初中平面几何证明题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学练习题

1.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG

求证:ABC AEG S S △△

2.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG 。若O 为EG 的中点 求证:EG=2AO

3. 如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG ,若O 为EG 的中点,OA 的延长线交BC 于点H

求证:OH ⊥BC

4. 如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O

求证:O为EG的中点

5. 如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE

M、N、P、Q分别是EG、GB、BC、CE的中点

求证:四边形MNPQ是正方形

答案:

1.作CM⊥AB于点M,EN⊥GA,交GA的一次性于点N

∵∠MAN=∠CAE=90°

∴∠CAM=∠EAN

∵∠ANE=∠CMA=90°,AC=AE

∴△ACM≌△AEN

∴CM=EN

∵S△ABC=1/2*AB *CM,S△AGE=1/2*AG*EN

又∵AG=AB,CM=EN

∴S△ABC=S△AEG

2.证明:

延长AO到点M,使OM=OA,连接MG、ME

则四边形AEMG是平行四边形

∴GM=AE=AC,MG‖AE

∴∠MGA+∠GAE=180°

∵∠BAG+∠CAE=180°

∴∠BAC+∠GAE=180°

∴∠BAC=∠AGM

∵AC=AB

∴△AGM≌△BAC

∴BC=AM=2AO

3. OA与OH共线,所以向量AO与向量BC的数量积为0即可证出AH⊥BC 我用AB表示向量AB,即此时字母AB都有方向性,下边的都是如此,

2AO=AG+GE

过A作直线BC的平行线交FG于M,交DE于N,

2AO*BC

=(AG+AE)*BC

=AG*BC+AE*BC

=-|AG||BC|cos∠GAM+|AE||BC|cos∠EAN

=|BC|*(-|AB|*sin∠MAB+|AC|*sin∠NAC)

=|BC|*(-|AB|sin∠ABC+|AC|sin∠ACB)

设BC上的高长为h,

上式=|BC|(-h+h)=0

所以AO与BC垂直,即AH⊥BC

5.连结BE、CG,

∵PQ是△BEC的中位线,

∴PQ//BE,且PQ=BE/2,

同理MN//BC,MN=BE/2,

∴MN=PQ,且MN//PQ,

∴四边形PQMN是平行四边形,

同理MQ=PN=CG/2,

在△BAE和△GAC中,

BA=GA,

AC=AE,

∵〈BAG=〈CAE=90°,

〈BAG+〈BAC=〈CAE+〈BAC,

∴〈BAE=〈GAC,

∴△BAE≌△GAC,(SAS),

∴BE=CG,

∴BE/2=CG/2,

∴PQ=MQ,

∴四边形PQMN是菱形,

设CG和BE相交于O

〈AEB=〈ACG,(全等三角形对应角相等),

则A、O、C、E四点共圆,(共用AO底,同侧顶角相等的二三角形四点共圆)〈EOC=〈EAC=90°,

∴BE⊥CG,

∴PQ⊥MQ,

∴四边形PQMN是正方形。

相关文档
最新文档