脉冲编码调制(PCM)系统.
脉冲编码调制(PCM)及其数字通信的特点
![脉冲编码调制(PCM)及其数字通信的特点](https://img.taocdn.com/s3/m/58144af00b4e767f5bcfce45.png)
01 0 1 0 0 1 0 1 01 1 …
O
双极 性传 输
码
…
O
时隙
t
t t
4
二、数字通信的主要特点
1. 数字通信的主要优点 (1)抗干扰能力强; (2)差错可控; (3)易加密; (4)易于与现代技术相结合。
2. 需待解决的问题 (1)提高频带利用 ; (2)简化系统设备结构。
5
数字通信的许多优点都是用比模拟通信占据更宽的系统 频带为代价而换取的。以电话为例,一路模拟电话通常只 占据4kHz带宽,但一路接近同样话音质量的数字电话可能 要占据 20~60kHz的带宽,因此数字通信的频带利用率不 高。另外,由于数字通信对同步要求高,因而系统设备比 较复杂。不过,随着新的宽带传输信道(如光导纤维)的 采用、 窄带调制技术和超大规模集成电路的发展,数字通 信的这些缺点已经弱化。随着微电子技术和计算机技术的 迅猛发展和广泛应用,数字通信在今后的通信方式中必将 逐步取代模拟通信而占主导地位。
脉冲编码调制(PCM)及 其数字通信的特点
电工组
1
脉冲编码调制(PCM)
脉冲编码调制(PCM)简称脉码调制,它是一种用 一组二进制数字代码来代替连续信号的抽样值,从而 实现通信的方式。由于这种通信方式抗干扰能力强, 它在光纤通信、数字微波通信、卫星通信中均获得了 极为广泛的应用。
PCM是一种最典型的语音信号数字化的波形编码
2
A / D变化
m(t) 抽样
量化 mq(t) 编码
信道 干扰
ms(t)
低通 滤波
译码
m(t)
mq(t)
PCM系统原理框图
3
7
量化电平数 5
4 .38ຫໍສະໝຸດ 5 .24M= 8
基于Matlab的脉冲编码调制(PCM)系统设计与仿真之令狐文艳创作
![基于Matlab的脉冲编码调制(PCM)系统设计与仿真之令狐文艳创作](https://img.taocdn.com/s3/m/7bb07a6c1a37f111f0855bb4.png)
课程设计任务书令狐文艳学生姓名:专业班级:指导教师:工作单位:题目: 脉冲编码调制(PCM)的实现初始条件:1、MATLAB软件;2、脉冲编码调制相关知识。
要求完成的主要任务:1、任务实现脉冲编码调制(PCM)技术的三个过程:采样、量化与编码。
2、要求用仿真软件对其进行验证,使其满足以下要求:(1)模拟信号的最高频率限制在4KHZ以内;(2)分别实现64级电平的均匀量化和A压缩率的非均匀量化;(3)按照13折线A律特性编成8位码。
时间安排:第1,2天:分析题目,方案设计;第3,4,5天:软件设计;第6,7天:系统仿真;第8天:答辩,完成设计说明书。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要IAbstractII1 绪论12 MATLAB简介22.1 MATLAB软件简介22.2 MATLAB程序设计方法23 PCM脉冲编码原理43.1 模拟信号的抽样及频谱分析43.1.1 信号的采样43.1.2 抽样定理43.1.3采样信号的频谱分析53.2 量化53.2.1 量化的定义53.2.2 量化的分类63.2.3 MATLAB的A律13折线量化123.3 PCM编码123.3.1 编码的定义123.3.2 码型的选择133.3.3 PCM脉冲编码的原理134 PCM的MATLAB实现154.1 PCM抽样的MATLAB实现154.2PCM量化的MATLAB实现184.2.1 PCM均匀量化的MATLAB实现184.2.2 PCM A律非均匀量化的MATLAB实现204.3PCM A律13折线编码的MATLAB实现225结果分析及总结25参考文献26摘要本设计结合PCM的抽样、量化、编码原理,利用MATLAB软件编程和绘图功能,完成了对脉冲编码调制(PCM)系统的建模与仿真分析。
课题中主要分为三部分对脉冲编码调制(PCM)系统原理进行建模与仿真分析,分别为采样、量化和编码原理的建模仿真。
脉冲编码调制PCM
![脉冲编码调制PCM](https://img.taocdn.com/s3/m/cd4979f1970590c69ec3d5bbfd0a79563c1ed4e0.png)
脉冲编码调制(PCM)什么是脉冲编码调制(PCM)脉冲编码调制(Pulse Code Modulation,简称PCM)是一种数字通信技术,用于将模拟信号转化为数字信号进行传输。
PCM是一种有损压缩算法,它将连续模拟信号离散化成固定的采样值,并使用一定的编码方案进行表示。
脉冲编码调制的原理脉冲编码调制的原理主要包括三个步骤:采样、量化和编码。
采样采样是指对连续的模拟信号进行间隔一定时间采集取样。
采样过程中,将模拟信号的幅度值在时间轴上不断取样并离散化。
采样率是指每秒钟采集的样本数,通常以赫兹(Hz)为单位。
较高的采样率可以更准确地还原模拟信号。
量化量化是指将采样得到的模拟信号幅度值映射到离散的数值上,以减少数据量。
量化的单位被称为量化水平或量化位数,通常以比特(bit)为单位。
较高的量化位数可以提供更高的精度,但也会增加数据量。
编码编码是将量化后的离散信号转换为二进制码流,以便通过数字通信系统进行传输。
常用的编码方式包括直接二进制编码(Differential Pulse Code Modulation,DPCM)、调制码(Delta Modulation,DM)和PAM(脉冲幅度调制)等。
脉冲编码调制的应用脉冲编码调制广泛应用于音频、视频和数据传输等领域。
以下是一些常见的应用场景:电话通信脉冲编码调制被广泛应用于传统的电话通信系统中。
通过PCM,模拟信号可以转换成数字化的信号,并通过电话网络进行传输。
音频编码在音频编码中,PCM被用于将模拟音频信号转换为数字音频信号,以便于储存和传输。
常见的音频编码标准包括CD音质的16位PCM编码和DVD音质的24位PCM编码。
数字视频在数字视频处理中,PCM常用于将模拟视频信号转换为数字视频信号,以实现高质量的视频编码和传输。
PCM可以通过降低采样率和量化位数,来减小视频数据的体积。
数据传输PCM也广泛用于数据传输领域,特别是在传输需要高精度和可靠性的信号时。
PCM(脉冲编码调制)介绍及PCM编码的原理 毕业论文---PCM量化13折线
![PCM(脉冲编码调制)介绍及PCM编码的原理 毕业论文---PCM量化13折线](https://img.taocdn.com/s3/m/249d60ae89eb172dec63b724.png)
PCM(脉冲编码调制)介绍及PCM编码的原理摘要在数字通信信道中传输的信号是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。
另外,还可以存储,时间标度变换,复杂计算处理等。
而模拟信号数字化属信源编码范围,当然信源编码还包括并/串转换、加密和数据压缩。
这里重点讨论模拟信号数字化的基本方法——脉冲编码调制,而模拟信号数字化的过程(得到数字信号)一般分三步:抽样、量化和编码。
本文讲述了PCM(脉冲编码调制)的简单介绍,以及PCM编码的原理,并分别对PCM的各个过程,如基带抽样、带通抽样、13折线量化、PCM编码以及PCM 译码进行了详细的论述,并对各过程在MATLAB7.0上进行仿真,通过仿真结果,对语音信号的均匀量化以及非均匀量化进行比较,我们得出非均匀量化教均匀量化更加有优势。
关键词:脉冲编码调制抽样非均匀量化编码译码AbstractIn the digital communication channel signal is digital signal transmission, digital transmission with the microelectronics and computer technology, its advantages become increasingly evident, the advantage of strong anti-interference, distortion, transmission characteristics of stable, long-distance relay is not the accumulation of noise Can also be effective encoding, decoding and security codes to improve the effectiveness of communications systems, reliability and confidentiality.Digitized analog signal range of source coding is, of course, also include the source code and / serial conversion, encryption and data compression. This focus on the simulation of the basic methods of digital signals - pulse code modulation, while the analog signal the digital process (to get digital signals) generally three steps: sampling, quantization and coding.This paper describes the PCM (pulse code modulation) in a brief introduction, and the PCM coding theory, and were all on the PCM process, such as baseband sampling, bandpass sampling, 13 line quantization, PCM encoding and decoding PCM a detailed Are discussed and the process is simulated on MATLAB7.0, the simulation results, the uniformity of the speech signal quantification and comparison of non-uniform quantization, we have come to teach non-uniform quantization advantage of more than uniform quantizationKeywords:Pulse Code Modulation Sampling Non-uniform quantization Coding Decoding目录1 前言 (1)2 PCM原理 (2)2.1 引言 (2)2.2 抽样(Sampling) (3)2.2.1. 低通模拟信号的抽样定理 (3)2.2.2 抽样定理 (4)2.2.3. 带通模拟信号的抽样定理 (7)2.3 量化(Quantizing) (8)2.3.1 量化原理 (8)2.3.2均匀量化 (10)2.3.3 非均匀量化 (11)2.4 编码(Coding) (18)2.5 译码 (24)2.6 PCM处理过程的其他步骤 (26)2.7 PCM系统中噪声的影响 (27)3 算例分析 (29)3.1 无噪声干扰时PCM编码 (30)3.2 噪声干扰下的PCM编码 (36)结论 (42)致谢 (43)参考文献 (44)附录 (45)1 前言数字通信系统中信道中传输的是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。
脉冲编码调制
![脉冲编码调制](https://img.taocdn.com/s3/m/c5daca3e83c4bb4cf7ecd184.png)
脉冲编码调制一、实验目的掌握脉冲编码调制原理及其实现方法二、实验内容用SystemView 软件仿真脉冲编码调制实现过程三、实验原理1. PCM 系统工作原理在现代通信系统中,以PCM 为代表的编码调制技术被广泛应用于模拟信号的数字传输。
除PCM外,DPCM 和ADPCM 的应用范围更广。
PCM 的主要优点是抗干扰能力强、失真小、传输特性稳定,尤其是远距离信号再生中继时,噪声不累积,而且可以采用压缩编码、纠错编码和保密编码等来提高系统的有效性、可靠性和保密性。
另外PCM 还可以在一个信道上将多路信号进行时分复用,传输脉冲编码调制PCM 是把模拟信号变换为数字信号的一种调制方式。
其最大的特点是把连续输入的模拟信号变换为在时域和振幅上都离散的量,然后将其转化为代码形式传输。
PCM 编码通过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。
为便于用数字电路实现其量化电平数一般为2的整数次幂,有利于采用二进制编码表示。
采用均匀量化时,其抗噪声性能与量化级数有关,每增加一位编码,其信噪比增加约6dB ,但实现的电路复杂程度也随之增加,占用带宽也越宽。
因此,实际采用的量化方式多为非均匀量化,通常使用信号压缩与扩张技术来实现非均匀量化,在保持信号固有的动态范围前提下,在量化前将小信号进行放大,而对大信号进行压缩通常的压缩方法有13 折线A 律和律两种标准。
国际通信中多采用A 律,采用信号压缩后,用8位编码实际可以表示均匀量化11位编码时才能表示的动态范围,能有效提高小信号时的信噪比。
PCM 通信系统组成如图4-6 所示:图4-6 PCM 通信系统组成框图输入信号经抽样量化编码后变成数字信号(PCM 信号)经信道传输到达接收端,先由译码器恢复出抽样值序列,在经过低通滤波滤出模拟基带信号,通常将量化编码组合称为模/数变换器,将译码低通的组合称为数/模变换器。
2、A87.6/13折线编码的码位安排当n=8时,a1 a2……a9的安排如下:a1:极性码,当抽样值Is>0时,a1=1,否则为0;a2 a3 a4:段落吗,用来确定抽样值所在量化器的段落a5 a6 a7 a8:段内电平码。
什么是PCM
![什么是PCM](https://img.taocdn.com/s3/m/f058919703d276a20029bd64783e0912a2167cd0.png)
PCM详解(1)什么是PCMPCM是用于将一个模拟信号(如话音)嫁接到一个64kbps的数字位流上,以便于传输。
PCM将连续的模拟信号变换成离散的数字信号,在数字音响中普遍采用的是脉冲编码研制方式,即所谓的PCM (PULSE CODE MODULATION)。
PCM编码是Pulse Code Modulation的缩写,又叫脉冲编码调制,它是数字通信的编码方式之一,其编码主要过程是将话音、图像等模拟信号每隔一定时间进行取样,使其离散化,同时将抽样值按分层单位四舍五入取整量化,同时将抽样值按一组二进制码来表示抽样脉冲的幅值。
PCM编码的最大的优点就是音质好,最大的缺点就是体积大。
我们常见的Audio CD就采用了PCM编码,一张光盘的容量只能容纳72分钟的音乐信息。
PCM方式是由取样,量化和编码三个基本环节完成的。
音频信号经低通滤波器带限滤波后,由取样,量化,编码三个环节完成PCM调制,实现A/D变化,形成的PCM数字信号再经纠错编码和调制后,录制在记录媒介上。
数字音响的记录媒介有激光唱片和盒式磁带等。
放音时,从记录媒介上取出的数字信号经解调,纠错等处理后,恢复为PCM数字信号,由D/A变换器和低通滤波器还原成模拟音频信号。
将CD―PCM数字信号变换还原成模拟信号的解码器―称为CD---PCM 解码器。
(2) PCM基本工作原理脉冲调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输.脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程.所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号.该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号.它的抽样速率的下限是由抽样定理确定的.在该实验中,抽样速率采用8Kbit/s.所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示.一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值.所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值.然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D.PCM的原理如图5-1所示.话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用"四舍五入"办法量化为有限个幅度取值的信号,再经编码后转换成二进制码.对于电话,CCITT规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM 编码后的标准数码率是64kb/s.为解决均匀量化时小信号量化误差大,音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密,量化间隔小,而在大信号时分层疏,量化间隔大.在实际中广泛使用的是两种对数形式的压缩特性:A律和律.A律PCM用于欧洲和我国,律用于北美和日本.PCM是为了用数字方式传输或存储模拟信号,对模拟信号进行数字化的一种方法。
脉冲编码调制(PCM)及系统实验报告
![脉冲编码调制(PCM)及系统实验报告](https://img.taocdn.com/s3/m/b99d79c1a58da0116c1749cb.png)
深圳大学实验报告
课程名称:通信原理
实验项目名称:脉冲编码调制(PCM)及系统
学院:信息工程学院
专业:通信工程
指导教师:李晓滨
报告人:学号:班级: 2 实验时间:2017.11.22
实验报告提交时间:2017.12.
教务部制
图2-2帧脉冲和PCM编码数据(128K)实测波形
(2)时钟为128KHZ,频率为2KHZ的同步正弦波及PCM编码数据波形:用8KHZ的矩形窄脉冲测出一帧两路的PCM编码数据
(3)时钟为64KHZ,频率为2KHZ的非同步正弦波及PCM编码数据波形用8KHZ的矩形窄脉冲测出一帧8bit的PCM编码数据;
(4)时钟为128KHZ,频率为2KHZ的非同步正弦波及用8KHZ的矩形窄脉冲测出一帧两路的PCM编码数据。
现代通信原理考题题解_浙江大学
![现代通信原理考题题解_浙江大学](https://img.taocdn.com/s3/m/a4617305bcd126fff6050b10.png)
参考样卷1(一) 填空题 (每空5分)1.根据仙农信道容量公式,信道频带宽度可以和信噪比 互换,无限增加信道带宽,能否增大信道容量?否2.目前我国移动通信中有下列三种多址方式,频分多址FDMA ,时分多址TDMA ,码分多址CDMA 。
模拟移动通信采用FDMA 多址方式,全球通GMS 采用TDMA 多址方式。
3.已知下列两个码组,C1=(10110),C2-(01000)C2 码组的重量W (C2)=1,C1,C2两码组之间的距离(码距)为W (C1,C2)=4。
4.调频信号鉴频解调器输出噪音功率谱的形状是和频率有抛物线形状关系 ,改善调频系统信噪比的简单方法是预加重和去加重 。
5.数字复接中,帧同步码的作用是 接收端识别出帧同步码后,即可建立正确的路序。
;二次群准同步复接中,塞入码的作用是 调整码速 。
6.在语音信号脉冲编码调制中,采用非均匀量化的目的是降低信息速率,压缩传输频带。
(P129)我国的脉冲编码调制系统,采用哪种对数压缩特性?A 率对数压缩特性。
7,设语音信号的最高频率为3.4khz, 则双边带调幅信号带宽为6.8KHz ,调频指数为10的调频信号的带宽为KHz f m FM 8.74)1(2=+β。
8. 计算机局域网(以太网)中采用的数字基带信号的码型为曼切斯特码(数字双相码),与AMI 码相比,HDB3码的主要优点是便于定时恢复。
9.在数字调制性能评价时,常用到Eb/N0,其含义是比特平均能量噪音单边功率密度比,BPSK 与QPSK 调制在相同Eb/N0时误比特率相同,这是否意味相同信息速率时两者信噪比相同?不同。
10.多进制数字调制中,基带信号常采用格雷码,其目的是减少解调误码率,设QPSK 信号的0相位对应的格雷码为00,分别给出90,180,270 相位对应的格雷码。
01,11,10。
(二)问答题1. (10分)数据通信开放系统互联模型的七层协议是什么内容?调制解调器属于哪一层? 答:数据通信开放系统互联模型的七层协议是物理层,链路层、网络层、运输层——低层会晤层、表示层、应用层——高层, 调制解调器属于物理层。
脉冲编码调制(PCM)编译码系统设计
![脉冲编码调制(PCM)编译码系统设计](https://img.taocdn.com/s3/m/93f1c261b84ae45c3b358cf1.png)
设 计 内 容
设计时间
第一周
学习有关PCM编译码知识,查阅有关资料
09.08-09.12
第二周
硬件电路实现,焊接电路及调试
09.15-09.19
第三周
软件仿真,编写设计说明书、答辩、评定成绩
09.22-09.26
五、指导教师评语及学生成绩
指导教师评语:
年 月 日
成绩
指导教师(签字):
前言
1.1专业综合设计目的
1.3专业综合设计的意义
本课题研究的是PCM编译码系统的设计。通过学习PCM系统的原理和信号传输的过程,学会了画出PCM原理框图并能说明各环节的作用以及画出电路各点波形图,熟悉了PCM编译码芯片TP3057功能以及电路的各元件功能,也会用实验板焊接电路来实现PCM编译码器。这让我们更好的掌握模拟通信和数字通信系统的信息传输的基本原理和分析方法,能懂得通信系统的基本原理和构成,了解有关通信系统中的技术指标及改善系统性能的一些基本技术措施,为我们全面、系统的了解信号传输过程提供了理论依据。
(4) V+接+5V电源。
(5) FSR接收部分帧同信号输入端,此信号为8KHz脉冲序列。
(6) DR接收部分PCM码流输入端。
(7) BCLKR/CLKSEL接收部分位时钟(同步)信号输入端,此信号将PCM码流在FSR上升沿后逐位移入DR端。位时钟可以为64KHz到2.048MHz的任意频率,或者输入逻辑“1”或“0”电平器以选择1.536MHz、1.544MHz或2.048MHz用作同步模式的主时钟,此时发时钟信号BCLKX同时作为发时钟和收时钟。
量化器的平均输出信号量噪比随量化电平数的增大而提高。在实际应用中,对于给定的量化器,量化电平数和量化间隔都是确定的,所以量化噪声也是确定的。但是,信号的强度可能随时间变化,像话音信号就是这样,当信号小时,信号量噪比也小。所以,这种均匀量化器对于小输入信号很不利。为了克服这个缺点,改善小信号时的信号量噪比,在实际应用中常采用非均匀实现语音信号数字化的一种方法。一语音信号的数字化语音信号是连续变化的模拟信号,实现语音信号的数字化必须经过抽样、量化和编码三个过程。
脉冲编码调制PCM
![脉冲编码调制PCM](https://img.taocdn.com/s3/m/42631fd9d5d8d15abe23482fb4daa58da0111cea.png)
2.3 脉冲编码调制(PCM)
PCM调制系统
1
信号的压缩与扩张
2
PCM编码器和译码器
3
PCM系统的噪声性能
4
差分脉冲编码调制
5
PCM编码器和译码器
编码器 译码器 PCM编码和译码器集成电路
码位的选择和安排
13折线编码采用8位二进制码,对应256个量化级,即正、负输入幅度范围内各有128个量化级 需要将13折线中的每个折线段再均匀划分16个量化级 正、负输入的8个段落被划分成128个不均匀量化级 8位码的安排
脉冲编码调制系统
30/32PCM端机每帧共有32个时隙,传30路数字话音信号和2时隙的勤务信息。 30/32PCM端机输出的信号称为一次群信号。实际应用中,还可将多个一次群进行准同步复接(PDH):即四个基群 (一次群)复接组成二次群,四个二次群组成三次群,四个三次群组成四次群,四个四次群组成五次群,或进行同步复接(SDH)。
脉冲编码调制系统
以30/32PCM端机为例,介绍PCM的系统组成 话音信号的抽样频率为8000Hz,抽样的间隔时间Ts=1/fs=125s 为了时分复用将125 s分为32个时隙,即每个时隙为125 s /32=3.9 s 每个抽样脉冲用8bit编码,即8位二进制脉冲作一个码组,一次放入各个时隙。 为保证通信的正常进行,每帧的起始时刻由帧定时信号决定,收端也应有相应的帧定时信号,收发两端的帧定时信号必须同频同相,即实现帧同步。
目前用得较多
逐次比较编码器原理框图
全波整流
参考电源
PAM信号
US
|US|
UR
极性判决
D1
比较码 形成
或 门
a2-a8
a1
PCM 编码输出
脉冲编码调制(PCM)实验报告
![脉冲编码调制(PCM)实验报告](https://img.taocdn.com/s3/m/3e39952752ea551810a68754.png)
实验四脉冲编码调制(PCM)实验一、实验目的通过本实验,学生应达到以下要求:1,了解语音信号PCM编译码的工作原理及实现过程.2,验证PCM编译码原理.3,初步了解PCM专用大规模集成电路的工作原理和应用.4,了解语音信号数字化技术的主要指标,学习并掌握相应的测试方法.二、实验内容本实验可完成以下实验内容:⏹观察测量PCM调制解调的各种时隙信号⏹观察编译码波形⏹测试动态范围、信噪比和系统频率特性⏹对系统性能指标进行测试和分析◆系统输出信噪比特性测量◆编码动态范围和系统动态范围测量◆系统幅频特性测量◆空载噪声测量三、基本原理脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用.十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积,减轻重量,降低功耗,简化调试以及方便维护等方面都有了显著的改进.目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化.本实验是以这些产品编排的 PCM 编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术.PCM 数字电话终端机的构成原理如图 4.1 所示.实验只包括虚线框内的部分,故名 PCM 编译码实验.图4.1 PCM数字电话终端机的结构示意图1、实验原理和电路说明PCM编译码系统由定时部分和PCM编译码器构成,电路原理图附于本章后.◆PCM编译码原理为适应语音信号的动态范围,实用的PCM编译码必须是非线性的.目前,国际上采用的均是折线近似的对数压扩特性.ITU-T 的建议规定以 13 段折线近似的 A 律(A=87.56)和15段折线近似的μ律(μ=255)作为国际标准.A 律和μ律的量化特性初始段如图 4.2 和图 4.3所示.A律和μ律的编译码表分别列于表1和表2.(附本章后) 这种折线近似压扩特性的特点是:各段落间量阶关系都是 2 的幂次,在段落内为均匀分层量化,即等间隔16个分层,这些对于用数字电路实现非线性编码与译码是极为方便的.◆PCM编译码器简介鉴于我国国内采用的是A律量化特性,因此本实验采用TP3067专用大规模集成电路,它是CMOS工艺制造的单片PCMA律编译器,并且片内带输入输出话路滤波器.TP3067的管脚如图4.4所示,内部组成框图如图4.5所示.TP3067的管脚定义简述如下:(1)VPO+ 收端功率放大器的同相输出端.(2)GNDA 模拟地.所有信号都以此管脚为参考.(3)VPO- 收端功放的反相输出端.(4)VPI 收端功放的反相输入端.(5)VFRO 接收部分滤波器模拟输出端.(6)VCC +5V电压输入.(7)FSR接收部分帧同步时隙信号,是一个8KHz脉冲序列.(8)DR接收部分PCM码流解码输入端.(9)BCLKR/CLKSEL位时钟(bitclock),它使PCM码流随着FSr上升沿逐位移入Dr端,位时钟可以为从 64KHz 到 2048MHz 的任意频率.或者作为一个逻辑输入选择 1536MHz,1544MHz 或2048MHz,用作同步模式的主时钟.(10)MCLKR/PDN接收部分主时钟,它的频率必须为1536MHz,1544MHz或2048MHz.可以和MCKLx异步,但是同步工作时可达到最佳状态.当 MCLKx 接低电平,MCLKR被选择为内部时钟,当MCLKx接高电平,该芯片进入低功耗状态.(11)MCLKx发送部分主时钟,必须为1536MHz,1544MHz或2048MHz.可以和MCLKR异步,但是同步工作时可达到最佳状态.(12)BCLKx发送部分时钟,使PCM码流逐位移入DR端.可以为从64KHz到2048MHz的任意频率,但必须和MCLKx同步.(13)Dx发送部分PCM码流编码输出端.(14)FSx发送部分帧同步时隙信号,为一个8KHz的脉冲序列.(15)TSx漏极开路输出端,它在编码时隙输出低电平.(16)ANLB 模拟反馈输入端.在正常工作状态下必须置成逻辑"0".当置成逻辑"1"时,发送部分滤波器的输入端并不与发送部分的前置滤波器相连,而是和接收部分功放的VPO+相连.(17)GSx发送部分输入放大器的模拟基础,用于在外部同轴增益.(18)VFxI发送部分输入放大器的反相输入端。
脉冲编码调制PCM实验
![脉冲编码调制PCM实验](https://img.taocdn.com/s3/m/8deaa67f1711cc7930b71607.png)
实验报告册课程:通信系统原理教程实验:脉冲编码调制PCM实验班级:姓名:学号:指导老师:日期:实验二:脉冲编码调制PCM 实验实验目的:1、 为了能够熟练的运用SystemView 来实现脉冲编码调制仿真实验。
2、 进一步了解信号经过传输、调制、恢复过程中信号的失真程度,及其影响失真的因素。
3、 为了掌握避免输入与输出波形的严重失真,而应当注意一些事项。
实验原理:脉冲编码调制(PCM )是波形编码中最重要的一种。
PCM 在光纤、数字微波通信、卫星通信中均获得了极为广泛的应用。
其数学模型可以用如下图示所示。
PCM 是模拟信号数字化的一种具体方法,它包括取样、量化、和编码三个步骤。
它是采用PCM 的模拟信号数字传输系统,简称PCM 系统,即为上图“数学模型”所示。
取样信号m(t)在时间上离散化,量化使取样值在电平上离散化,编码就是使离散电平变换为由一组二进制码元组成的代码(也称为码组),有此得到的二进制码元序列称为PCM 信号。
PCM 信号经数字通信系统传输到达接收端,接收端对它们进行适当的分组,重建量化值,然后经低通滤波器,便可得到重建信号m ’(t)。
值得注意的是,量化过程是一个非均匀量化过程,服从A 律。
实验步骤:1、脉冲编码调制系统仿真模型基于PCM 系统基本原理的SystemView 仿真模型如下图2-1:图2-1中,图符0、1、2产生频率分别为5Hz 、10Hz 、和15Hz 的正弦波信号,图符3对它们进行相加,模拟信号源。
图符4是压缩器,对模拟信号进行预处理,采用A 律特性。
图符6是模数转换器,完成对模拟信号的取样、量化、和编码,取样时钟由图符7提供。
图符8是接收端的数模转换器,完成对码组的译码。
图符9对译码后的样值进行扩张处理,消除发送端压缩器对信号的影响。
图符10是个低通滤波器,从接收的取样序列恢复原模拟信号。
双击图符,并选择参数按钮,可知各图图符的参数设置。
2、 仿真演示系统运行时间:样点数为2048,取样速率为1000Hz 。
第五章脉冲编码调制
![第五章脉冲编码调制](https://img.taocdn.com/s3/m/772d912c804d2b160b4ec07d.png)
实现过程:
准理想 抽样
抽样保持
LPF
电路
用极窄的脉冲序列作抽样脉冲 展宽脉冲
5.3.2 平顶抽样
矩形脉冲函数
h
t
A 0
t
其它
H A Sa
2
0
通过保持电路后,XSf XS H X ns H / Ts
由 xt X Ts t t nTs
Ts
t
2
Ts n
ns
n
X s ()
1
2
X
s
1 TS
X
(
)
n
(
nS
)
1 Ts
所以共13条直线段 13折线
5.8.4 对压缩特性的折线近似
输y 出z=f(x)
1
7 8
6
8
6
5
8
5
4 84
3 83
2 82
1 8 1
10
31
63
255 3
7
255 15
255
255 255 255
μ律15折线:
第8段 7
127 255
1
x
5.9 PCM编码原理
5.9.1 概述 5.9.2 折叠二进制码(FCB) 5.9.3 CCITT标准的PCM编码规则
X
s
1 Ts
X ns
5.2.2 带通抽样定理
pcm系统原理
![pcm系统原理](https://img.taocdn.com/s3/m/5f090ef6f021dd36a32d7375a417866fb84ac026.png)
pcm系统原理
PCM(脉冲编码调制)系统是一种用于数字信号传输的调制技术。
其原理是将模拟信号通过一系列的采样和量化操作,将模拟信号转换为一系列的数字信号样本,然后通过调制和解调操作将数字信号传输到接收端,并重新恢复为模拟信号。
首先,PCM系统对模拟信号进行采样,即以一定的时间间隔对模拟信号进行离散采样,得到一系列模拟信号样本。
采样定理要求采样频率应大于模拟信号中最高频率的两倍,以避免采样失真。
采样操作将模拟信号离散化为一系列数字信号样本。
接下来,PCM系统对采样得到的模拟信号样本进行量化。
量化操作将离散的模拟信号样本映射到一组有限的数字值上。
通常情况下,采用均匀量化的方法,将模拟信号样本映射到一个固定的数字范围内。
量化结果越精细,表示模拟信号的数字值越多,但同时也会增加数据传输的带宽需求。
然后,PCM系统对量化后的数字信号样本进行编码。
编码操作将每个数字信号样本映射为一系列二进制码字,以便在传输中进行传输。
具体的编码方法有很多种,常见的编码方式包括脉冲码调制(PCM)、Δ调制(DM)和自适应编码(ADPCM)等。
在信号传输的过程中,PCM系统采用一定的调制技术将编码后的数字信号样本转换为模拟信号,并进行传输。
接收端通过解调操作将接收到的模拟信号转换为数字信号样本,并进行解码操作,恢复原始的模拟信号。
总结来说,PCM系统通过采样、量化、编码和调制等操作,
将模拟信号转换为数字信号,并进行传输;接收端则通过解调和解码操作将接收到的数字信号重新恢复为模拟信号。
这种数字信号传输的方式能够有效地提高信号传输的质量和传输距离。
5.3 脉冲编码调制(PCM)
![5.3 脉冲编码调制(PCM)](https://img.taocdn.com/s3/m/a341c11deff9aef8941e0694.png)
1 斜率:
0
0
0
111 110 101 100 011 010 001 000
1 x
5.3.1 PCM编码原理
3.码位的选择与安排
第 5 至第 8 位码 C5C6C7C8 为段内码,这 4 位码的 16 种可能状态 用来分别代表每一段落内的16个均匀划分的量化级。 段内码与16 个量化级之间的关系如表 5.6 所示。
m t
抽样
ms t
量化 A/D变换
mq t
编码
信道 m t 来自干扰 mq t 低通滤波
译码与低通滤波的组合称为数/模变换器(D/A变换器)。
抽 样 是 按 抽 样 定 理 把量化是把幅度上仍连续(无穷 时 间上连续的模拟 信 号 转 编 码 是 用二进制码组表 多个取值)的抽样信号进行幅 换成时间上离散 的 抽度离散,即指定 样 M个样值脉冲。 示量化后的 M个规定的电平, 信号; 把抽样值用最接近的电平表示;
码相同;段内码第一位若为0,除段内码第一位外,
其余码取反即可。
5.3.1 PCM编码原理
以非均匀量化时的最小量化间隔Δ =1/2048 作为均 匀量化的量化间隔
从13 折线的第一段到第八段所包含的均匀量化级数 共有2048 个均匀量化级
非均匀量化只有128 个量化级
3.码位的选择与安排
假设:
均匀量化需要编11 位码,而非均匀量化只要编7 位 码
5.3.1 PCM编码原理
1.PCM调制系统框图
脉冲编码调制(PCM)简称脉码调制,是一种用一 组二进制数字代码来代替连续信号的抽样值, 从而实现通信的方式。 PCM是一种最典型的语音信号数字化的波形编码 方式。 原理框图
第4章 PCM系统
![第4章 PCM系统](https://img.taocdn.com/s3/m/067b3509c5da50e2524d7f41.png)
量化
非均匀量化
第3章
模拟信号的数字化变换
(一)均匀量化
1.定义:量化级差Δ 是均匀的 实质:不管信号的大小,量化级差都相同
【例2】 一信号在T、2T…8T共8个时刻取样 T 2T 3T 4T 5T 6T 7T 抽样值 0.3 1.5 1.8 2.4 3.7 4.2 3.3 量化值 0 2 2 2 4 4 3 此题Δ=1; M=5
收端:数字信号→模拟信号(D/A) ,主要步骤是解码、低通滤波 信号在传输过程中要受到干扰和衰减,故每隔一段距离加一个再生 中继器,使数字信号恢复 为了使信码适合信道传输,并有一定的检测能力,在发端加有码型 变换电路,收端加有码型反变换电路。
第3章
PCM波形图
模拟信号的数字化变换
模拟信号
第3章
模拟信号的数字化变换
3 .理想抽样、自然抽样与平顶抽样
理想抽样
自然抽样
平顶抽样
第3章
模拟信号的数字化变换
自然抽样波形及频谱
x(t) × s(t)
xs(t)
LPF
x’(t)
第3章 4.结论:
模拟信号的数字化变换
只要频谱间不发生重叠现象,在接收端就可通过截止频率为fc=fm的理想
低通滤波器从样值信号中取出原模拟信号。因此,对于低频频率fL很低,最 高频率为fm的模拟信号来说,只要抽样信号频率fs≥2fm,在接收端就可不失 真地取出原模拟信号。 实际滤波器的特性不是理想的,因此常取fs>2fm。 在选定fs后,对模拟信号的fm必须给予限制。其方法为在抽样前加一低通 滤波器,限制fm,使信号为低通带限信号。 利用一低通滤波器即可完成信号重建的任务。 由于样值信号中原模拟信号的幅度只为抽样前的τ /Ts倍。因为τ 很窄,所 以还原出的信号幅度太小。为了提升重建的语音信号幅度,通常采取加一展 宽电路,将样值脉冲τ 展宽为Ts,从而提升信号幅度。理论和实践又表明: 加展宽电路后,低频信号提升的幅度多,高频信号提升的幅度小,产生了失 真。为了消除这种影响,在低通滤波器之后加均衡电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲编码调制(PCM)系统摘要:脉冲编码调制(PulseCodeModulation),简称PCM。
是数字信号是对连续变化的模拟信号进行抽样、量化和编码产生。
PCM的优点就是音质好,缺点就是体积大。
PCM可以提供用户从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。
关键字:脉冲编码调制、取样、量化、编码、解码Abstract:Pulse Code Modulation (PulseCodeModulation), referred to as PCM. Digital signal is a continuous change in analog signal sampling, quantization and coding production. PCM sound quality is good advantages and disadvantages are bulky. PCM can provide users from 2M to 155M line speed of digital data services, can also provide voice, video transmission, remote learning, and other businesses.Keywords:Pulse code modulation, modulation, demodulation目录一、工作原理 (4)1.1 取样 (5)1.2 量化 (5)1.3 编码 (7)1.4 再生 (10)1.5 解码 (10)二、芯片选择 (11)2.1 TP3067管脚定义 (13)三、电路设计 (14)四、心得体会 (16)一、工作原理:脉冲编码调制是把模拟信号数字化传输的基本方法之一,它通过抽样、量化和编码,把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号,然后在信道中进行传输。
接收机将收到的数字信号经再生、译码、平滑后恢复出原始的模拟信号。
PCM系统的组成如下图所示。
PCM主要经过3个过程:抽样、量化和编码。
抽样过程将连续时间模拟信号变为离散时间、连续幅度的抽样信号,量化过程将抽样信号变为离散时间、离散幅度的数字信号,编码过程将量化后的信号编码成为一个二进制码组输出。
再经解码恢复并输出。
1.1 取样:取样就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
取样如下图所示取样必须遵循奈奎斯特抽样定理,离散信号才可以完全代替连续信号。
低通连续信号抽样定理内容:一个频带限制在赫内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。
1.2 量化:把幅度连续变化的模拟量变成用有限位二进制数字表示的数字量的过程称为量化。
量化误差:量化后的信号和抽样信号的差值。
量化误差在接收端表现为噪声,称为量化噪声。
量化级数越多误差越小,相应的二进制码位数越多,要求传输速率越高,频带越宽。
为使量化噪声尽可能小而所需码位数又不太多,通常采用非均匀量化的方法进行量化。
非均匀量化根据幅度的不同区间来确定量化间隔,幅度小的区间量化间隔取得小,幅度大的区间量化间隔取得大。
模拟信号的量化分为均匀量化和非均匀量化。
由于均匀量化存在的主要缺点是:无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号()m t较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。
为了克服这个缺点,实际中,往往采用非均匀量化。
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区间,其量化间隔v 也小;反之,量化间隔就大。
它与均匀量化相比,有两个突出的优点。
首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。
因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。
实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。
通常使用的压缩器中,大多采用对数式压缩。
广泛采用的两种对数压缩律是μ压缩律和A 压缩律。
美国采用μ压缩律,我国和欧洲各国均采用A 压缩律,因此,PCM 编码方式采用的也是A 压缩律。
所谓A 压缩律也就是压缩器具有如下特性的压缩律:A X A Ax y 10,ln 1≤<+=11,ln 1ln 1<≤++=X A A Ax y A 律压扩特性是连续曲线,A 值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。
实际中,往往都采用近似于A 律函数规律的13折线(A=87.6)的压扩特性。
这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现编码1.3 编码:编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
为了用二元编码的码字表示量化样值,可先把样值换算成二进制数,然后,按着二进制数字的结构转化成电波形,即二元编码信号。
常见的二进制码有:自然二进制码组(NBC ),折叠二进制码组(FBC )和格雷二进制码组(RBC )。
三种常见二进制码组如下图所示编码过程中用逐次型编码器进行编码,其原理图如下图所示:各功能电路原理说明如下:比较器:是编码器的核心部件。
每比较一次产生一位码元,它输出的就是PCM码字。
为自动产生所需的I权,比较器的输出还反馈到记忆电路。
记忆电路:除第一次比较是固定的以外,其余各次比较都必须依据前次比较的结果来选取I权的数值,所以必须用记忆电路记存前几位的状态。
恒流源及电阻网络:它产生各种需要的I权。
7/11位码字变换器:它就是一个数字压缩器。
因为非均匀量化的7位非线性码等效于11位线性码,比较器只能编7位码字,反馈后来的当然也是7位码字。
而恒流源有11个基本的权值电流,需要11个控制脉冲来进行控制,所以必须把7位变成11位。
实质就是把7位非线性码变成11位线性码。
保持电路:因为这种编码方法需要把I样与I权比较7次,且在比较中I样应保持幅度不变。
一般,样值脉冲只有3~4个码元宽度,但要求它至少有7个码元宽度(比较7次的时间)。
办法就是靠二次抽样把波形展宽,故采用保持电路完成二次抽样功能。
1.4 再生:PCM信号在传输过程中会出现衰减和失真,因此在长距离传输时必须在一定的距离内对PCM信号波形进行再生。
1.5 解码:解码是编码的逆过程,即D/A变换。
它把接收来的信号变成量化的PCM信号,常用的电路方式为电阻网络译方式,如下图所示:记忆电路:它的作用是将输入的PCM串行码变成同时输出的并行码。
所以是一个串/并变换电路。
7/12变换电路:它的作用是将7位非线性码变成12位的线性码。
按压扩特性应变为11位线性码,但上于在译码器中比编码器多用了一个“权电流”,外加了半个量化级,所以可译成12线性码,从而改善了信扰比。
极性控制电路:检出极性码元D1,以便使恢复出来的PCM信号能够极性还原。
寄存读出电路:这是译码器所特有的。
它将12位串行的线性码变成并行码。
所以也是一个串/并变换电路。
并行的12位线性码同时驱动权值电流电路,就产生对应的译码输出。
由此可知,PCM信号通过译码器要滞后一个字的时间才能输出PAM的量化样值。
恒流源及电阻网络:它输出的电流值就是所恢复的信号量化样值,并由12位线性码控制“恒流源及电阻网络”的开关。
二、芯片选择:鉴于我国国内采用的是A 律量化特性,因此本实验采用TP3067 专用大规模集成电路,它是CMOS 工艺制造的单片PCMA 律编译器,并且片内带输入输出话路滤波器。
TP3067 的管脚、内部组成框图如下图示2.1 TP3067 的管脚定义:(1)VPO+ 收端功率放大器的同相输出端。
(2)GNDA 模拟地。
所有信号都以此管脚为参考。
(3)VPO- 收端功放的反相输出端。
(4)VPI 收端功放的反相输入端。
(5)VFRO 接收部分滤波器模拟输出端。
(6)VCC +5V 电压输入。
(7)FSR 接收部分帧同步时隙信号,是一个8KHz 脉冲序列。
(8)DR 接收部分PCM 码流解码输入端。
(9)BCLKR/CLKSEL 位时钟(bitclock),它使PCM 码流随着FSr 上升沿逐位移入Dr 端,位时钟可以为从64KHz 到2048MHz 的任意频率。
或者作为一个逻辑输入选择1536MHz、1544MHz 或2048MHz,用作同步模式的主时钟。
(10)MCLKR/PDN 接收部分主时钟,它的频率必须为1536MHz、1544MHz 或2048MHz。
可以和MCKLx异步,但是同步工作时可达到最佳状态。
当MCLKx 接低电平,MCLKR 被选择为内部时钟,当MCLKx 接高电平,该芯片进入低功耗状态。
(11)MCLKx 发送部分主时钟,必须为1536MHz、1544MHz 或2048MHz。
可以和MCLKR 异步,但是同步工作时可达到最佳状态。
(12)BCLKx 发送部分时钟,使PCM 码流逐位移入DR 端。
可以为从64KHz 到2048MHz 的任意频率,但必须和MCLKx 同步。
(13)Dx 发送部分PCM 码流编码输出端。
(14)FSx 发送部分帧同步时隙信号,为一个8KHz 的脉冲序列。
(15)TSx 漏极开路输出端,它在编码时隙输出低电平。
(16)ANLB 模拟反馈输入端。
在正常工作状态下必须置成逻辑“0”。
当置成逻辑“1”时,发送部分滤波器的输入端并不与发送部分的前置滤波器相连,而是和接收部分功放的VPO+相连。
(17)GSx 发送部分输入放大器的模拟基础,用于在外部同轴增益。
(18)VFxI-发送部分输入放大器的反相输入端。
(19)VFxI+发送部分输入放大器的同相输入端。
(20)VBB 接-5V 电源。
三、电路设计:发送通道接收通道PCM系统的完整电路本电路采用大规模集成电路TP3067对语音信号进行PCM编、解码。
TP3067在一个芯片内部集成了编码电路和译码电路,是一个单路编译码器。
其编码速率为2.048MHz,每一帧数据为8位,帧同步信号为8KHz。
模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。
在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。