初中平面几何证明题及答案
(典型题)沪教版八年级上册数学第十九章 几何证明含答案
![(典型题)沪教版八年级上册数学第十九章 几何证明含答案](https://img.taocdn.com/s3/m/4d6d4c5830b765ce0508763231126edb6f1a76cc.png)
沪教版八年级上册数学第十九章几何证明含答案一、单选题(共15题,共计45分)1、如图,在正方形OABC中,点B的坐标是(6,6),点E,F分别在边BC,BA 上,OE=3 .若∠EOF=45°,则F点的纵坐标是 ( )A.2B.C.D. -12、下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④3、在平面直角坐标系xOy中有一点P(8,15),那么OP与x轴正半轴所夹的角的正弦值等于( )A. B. C. D.4、如图,在△ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB•PC的值为()A.m 2B.m 2+1C.2m 2D.(m+1)25、如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为( )A.2B.2.6C.3D.46、如图,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB= ;②当点E与点B重合时,MH= ;③AF2+BE2=EF2;④MG•MH= ,其中正确结论的个数是()A.1B.2C.3D.47、如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为( )A.70°B.48°C.45°D.60°8、如图所示,在中,,,D是BC的中点,连接AD,,垂足为E,则AE的长为()A.4B.6C.2D.19、如图,在中,,,于,是的平分线,且交于,如果,则的长为()A.2B.4C.6D.810、直角三角形的两直角边分别为5cm,12cm,其斜边上的高为()A.6cmB.8.5cmC. cmD. cm11、如图是一个圆锥的主视图,则该圆锥的侧面积是()A.6πB.3πC.D.12、已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A. B. C. D.13、如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A. B. C.1 D.14、若⊙P的半径为13,圆心P的坐标为(5, 12 ),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定15、如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cmB.8cmC.7cmD.6cm二、填空题(共10题,共计30分)16、如图,三角形ABC三边的长分别为AB=m2﹣n2, AC=2mn,BC=m2+n2,其中m、n都是正整数.以AB、AC、BC为边分别向外画正方形,面积分别为S 1、S2、S3,那么S1、S2、S3之间的数量关系为________.17、若一个直角三角形的两直角边的长分别为6和8,则斜边的长为________.18、如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=________.19、三角形的三边a,b,c满足(a-b)2=c2-2ab,则这个三角形是________.20、如图,已知∠C=90°,AB=12,BC=3,CD=4,AD=13,则∠ABD=________.21、直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是________.22、如图,在中,点为弧的中点,弦,互相垂直,垂足为,分别与,相于点,,连结,.若的半径为2,的度数为,则线段的长是________.23、我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点到以原点为圆心,以1为半径的圆的距离为________.24、如图所示,△ABC为等边三角形,AD为BC边上的高,且AB=2,则正方形ADEF的面积为________.25、如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=130°,则∠ABC=________.三、解答题(共5题,共计25分)26、如图,AC⊥BD,垂足点E是BD的中点,且AB=CD,求证:AB//CD.27、如图,已知, ,与交于, .连接.求证:是等腰三角形.28、如图,BC=3cm,AB=4cm,AF=12cm,且∠B=∠FAC=90°,求正方形CDEF的面积.29、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.30、在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5 时,求t的取值范围(直接写出结果即可).参考答案一、单选题(共15题,共计45分)1、A2、A3、B4、A5、D6、C7、B8、C9、C10、D12、A13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
![人教版九年级数学竞赛专题:平面几何的定值问题(含答案)](https://img.taocdn.com/s3/m/67d4ce232e3f5727a4e96257.png)
(第 3 题图)
(第 4 题图)
4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在 AB 上滚动,切点为 T,⊙O 交 AO,BO 于 M,N,则 弧 MTN( )
A.在 0°到 30°变化
B.在 30°到 60°变化
C.保持 30°不变
D.保持 60°不变
5.如图,AB 是⊙O 的直径,且 AB=10,弦 MN 的长为 8.若 MN 的两端在圆上滑动时,始终与 AB 相交, 记点 A,B 到 MN 的距离分别为 h1,h2,则∣h1-h2∣等于( )
A
C
(P) O
D
B
①
D
A
C P O
B D ①
D
C
PB O
D ①
O
C A
P
①
B
O
C
P
A (B)
①
O
(D)C
A(B)
P ①
(2)已知⊙O 的半径为一定值 r,若点 P 是不在⊙O 上的一个定点,请你过点 P 任作一直线交⊙O 于 不重合的两点 E,F. PE·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文 字叙述出来.
(第 7 题图)
(第 8 题图)
8.如图,设 H 是等腰三角形 ABC 两条高的交点,在底边 BC 保持不变的情况下让顶点 A 至底边 BC 的 距离变小,这时乘积 S△ABC·S△HBC 的值变小、变大,还是不变?证明你的结论.
9.如图,在平面直角坐标系 xOy 中,抛物线 y 1 x 2 4 x 10 与 x 轴的交点为点 A,与 y 轴的交点 18 9
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
【例 1】 如图,已知 P 为正方形 ABCD 的外接圆的劣弧A⌒D上任意一点.求证: PA PC 为定值. PB
平面几何100题及答案(前80题)
![平面几何100题及答案(前80题)](https://img.taocdn.com/s3/m/64a07e3dcd7931b765ce0508763231126fdb7754.png)
第一题、如图,F为。
0外一点,PA、PB分别切6于A、B, PCD为ST割线,CO 交CX)于另一点E, AC、EB交于点F,证明:CD平分匕ADF。
"证明方法一:如图,延长ED交CA于K,根据条件知四边形CADB为调和四边形,故ED、EC、EA、EB构成一组调和线束,进而知K、C、A、F构成一组调和点列。
而KD±CD, 故CD平分ZADFo 3证明方法二:如鼠连結OA、OE、AB、BC,因为ZAFB = ZACE-ZBEC =ZAOE-ZBOC ISCT-NAOC-NBOC 半,且PA = PB,故点P为TkABF的外心。
于是知ZPFA= ZPAC = ZPDA,所以P、A、D、F 四点共圆。
又PA= PF,故CD 平分Z A DF。
3第二题、如图,AB为©0直径,C、D为O。
上两点,且在AB同侧,。
在C、D两处的切城交于点E, BC、AD交于点F, EF交AB于证明:E、C、页、D四点共圆。
“证明:如图,延长白C、BD交于点K,则BC1AK, AD丄BK,从而知F^)AKAB的垂心。
又在圆内接六边形CCADDB中使用帕斯卡定理,知K、E、F三点共线,从而KM丄卽于価。
于是知匕CMF = ZCAF= ZCDE,所以E、C、页、D四点共圆。
K第三题、如图,AB为。
直径,C、D为伽上两点'且在AB同侧,O0在C. D两处的切线交于点E, BC、AD交于点F, EB交0。
于点G,证明;ZCEF = 2/AGF。
“证明:如图,根据条件知匕CF D =典牌=(脸-®;(i对-命)=Z CAB + / DBA = ZECF + ZEDF;且EC = ED;故点E 为△CED 外心。
于是知/EFC = ZECF = ZCAB = ZCGE,敌E、C、F、G四点共圆。
所以“ZCGF = ZCEF = 2(90° - ZECF)= 2(90° - ZCAB)= 2ZABC 二2ZAGC " 0lWZAGF = —=—,即得ZCEF = 2ZAGFo,2 2第四題、如图,AB为直径,P为AB延长线上一点,PC切于C,点C关于朋的对称点为点D, CE1AD于E, F为CE中点,AF交于K,求证:AP为ZXPCK外扬圆的切线。
人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)
![人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)](https://img.taocdn.com/s3/m/ff23d1a158fb770bf78a55f7.png)
人教版 初三数学竞赛专题:平面几何的定值问题(含答案)【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点.求证:PA PC PB为定值.【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变C.等分DB⌒ D.随C 点的移动而移动【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值.P AB CDAPB【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.(图1)(图2)【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值.【能力训练】1.如图,点A ,B 是双曲线xy 3上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则BOACE HG D A=+21S S _______.(第1题图) (第3题图) (第4题图)2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A.30°B.40°C.50°D.60°5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP .连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( ) A .在平分AB 的某直线上移动 B.在垂直AB 的某直线上移动 C.在弧AMB 上移动 D.保持固定不移动(第5题图) (第6题图) 6.如图,A ,B 是函数xky =图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A.3 B.6 C.9 D.127.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.A ABCDEFAB'(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转.旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.⑥⑤④③②①P(B )A PB9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.(第9题图) (第10题图)(第11题图)10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证: (1)2222DK CK BK AK +++是定值; (2)2222DA CD BC AB +++是定值.11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2.已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).P D CB A A折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D + )A. ∠1+∠2=900°-2α B. ∠1+∠2=1080°-2α C. ∠1+∠2=720°-α D. ∠1+∠2=360°-21α(第3题图) (第4题图)4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则弧MTN ( )A.在0°到30°变化B.在30°到60°变化C.保持30°不变D.保持60°不变5.如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8.若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A.5B.6C.7D.8(第5题图) 12GF EDCHBAB6.如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F .试证明:FC (AC +EC )为定值.7.如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M .设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N .证明线段AK 和BN 的乘积与M 点的选择无关.(第7题图) (第8题图)8.如图,设H 是等腰三角形ABC 两条高的交点,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.9.如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程.NKMB AC HCBA(第9题图) (第10题图) 10.已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变. 参考答案例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 .DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN =DN =12 x ,229CE x =- , 2214DN x = .∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM =CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP =163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OFPF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •P A +PC •AB ,而AB =BC =AC ,∴P A =PB +PC ,从而P A 2+ PB 2+ PC 2= (PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×()23=6.故P A 2+PB 2+PC 2为定值.A 级 1.4提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273 提示:1+3+5=9是等边三角形的高. 3.r 2提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =A A x y k ==6,∴S OEBF =OE •OF =x B •y B k ==6. 7.⑴略⑵当点P在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP •2a ,DP •a =BP •a +AP •2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a +2a ),从而21AP BPCP DP+=-+为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设F A 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD =2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD =6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1 ⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN=3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PMEC PC=,即()2112x x EC--=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )=()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989)⑵若四边形PQCA 为平行四边形,由于QC ∥P A ,故只要QC =P A 185. ⑶即可,而P A =18-4t ,CQ =t ,故18-4t =t ,得t =设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =P A +AF =P A +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6.5,∴t +2=244414255=.∴t = 4145-2. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224.由于224≈15,又0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,当t =4145-2时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP ⊥AB ,OP =12(EM +G N )= 12(AH +BH )=12AB .∴无论点C 在AB 同一侧的位置如何,E G 中点P 的位置不变.。
初中几何经典例题及解题技巧
![初中几何经典例题及解题技巧](https://img.taocdn.com/s3/m/08d03bd20342a8956bec0975f46527d3250ca678.png)
初中几何证明技巧及经典试题证明两线段相等1. 两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
*12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
证明两个角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
*9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
*10.在圆中平分弦(或弧)的直径垂直于弦。
平面解析几何经典题(含答案解析)
![平面解析几何经典题(含答案解析)](https://img.taocdn.com/s3/m/c4a82a84ce2f0066f4332203.png)
平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角α的围000180α≤<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l,其斜率分别为12,k k,则有1212//l l k k⇔=。
特别地,当直线12,l l的斜率都不存在时,12l l与的关系为平行。
(2)两条直线垂直如果两条直线12,l l斜率存在,设为12,k k,则12121l l k k⊥⇔=-注:两条直线12,l l垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l与互相垂直。
二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式为直线上一定点,k为斜率不包括垂直于x轴的直线斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式是直线上两定点不包括垂直于x轴和y轴的直线截距式a是直线在x轴上的非零截距,b是直线在y轴上的非零截距不包括垂直于x轴和y轴或过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x yB x yC x y若123AB ACx x x k k===或,则有A、B、C三点共线。
初中平面几何证明题
![初中平面几何证明题](https://img.taocdn.com/s3/m/24ccaf8dbceb19e8b8f6ba23.png)
九年级几何证明题(含答案)1.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG求证:ABC AEG S S △△证明:∵S △ABC =1/2AB ×AC ×sin ∠BACS △AGE =1/2AG ×AE ×sin ∠GAE又∠GAE=180°-∠BAC∴sin ∠GAE=sin (180°-∠BAC )=sin ∠BAC又AB= AG ,AC= AE∴S △ABC = S △AGE2.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG 。
若O 为EG 的中点求证:BC=2AO证明:延长AO 至M ,使OM=AO ,则AM=2AO∵GO=EO∴AEMG 是平行四边形∴EM=AG=AB ,EM ∥AG∴∠EAG+∠AEM=180°又∵∠EAG+∠BAC=180°∴∠AEM=∠BAC又∵AE=AC∴△AEM ≌△CAB∴AM=BC∴BC=2AO3. 如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG ,若O 为EG 的中点,OA 的延长线交BC 于点H求证:AH ⊥BC证明:延长AO 至M ,使OM=AO ,则AM=2AO∵GO=EO∴AEMG 是平行四边形∴EM=AG=AB ,EM ∥AG∴∠EAG+∠AEM=180°又∵∠EAG+∠BAC=180°∴∠AEM=∠BAC又∵AE=AC∴△AEM ≌△CAB∴∠EAM=∠ACB又∵∠EAM+∠CAH=90°∴∠ACB+∠CAH=90°∴∠AHC=90°即AH ⊥BCO MMN O线交EG 于点O求证:O 为EG 的中点 证明:过点E 作EN ⊥AO 于N ,过点G 作GM 垂直AO 交延长线于M ∵AH ⊥BC ∴∠ACB+∠CAH=90°∵∠EAN+∠CAH=90°∴∠ACB=∠EAN∵∠ANE=∠CHA=90°,AE=AC∴△ANE ≌△CHA∴AH=EN同理可证△ABH ≌△GAM∴AH=GM∴EN=GM∵∠M=∠ENO ,∠GOM=∠EON∴△GOM ≌△EON∴GO=EO即O 为EG 的中点。
初中几何经典考题及答案详解(广东篇)
![初中几何经典考题及答案详解(广东篇)](https://img.taocdn.com/s3/m/710c0b2ab80d6c85ec3a87c24028915f804d8468.png)
1.如图,在ABC ∆中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:ABC ∆是等腰三角形.参考答案:证明:在BDF ∆和CEF ∆中()DFB EFC FBD FCEBD CE ⎧∠=∠⎪∠=∠⎨⎪=⎩对顶角相等 ∴()BDF CEF AAS ∆∆≌∴BF CF =∴FBC FCB ∠=∠又∵ABE ACD ∠=∠∴FBC ABE FCD ACD ∠+∠=∠+∠即ABC ACB ∠=∠∴ABC ∆是等腰三角形2.如图所示,已知四边形ABCD 、ADEF 都是菱形,为锐角.(1)求证:;(2)若BF=BC,求的度数。
参考答案:BAD FAD BAD ∠=∠∠、AD BF ⊥ADC∠(1)证:如图,∵ABCD、ADEF是菱形∴AB=AD=AF又∵∠BAD=∠FAD由等腰三角形的三线合一性质可得AD⊥BF(2)解:∵BF=BC∴BF=AB=AF∵△ABF是等比三角形∴∠BAF=60°又∵∠BAD=∠FAD∴∠BAD=30°∴∠ADC=180°-30°=150°3.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.参考答案:(1)解:如图,图形如图所示.(2)证明:∵AC =AD ,AF 平分∠CAD ,∴∠CAF =∠DAF ,AF ⊥CD ,∵∠CAD =2∠BAC ,∠BAC =45°,∴∠BAE =∠EAF =∠FAD =15°,∵∠ABC =∠AFC =90°,AE =EC ,∵BE =AE =EC ,EF =AE =EC ,∴EB =EF ,∠EAB =∠EBA =15°,∠EAF =∠EFA =15°,∴∠BEC =∠EAB +∠EBA =30°,∠CEF =∠EAF +∠EFA =30°,∴∠BEF =60°,∴△BEF 是等边三角形.4.如图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:△OPD ≌△OPE .参考答案:证明:∵PD ⊥OA ,PE ⊥OB∴∠PDO =∠PEO=90°∵在△OPD 和△OPE 中∴△OPD ≌△OPE (AAS )5.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及所围成的阴影部分的面积.PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩∠⎪⎨==参考答案:解:(1)由题意可知,AB=2262+=102,AC=2262+=102,BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 ∵S 阴影=S △ABC -S 扇形EAFS △ABC =21×102×102=20 S 扇形EAF =()25241π =5π ∴S 阴影=20-5π6、如图6,矩形ABCD 中,对角线AC=23,E 为BC 边上一点,BC=3BE ,将矩形ABCD 沿AE 所在的直线折叠,B 点恰好落在对角线AC 上的B ’处,则AB= ;解析:由折叠知,三角形ABE 与三角形A 'B E 全等,所以,AB =A 'B ,BE ='B E ,∠A 'B E =∠ABE =90°又BC =3BE ,有EC =2BE ,所以,EC =2'B E ,所以,∠ACE =30°,∠BAC =60°, 又由折叠知:∠'B AE =∠BAE =30°,所以,∠EAC =∠ECA =30°,所以,EA =EC ,又∠A 'B E =90°,由等腰三角形性质,知'B 为AC 中点,所以,AB =A 'B =132AC =7、如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HCI,∠HCI=90°,若AC=a,求CI的长.参考答案:解:由题意,知:∠A=∠EDC=∠GFC=∠IHC=60°,因为AC=a,故DC=ACsin60°=32a,同理:CF=DCsin60°=34a,CH=CFsin60°=338a,CI=CHsin60°=98 a。
初二数学::几何证明初步经典练习题含答案
![初二数学::几何证明初步经典练习题含答案](https://img.taocdn.com/s3/m/4a20435f0066f5335b81216d.png)
几何证明初步练习题编辑整理:临朐王老师1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800.○2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800. 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。
3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。
4. 已知,如图,AE//DC ,∠A=∠C ,求证:∠1=∠B.5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题6.求证:两条直线相交有且只有一个交点.7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。
求证:AB 与CD 必定相交。
证:是无理8.求数。
一.角平分线--轴对称9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13求DE的长第9题图 第10题图 第11题图分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12FC=12(AC-AB)=2.10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分ABC ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD =CE ,∴BC =AB +CD .11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC∠BB的平分线AD 于D ,过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM=CN .分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND .∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=.分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易证ΔAGE ≌ΔAFE . ∴1452FAE GAE FAG ∠=∠=∠=13、如图,点E 在ΔABC 外部,D 在边BC上,DE 交AC 于F .若123∠=∠=∠,AC=AE.求证:ΔABC ≌ΔADE .分析:若ΔABC ≌ΔADE ,则ΔADE 可视为ΔABC 绕A逆时针旋转1∠所得.则有B ADE ∠=∠.∵12B ADE ∠+∠=∠+∠,且12∠=∠.∴B ADE ∠=∠.又∵13∠=∠. ∴BAC DAE ∠=∠.再∵AC=AE.∴ΔABC ≌ΔADE .14、如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF.分析:将ΔABF 视为ΔADE 绕A顺时针旋转90即可. ∵90FAB BAE EAD BAE ∠+∠=∠+∠=.∴FBA EDA ∠=∠.又∵90FBA EDA ∠=∠=,AB=AD.∴ΔABF ≌ΔADE .(ASA)∴DE=DF. 平移第14题图 第15题图 第16题图 第17题图 三、平移15、如图,在梯形ABCD 中,BD ⊥AC ,AC =8,BD =15.求梯形ABCD 的中位线长.分析:延长DC到E使得CE=AB.连接BE.可得ACEB .可视为将AC平移到BE.AB平移到CE.由勾股定理可得DE=17.∴梯形ABCD中位线长为8.5.16、已知在ΔABC 中,AB =AC ,D 为AB 上一点,E为AC 延长线一点,且BD =CE .求证:DM =EM 分析:作DF∥AC交BC于F.易证DF=BD=CE.则DF可视为CE平移所得.∴四边形DCEF为DCEF .∴DM=EM.线段中点的常见技巧 --倍长 四、倍长17、已知,AD为ABC 的中线.求证:AB+AC>2AD. 分析:延长AD到E使得AE=2AD.连接BE易证ΔBDE ≌ΔCDA . ∴BE=AC.∴AB+AC>2AD.18、如图,AD 为ΔABC 的角平分线且BD =CD .求证:AB =AC .分析:延长AD到E使得AD=ED.易证ΔABD ≌ΔECD .∴EC=AB.∵BAD CAD ∠=∠.∴E CAD ∠=∠.∴AC=EC=AB.19、已知在等边三角形ABC中,D和E分别为BC与AC上的点,且AE=CD.连接AD与BE交于点P,作BQ⊥AD于Q.求证:BP=2PQ.分析:延长PD到F使得FQ=PQ.在等边三角形ABC中AB=BC=AC,60ABD C ∠=∠=.又∵AE=CD,∴BD=CE.∴ΔABD ≌ΔBCE .∴CBE BAD ∠=∠.∴60BPQ PBA PAB PBA DBP ∠=∠+∠=∠+∠=.易证ΔBPQ ≌ΔBFQ .得BP=BF,又60BPD ∠=.∴ΔBPF 为等边三角形. ∴BP=2PQ. 中位线五、中位线、中线:20、已知在梯形ABCD 中,AD ∥BC ,E和F分别为BD 与AC 的中点,求证:1()2EF BC AD =-.分析:取DC中点G,连接EG与FG.则EG为ΔBCD 中位线,FG为ΔACD 的中位线. ∴EG∥=12BC ,FG ∥=12AD .∵AD ∥BC .∴过一点G有且只有一条直线平行于已知直线BC,即E、F、G共线.∴1()2EF BC AD =-.直角三角形斜边上的中线等于斜边的一半21、已知,在ABCD 中BD AB 21=.E为OA的中点,F为OD中点,G为BC中点. 求证:EF=EG.分析:连接BE .∵BD AB 21=,AE=O E.∴BE⊥CE,∵BG=CG.∴BD EG 21=.又EF为ΔAOD 的中位线.∴AD EF 21=.∴EF=EG. 22、在ΔABC 中,AD是高,CE是中线,DC=BE,DG⊥CE于G.求证:(1)CG=EG.(2)2B BCE ∠=∠.分析:(1)连接DE.则有DE=BE=DC.∴Rt ΔCDG ≌Rt ΔEDG (HL). ∴EG=CG.∵DE=BE.∴B BDE DEC BCE ∠=∠=∠+∠. ∵DE=CD.∴DEC BCE ∠=∠.∴2B BCE ∠=∠.几何证明初步测验题(1)一、选择题(每空3 分,共36 分) 1、使两个直角三角形全等的条件是(?? )A 、一组锐角对应相等?B 、两组锐角分别对应相等C 、一组直角边对应相等?D 、两组直角边分别对应相等 2、如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =( ) A .20°????????? B .25°??? C .30°??????? D .40°第2题图 第4题图 第6题图第7题图3、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中( )A .有两个角是直角B .有两个角是钝角C .有两个角是锐角??D .一个角是钝角,一个角是直角4、如图,直线AB 、CD 相交于点O ,∠BOE=90°,OF 平分∠AOE ,∠1=15°30’,则下列结论不正确的是( ??)A .∠2=45°????????B .∠1=∠3C .∠AOD+∠1=180°???????D .∠EOD=75°30’5、下列说法中,正确的个数为(?? )?①三角形的三条高都在三角形内,且都相交于一点?②三角形的中线都是过三角形的某一个顶点,且平分对边的直线?③在△ABC 中,若∠A=12∠B=13∠C ,则△ABC 是直角三角形?④一个三角形的两边长分别是8和10,那么它的最短边的取值范围是2<b<18 A .1个 B .2个 C .3个?? D .4个6、如图,在AB=AC 的△ABC 中,D 是BC 边上任意一点,DF ⊥AC 于F ,E 在AB 边上,使ED⊥BC于D,∠AED=155°,则∠EDF等于(?? )A、50°?B、65°???C、70°??D、75°?7、如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为(?? )A.8cm???????? B.10cm?????????? C.12cm ????????? D.14cm8、如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为(??? )A.? ???B.?????C.5???? ??D.49、如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.小明认为:若MN = EF,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF.你认为(??? )A.仅小明对?? B.仅小亮对? C.两人都对? D.两人都对??第9题图第10题图第11题图第12题图10、如图,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,•则四个结论正确的是(? ).①点P在∠A的平分线上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.A.全部正确;?????????????? B.仅①和②正确; C.仅②③正确;?????????? ?D.仅①和③正确11、如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是(??? )?? ①∠1=∠?? ②?? ③∠+∠2=90°④=3:4:5???? ⑤A.1????? B.2?????? C.3??????? D.412、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.13B.12C.23D.不能确定二、填空题(每空3 分,共15 分)13、命题“对顶角相等”中的题设是_________???? ,结论是___________?????? ?。
初二上几何试题及答案详解
![初二上几何试题及答案详解](https://img.taocdn.com/s3/m/26aa4a329a6648d7c1c708a1284ac850ad020481.png)
初二上几何试题及答案详解试题一:证明题题目:已知三角形ABC中,点D、E、F分别是边BC、CA、AB上的点,且DE平行于AC,DF平行于AB。
求证:三角形DEF与三角形ABC相似。
答案详解:1. 根据题意,我们知道DE平行于AC,DF平行于AB。
2. 根据平行线的性质,我们可以得出∠DEF = ∠BAC(对应角相等)。
3. 同理,我们可以得出∠DFE = ∠ABC。
4. 因为∠DEF + ∠DFE + ∠FDE = 180°(三角形内角和为180°),所以∠FDE = ∠BCA。
5. 根据相似三角形的判定定理,如果两个三角形的两组对应角相等,那么这两个三角形是相似的。
6. 由于∠DEF = ∠BAC,∠DFE = ∠ABC,∠FDE = ∠BCA,我们可以得出三角形DEF与三角形ABC相似。
试题二:计算题题目:在直角三角形ABC中,∠C是直角,已知AB = 10cm,AC = 6cm,求BC的长度。
答案详解:1. 根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
2. 设BC的长度为x,则有AB² = AC² + BC²。
3. 代入已知数值,我们得到10² = 6² + x²。
4. 计算得100 = 36 + x²。
5. 解方程,得到x² = 100 - 36 = 64。
6. 求解x,得到x = √64 = 8cm。
7. 因此,BC的长度为8cm。
试题三:作图题题目:在平面直角坐标系中,给定点A(2,3)和点B(5,1),请画出线段AB,并求出线段AB的长度。
答案详解:1. 首先,在平面直角坐标系中标出点A(2,3)和点B(5,1)。
2. 连接点A和点B,画出线段AB。
3. 为了求出线段AB的长度,我们可以使用两点间距离公式:d =√[(x₂ - x₁)² + (y₂ - y₁)²]。
初二平面几何考试题及答案
![初二平面几何考试题及答案](https://img.taocdn.com/s3/m/07726375492fb4daa58da0116c175f0e7cd1192e.png)
初二平面几何考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是线段的性质?A. 线段是直线的一部分B. 线段有两个端点C. 线段可以无限延长D. 线段的长度是固定的答案:C2. 一个三角形的内角和是多少度?A. 90°B. 180°C. 270°D. 360°答案:B3. 如果一个角是直角三角形的一个锐角的2倍,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:C4. 一个圆的半径是5厘米,那么它的直径是多少厘米?A. 10厘米B. 15厘米C. 20厘米D. 25厘米答案:A5. 一个正六边形的内角是多少度?A. 90°B. 120°C. 150°D. 180°答案:B二、填空题(每空1分,共10分)6. 一个正方形的对角线长度是边长的________倍。
答案:√27. 如果一个角是30°,那么它的补角是________度。
答案:1508. 直角三角形中,如果一个锐角是45°,那么另一个锐角是________度。
答案:459. 一个圆的周长是它的直径的________倍。
答案:π10. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是________三角形。
答案:直角三、简答题(每题5分,共10分)11. 请说明什么是等腰三角形,并给出一个例子。
答案:等腰三角形是指至少有两边长度相等的三角形。
例如,一个三角形的三边长分别为3厘米、3厘米和5厘米,那么它就是一个等腰三角形。
12. 请解释什么是相似三角形,并给出一个判定条件。
答案:相似三角形是指两个三角形的对应角相等,对应边成比例的三角形。
一个判定条件是如果两个三角形的三个对应角都相等,那么这两个三角形是相似的。
四、计算题(每题15分,共30分)13. 如图所示,三角形ABC是一个直角三角形,其中∠C是直角。
平面几何练习题及答案
![平面几何练习题及答案](https://img.taocdn.com/s3/m/c93eb4436ad97f192279168884868762caaebbc1.png)
平面几何练习题及答案一、选择题1. 已知三角形ABC中,∠A=90°,AB=3cm,BC=4cm,求AC的长度。
A. 5cmB. 6cmC. 7cmD. √7cm2. 在矩形PQRS中,若PS=6cm,QR=8cm,求对角线PR的长度。
A. 10cmB. 12cmC. 14cmD. √(6²+8²)cm3. 圆O的半径为5cm,点A在圆上,点B在圆外,且OA=5cm,OB=10cm,求AB的长度。
A. 5cmB. 10cmC. 15cmD. √(10²-5²)cm二、填空题4. 已知等腰三角形的底边长为6cm,两腰长为5cm,求其面积。
答案:____cm²5. 已知直角三角形的两条直角边分别为3cm和4cm,求其外接圆的半径。
答案:____cm6. 已知正六边形的边长为a,求其内切圆的半径。
答案:____三、计算题7. 在三角形DEF中,DE=7cm,DF=8cm,EF=9cm,求三角形DEF的面积。
8. 已知圆的半径为r,圆心为O,点A在圆上,点B在圆外,OA=r,OB=2r,求AB的长度。
9. 已知矩形LMNP的长为10cm,宽为6cm,求其内切圆的半径。
四、证明题10. 证明:在直角三角形中,斜边的中线等于斜边的一半。
11. 证明:如果一个三角形的两边和其中一边上的高相等,那么这个三角形是等腰三角形。
12. 证明:在等边三角形中,每个内角都是60°。
五、解答题13. 已知圆的半径为r,求圆的周长和面积。
14. 已知矩形ABCD的长为a,宽为b,求对角线AC的长度。
15. 已知三角形ABC的三个顶点坐标分别为A(x1, y1),B(x2, y2),C(x3, y3),求三角形ABC的面积。
答案:1. D2. D3. D4. 12cm²5. 2.5cm6. a/√37. 27cm²8. 5r9. 2cm10. 利用直角三角形斜边上的中线等于斜边的一半的性质证明。
中考数学经典几何证明题60例附试题分析和参考答案
![中考数学经典几何证明题60例附试题分析和参考答案](https://img.taocdn.com/s3/m/d44fa8cf5122aaea998fcc22bcd126fff6055d43.png)
中考数学经典几何证明题60例一、解答题(共60小题)1.(遵义)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.2.(珠海)已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.3.(镇江)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=°时,四边形BFDE是正方形.4.(漳州)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.5.(玉林)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O 的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.6.(永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.7.(营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.8.(徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.9.(宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.10.(湘西州)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.11.(咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.12.(咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.13.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.14.(威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.15.(铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.16.(通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.17.(铁岭)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.18.(天水)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.19.(泰安)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.20.(随州)如图,射线PA切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.21.(绥化)如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.(1)求证:BD+2DE=BM.(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,则线段DG=.22.(苏州)如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50°,求DE、DF的长度之和(结果保留π).23.(上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.24.(厦门)如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2.求证:四边形ABCD是矩形.25.(庆阳)如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.(1)当AB=2时,求△GEC的面积;(2)求证:AE=EF.26.(青海)如图,梯形ABCD中,AB∥DC,AC平分∠BAD,CE∥DA交AB于点E.求证:四边形ADCE是菱形.27.(钦州)如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是⊙O的切线;(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=,AD=3,求直径AB的长.28.(黔东南州)如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC于A、B两点.(1)求证:PN与⊙O相切;(2)如果∠MPC=30°,PE=2,求劣弧的长.29.(潜江)如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,PA=6时,求MB,MC的长.30.(盘锦)如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.(1)若CD=2,BP=4,求⊙O的半径;(2)求证:直线BF是⊙O的切线;(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.31.(内江)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC 于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.32.(南通)如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.33.(南平)如图,AB是半圆O的直径,C是AB延长线上的一点,CD与半圆O相切于点D,连接AD,BD.(1)求证:∠BAD=∠BDC;(2)若∠BDC=28°,BD=2,求⊙O的半径.(精确到0.01)34.(南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.35.(南充)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.36.(南昌)(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D 的形状为A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.37.(梅州)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.38.(龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.39.(柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.40.(辽阳)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.41.(连云港)如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F 处,DF交AB于点E.(1)求证;∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.42.(莱芜)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD 交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.43.(酒泉)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)44.(荆门)已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O 于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.45.(吉林)如图①,半径为R,圆心角为n°的扇形面积是S扇形=,由弧长l=,得S扇形==••R=lR.通过观察,我们发现S扇形=lR类似于S三角形=×底×高.类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用.(1)设扇环的面积为S扇环,的长为l1,的长为l2,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=×(上底+下底)×高,用含l1,l2,h的代数式表示S扇环,并证明;(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?46.(黄石)在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.47.(黄冈)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN(2)求证:=.48.(湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.49.(葫芦岛)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?50.(呼伦贝尔)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.51.(呼伦贝尔)如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;(2)若PC=2,求⊙O的半径.52.(贺州)如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=cm,AC=2cm,求DC的长(结果保留根号).53.(贺州)如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.54.(河南)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.55.(桂林)如图,在▱ABCD中,E、F分别是AB、CD的中点.(1)求证:四边形EBFD为平行四边形;(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.56.(贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E 是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.57.(甘南州)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论.58.(东莞)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.59.(大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.60.(赤峰)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO 交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是的切线.(2)若PB=6,DB=8,求⊙O的半径.中考数学经典几何证明题60例参考答案与试题解析一、解答题(共60小题)1.(遵义)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.考点:菱形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线;三角形中位线定理.专题:证明题.分析:(1)根据AAS证△AFE≌△DBE;(2)利用①中全等三角形的对应边相等得到AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形,由“直角三角形斜边的中线等于斜边的一半”得到AD=DC,从而得出结论;(3)由直角三角形ABC与菱形有相同的高,根据等积变形求出这个高,代入菱形面积公式可求出结论.解答:(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.点评:本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,菱形的面积计算,主要考查学生的推理能力.2.(珠海)已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD=AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.考点:全等三角形的判定与性质;等腰三角形的性质;平移的性质.专题:证明题.分析:(1)根据等腰三角形的性质,可得∠ABC与∠ACB的关系,根据平移的性质,可得AC与DF的关系,根据全等三角形的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得GM与HN的关系,BM与FN的关系,根据全等三角形的判定与性质,可得答案.解答:(1)解:由AB=AC,得∠ABC=ACB.由△ABC沿BC方向平移得到△DEF,得DF=AC,∠DFE=∠ACB.在△ABF和△DFB中,,△ABF≌△DFB(SAS),BD=AF,故答案为:BD=AF;(2)证明:如图:MN∥BF,△AMG∽△ABC,△DHN∽△DEF,=,=,∴MG=HN,MB=NF.在△BMH和△FNG中,,△BMH≌△FNG(SAS),∴BH=FG.点评:本题考查了全等三角形的判定与性质,利用了平移的性质,相似三角形的判定与性质,全等三角形的判定与性质.3.(镇江)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=20°时,四边形BFDE是正方形.考点:菱形的性质;全等三角形的判定与性质;正方形的判定.专题:证明题.分析:(1)由题意易证∠BAE=∠BCF,又因为BA=BC,AE=CF,于是可证△BAE≌△BCF;(2)由已知可得四边形BFDE对角线互相垂直平分,只要∠EBF=90°即得四边形BFDE 是正方形,由△BAE≌△BCF可知∠EBA=∠FBC,又由∠ABC=50°,可得∠EBA+∠FBC=40°,于是∠EBA=×40°=20°.解答:(1)证明:∵菱形ABCD的对角线AC,BD相交于点O,∴AB=BC,∠BAC=∠BCA,∴∠BAE=∠BCF,在△BAE与△BCF中,∴△BAE≌△BCF(SAS);(2)∵四边形BFDE对角线互相垂直平分,∴只要∠EBF=90°即得四边形BFDE是正方形,∵△BAE≌△BCF,∴∠EBA=∠FBC,又∵∠ABC=50°,∴∠EBA+∠FBC=40°,∴∠EBA=×40°=20°.故答案为:20.点评:本题考查了菱形的性质,全等三角形的判定与性质以及正方形的判定.本题关键是根据SAS证明△BAE≌△BCF.4.(漳州)如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作分、FG∥CD,交AE于点G连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.考点:翻折变换(折叠问题);勾股定理;菱形的判定与性质;矩形的性质.专题:证明题.分析:(1)根据折叠的性质,易知DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,易证FG=FE,故由四边相等证明四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.解答:(1)证明:由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)解:设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,FC2+EC2=EF2,即42+(8﹣x)2=x2,解得:x=5,CE=8﹣x=3,∴=.点评:本题主要考查了折叠的性质、菱形的判定以及勾股定理,熟知折叠的性质和菱形的判定方法是解答此题的关键.5.(玉林)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O 的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.考点:切线的性质;平行四边形的判定;扇形面积的计算.专题:证明题.分析:(1)由∠BOD=60°E为的中点,得到,于是得到DE∥BC,根据CD 是⊙O的切线,得到OD⊥CD,于是得到BE∥CD,即可证得四边形BCDE是平行四边形;(2)连接OE,由(1)知,,得到∠BOE=120°,根据扇形的面积公式列方程即可得到结论.解答:解:(1)∵∠BOD=60°,∴∠AOD=120°,∴=,∵E为的中点,∴,∴DE∥AB,OD⊥BE,即DE∥BC,∵CD是⊙O的切线,∴OD⊥CD,∴BE∥CD,∴四边形BCDE是平行四边形;(2)连接OE,由(1)知,,∴∠BOE=120°,∵阴影部分面积为6π,∴=6π,∴r=6.点评:本题考查了切线的性质,平行四边形的判定,扇形的面积公式,垂径定理,证明是解题的关键.6.(永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.解答:(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.7.(营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.考点:切线的判定;扇形面积的计算.专题:证明题.分析:(1)连接OC,证明△PAO≌△PCO,得到∠PCO=∠PAO=90°,证明结论;(2)证明△ADP∽△PDA,得到成比例线段求出BC的长,根据S阴=S⊙O﹣S△ABC 求出答案;(3)连接AE、BE,作BM⊥CE于M,分别求出CM和EM的长,求和得到答案.解答:(1)证明:如图1,连接OC,∵PA切⊙O于点A,∴∠PAO=90°,∵BC∥OP,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△PAO和△PCO中,,∴△PAO≌△PCO,∴∠PCO=∠PAO=90°,∴PC是⊙O的切线;(2)解:由(1)得PA,PC都为圆的切线,∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,∴∠PAD+∠DAO=∠DAO+∠AOD,∴∠PAD=∠AOD,∴△ADP∽△ODA,∴,∴AD2=PD•DO,∵AC=8,PD=,∴AD=AC=4,OD=3,AO=5,由题意知OD为△的中位线,∴BC=6,OD=6,AB=10.∴S阴=S⊙O﹣S△ABC=﹣24;(3)解:如图2,连接AE、BE,作BM⊥CE于M,∴∠CMB=∠EMB=∠AEB=90°,∵点E是的中点,∴∠ECB=∠CBM=∠ABE=45°,CM=MB=3,BE=AB•cos45°=5,∴EM==4,则CE=CM+EM=7.点评:本题考查的是切线的判定和性质、扇形面积的计算和相似三角形的判定和性质,灵活运用切线的性质:圆的切线垂直于过切点的半径和切线的判定是解题的关键.8.(徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=4时,四边形BFCE是菱形.考点:平行四边形的判定;菱形的判定.专题:证明题.分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.解答:(1)证明:∵AB=DC,∴AC=DF,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4 时,四边形BFCE是菱形,故答案为:4.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.9.(宿迁)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.考点:平行四边形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB 是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.解答:(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.点评:本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.10.(湘西州)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.解答:证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.点评:此题考查了矩形的判定,全等三角形的判定与性质,以及平行四边形的性质,熟练掌握矩形的判定方法是解本题的关键.11.(咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.考点:根的判别式;解一元二次方程-公式法.专题:证明题.分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.解答:(1)证明:△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.点评:本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.12.(咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.专题:证明题.分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.解答:(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即10r=6(10﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.13.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.考点:正方形的性质;全等三角形的判定与性质;勾股定理.专题:证明题.分析:(1)先根据EQ⊥BO,EH⊥AB得出∠EQN=∠BHM=90°.根据∠EMQ=∠BMH得出△EMQ∽△BMH,故∠QEM=∠HBM.由ASA定理得出△APB≌△HFE,故可得出结论;(2)由勾股定理求出BP的长,根据EF是BP的垂直平分线可知BQ=BP,再根据锐角三角函数的定义得出QF=BQ的长,由(1)知,△APB≌△HFE,故EF=BP=4,再根据EQ=EF﹣QF即可得出结论.解答:(1)证明:∵EQ⊥BO,EH⊥AB,∴∠EQN=∠BHM=90°.∵∠EMQ=∠BMH,∴△EMQ∽△BMH,∴∠QEM=∠HBM.在Rt△APB与Rt△HFE中,,∴△APB≌△HFE,∴HF=AP;(2)解:由勾股定理得,BP===4.∵EF是BP的垂直平分线,∴BQ=BP=2,∴QF=BQ•tan∠FBQ=BQ•tan∠ABP=2×=.由(1)知,△APB≌△HFE,∴EF=BP=4,∴EQ=EF﹣QF=4﹣=.点评:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.14.(威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.考点:相似三角形的判定与性质;等腰三角形的性质;圆周角定理.专题:证明题.分析:(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.解答:(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.点评:本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.15.(铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.考点:全等三角形的判定与性质;等边三角形的判定与性质.专题:证明题.分析:作DG∥BC交AC于G,先证明△DFG≌△EFC,得出GD=CE,再证明△ADG是等边三角形,得出AD=GD,即可得出结论.解答:证明:作DG∥BC交AC于G,如图所示:则∠DGF=∠ECF,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS),∴GD=CE,。
初中数学平面几何经典证明题 -回复
![初中数学平面几何经典证明题 -回复](https://img.taocdn.com/s3/m/e69df2e13086bceb19e8b8f67c1cfad6195fe9c1.png)
一、垂直平分线的性质证明:定理:如果一条线段的中点同时也是这条线段的垂直平分线的一个端点,则这条线段与另一条线段垂直。
证明:设线段AB的中点为M,且AM=BM。
设另一条线段CD与AB相交于点E。
根据垂直平分线的定义,我们知道AM垂直于CD,并且ME=EM(因为M是CD的垂直平分线的一个端点)。
现在我们需要证明AB与CD垂直,即证明∠AEC=90°。
由于三角形AME和BME中AM=BM,ME=EM,所以三角形AME和BME是等腰三角形。
因此,∠AME=∠BME,而∠AME和∠BME互补,所以∠AEM+∠BEM=90°。
又因为ME=EM,所以∠AEM=∠BEM,即∠AEM=∠BEM=∠AEC/2+∠BEC/2=90°/2=45°。
因此,∠AEC=90°,证明了AB与CD垂直。
二、角平分线的性质证明:定理:如果一条线段的中点同时也是这条线段的角平分线的一个端点,则这条线段与另一条线段平分的两个角相等。
证明:设线段AB的中点为M,且AM=BM。
设另一条线段CD与AB相交于点E,且∠CED与∠BEA为两个相等的角。
我们需要证明∠CEM=∠BEM。
根据角平分线的定义,我们知道∠AEM=∠BEM,且∠CEM=∠AEM/2(因为M是AB的角平分线的一个端点)。
现在我们需要证明∠CEM=∠AEM/2。
由于∠CED与∠BEA相等,所以∠CED=∠BEA。
又因为AM=BM,所以∠CMA=∠BMA。
因此,∠CEM+∠CMA=∠AEM/2+∠BMA=∠CED+∠CEM=∠BEA+∠CEM=∠BEM+∠CEM。
通过消去公共角∠CEM,我们得到∠CMA=∠BMA=∠BEM。
因此,∠CEM=∠BEM,证明了∠CEM=∠BEM。
综上所述,我们证明了角平分线的性质。
初中数学-几何证明经典试题(含答案)
![初中数学-几何证明经典试题(含答案)](https://img.taocdn.com/s3/m/39cd595b0722192e4436f652.png)
初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)AP C DB A F GC EB O D3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)D 2C 2 B 2 A 2D 1 C 1 B 1 C BD A A 14、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.F3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)D4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)经典题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:≤L <2.1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.APCBACBP D A CBPD4中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠=200,求∠BED的度数.参考答案经典题(一)1.如下图做GH⊥AB,连接EO。
中考复习-几何探究题(含答案)
![中考复习-几何探究题(含答案)](https://img.taocdn.com/s3/m/e6e84884a26925c52dc5bf54.png)
几何探究题1题(1)如图1,图2,图3,在ABC △中,分别以AB AC ,为边,向ABC △外作正三角形,正四边形,正五边形,BE CD ,相交于点O .①如图1,求证:ABE ADC △≌△;②探究:如图1,BOC ∠= ;如图2,BOC ∠=; 如图3,BOC ∠= .(2)如图4,已知:AB AD ,是以AB 为边向ABC △外所作正n 边形的一组邻边;AC AE ,是以AC 为边向ABC △外所作正n 边形的一组邻边.BE CD ,的延长相交于点O .①猜想:如图4,BOC ∠= (用含n 的式子表示);②根据图4证明你的猜想.2题.请阅读下列材料: 问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段()()a a b a b +-的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.问题:(1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF ∠=∠=<<αα,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示). D A BE F C P G 图1 D C G PA B F图23题。
如图,等腰梯形ABCD 中,AB =4,CD =9,∠C =60°,动点P 从点C 出发沿CD 方向向点D 运动,动点Q 同时以相同速度从点D 出发沿DA 方向向终点A 运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AD 的长;(2)设CP =x ,问当x 为何值时△PD Q 的面积达到最大,并求出最大值;(3)探究:在BC 边上是否存在点M 使得四边形PD Q M 是菱形?若存在,请找出点M ,并求出BM 的长;不存在,请说明理由.4题已知矩形ABCD 和点P ,当点P 在BC 上任一位置(如图(1)所示)时,易证得结论:2222PA PC PB PD +=+,请你探究:当点P 分别在图(2)、图(3)中的位置时,2222PA PB PC PD 、、和又有怎样的数量关系?请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为____________________________________. 对图(3)的探究结论为_____________________________________. 证明:如图(2)(第25题图) (备用图)5题如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.6题如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=12,求22BE DG+的值.7题正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F。
平面几何:有关三角形五心的经典考题及证明-(中考提分助力)
![平面几何:有关三角形五心的经典考题及证明-(中考提分助力)](https://img.taocdn.com/s3/m/1a6251bbbe1e650e53ea995e.png)
平面几何:有关三角形五心的经典试题三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.三角形外接圆的圆心,简称外心。
与外心关系密切的有圆心角定理和圆周角定理。
例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N 。
作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上。
(杭州大学《中学数学竞赛习题》)分析:由已知可得MP ′=MP =MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =21∠BAC .∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC 。
从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似。
(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C 。
∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3。
∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K=21(∠O 2O 1S +∠SO 1K )=21(∠O 2O 1S +∠PO 1O 2)=21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .A B C P P MN 'A B C K P O O O ....S 123二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题. 例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′。
人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)
![人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)](https://img.taocdn.com/s3/m/ff23d1a158fb770bf78a55f7.png)
人教版 初三数学竞赛专题:平面几何的定值问题(含答案)【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点.求证:PA PC PB为定值.【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变C.等分DB⌒ D.随C 点的移动而移动【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值.P AB CDAPB【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.(图1)(图2)【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值.【能力训练】1.如图,点A ,B 是双曲线xy 3上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则BOACE HG D A=+21S S _______.(第1题图) (第3题图) (第4题图)2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A.30°B.40°C.50°D.60°5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP .连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( ) A .在平分AB 的某直线上移动 B.在垂直AB 的某直线上移动 C.在弧AMB 上移动 D.保持固定不移动(第5题图) (第6题图) 6.如图,A ,B 是函数xky =图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A.3 B.6 C.9 D.127.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.A ABCDEFAB'(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转.旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.⑥⑤④③②①P(B )A PB9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.(第9题图) (第10题图)(第11题图)10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证: (1)2222DK CK BK AK +++是定值; (2)2222DA CD BC AB +++是定值.11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2.已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).P D CB A A折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D + )A. ∠1+∠2=900°-2α B. ∠1+∠2=1080°-2α C. ∠1+∠2=720°-α D. ∠1+∠2=360°-21α(第3题图) (第4题图)4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则弧MTN ( )A.在0°到30°变化B.在30°到60°变化C.保持30°不变D.保持60°不变5.如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8.若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A.5B.6C.7D.8(第5题图) 12GF EDCHBAB6.如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F .试证明:FC (AC +EC )为定值.7.如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M .设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N .证明线段AK 和BN 的乘积与M 点的选择无关.(第7题图) (第8题图)8.如图,设H 是等腰三角形ABC 两条高的交点,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.9.如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程.NKMB AC HCBA(第9题图) (第10题图) 10.已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变. 参考答案例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 .DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN =DN =12 x ,229CE x =- , 2214DN x = .∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM =CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP =163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OFPF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •P A +PC •AB ,而AB =BC =AC ,∴P A =PB +PC ,从而P A 2+ PB 2+ PC 2= (PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×()23=6.故P A 2+PB 2+PC 2为定值.A 级 1.4提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273 提示:1+3+5=9是等边三角形的高. 3.r 2提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =A A x y k ==6,∴S OEBF =OE •OF =x B •y B k ==6. 7.⑴略⑵当点P在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP •2a ,DP •a =BP •a +AP •2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a +2a ),从而21AP BPCP DP+=-+为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设F A 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD =2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD =6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1 ⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN=3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PMEC PC=,即()2112x x EC--=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )=()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989)⑵若四边形PQCA 为平行四边形,由于QC ∥P A ,故只要QC =P A 185. ⑶即可,而P A =18-4t ,CQ =t ,故18-4t =t ,得t =设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =P A +AF =P A +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6.5,∴t +2=244414255=.∴t = 4145-2. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224.由于224≈15,又0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,当t =4145-2时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP ⊥AB ,OP =12(EM +G N )= 12(AH +BH )=12AB .∴无论点C 在AB 同一侧的位置如何,E G 中点P 的位置不变.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学练习题
1.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG
求证:ABC AEG S S △△
2.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG 。
若O 为EG 的中点 求证:EG=2AO
3. 如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG ,若O 为EG 的中点,OA 的延长线交BC 于点H
求证:OH ⊥BC
4. 如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O
求证:O为EG的中点
5. 如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE
M、N、P、Q分别是EG、GB、BC、CE的中点
求证:四边形MNPQ是正方形
答案:
1.作CM⊥AB于点M,EN⊥GA,交GA的一次性于点N
∵∠MAN=∠CAE=90°
∴∠CAM=∠EAN
∵∠ANE=∠CMA=90°,AC=AE
∴△ACM≌△AEN
∴CM=EN
∵S△ABC=1/2*AB *CM,S△AGE=1/2*AG*EN
又∵AG=AB,CM=EN
∴S△ABC=S△AEG
2.证明:
延长AO到点M,使OM=OA,连接MG、ME
则四边形AEMG是平行四边形
∴GM=AE=AC,MG‖AE
∴∠MGA+∠GAE=180°
∵∠BAG+∠CAE=180°
∴∠BAC+∠GAE=180°
∴∠BAC=∠AGM
∵AC=AB
∴△AGM≌△BAC
∴BC=AM=2AO
3. OA与OH共线,所以向量AO与向量BC的数量积为0即可证出AH⊥BC 我用AB表示向量AB,即此时字母AB都有方向性,下边的都是如此,
2AO=AG+GE
过A作直线BC的平行线交FG于M,交DE于N,
2AO*BC
=(AG+AE)*BC
=AG*BC+AE*BC
=-|AG||BC|cos∠GAM+|AE||BC|cos∠EAN
=|BC|*(-|AB|*sin∠MAB+|AC|*sin∠NAC)
=|BC|*(-|AB|sin∠ABC+|AC|sin∠ACB)
设BC上的高长为h,
上式=|BC|(-h+h)=0
所以AO与BC垂直,即AH⊥BC
5.连结BE、CG,
∵PQ是△BEC的中位线,
∴PQ//BE,且PQ=BE/2,
同理MN//BC,MN=BE/2,
∴MN=PQ,且MN//PQ,
∴四边形PQMN是平行四边形,
同理MQ=PN=CG/2,
在△BAE和△GAC中,
BA=GA,
AC=AE,
∵〈BAG=〈CAE=90°,
〈BAG+〈BAC=〈CAE+〈BAC,
∴〈BAE=〈GAC,
∴△BAE≌△GAC,(SAS),
∴BE=CG,
∴BE/2=CG/2,
∴PQ=MQ,
∴四边形PQMN是菱形,
设CG和BE相交于O
〈AEB=〈ACG,(全等三角形对应角相等),
则A、O、C、E四点共圆,(共用AO底,同侧顶角相等的二三角形四点共圆)〈EOC=〈EAC=90°,
∴BE⊥CG,
∴PQ⊥MQ,
∴四边形PQMN是正方形。