; 焊缝系数Φ: Φ=0.85许用应力[]t σ:根据材料Q235-B 、设计温度<100℃,由参考文献知[]t σ=113MPa ;钢板负偏差1C :1C =0.6mm (GB6654-96); 腐蚀裕量2C :2C =3.0mm 。

反应釜的设计计算

反应釜的设计计算

反应釜的设计计算反应釜是一种用于进行化学反应的容器,广泛应用于化工工艺中。

反应釜的设计计算涉及到多个方面,包括容积计算、工作压力计算、热量传递计算等。

本文将对反应釜的设计计算进行详细介绍。

1.容积计算反应釜的容积设计是根据反应物的种类、反应速度以及所需达到的反应程度等因素来确定的。

容积计算的基本原则是要确保釜内具有足够的空间容纳反应物和产物,并保持充足的搅拌和传热效果。

容积计算的公式如下:容积=反应物的摩尔数*摩尔体积*反应的摩尔系数其中,反应物的摩尔数可以通过化学方程式中的系数获得,摩尔体积可以通过气体状态方程计算获得。

2.工作压力计算工作压力是指反应釜内的压力,在设计计算中需要考虑到反应釜能够承受的最大工作压力以及安全系数。

通常情况下,反应釜的工作压力一般为1.5倍于反应压力,以确保在正常操作和异常情况下都能保持压力稳定。

工作压力计算的公式如下:工作压力=反应压力*安全系数3.热量传递计算热量传递是指在反应釜内进行反应过程中热量的传递和控制。

反应釜的热量传递计算主要包括反应物的升温时间、反应热量的计算以及冷却系统的设计等。

反应物的升温时间可以通过热传导方程计算得出:T=(Ts-T0)/(a*A*h)其中,T代表升温时间,Ts代表反应温度,T0代表初始温度,a代表热扩散系数,A代表表面积,h代表热传递系数。

反应热量的计算可以通过反应物的反应热以及反应的相对摩尔数来获得。

冷却系统的设计通常包括冷却剂的选择、冷却剂流量的计算以及冷却剂进出口温度的控制等。

综上所述,反应釜的设计计算是一个复杂而全面的过程,需要综合考虑反应物、反应压力、热量传递等多个因素。

在进行设计计算时,需要依据具体的使用要求和工艺参数进行合理的估算和选择,以确保反应釜的安全可靠运行。

反应釜设计规范

反应釜设计规范

反应釜设计规范反应釜设计规范:1. 设计基准反应釜的设计应符合国家相关规范和标准的要求,如《反应容器压力容器设计规范》(GB150)等。

2. 选材和制造反应釜的材料应选择具有良好的耐腐蚀性能和机械强度的材料,常见的有不锈钢、镍合金等。

材料的选取应根据反应介质的性质和工艺要求来确定。

制造过程应符合相应的焊接、检验和材料质量要求。

3. 容积和尺寸反应釜的容积和尺寸应根据生产工艺和操作要求来确定,考虑到反应介质的数量和浓度、反应速率、传热和传质等因素。

需要保证釜内反应物的充分搅拌,并留有足够的空间供热源、冷却介质和温度控制器等设备的安装和维护。

4. 反应器罐体结构反应釜的罐体结构应采用合理的设计,保证罐体的刚度和密封性能。

一般情况下,反应釜采用圆筒形或球形,底部通常为圆弧底或锥底。

应注意材料的厚度和接缝的设计,确保罐体的安全强度,并预留必要的检修孔和观察窗。

5. 热源和冷却系统反应釜应配备适当的热源和冷却系统,以控制反应的温度。

热源可以采用电加热器、蒸汽、导热油等方式,冷却系统可以采用冷却水或其他介质进行循环冷却。

6. 搅拌系统反应釜应配备适当的搅拌系统,以保证反应物的充分混合和传质。

搅拌系统可以采用机械搅拌器、流体搅拌器等,其设计应考虑到搅拌强度、搅拌功率消耗和气液传质效果等因素。

7. 安全措施反应釜应配备必要的安全措施,包括压力释放装置、温度和压力传感器、防爆装置等。

同时,应设置相应的操作指南和应急预案,以确保操作人员的安全和设备的正常运行。

8. 检测和监控反应釜应配备适当的检测和监控装置,以实时监测反应的温度、压力、液位等参数,确保反应过程的可控性和安全性。

应注意选择合适的仪器和设备,并进行校准和维护。

9. 维护和清洁反应釜应定期进行维护和清洁,清除反应物的残留物和污染物。

维护工作包括检查设备的密封性能、防腐蚀涂层的状况、电器设备和仪器的正常运行等。

清洁工作应符合相关的操作规程,避免使用有害物质和工具。

反应釜设计

反应釜设计

第一章 反应釜釜体与传热装置搅拌设备常被称作搅拌釜(或搅拌槽),当搅拌设备用作反应器时,又被称为搅拌釜式反应器,有时简称反应釜。

釜体的结构型式通常是立式圆筒形,其高径比值主要依据操作容器的装液高径比以及装料系数大小而定。

传热方式有两种:夹套式壁外传热结构和釜体内部蛇管联合使用。

根据工艺需要,釜体上还需要安装各种工艺接管。

所以,反应釜釜体和传热装置设计的主要内容包括釜体的结构和部分尺寸、传热形式和结构、各种工艺接管的安设等。

1.1反应釜釜体1.1.1确定反应釜釜体的直径和高度在已知搅拌器的操作容积后,首先要选择筒体适宜的长径比(H/D i ),以确定筒体直接和高度。

选择筒体长径比主要考虑一下两方面因素:① 长径比对搅拌功率的影响:在转速不变的情况下,P ∝D 5(其中D :搅拌器直径;P :搅拌功率),P 随釜体直径的增大而增大很多,减小长径比只能无谓的损耗一些搅拌功率。

一次一般情况下,长径比应该大一点。

② 长径比对传热的影响:当容积一定时H/D i 越高越有利于传热。

长径比的确定通常采用经验值。

在确定反应釜直径和高度时,还应该根据反应釜操作时所允许的装料程度---装料系数η等予以综合考虑,通常装料系数η可取0.6-0.85.如果物料在反应过程中产生泡沫或沸腾状态,η应取较低值,一般为0.6-0.7;若反应状态平稳,可取0.8-0.85(物料粘度大时可取最大值)。

因此,釜体的容积V 与操作溶积V 0有如下关系:V=V 0/η…………………………………………………………………(1.1) 选取反应釜装料系数η=0.8,由V=V 0/η可得设备容积:V 0=V ×η=1×0.8=0.83m 选取H/D i =1.0,由公式m D H V D ii 08.10.10.14433=⨯⨯==ππ……………………………………(1.2)将计算结果圆整至公称直径标准系列,选取筒体直径D i =1000mm ,查《化工设备机械基础》表8-27,DN=1000mm 时的标准封头曲面高度h=250mm ,直边高度h 2=25mm ,封头容积V h =0.1513m ,由手册查得每一米高的筒体容积为3195.0m V =。

反应釜设计分解

反应釜设计分解

精选ppt
38
桨叶与轴的固定方法
焊接法:制造方便,强度不大, 拆卸困难,用于直径小容器。 螺钉连接法:轴是圆形时,易 产生滑动,拆卸方便,适用于 功率小的场合。 螺钉连接法:轴是方的,克服 浆叶与之滑动。 键固定法:克服以上缺点,广 泛采用。
精选ppt
39
(2)推进式搅拌器
特点:
a.轴向流搅拌器
螺旋形蛇管
精选ppt
同心圆蛇管式
31
三、 搅拌器
搅拌器的作用:加强介质的混合或分散,提供适宜的流 动状态,加快反应速度,达到搅拌过程。
1、搅拌器的类型和流型
常用的有:桨式、涡轮式、推进式、锚式、框式、螺带 式、螺杆式等。 有三种基本流型:
轴向流 径向流 混合流
精选ppt
32
搅拌器的三种基本流型
径向流式流体从轴向 进入叶轮,从径向流 出。常用于低粘度乳 浊液、悬浊液、固-液的搅拌。
强时间搅度用的拌、有密器稳机封转定载,速性热在等计体搅选算,拌择按冷轴。前却穿述介过
方质封搅法通头拌进常处器行用要通。冷有常却密用水封可或装拆盐置连水即接。轴固 传封定热。在面搅积拌要轴满上足。工艺所需
传电热机量、的减要速求器。重量不大时
可利用机架支精承选p在pt 封头上
4
精选ppt
5
反应釜
精选ppt
8
精选ppt
9
1、釜体的尺寸
(1) 长径比(H1/D1)的确定
确定长径比时应考虑:
①③长反径应比过对程搅对拌长功径率 比的影要响求:用 N于∝发d酵j5,过长程径的比发越酵大罐,,即为D使1 或通 d入j 越的小空,气所与需发搅酵拌液功充率分也接越触小,。
②需长有径足比够对的传液热深的,影因响此:要长求径长比 大径,比可大以。使传热表面到釜中心 的距离较小,釜内温度梯度小, 有利于传热。

大型高温高压反应釜的设计

大型高温高压反应釜的设计

大型高温高压反应釜的设计一、引言在化工生产中,高温高压反应釜广泛应用于催化剂的合成、高分子聚合物的制备、氧化还原反应等领域。

为了确保反应釜能够在高温高压条件下工作稳定安全,需要进行设计并选择合适的材料和结构。

二、设计原则1.安全性原则:反应釜必须能够承受高温高压的工作条件,避免发生爆炸或泄漏等事故。

2.稳定性原则:反应釜应具有良好的热稳定性和机械稳定性,以保证反应过程的稳定进行。

3.温度控制原则:反应釜应设计合理的加热和冷却系统,能够精确控制反应温度。

4.压力控制原则:反应釜应设计合适的安全阀和压力传感器,能够精确控制反应压力。

5.搅拌原则:反应釜应具备良好的搅拌性能,以保证反应物料的均匀混合。

三、设计要点1.材料选择:反应釜的压力容器部分应采用耐高温高压、耐腐蚀性能好的材料,如不锈钢、合金钢等。

同时,需要考虑反应物料对材料的侵蚀程度,选择合适材料。

2.结构设计:反应釜的结构应合理,具备良好的强度和密封性,以承受高温高压条件下的工作。

需要考虑采用球型釜体和球型封头,提高釜体的强度和耐压性。

3.温度控制系统:反应釜应配备恒温控制系统,如电加热丝或水冷却系统等,以精确控制反应温度,并保证整个反应釜的温度均匀性。

4.压力控制系统:反应釜的压力控制应采用安全阀和压力传感器等装置,可以及时调节和监控反应釜的压力,保证其在安全范围内工作。

5.搅拌系统:反应釜应配备良好的搅拌设备,如搅拌桨或搅拌推进器等,以提高反应物料的混合效果,并保证反应釜中的温度和压力均匀性。

四、设计步骤1.根据反应物料的特性和反应过程的需求,确定反应釜的工作温度和压力。

2.根据工作温度和压力,选择合适的材料,并计算反应釜的厚度和强度。

3.设计反应釜的结构,选取适当的球型釜体和球型封头,并计算釜体和封头的尺寸。

4.设计反应釜的加热和冷却系统,选择合适的加热和冷却设备,并计算加热功率和冷却能力。

5.设计反应釜的压力控制系统,选择合适的安全阀和压力传感器,并计算其调节范围。

反应釜设计程序(一)

反应釜设计程序(一)

反应釜设计程序(一)引言概述:在化工领域,反应釜是一种用于进行化学反应的设备,它在工业生产中起着至关重要的作用。

反应釜的设计程序是确保反应釜正常运行和高效操作的关键之一。

本文将介绍反应釜设计程序的相关知识和要点,以帮助工程师和技术人员更好地理解和应用。

一、反应釜设计参数1. 反应釜容量:根据所需反应体积和生产批次确定合适的容量。

2. 反应温度:根据反应物性质和反应条件确定适宜的温度范围。

3. 反应压力:根据反应物的压力需求和容器承受能力确定合适的压力等级。

二、反应釜材料选择1. 材料耐腐蚀性:选择适合反应物的材料,如不锈钢、玻璃钢等。

2. 材料强度要求:根据反应物的压力和温度确定材料的强度要求。

3. 材料成本考虑:综合考虑材料的性能和成本,选择经济实用的材料。

三、反应釜加热和冷却方式1. 加热方式选择:蒸汽加热、电加热、导热油加热等,根据反应要求和能源便利性选择适当的方式。

2. 冷却方式选择:水冷却、风冷却、换热器冷却等,根据反应物的热散失和操作便利性选择合适的方式。

3. 加热和冷却控制:通过控制加热和冷却介质的流量和温度,确保反应釜温度在设定范围内稳定控制。

四、反应釜搅拌系统设计1. 搅拌器类型:桨叶式、锚式、推进式等,根据反应物性质和混合要求选择合适的搅拌器类型。

2. 搅拌器结构:搅拌器形状、转速等设计要求,确保反应物均匀混合和传递热量。

3. 搅拌器驱动系统:电机选型、传动装置设计等,确保搅拌器的正常运转和可靠性。

五、反应釜安全措施1. 安全阀设计:根据反应压力和容器承受能力确定安全阀的工作参数和设置位置。

2. 透明视窗设计:通过视窗观察反应釜内部情况,确保操作人员的安全和反应过程的可控性。

3. 泄压装置设计:在突发情况下及时泄压,保护反应釜和操作人员的安全。

总结:反应釜设计程序(一)的关键点在于参数选择、材料选择、加热和冷却方式、搅拌系统设计和安全措施。

合理的设计和操作可以确保反应釜的正常运行和安全性能,提高化工生产的效率和质量。

反应釜设计

反应釜设计

2.2.8容器支座的选用计算
反应釜的总质量包括罐体和夹套质量m1, 传动装置总质量m2 ,物料重量计量m3. 由釜内夹套内部充满水时的质量比物料重 可得:
m m1 m2 m3 4323 .5 473.43 4140 8939 .93kg
根据表13-6,设计中选取B型耳式支座B5, 支座数为9个
设备接口
• 化工容器及设备,往往由于工艺操作等原 因,在筒体和封头上需要开一些各种用途 的孔。 • 接管和法兰是用来与管道和其他设备连接 的。标准管法兰的主要参数是公称直径和 公称压力。
• 反应釜机械设计是在工艺要求确 定后进行的。反应釜的工艺要求 通常包括反应釜的容积、最大工 作压力、工作温度、工作介质及 腐蚀情况、传热面积、搅拌形式、 转速及功率、装配哪些接管口等 几项内容。 • 上述工艺要求一般以表格及示意 图的反映在工艺人提出的设备设 计要求单中。下表所示就是第四 组反应釜的设备设计要求单。
计算内筒筒体封头厚度
• 同理得A=0.0025,同理由表得B=130, • 其许用外压力 B 130 [ p] 2..59MPa 2.5MPa R2o 1404 30 d 2n • d 2n 30mm 所以假设满足工艺要求
2.2.2水压试验及其强度校核
筒体材料为 16MnR ,该材料有 s =345 ,取 =0.8,则 t 0.9 s 0.9 345 310.5MPa 罐体筒体水压试验压力
• 安装底盖采用螺柱等紧固件,上与机架连接,下 与凸缘法兰连接,是整个搅拌传动装置与容器连 接的主要连接件。 • 安装底盖的常用形式为RS和LRS型,其他结构 (整体或衬里)、密封面形式(突面或凹面)以 及传动轴的安装形式(上装或下装),按 HG21565-95选取。 • 安装底盖的公称直径与凸缘法兰相同。形式选取 时应注意与凸缘法兰的密封面配合(突面配突面, 凹面配凹面)。 • 选用RS型。查资料可得,选取安装底盖 DN=250mm。

10立方反应釜设计书

10立方反应釜设计书

10立方反应釜设计书1. 引言反应釜是化学实验室中常见的设备之一,用于进行化学反应和合成。

10立方反应釜是一种具有较大容量的反应釜,可以满足大规模生产和工业化生产的需求。

本设计书将详细介绍10立方反应釜的设计要求、结构设计、安全措施以及操作指南。

2. 设计要求2.1 反应容量根据任务名称,本次设计的10立方反应釜需要具有10立方米的容量,以满足大规模生产和工业化生产的需求。

2.2 反应温度本次设计要求反应釜能够在不同温度下进行化学反应。

设计需考虑到从低温到高温范围内的温度调节,并保证精确可靠。

2.3 反应压力为了满足不同类型反应的需求,本次设计要求反应釜能够承受不同压力下的化学反应。

设计需考虑到从低压到高压范围内的压力调节,并保证安全可靠。

2.4 反应速率控制由于某些化学反应需要精确控制反应速率,本次设计要求反应釜能够实现对反应速率的精确控制,以满足不同反应的需求。

2.5 反应过程监控为了保证化学反应的稳定性和安全性,本次设计要求反应釜能够实时监测和记录反应过程中的温度、压力、搅拌速度等参数。

3. 结构设计3.1 反应釜主体根据任务要求,10立方反应釜的主体容量为10立方米。

主体材料选用高强度不锈钢,保证其耐腐蚀性和机械强度。

为了方便操作和维护,主体设有进料口、出料口、排气口等。

3.2 加热系统为了满足不同温度下的化学反应需求,本次设计在反应釜主体外围设置了加热系统。

加热系统由电加热器、温度传感器和温控装置组成,能够根据设定温度自动调节加热功率,保持恒定的反应温度。

3.3 冷却系统为了满足低温下的化学反应需求,本次设计在反应釜主体外围设置了冷却系统。

冷却系统由冷却水循环装置和温度传感器组成,能够根据设定温度自动调节冷却水流速和温度,保持恒定的反应温度。

3.4 搅拌系统为了保证反应物均匀混合,并提高反应速率控制的精确性,本次设计在反应釜内部设置了搅拌系统。

搅拌系统由电机、搅拌桨和转速控制装置组成,能够根据设定转速自动调节搅拌功率,保持恒定的搅拌速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章. 绪论 (1)1.1产品概述 (1)1.2 合成醇酸树脂的原料 (1)1.3 醇酸树脂的合成原理 (5)1.4 合成工艺 (6)1.4.1 按合成原料分类 (7)2.聚酯化反应 (8)1.4.2 按工艺分类 (9)第二章. 设计内容 (11)2.1设计依据 (11)2.2设计原则 (12)2.2.1生产规模 (12)2.2.2生产方式 (12)2.2.3投料方式 (12)2.2.4流程特点 (12)2.2.5设备选型原则 (13)2.2.6生产制度 (13)2.2.7原料的技术规格 (13)2.2.8配方设计 (14)2.3物料衡算过程 (14)2.4热量衡算 (17)2.4.1热量衡算概述 (17)2.4.2热量衡算 (17)3.1 反应釜与稀释釜的选型 (19)3.2反应釜与封头厚度的确定 (20)3.3 搅拌桨 (21)3.4 支座及夹套的选型 (23)3.5 视镜人孔及接管 (24)3.6 搅拌桨电机、减速器 (25)3.7 油泵的选型 (25)3.8 输送泵的选型 (26)3.9 真空缓冲罐的选取 (26)3.10 废水接收罐的设计 (26)3.11 CO2系统的确定 (26)3.12 冷凝器的选择与设计 (27)参考书目 (27)心得与体会 (29)第一章. 绪论1·1产品概述多元醇和多元酸可以进行缩聚反应,所生成的缩聚物大分子主链上含有许多酯基(-COO-),这种聚合物称为聚酯。

涂料工业中,将脂肪酸或油脂改性的聚酯树脂称为醇酸树脂(alkyd resin),而将大分子主链上含有不饱和双键的聚酯称为不饱和聚酯,其它的聚酯则称为饱和聚酯。

这三类聚酯型大分子在涂料工业中都有重要的应用醇酸树脂指由多元醇、多元酸与油或其脂肪酸反应生成的产物,它不同于单纯由多元醇、多元酸制成的聚酯树脂。

醇酸树脂是由多元醇、多元酸和一元酸缩聚而成的线性树脂,具有合成技术成熟、制造工艺简便、原料易得到以及树脂涂膜综合性能好等特点,在涂料用合成树脂中用量最大用途最广。

但醇酸树脂涂料也存在一些缺点,如涂膜干燥缓慢、硬度低、耐水性差等,这将导致施工周期延长,也影响其应用范围。

醇酸树脂同时还具有原料容易获得,生产工艺简易,性能优良,施工方便的特点。

同时,它本身就是一种漆料,能制成清漆、磁漆、底漆、腻子等,还可以与硝化棉、过氯乙烯树脂、氨基树脂、氯化橡胶、环氧树脂等合用,提高和改进其他各类涂料产品的性能。

1·2 合成醇酸树脂的原料一. 多元醇制造醇酸树脂的多元醇主要有丙三醇(甘油)、三羟甲基丙烷、三羟甲基乙烷、季戊四醇、乙二醇、1,2-丙二醇、1,3-丙二醇等。

其羟基的个数称为该醇的官能度,丙三醇为3官能度醇,季戊四醇为四官能度醇。

根据醇羟基的位置,有伯羟基、仲羟基和叔羟基之分。

它们分别连在伯碳、仲碳和叔碳原子上。

羟基的活性顺序为:伯羟基>仲羟基>叔羟基常见多元醇的物性见下表 :单体名称结构式相对分子质量 溶点(沸点) / ℃ 密度/(g/cm 3) 丙三醇(甘油) OHCH(OH)CH HOCH 22 92.09 18(290) 1.26 三羟甲基丙烷 3223OH)C(CH CH CH 134.12 56~59(295) 1.1758 季戊四醇 42OH)C(CH 136.15 189(260) 1.38 乙二醇 OH )HO(CH 22 62.07 -13.3(197.2) 1.12 二乙二醇 OH )O(CH )HO(CH 2222 106.12 -8.3(244.5) 1.118 丙二醇OH CH(OH)CH CH 2376.09-60(187.3)1.036用三羟甲基丙烷合成的醇酸树脂具有更好的抗水解性、抗氧化稳定性、耐碱性和热稳定性,与氨基树脂有良好的相容性。

此外还具有色泽鲜艳、保色力强、耐热及快干的优点。

乙二醇和二乙二醇主要同季戊四醇复合使用,以调节官能度,使聚合平稳,避免胶化。

二. 有机酸有机酸可以分为两类:一元酸和多元酸。

一元酸主要有:苯甲酸、松香酸以及脂肪酸(亚麻油酸、妥尔油酸、豆油酸、菜籽油酸、椰子油酸、蓖麻油酸、脱水蓖麻油酸等);多元酸包括:邻苯二甲酸酐(PA )、间苯二甲酸(IPA)、对苯二甲酸(TPA)、顺丁烯二酸酐(MA)、己二酸(AA)、癸二酸(SE)、偏苯三酸酐(TMA )等。

多元酸单体中以邻苯二甲酸酐最为常用,引入间苯二甲酸可以提高耐候性和耐化学品性,但其溶点高、活性低,用量不能太大;己二酸(AA)和癸二酸(SE)含有多亚甲基单元,可以用来平衡硬度、韧性及抗冲击性;偏苯三酸酐(TMA )的酐基打开后可以在大分子链上引入羧基,经中和可以实现树脂的水性化,用作合成水性醇酸树脂的水性单体。

一元酸主要用于脂肪酸法合成醇酸树脂,亚麻油酸、桐油酸等干性油脂肪酸感性较好,但易黄变、耐候性较差;豆油酸、脱水蓖麻油酸、菜籽油酸、妥尔油酸黄变较弱,应用较广泛;椰子油酸、蓖麻油酸不黄变,可用于室外用漆和浅色漆的生产。

苯甲酸可以提高耐水性,由于增加了苯环单元,可以改善涂膜的干性和硬度,但用量不能太多,否则涂膜变脆。

一些有机酸物性见下表:单体名称状态(25℃)相对分子质量溶点/℃酸值/(mgKOH/g)碘值苯酐(PA)固148.11 131 785间苯二甲酸(IPA)固166.13 330 676顺丁烯二酸酐(MA)固98.06 52.6(199.7) 1145己二酸(AA)固146.14 152 768癸二酸(SE)固202.24 133偏苯三酸酐(TMA)固192 165 876.5苯甲酸固122 122 460松香酸固340 >70 165桐油酸固280 48.5、β- 180~220豆油酸液285 195~202 135亚麻油酸液280 180~220脱水篦麻油酸液293 187~195 138~143 菜油酸液285 195~202 120~130妥尔油酸液310 180 105~130椰子油酸液208 263~275 9~11篦麻油酸液310 175~185 85~93二聚酸液566 190~198三. 油脂油类有桐油、亚麻仁油、豆油、棉籽油、妥尔油、红花油、脱水蓖麻油、蓖麻油、椰子油等。

植物油是一种三脂肪酸甘油酯。

三个脂肪酸一般不同,可以是饱和酸、单烯酸、双烯酸或三烯酸,但是大部分天然油脂中的脂肪酸主要为十八碳酸,也可能含有少量月桂酸(十二碳酸)、豆蔻酸(十四碳酸)和软脂酸(十六碳酸)等饱和脂肪酸,脂肪酸受产地、气候甚至加工条件的重要影响。

重要的不饱和脂肪酸有:油酸(十八碳烯-9-酸):COOH )CH(CH CH )(CH CH 72723==亚油酸(十八碳二烯-9,12-酸):COOH )CH(CH CH CHCH CH )(CH CH 722423==== 亚麻酸(十八碳三烯-9,12,15-酸):COOH )CH(CH CH CHCH CH CHCH CH CH CH 722223======桐油酸(十八碳三烯-9,11,13-酸)COOH )CH(CH CHCH CHCH CH )(CH CH 72323======蓖麻油酸(12-羟基十八碳烯-9-酸):COOH )CH(CH CH CH(OH)CH )(CH CH 722523==因此,构成油脂的脂肪酸非常复杂,植物油酸是各种饱和脂肪酸和不饱和脂肪酸的混合物。

油类一般根据其碘值将其分为:干性油、不干性油和半干性油。

干 性 油:碘值≥140,每个分子中双键数≥6个; 不干性油:碘值≤100,每个分子中双键数<4个; 半干性油:碘值100—140,每个分子中双键数4~6个。

五. 油脂的质量指标① 外观、气味:植物油一般为清澈透明的浅黄色或棕红色液体,无异味,其颜色色号小于5号。

若产生酸败,则有酸臭味,表示油品变质,不能使用。

② 密度:油比水轻,大多数都在0.90~0.94 g/cm 3之间。

③ 粘度:植物油的黏度相差不大。

但是桐油由于含有共轭三烯酸结构,黏度较高;篦麻油含羟基,氢键的作用使其黏度更高。

④ 酸价: 酸价用来测量油脂中游离酸的含量。

通常以消耗一克油中所含的酸,所需的氢氧化钾之量来计量。

合成醇酸树脂的精制油的酸价应小于 5.0 mg KOH/g(油)。

⑤ 皂化值和酯值:皂化1g 油中全部脂肪酸所需KOH 的毫克数为皂化值;将皂化1g 油中化合脂肪酸所需KOH 的毫克数称为酯值。

皂化值=酸值+酯值⑥ 不皂化物:皂化时,不能与KOH 反应且不溶于水的物质。

主要是一些高级醇类、烃类等。

这些物质影响涂膜的硬度、耐水性。

⑦热析物:含有磷脂的油料(如豆油、亚麻油)中加入少量盐酸或甘油,可使其在高温下(240-280℃)凝聚析出。

为使油品的质量合格,适合醇酸树脂的生产,合成醇酸树脂的植物油必须经过精制才能使用。

否则会影响树脂质量甚至合成工艺。

精制方法包括碱漂和土漂处理,俗称“双漂”。

碱漂主要是去除油中的游离酸、磷脂、蛋白质及机械杂质,也称为“单漂”。

“单漂”后的油再用酸性漂土吸附掉色素(即脱色)及其它不良杂质,才能使用。

目前最常用的精制油品为豆油、亚麻油和蓖麻油。

亚麻油属干性油,故干性好,但保色性差、涂膜易黄变。

蓖麻油为不干性油,同椰子油类似,保色保光性好。

大豆油取自大豆种子,大豆油是世界上产量最多的油脂。

大豆毛油的颜色因大豆的品种及产地的不同而异。

一般为淡黄、略绿、深褐色等。

精炼过的大豆油为淡黄色。

大豆油半干性油,综合性能较好。

常见的植物油的主要物性见下表:油品酸值碘值皂化值密度/(g/cm3,20℃)色泽/号(铁钴比色法)桐油6~9 160~173 190~195 0.936~0.940 9~12亚麻油1~4 175~197 184~195 0.97~0.938 9~12豆油1~4 120~143 185~195 0.921~0.928 9~12松浆油(妥尔油)1~4 130 190~195 0.936~0.940 16脱水蓖麻油1~5 125~145 188~195 0.926~0.937 6棉籽油1~5 100~116 189~198 0.917~0.924 12篦麻油2~4 81~91 173~188 0.955~0.964 9~12椰子油1~4 7.5~10.5 253~268 0.917~0.919 41·3 醇酸树脂的合成原理甘油和苯酐的摩尔比按2;3投料,则该体系的的平均官能度为:(2×3+3×2)/(2+3)=2.4,其Crothers 凝胶点为Pc=2/2.4=0.833,因此,若官能团的反应程度超过凝胶点,就生成体型结构缩聚物。

其结构可表示如下:O CH 2 CH CH 2 O C CO OOO CH 2 CH CH 2 O C CO OOO CH 2 CH CH 2 OO这种树脂遇热不融,亦不能溶于有机溶剂,具有热固性,不能用作成膜物质。

相关文档
最新文档