毕奥—萨伐尔定律习题及答案
第五版普通物理11-2,11-3毕奥—萨伐尔定律及其应用
第五版普通物理习题11-2,11-3毕奥—萨伐尔定律及其应用选择题两条无限长载流导线,间距0.5厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为(A )0 (B )πμ02000T (C )πμ04000 T (D )πμ0400T [ ] 答案:A通有电流I 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为(A )P B >Q B >O B (B )Q B >P B >O B (C ) Q B >O B >P B (D )O B >Q B >P B[ ] 答案:D在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问哪个区域中有些点的磁感应强度可能为零(A )仅在象限1 (B )仅在象限2 (C )仅在象限1、3 (D )仅在象限2、4[ ]答案:D无限长直导线通有电流I ,右侧有两个相连的矩形回路,分别是1S 和2S ,则通过两个矩形回路1S 、2S 的磁通量之比为:(A )1:2 (B )1:1 (C )1:4 (D )2:1[ ]答案:(B )边长为a 的一个导体方框上通有电流I ,则此方框中心点的磁场强度(A )与a 无关 (B )正比于2a (C )正比于a (D )与a 成反比[ ]答案:D边长为l 的正方形线圈,分别用图示两种方式通以电流I ,图中ab 、cd 与正方形共面,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为(A )01=B ,02=B (B )01=B ,lIB πμ0222=(C )l I B πμ0122=,02=B (D )l I B πμ0122=, lIB πμ0222= [ ]答案:C载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则1a :2a =(A )1:1 (B )π2:1 (C )π2:4 (D )π2:8[ ]答案:D如图所示,两根长直载流导线垂直纸面放置,电流11=I A ,方向垂直纸面向外;电流22=I A ,方向垂直纸面向内。
毕奥萨伐尔定律 测试解析
毕奥萨伐尔定律随堂测试11.毕萨定理中的三个矢量,哪些矢量是始终垂直的?解析:ⅆB⃗垂直于ⅆl和r0。
r0是从ⅆl和指向场点P的矢量,这两者不一定垂直。
2.纸面内放置一段载流导线,取电流元,则电流元在a、b两点产生的磁感应强度各沿哪个方向?解析:从电流元向a点做r 0,a点处ⅆB⃗沿着ⅆl×r0的方向,即先以四指沿着ⅆl方向,再把四指弯向r0方向,大拇指的方向即为ⅆB⃗方向,垂直于纸面向外。
用同样的方法可以判断,电流元在b点产生的磁感应强度垂直于纸面向内。
3.载流为的导线包括一段半径为R、圆心在C、圆心角为π/3的圆弧和两端延长线分别通过圆心C的长直导线。
则圆心C处的磁感应强度为?解析:C点磁感应强度是三段导线产生磁场的和。
从左面直导线上的电流元向圆心C做r0,这个电流元在圆心产生的磁感应强度ⅆB⃗=μ04πIⅆl×r0r2由于图中Iⅆl和r0平行,因此ⅆB⃗=0.所以左面的带电直线在其延长线上的C点产生的磁感应强度为0;同理,右边的载流直导线在C产生的磁感应强度也为0.载流圆弧在圆心c的磁感应强度是圆电流磁感应强度的1/6.4.边长为a的方形载流线圈,电流强度为I,其中心处的磁感应强度的大小为?解析:中心处的磁感应强度是4个边产生磁场的和。
根据载流直导线产生的磁感应强度的公式,一个边在中心处产生的磁感应强度为B=μ0I4π (a2)(cosπ4−cos cos3π4),所以中心处的磁感应强度大小为4B。
练习与答案GP2910毕-萨定律应用磁场高斯定理安培环路定理安培力
单元9 毕奥-萨伐尔定律的应用 (2 ) 磁通量和磁场的高斯定理一. 填空、选择题1. 已知两长直细导线A 、B 通有电流A I A I B A 2,1==, 电流流向和放置位置如图XT_0137所示,设B A I I ,在P 点产生的磁感应强度大小分别为B A 和B B ,则B A 和B B 之比为:1:1,此时P 点处磁X 轴夹角为:030=θ。
2. 一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I 。
若作一个半径为R=5a 、高为3a (如图XT_0138所示), S 上的积分:0SB dS ⋅=⎰。
3. 取一半径为R 的圆, 成60°角,如图XT_0139所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量:212m SB dS B R πΦ=⋅=-⎰。
4. 半径为R 通过环心并垂直于环面的轴匀速转动,则环心处的磁感应强度λωμ0021=B ,轴线上任一点的磁感应强度30223/22()R B R x μλω=+。
5. 一电量为q R 的匀速率圆运动,在圆心处产生的磁感应强度Rq B πωμ40=。
二.计算题1. 如图XT_0140所示, 宽度为a 的无限长的金属薄片的截面通以总电流I , 电流方向垂直纸面向里,试求离薄片一端为r 处的P 点的磁感应强度B 。
选取如图所示的坐标,无限长的金属薄片上线电流元dx aIdI =在P 点产生磁感应强度大小: dx aIx a r dB )(20-+=πμ —— 方向垂直金属薄片向下无限长载流金属薄片在P 点产生磁感应强度大小:dx aIx a r B a)(20-+=⎰πμ,r a r a I B +=ln 20πμ2. 如图XT_0141所示, 两个共面的平面带电圆环, 其内外半径分别为21,R R 和32,R R , 外面的圆环以每秒钟2n 转的转速顺时针转动,里面的圆环以每秒钟1n 转的转速反时针转动,若电荷面密度都是,σ求21,n n 的比值多大时,圆心处的磁感应强度为零。
毕奥—萨伐尔定律.
毕奥—萨伐尔定律1.选择题1. 两条无限长载流导线,间距0.5厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为:( )(A )0 (B )πμ02000 (C )πμ04000 (D )πμ0400 2.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为( )A .PB >Q B >O B B .Q B >P B >O BC . Q B >O B >P BD .O B >Q B >P B3.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问那个区域中有些点的磁感应强度可能为零:( )A .仅在象限1B .仅在象限2C .仅在象限1、3D .仅在象限2、44.边长为a 的一个导体方框上通有电流I ,则此方框中心点的磁场强度( )A .与a 无关B .正比于2a C .正比于a D .与a 成反比5.边长为l 的正方形线圈,分别用图示两种方式通以电流I ,图中ab 、cd 与正方形共面,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为( )A .01=B ,02=B B .01=B ,lI B πμ0222= C .l I B πμ0122=,02=B D .l I B πμ0122=, lI B πμ0222= 6.载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则1a :2a =( ) A .1:1 B .π2:1 C .π2:4 D .π2:8 7.如图所示,两根长直载流导线垂直纸面放置,电流A I 11=,方向垂宜纸面向外;电流A I 22=,方向垂直纸面向内。
则P 点磁感应强度B 的方向与X 抽的夹角为( )8.四条相互平行的载流长直导线电流强度均为I ,方向如图所示。
设正方形的边长为2a ,则正方形中心的磁感应强度为( )。
06.磁感应强度 毕奥-萨伐尔定律答案
《大学物理》练习题 No.6 磁感应强度 毕奥-萨伐尔定律班级 ___________ 学号 ___________ 姓名 ______________成绩 ________说明:字母为黑体者表示矢量一、选择题1. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中产生的磁感应强度大小分别为:[ C ] (A) 0,021==B B ; (B) lIu B B π02122,0==;(C) 0,22201==B lIu B π; (D) lIu B lIu B ππ020122,22==。
2. 载流圆形线圈(半径1a )与正方形线圈(边长2a )通有相同电流I ,若两个线圈的中心O 1、O 2处的磁感应强度大小相同,则半径1a 与边长2a 之比21a :a 为: [ D ] (A) 1:1 (B)1:2π (C)4:2π (D) 8:2π3. 如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于: [ C ](A)RI πμ20. (B)RI 40μ.(C))11(20πμ-RI . (D))11(40πμ+RI .4. 通有电流I 的无限长直导线有如图三中情况,则P ,Q ,O 各点磁感应强度的大小B P ,B Q ,B O 间的关系为:[ D ] (A )B P >B Q >B O (B) B Q >B P >B O(C) B Q >B O >B P (D) B O >B Q >B PI二、填空题1.平面线圈的磁矩为p m =IS n ,其中S 是电流为I 的平面线圈 面积 , n 是平面线圈的法向单位矢量,按右手螺旋法则,当四指的方向代表 电流 方向时,大拇指的方向代表 n 平面线圈的法向 方向.2 两个半径分别为R 1、R 2的同心半圆形导线,与沿直径的直导线连接同一回路,回路中电流为I . 如果两个半圆共面,如图.a 所示,圆心O 点的磁感强度 B 0的大小为 )11(4120R R I+μ,方向为 向外.3. 如图所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,∠aob =180︒.则圆心O 点处的磁感强度的大小B = 0 .三、计算题宽为a 的无限长铜片,沿长度方向均匀流有电流I ,如图,P 点与铜片共面且距铜片右边为b ,求P 处磁场。
大学物理练习题 磁感应强度 毕奥—萨伐尔定律
2 2 μ 0I 。 πl
B2 = 0
l
I
l
b
B2
I
I
B1
2 2 μ 0I 2 2 μ 0I , B2 = 。 πl πl
c
d
(A) B = 3 3μ 0 NI (2πa ) 。 ( C) B = 0 。
5. 一匝数为 N 的正三角形线圈边长为 a,通有电流为 I,则中心处的磁感应强度为 (B) B = 3μ 0 NI (2πa ) 。 (D) B = 9 μ 0 NI (2πa ) 。
v
v
2
b
c
y
-a
· z
O
a ·
x
9. 如图所示,xy 平面内有两相距为 L 的无限长直载流导线, 电流的大小相等,方向相同且平行于 x 轴,距坐标原点均为 v a, z 轴上有一点 P 距两电流均为 2a, 则 P 点的磁感应强度 B (A) 大小为 3μ 0 I (4πa ) ,方向沿 z 轴正向。 (B) 大小为 μ 0 I (4πa ) ,方向沿 z 轴正向。 (C) 大小为 3μ 0 I (4πa ) ,方向沿 y 轴正向。 (D) 大小为 3μ 0 I (4πa ) ,方向沿 y 轴负向。 二、填空题 1. 电流元 Idl 在磁场中某处沿直角坐标系的 x 轴方向放置时不 受力,把电流元转到 y 轴正方向时受到的力沿 z 轴反方向,该处 磁感应强度指向 方向。 2. 一长直载流导线,沿空间直角坐标 Oy 轴放置,电流沿 y 轴正 磁感应强度的大小为 ,方向为 。
B B B B B
4. 边长 l 为的正方形线圈,分别用图示的两种方式通以电流 I(其中 ab,cd 与正方形共面), 在这两种情况下,线圈在其中产生的磁感应强度大小分别为: (A) B1 = 0 , B2 = 0 。 a (B) B1 = 0 , B 2 = ( C) B 1 = (D) B 1 =
毕奥—萨伐尔定律习题及答案
毕奥—萨伐尔定律一. 选择题1. 关于试验线圈,以下说法正确的是(A) 试验线圈是电流极小的线圈.(B) 试验线圈是线圈所围面积极小的线圈.(C) 试验线圈是电流足够小,以至于它不影响产生原磁场的电流分布,从而不影响原磁场;同时线圈所围面积足够小,以至于它所处的位置真正代表一点的线圈.(D) 试验线圈是电流极小,线圈所围面积极小的线圈.2. 关于平面线圈的磁矩,以下说法错误的是 (A) 平面线圈的磁矩是一标量,其大小为P m =IS ;(B) 平面线圈的磁矩P m =Is n . 其中I 为线圈的电流, S 为线圈的所围面积, n .为线圈平面的法向单位矢量,它与电流I 成右手螺旋;(C) 平面线圈的磁矩P m 是一个矢量, 其大小为P m =IS , 其方向与电流I 成右手螺旋; (D) 单匝平面线圈的磁矩为P m =Is n ,N 匝面积相同且紧缠在一起的平面线圈的磁矩为P m =NIS n ;3. 用试验线圈在磁场中所受磁力矩定义磁感应强度B 时, 得空间某处磁感应强度大小的定义式为B=M max /p m ,其中p m 为试验线圈的磁矩, M max 为试验线圈在该处所受的最大磁力矩.故可以说(A) 空间某处磁感应强度的大小只与试验线圈在该处所受最大磁力矩M max 成正比. M max 越大,该处磁感应强度B 越大.(B) 空间某处磁感应强度的大小只与试验线圈的磁矩p m 成反比. p m 越大,该处磁感应强度B 越小.(C) 空间某处磁感应强度的大小既与试验线圈在该处所受的最大磁力矩M max 成正比,又与试验线圈的磁矩p m 成反比.(D) 空间某处磁感应强度时磁场本身所固有的,不以试验线圈的磁矩p m 和试验线圈在该处所受最大磁力矩M max 为转移.4. 两无限长载流导线,如图9.1放置,则坐标原点的磁感应强度的大小和方向分别为: (A)2μ0 I / (2 π a ) ,在yz 面内,与y 成45︒角.(B)2μ0 I / (2 π a ) ,在yz 面内,与y 成135︒角. (C)2μ0 I / (2 π a ) ,在xy 面内,与x 成45︒角. (D)2μ0 I / (2 π a ) ,在zx 面内,与z 成45︒角.5. 用试验线圈在磁场中所受磁力矩定义磁感应强度B 时, 空间某处磁感应强度的方向为(A) 试验线圈磁矩P m 的方向.(B) 试验线圈在该处所受最大磁力矩M max 时,磁力矩M 的方向.(A) 试验线圈在该处所受最大磁力矩M max 时,试验线圈磁矩P m 的方向. (D) 试验线圈在该处所受磁力矩为零时,试验线圈磁矩P m 的方向.(E) 试验线圈在该处所受磁力矩为零且处于稳定平衡时,试验线圈磁矩P m 的方向.二.填空题1. 对于位于坐标原点,方向沿x 轴正向的电流元Idl ,它图9.2图9.1在x 轴上a 点, y 轴上b 点, z 轴上c 点(a ,b ,c 距原点O 均为r )产生磁感应强度的大小分别为B a , B b , B c2. 宽为a ,厚度可以忽略不计的无限长扁平载流金属片,如图9.2所示,中心轴线上方一点P 的磁感应强度的方向沿 (填x ,或y ,或z )轴 (填正,或负)方向.3. 氢原子中的电子,以速度v 在半径r 的圆周上作匀速圆周运动,它等效于一圆电流,其电流I 用v 、r 、e (电子电量)表示的关系式为I = ,此圆电流在中心产生的磁场为B= ,它的磁矩为p m = .三.计算题1. 如图9.3,真空中稳恒电流2I 从正无穷远沿z 轴流入直导线,再沿z 轴负向沿另一直导线流向无穷远,中间流过两个半径分别为R 1 、R 2,且相互垂直的同心半圆形导线,两半圆导线间由沿直径的直导线连接.两支路电流均为I .求圆心O 的磁感应强度B 的大小和方向.2. 如图9.4, 将一导线由内向外密绕成内半径为R 1 ,外半径为R 2 的园形平面线圈,共有N 匝,设电流为I ,求此园形平面载流线圈在中心O 处产生的磁感应强度的大小.毕奥—萨伐尔定律一.选择题 C A D B E 二.填空题1 0, μ0I d l /(4πr 2), μ0I d l /(4πr 2).2 x , 正.3 ev /(2πr ),μ0ev /(4πr 2), evr /2.三.计算题1. 流进、流出的两直线电流的延长线过O 点,在O 点产生的磁场为 B 1=B 2=0 大、小半圆电流在O 点产生的磁场为B 3=μ0I /4R 1 B 4=μ0I /4R 2故O 点磁场为 B =( B 32+ B 32)1/2=(μ0I /4)( 1/R 22+1/R 12)1/2与x 轴的夹角为 ϕ=π/2+arctan(R 1/R 2),2. 在距圆心r (R 1≤r ≤R 2)处取细圆环,宽d r 匝数为 d N =n d r =N d r /(R 2-R 1)d B =μ0I d N /(2r )=N μ0I d r /[2(R 2-R 1)r ]()[]{}⎰-=211202R R r R R NIdr B μ= μ0NI ln(R 2/R 1)/[2(R 2-R 1)]图9.4毕奥—萨伐尔定律(续) 磁通量 磁场中的高斯定理一.选择题1. 电流元I d l 位于直角坐标系原点,电流沿z 轴正方向,空间点P ( x , y , z )磁感应强度d B 沿x 轴的分量是:(A) 0.(B) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 )3/2 .(C) -(μ0 / 4π)I x d l / ( x 2 + y 2 +z 2 )3/2 . (D) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 ) .2. 无限长载流导线,弯成如图10.1所示的形状,其中ABCD 段在xOy 平面内,BCD 弧是半径为R 的半圆弧,DE 段平行于Oz 轴,则圆心处的磁感应强度为(A) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )-μ0 I / (4R )] . (B) j μ0 I / (4 π R ) -k [μ0 I / (4 π R ) + μ0 I / (4R )] . (C) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )+μ0 I / (4R )] . (D) j μ0 I / (4 π R ) -k [μ0 I / (4 π R )-μ0 I / (4R )] .3. 长直导线1 沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2 返回电源 (如图10.2),若载流直导线1、2和三角形框在框中心O 点产生的磁感应强度分别用B 1 、B 2和B 3 表示,则O 点的磁感应强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0 .(B) B = 0,因为虽然B 1 ≠0,B 2 ≠0,但 B 1 +B 2 = 0 ,B 3 = 0. (C) B ≠ 0,因为虽然B 3 =0,但B 1 +B 2 ≠ 0. (D) B ≠ 0,因为虽然B 1 +B 2 = 0,但B 3 ≠0 .4. 在磁感应强度为B 的匀强磁场中, 有一如图10.3所示的三棱柱, 取表面的法线均向外,设过面AA 'CO , 面B 'BOC ,面AA 'B 'B 的磁通量为Φm1,Φ m 2,Φ m 3,则(A) Φ m1=0, Φ m2=Ebc , Φ m3=-Ebc . (B) Φ m1=-Eac , Φ m2=0, Φ m3=Eac .(C) Φ m1=-Eac , Φ m2=-Ec 22b a +, Φ m3=-Ebc . (D) Φ m1=Eac , Φ m2=Ec 22b a +, Φ m3=Ebc . 5. 如图10.4所示,xy 平面内有两相距为L 的无限长直载流导线,电流的大小相等,方向相同且平行于x 轴,距坐标原点均为a ,Z 轴上有一点P 距两电流均为2a ,则P 点的磁感应强度B(A) 大小为3μ0I /(4πa ),方向沿z 轴正向. (B) 大小为μ0I /(4πa ),方向沿z 轴正向. (C) 大小为3μ0I /(4πa ),方向沿y 轴正向. (D) 大小为3μ0I /(4πa ),方向沿y 轴负向.二.填空题图10.1图10.2图10.4图10.31. 一带正电荷q 的粒子以速率v 从x 负方向飞过来向x 正方向飞去,当它经过坐标原点时, 在x 轴上的x 0点处的磁感应强度矢量表达式为B = ,在y 轴上的y 0处的磁感应强度矢量表达式为 .2. 如图10.5真空中稳恒电流I 流过两个半径分别为R 1 、R 2的共面同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入流出,则圆心O 点磁感应强度B 0 的大小为 ,方向为 ;3. 在真空中,电流由长直导线1沿半径方向经a 点流入一电阻均匀分布的圆环,再由 b 点沿切向流出,经长直导线2 返回电源(如图10.6),已知直导线上的电流强度为I ,90︒,则圆心O 点处的磁感应强度的大小B =.三.计算题1. 一半径R = 1.0cm 的无限长1/4I = 10.0A 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感应强度.2. 如图10.7,无限长直导线载有电流I , 旁边有一与之共面的长方形平面,长为a ,宽为b ,近边距电流I 为c ,求过此面的磁通量.毕奥—萨伐尔定律(续) 磁通量 磁场中的高斯定理一.选择题 B C A B D 二.填空题1. 0,[μ0qv /(4πy 02)]k2. (μ0I /4)( 1/R 2-1/R 1),垂直纸面向外,3. μ0I /(4πR ) 三.计算题1、解:电流截面如图,电流垂直纸面向内,取窄无限长电流元d I =j d l =jR d θ j =I /(2πR/4)=2I /(πR )d I =2I d θ/π d B =μ0d I /(2πR )=μ0I d θ/(π2R ) d B x =d B cos(θ+π/2)=-μ0I sin θd θ/(π2R )d B y =d B sin(θ+π/2)=μ0I cos θd θ/(π2R )()[]⎰-=πππθθμ20sin R d I B x =-μ0I /(π2R ) ()[]⎰=πππθθμ2cos R d I B y=-μ0I /(π2R )B =( B x 2+B y 2)1/2=2μ0I /(π2R )与x 轴夹角 =α225°图10.7。
11 稳恒磁场中的毕奥——萨伐尔定律
习题 十一 稳恒磁场中的毕奥——萨伐尔定律一、选择题1、半径为1a 的载流圆形线圈与边长为2a 的正方形载流线圈中通有相同大小的电流,若两线圈中心的磁感应强度大小相同,则21:a a 为( D ) A 、1:1B 、1:2πC 、4:2πD 、8:2π提示:圆电流中心的磁场:00122IIB Ra μμ==正方形中心的磁场为4段有限长直电流的磁场之和:()00012224cos cos 4(/2)22I I IB r a a μμθθπππ⎛⎫=⋅+=+= ⎪ ⎪⎝⎭2、真空中作匀速直线运动的点电荷,在其周围空间产生的磁场随时间的变化为( C )A 、B的大小和方向都不变B 、B的大小和方向都在变C 、B 的大小在变,方向不变D 、B的大小不变,方向在变提示:由公式024r qv e B rμπ⨯=可知磁场的方向不变。
大小()3000222sin sin sin 444/sin qv qv qv B r dd μμμθθθπππθ=⋅=⋅=⋅, 其中 d 为考察点到速度所在直线的距离,不变,θ为速度和位置矢量的夹角,改变。
3、若将某载流线圈中的电流增加一倍,则由该线圈在空间任一点产生的磁场将( C )A 、B的大小和方向都不变B 、B的大小和方向都在变C 、B的大小增加一倍,方向不变 D 、以上说法都不对,要视具体情形而定提示:由公式024rIdl e dB rμπ⨯=可知4、在毕奥——萨伐尔定律中,B d r l d、、三者的关系为( D )A 、B d r l d、、一定相互垂直 B 、l d 与B d r、垂直 C 、r与B d l d 、垂直D 、B d 与l d r、垂直提示:由公式024rIdl e dB rμπ⨯=可知二、填空题1、 边长为a 的正三角形线圈上通有I 的电流,则在线圈的中心的B =aIπμ290线圈中心的磁场为3段有限长直电流的磁场之和:()001293cos cos 342I IB r a μμθθππ=⋅+==⎭2、 带电量为q 的粒子在一半径为R 的圆形轨道上以0v 的速率匀速运动,则在圆周的垂直中心线上与圆心相距为d 处的B =)(42200d R v q +πμ提示:不可等效为圆电流,因要求的是瞬时值,而用等效圆电流算出的是在一个周期内的平均值。
电磁学练习题(毕奥—萨伐尔定律 )
磁感应强度,毕奥—萨伐尔定律、磁感应强度叠加原理1. 选择题1. 两条无限长载流导线,间距厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为:( )(A )0 (B )πμ02000(C )πμ04000 (D )πμ0400 答案:(A )2.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为( )A .PB >Q B >O B B .Q B >P B >O BC . Q B >O B >P BD .O B >Q B >P B 答案:D^3.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问那个区域中有些点的磁感应强度可能为零:( )A .仅在象限1B .仅在象限2C .仅在象限1、3D .仅在象限2、4 答案:D4.边长为a 的一个导体方框上通有电流I ,则此方框中心点的磁场强度( ) A .与a 无关 B .正比于2a C .正比于a D .与a 成反比 答案:D }5.边长为l 的正方形线圈,分别用图示两种方式通以电流I ,图中ab 、cd 与正方形共面,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为( )A .01=B ,02=B B .01=B ,lIB πμ0222=C .l I B πμ0122=,02=BD .l I B πμ0122=, lIB πμ0222= 答案:C6.载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则1a :2a =( ) A .1:1 B .π2:1 C .π2:4 D .π2:8 答案:D\7.如图所示,两根长直载流导线垂直纸面放置,电流A I 11=,方向垂宜纸面向外;电流A I 22=,方向垂直纸面向内。
则P 点磁感应强度B 的方向与X 抽的夹角为( )A .30°B .60°C .120°D .210°答案:A8.四条相互平行的载流长直导线电流强度均为I ,方向如图所示。
电磁学练习题(毕奥—萨伐尔定律 (2))
恒定磁场的高斯定理和安培环路定理1.选择题1.磁场中高斯定理: ,以下说法正确的是:( )⎰=∙ss d B 0A .高斯定理只适用于封闭曲面中没有永磁体和电流的情况B .高斯定理只适用于封闭曲面中没有电流的情况C .高斯定理只适用于稳恒磁场D .高斯定理也适用于交变磁场答案:D2.在地球北半球的某区域,磁感应强度的大小为T ,方向与铅直线成60度角。
则5104-⨯穿过面积为1平方米的水平平面的磁通量 ( ) A .0 B .WbC .WbD .Wb5104-⨯5102-⨯51046.3-⨯答案:C3.一边长为l =2m 的立方体在坐标系的正方向放置,其中一个顶点与坐标系的原点重合。
有一均匀磁场通过立方体所在区域,通过立方体的总的磁通量有()3610(k j i B++=)A .0B .40 WbC .24 WbD .12Wb答案:A4.无限长直导线通有电流I ,右侧有两个相连的矩形回路,分别是和,则通过两个1S 2S 矩形回路、的磁通量之比为:( )。
1S 2S A .1:2 B .1:1C .1:4D .2:1答案:B5.均匀磁场的磁感应强度垂直于半径为R 的圆面,今以圆周为边线,作一半球面S ,B则通过S 面的磁通量的大小为()A .B .C .0D .无法确定B R 22πB R 2π答案:B6.在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单B位矢量与的夹角为,则通过半球面S 的磁通量为( )n BαA . B . C .D .B r2πB r22παπsin 2B r-απcos 2B r -答案:D7.若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布( )A .不能用安培环路定理来计算B .可以直接用安培环路定理求出C .只能用毕奥-萨伐尔定律求出D .可以用安培环路定理和磁感应强度的叠加原理求出答案:D8.在图(a)和(b)中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 1和I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 2、P 1为两圆形回路上的对应点,则:()A .B .2121,P P L L B B l d B l d B =⋅=⋅⎰⎰ 2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰C .D .2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰ 2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰答案:C9.一载有电流I 的导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小B R 和B r 应满足()A .B R =2B r B .B R =B rC .2B R =B rD .B R =4B r 答案:B10.无限长载流空心圆柱导体的内外半径分别为a,b,电流在导体截面上均匀分布,则空间各处的的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
毕奥—萨伐尔定律
毕奥—萨伐尔定律1.选择题1. 两条无限长载流导线,间距0.5厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为:( )(A )0 (B )πμ02000 (C )πμ04000 (D )πμ0400 2.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为( )A .PB >Q B >O B B .Q B >P B >O BC . Q B >O B >P BD .O B >Q B >P B3.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问那个区域中有些点的磁感应强度可能为零:( )A .仅在象限1B .仅在象限2C .仅在象限1、3D .仅在象限2、44.边长为a 的一个导体方框上通有电流I ,则此方框中心点的磁场强度( )A .与a 无关B .正比于2a C .正比于a D .与a 成反比5.边长为l 的正方形线圈,分别用图示两种方式通以电流I ,图中ab 、cd 与正方形共面,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为( )A .01=B ,02=B B .01=B ,lI B πμ0222= C .l I B πμ0122=,02=B D .l I B πμ0122=, lI B πμ0222= 6.载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则1a :2a =( ) A .1:1 B .π2:1 C .π2:4 D .π2:8 7.如图所示,两根长直载流导线垂直纸面放置,电流A I 11=,方向垂宜纸面向外;电流A I 22=,方向垂直纸面向内。
则P 点磁感应强度B 的方向与X 抽的夹角为( )8.四条相互平行的载流长直导线电流强度均为I ,方向如图所示。
设正方形的边长为2a ,则正方形中心的磁感应强度为( )。
电磁学练习题(毕奥—萨伐尔定律 (2))
恒定磁场的高斯定理和安培环路定理1. 选择题1.磁场中高斯定理:⎰=∙ss d B 0,以下说法正确的是:( )A .高斯定理只适用于封闭曲面中没有永磁体和电流的情况B .高斯定理只适用于封闭曲面中没有电流的情况C .高斯定理只适用于稳恒磁场D .高斯定理也适用于交变磁场 答案:D2.在地球北半球的某区域,磁感应强度的大小为5104-⨯T ,方向与铅直线成60度角。
则穿过面积为1平方米的水平平面的磁通量 ( )A .0B .5104-⨯Wb C .5102-⨯Wb D .51046.3-⨯Wb答案:C3.一边长为l =2m 的立方体在坐标系的正方向放置,其中一个顶点与坐标系的原点重合。
有一均匀磁场)3610(k j i B++=通过立方体所在区域,通过立方体的总的磁通量有( )A .0B .40 WbC .24 WbD .12Wb 答案:A4.无限长直导线通有电流I ,右侧有两个相连的矩形回路,分别是1S 和2S ,则通过两个矩形回路1S 、2S 的磁通量之比为:( )。
A .1:2B .1:1C .1:4D .2:1 答案:B5.均匀磁场的磁感应强度B垂直于半径为R 的圆面,今以圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为()A .B R 22π B .B R 2π C .0 D .无法确定 答案:B6.在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α,则通过半球面S 的磁通量为( )A .B r2π B .B r 22π C .απsin 2B r - D .απcos 2B r -答案:D7.若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布( )A .不能用安培环路定理来计算B .可以直接用安培环路定理求出C .只能用毕奥-萨伐尔定律求出D .可以用安培环路定理和磁感应强度的叠加原理求出 答案:D 8.在图(a)和(b)中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 1和I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 2、P 1为两圆形回路上的对应点,则:()A .2121,P P L L B B l d B l d B =⋅=⋅⎰⎰ B .2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰C .2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰ D .2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰答案:C9.一载有电流I 的导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小B R 和B r 应满足()A .B R =2B r B .B R =B rC .2B R =B rD .B R =4B r 答案:B10.无限长载流空心圆柱导体的内外半径分别为a,b,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
06.磁感应强度 毕奥-萨伐尔定律答案
《大学物理》练习题 No.6 磁感应强度 毕奥-萨伐尔定律班级 ___________ 学号 ___________ 姓名 ______________成绩 ________说明:字母为黑体者表示矢量一、选择题1. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中产生的磁感应强度大小分别为:[ C ] (A) 0,021==B B ; (B) lIu B B π02122,0==;(C) 0,22201==B lIu B π; (D) l I u B l I u B ππ020122,22==。
2. 载流圆形线圈(半径1a )与正方形线圈(边长2a )通有相同电流I ,若两个线圈的中心O 1、O 2处的磁感应强度大小相同,则半径1a 与边长2a 之比21a :a 为: [ D ] (A) 1:1 (B)1:2π (C) 4:2π (D) 8:2π3. 如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:[ C ](A) R Iπμ20. (B) RI 40μ. (C) )11(20πμ-R I . (D) )11(40πμ+R I . 4. 有一半径为R 的单匝圆线圈,通以电流I . 若将该导线弯成匝数N =2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的:[ A ] (A) 4倍和1/2倍. (B) 4倍和1/8倍 .(C) 2倍和1/4倍 . (D) 2倍和 1/2倍 5. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I ,这三条导线在正三角形中心O 点产生的磁感强度为: [ B ] (A) B = 0 .(B) B =3μ0I /(πa ) . (C) B =3μ0I /(2πa ) .(D) B =3μ0I /(3πa ) . .二、填空题1.平面线圈的磁矩为p m =IS n ,其中S 是电流为I 的平面线圈 面积 , n 是平面线圈的法向单位矢量,按右手螺旋法则,当四指的方向代表 电流 方向时,大拇指的方向代表 n 平面线圈的法向 方向. 2 两个半径分别为R 1、R 2的同心半圆形导线,与沿直径的直导线连接同一回路,回路中电流为I .(1) 如果两个半圆共面,如图.a 所示,圆心O 点的磁感强度B 0的大小为)11(4120R R I +μ,方向为 向外. (2) 如果两个半圆面正交,如图b 所示,则圆心O 点的磁感强度B 0的大小为21222104R R R R I +μ ,B 0的方向与y 轴的夹角为 21R Ra r c t g -π .3. 如图所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,∠aob =180︒.则圆心O 点处的磁感强度的大小B = 0 . 三、计算题宽为a 的无限长铜片,沿长度方向均匀流有电流I ,如图,P 点与铜片共面且距铜片右边为b ,求P 处磁场。
1毕奥萨伐尔定律
dB
P
方向:以直导线为轴线的圆周的切线方向,与电流 构成右手螺旋法则。
特例:
0 I B (cos1 cos 2 ) 4a
1) 导线无限长时, 1 0, 2
0 I B 2a
2) 半无限长时, 1 / 2, 2
0 I B 4a
例2 载流圆线圈轴线上的磁场 例8-2 载流圆线圈轴线上的磁场
Idl
L
r P
I
dB
B
0 dB 4 L
L
Idl r r3
四. 磁场与电场的初步比较 1、作用力:
静止电荷之间的作用力—— 电力
静止电荷 电场 静止电荷
运动电荷之间的作用力 —— 电力+磁力
运动电荷
磁场传递磁 相互作用
运动电荷
2、产生源
静止电荷 运动电荷 电场 电场
3 2
方向: 这里 S R 是 线圈所围面积。
B
0 IS
2 ( x R )
2 2 3 2
特例: 1) 圆心处 x 0 2) 无限远处
x R
B
0 I
2R
0 IS B 2 x 3
B
0 IS
2 ( x R )
2 2 3 2
磁矩: m I S n
力的大小与方向与其电场力都不同,设受力为 F
Fe q0 E
q0
P
F Fe Fm
与电荷运动速度有关的力,称为磁力;磁力仅仅对 运动电荷才会出现,通常称洛仑兹力。
a. 磁感应强度的大小:
定义P 点磁感应强度 B的大小:
v
P
电磁学练习题(毕奥—萨伐尔定律 (2))
恒定磁场的高斯定理和安培环路定理1. 选择题1.磁场中高斯定理:⎰=∙ss d B 0,以下说法正确的是:( )A .高斯定理只适用于封闭曲面中没有永磁体和电流的情况B .高斯定理只适用于封闭曲面中没有电流的情况C .高斯定理只适用于稳恒磁场D .高斯定理也适用于交变磁场 答案:D2.在地球北半球的某区域,磁感应强度的大小为5104-⨯T ,方向与铅直线成60度角。
则穿过面积为1平方米的水平平面的磁通量 ( )A .0B .5104-⨯Wb C .5102-⨯Wb D .51046.3-⨯Wb答案:C3.一边长为l =2m 的立方体在坐标系的正方向放置,其中一个顶点与坐标系的原点重合。
有一均匀磁场)3610(k j i B++=通过立方体所在区域,通过立方体的总的磁通量有( )A .0B .40 WbC .24 WbD .12Wb 答案:A4.无限长直导线通有电流I ,右侧有两个相连的矩形回路,分别是1S 和2S ,则通过两个矩形回路1S 、2S 的磁通量之比为:( )。
A .1:2B .1:1C .1:4D .2:1 答案:B5.均匀磁场的磁感应强度B垂直于半径为R 的圆面,今以圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为()A .B R 22π B .B R 2π C .0 D .无法确定 答案:B6.在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为α,则通过半球面S 的磁通量为( )A .B r2π B .B r 22π C .απsin 2B r - D .απcos 2B r -答案:D7.若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布( )A .不能用安培环路定理来计算B .可以直接用安培环路定理求出C .只能用毕奥-萨伐尔定律求出D .可以用安培环路定理和磁感应强度的叠加原理求出 答案:D 8.在图(a)和(b)中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 1和I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 2、P 1为两圆形回路上的对应点,则:()A .2121,P P L L B B l d B l d B =⋅=⋅⎰⎰ B .2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰C .2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰ D .2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰答案:C9.一载有电流I 的导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小B R 和B r 应满足()A .B R =2B r B .B R =B rC .2B R =B rD .B R =4B r 答案:B10.无限长载流空心圆柱导体的内外半径分别为a,b,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
大学物理练习下册(1)
练习22 毕奥—萨伐尔定律22-1 (1)无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) 0; (B)R I40μ; (C) R I π20μ 0 ; (D) )11(20π-R I μ; (E) )11(40π+R I μ [ ](2)如图所示,两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置。
电流I 沿ab 连线方向由a 端流入,b 端流出,则环中心O 点的磁感强度的大小为(A) 0; (B) RI40μ; (C) RI 420μ (D) R I 0μ; (E) RI 820μ [ ] (3)一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等。
设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:(A) B R = 2 B r ; (B) B R = B r ; (C) 2B R = B r ; (D) B R = 4 B r 。
[ ] 22-2 (1)一无限长载流直导线,通有电流I ,弯成如图形状。
设各线段皆在纸面内,则P 点磁感强度B 的大小为________________。
(2)沿着弯成直角的无限长直导线,流有电流I =10 A .在直角所决定的平面内,距两段导线的距离都是a =20 cm 处的磁感强度B =____________________。
(3)一弯曲的载流导线在同一平面内,形状如图(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是________________________。
(4)如图所示,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为__________________。
22-3 如图所示,有一密绕平面螺旋线圈,其上通有电流I ,总匝数为N ,它被限制在半径为R 1和R 2的两个圆周之间.求此螺旋线中心O 处的磁感强度.22-4 如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b的任意点P 的磁感强度。
毕奥—萨伐尔定律等
磁感应强度:毕奥—萨伐尔定律、磁感应强度叠加原理1.选择题两条无限长载流导线,间距0.5厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为(A )0 (B )πμ02000T (C )πμ04000 T (D )πμ0400T 答案:A边长为a 的一个导体方框上通有电流I ,则此方框中心点的磁场强度(A )与a 无关 (B )正比于2a (C )正比于a (D )与a 成反比 答案:D载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则1a :2a =(A )1:1 (B )π2:1 (C )π2:4 (D )π2:8 答案:D一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I 。
若作一个半径为a R 5=、高l 的圆柱形曲面,轴与载流导线的轴平行且相距a 3,则B在圆柱侧面S 上积分⎰⋅s d B为(A )I a πμ520 (B )I a πμ250 (C )0 (D )I aπμ50 答案:C长直导线通有电流I ,将其弯成如图所示形状,则O 点处的磁感应强度大小为(A )R I R I 4200μπμ+ (B )R I R I 8400μπμ+ (C )R I R I 8200μπμ+ (D )RIR I 4400μπμ+ 答案:B如图所示,两根长导线沿半径方向引到铁环上的A 、B 两点上,两导线的夹角为α,环的半径R ,将两根导线在很远处与电源相连,从而在导线中形成电流I ,则环中心点的磁感应强度为(A )0 (B )RI20μ (C )αμsin 20RI(D )αμcos 20RI答案:A两条长导线交叉于一点O ,这两条导线上通过的电流分别为I 和2I ,则O 点的磁感应强度为(A )0 (B )πμI 0 (C )πμI 02 (D ) πμI04答案:A两条长导线相互平行放置于真空中,如图所示,两条导线的电流为I I I ==21,两条导线到P 点的距离都是a ,P 点的磁感应强度方向(A )竖直向上 (B )竖直向下 (C )水平向右 (D ) 水平向左 答案:B2. 计算题如图一半径为R 的带电塑料圆盘,其中有一半径为r 的阴影部分均匀带正电荷,面电荷密度为σ+,其余部分带负电荷,面电荷密度为σ-,当圆盘以角速度ω旋转时,测得圆盘中心O 点的磁感应强度为零,问R 与r 满足什么关系?解:带电圆盘的转动,可看作无数的电流圆环的磁场在O 点的叠加,某一半径为ρ的圆环的磁场为ρμ20didB =而()ρσωρπωρπρσd d di =⋅=22 (2分)ρσωμρρσωρμd d dB 00212==∴ (2分) 正电部分产生的磁感应强度为r d B r22000σωμρσωμ==⎰+ (2分)负电部分产生的磁感应强度为)(2200r R d B Rr-==⎰-σωμρσωμ (2分)令-+=B B (2分)r R 2=∴一半径为R 的无限长半圆柱形金属薄片,其中通有电流I ,如图所示。
大学物理答案-07恒定磁场(2)
μ0I
π
2 2μ0I = πa
α1
α2
a
2. 圆形载流导线轴线上的磁场
已知: 真空中R、I,求 轴线上P点的磁感应强度 建立坐标系OXY
r Idl
I
O
Y
α
R
r er
r r dB⊥ dB
r p dB
•
x
X
r 任取电流元 Idl
v dB
P* v
v Id l
v dB
v r
I
θ
r
v Id l
例、在一平面内有两条垂直交叉但 相互绝缘的导线,过每条导线的电流I大 小相等,方向如图所示,问哪些区域可 能存在磁感应强度为零的点? A 答案: B和D D
I I
B
C
三、毕奥---萨伐尔定律的应用 1. 载流直导线的磁场 I
已知:真空中I、α1、 α2、a r 任取电流元 Idl r μ 0 Idl sin α dB大小 dB = 2 4π r r dB 方向 ⊗ μ0 Idlsinα B = ∫ dB = ∫ 4π r 2 统一积分变量
μ 0 I 1 2π − θ B1 = 2R 2π
μ0I2 θ B2 = 2 R 2π
方向相反 O点总磁感强度B=0
作业1: P51二填空题1 作业2: P54四讨论题2(2)左边图的 情 况。
α2
dl
α
r α1
r dB
P
l
O
a
⊗
r = a / sin(π − α ) = a / sinα 2 = −a cotα l = a cot(π − α ) dl = a csc αdα
大学物理练习题 毕奥—萨伐尔定律(续) 磁场的高斯定理
一、选择题
毕奥—萨伐尔定律(续)
磁场的高斯定理
y P ·
1. 宽为 a,厚度可以忽略不计的无限长扁平载流金属片,如 图所示,中心轴线上方一点 P 的磁感应强度的方向是 (A) 沿 y 轴正向。 (B) 沿 z 轴负向。 (C) 沿 y 轴负向。 (D) 沿 x 轴正向。
-a/2
·
· a/2
x
0 0 0
A
-R
· B z
O C
D · R
E x
ˆ[μ I (4πR ) + μ I (4 R )] 。 ( B) ˆ j μ 0 I (4πR ) − k 0 0 ˆ j μ 0 I (4πR ) + k [μ 0 I (4πR ) + μ 0 I (4 R )] 。 ( C) ˆ ˆ[μ I (4πR ) + μ I (4 R )] 。 j μ 0 I (4πR ) − k (D) ˆ 0 0
Φ=
v
S1 a a
S2 2a
μ0 = 4π × 10 −7 T ⋅ m A ]
22. 一弯曲的载流导线在同一平面内,形状如图(O点是半径为R1和R2 的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O点磁感 强度的大小是 。
I
R1 O R 2
练习十一答案
一、 1. D,2. C,3. C,4. C,5. C,6. A,7. D,8. D,9. C,10.D。 二、 1. (μ0I/4)(1/R2−1/R1);垂直纸面向外;(μ0I/4)(1/R22+1/R12)1 2;arctan(R2/R1),
z
2. 如图所示,有一无限大通有电流的扁平铜片,宽度为 a,厚度不计,电流 I 在铜片上均匀 分布,在铜片外与铜片共面,离铜片左边缘为 b 处的 P 点的磁感强度的大小为: μ0 I (A) 。 2π (a + b ) I μ0 I a + b •P a 。 ( B) ln b 2 πb a μ I a+b (C) 0 ln 。 2πa b μ0 I (D) 。 2 π[(a 2) + b] v 3. 下列哪一幅曲线能确切描述载流圆线圈在其轴线上任意点所产生的 B 随 x 的变化关系? (x 坐标轴垂直于圆线圈平面,原点在圆线圈中心 O) B B O 线圈的轴 x 电流 B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕奥—萨伐尔定律一. 选择题1. 关于试验线圈,以下说法正确的是(A) 试验线圈是电流极小的线圈.(B) 试验线圈是线圈所围面积极小的线圈.(C) 试验线圈是电流足够小,以至于它不影响产生原磁场的电流分布,从而不影响原磁场;同时线圈所围面积足够小,以至于它所处的位置真正代表一点的线圈.(D) 试验线圈是电流极小,线圈所围面积极小的线圈. 2. 关于平面线圈的磁矩,以下说法错误的是 (A) 平面线圈的磁矩是一标量,其大小为P m =IS ;(B) 平面线圈的磁矩P m =Is n . 其中I 为线圈的电流, S 为线圈的所围面积, n .为线圈平面的法向单位矢量,它与电流I 成右手螺旋;(C) 平面线圈的磁矩P m 是一个矢量, 其大小为P m =IS , 其方向与电流I 成右手螺旋; (D) 单匝平面线圈的磁矩为P m =Is n ,N 匝面积相同且紧缠在一起的平面线圈的磁矩为P m =NIS n ;3. 用试验线圈在磁场中所受磁力矩定义磁感应强度B 时, 得空间某处磁感应强度大小的定义式为B=M max /p m ,其中p m 为试验线圈的磁矩, M max 为试验线圈在该处所受的最大磁力矩.故可以说(A) 空间某处磁感应强度的大小只与试验线圈在该处所受最大磁力矩M max 成正比. M max 越大,该处磁感应强度B 越大.(B) 空间某处磁感应强度的大小只与试验线圈的磁矩p m 成反比. p m 越大,该处磁感应强度B 越小.(C) 空间某处磁感应强度的大小既与试验线圈在该处所受的最大磁力矩M max 成正比,又与试验线圈的磁矩p m 成反比.(D) 空间某处磁感应强度时磁场本身所固有的,不以试验线圈的磁矩p m 和试验线圈在该处所受最大磁力矩M max 为转移.4. 两无限长载流导线,如图9.1放置,则坐标原点的磁感应强度的大小和方向分别为:(A)2μ0 I / (2 π a ) ,在yz 面内,与y 成45︒角. (B)2μ0 I / (2 π a ) ,在yz 面内,与y 成135︒角. (C)2μ0 I / (2 π a ) ,在xy 面内,与x 成45︒角.(D)2μ0 I / (2 π a ) ,在zx 面内,与z 成45︒角. 5. 用试验线圈在磁场中所受磁力矩定义磁感应强度B 时, 空间某处磁感应强度的方向为(A) 试验线圈磁矩P m 的方向. (B) 试验线圈在该处所受最大磁力矩M max 时,磁力矩M 的方向.(A) 试验线圈在该处所受最大磁力矩M max 时,试验线圈磁矩P m 的方向. (D) 试验线圈在该处所受磁力矩为零时,试验线圈磁矩P m 的方向.(E) 试验线圈在该处所受磁力矩为零且处于稳定平衡时,试验线圈磁矩P m 的方向.二.填空题1. 对于位于坐标原点,方向沿x 轴正向的电流元Idl ,它图9.2图9.1在x 轴上a 点, y 轴上b 点, z 轴上c 点(a ,b ,c 距原点O 均为r )产生磁感应强度的大小分别为B a , B b , B c2. 宽为a ,厚度可以忽略不计的无限长扁平载流金属片,如图9.2所示,中心轴线上方一点P 的磁感应强度的方向沿 (填x ,或y ,或z )轴 (填正,或负)方向.3. 氢原子中的电子,以速度v 在半径r 的圆周上作匀速圆周运动,它等效于一圆电流,其电流I 用v 、r 、e (电子电量)表示的关系式为I = ,此圆电流在中心产生的磁场为B= ,它的磁矩为p m = .三.计算题1. 如图9.3,真空中稳恒电流2I 从正无穷远沿z 轴流入直导线,再沿z 轴负向沿另一直导线流向无穷远,中间流过两个半径分别为R 1 、R 2,且相互垂直的同心半圆形导线,两半圆导线间由沿直径的直导线连接.两支路电流均为I .求圆心O 的磁感应强度B 的大小和方向.2. 如图9.4, 将一导线由内向外密绕成内半径为R 1 ,外半径为R 2 的园形平面线圈,共有N 匝,设电流为I ,求此园形平面载流线圈在中心O 处产生的磁感应强度的大小.毕奥—萨伐尔定律一.选择题 C A D B E 二.填空题1 0, μ0I d l /(4πr 2), μ0I d l /(4πr 2).2 x , 正.3 ev /(2πr ),μ0ev /(4πr 2), evr /2. 三.计算题1. 流进、流出的两直线电流的延长线过O 点,在O 点产生的磁场为 B 1=B 2=0 大、小半圆电流在O 点产生的磁场为B 3=μ0I /4R 1 B 4=μ0I /4R 2故O 点磁场为 B =( B 32+ B 32)1/2=(μ0I /4)( 1/R 22+1/R 12)1/2与x 轴的夹角为 ϕ=π/2+arctan(R 1/R 2),2. 在距圆心r (R 1≤r ≤R 2)处取细圆环,宽d r 匝数为 d N =n d r =N d r /(R 2-R 1)d B =μ0I d N /(2r )=N μ0I d r /[2(R 2-R 1)r ]()[]{}⎰-=211202R R r R R NIdr B μ= μ0NI ln(R 2/R 1)/[2(R 2-R 1)]图9.4毕奥—萨伐尔定律(续) 磁通量 磁场中的高斯定理一.选择题1. 电流元I d l 位于直角坐标系原点,电流沿z 轴正方向,空间点P ( x , y , z )磁感应强度d B 沿x 轴的分量是:(A) 0.(B) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 )3/2 . (C) -(μ0 / 4π)I x d l / ( x 2 + y 2 +z 2 )3/2 . (D) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 ) .2. 无限长载流导线,弯成如图10.1所示的形状,其中ABCD段在xOy 平面内,BCD 弧是半径为R 的半圆弧,DE 段平行于Oz 轴,则圆心处的磁感应强度为 (A) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )-μ0 I / (4R )] . (B) j μ0 I / (4 π R ) -k [μ0 I / (4 π R ) + μ0 I / (4R )] . (C) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )+μ0 I / (4R )] .(D) j μ0 I / (4 π R ) -k [μ0 I / (4 π R )-μ0 I / (4R )] .3. 长直导线1 沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2 返回电源 (如图10.2),若载流直导线1、2和三角形框在框中心O 点产生的磁感应强度分别用B 1 、B 2和B 3 表示,则O 点的磁感应强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0 . (B) B = 0,因为虽然B 1 ≠0,B 2 ≠0,但 B 1 +B 2 = 0 ,B 3 = 0.(C) B ≠ 0,因为虽然B 3 =0,但B 1 +B 2 ≠ 0.(D) B ≠ 0,因为虽然B 1 +B 2 = 0,但B 3 ≠0 .4. 在磁感应强度为B 的匀强磁场中, 有一如图10.3所示的三棱柱, 取表面的法线均向外,设过面AA 'CO , 面B 'BOC ,面AA 'B 'B 的磁通量为Φm1,Φ m 2,Φ m 3,则(A) Φ m1=0, Φ m2=Ebc , Φ m3=-Ebc . (B) Φ m1=-Eac , Φ m2=0, Φ m3=Eac . (C) Φ m1=-Eac , Φ m2=-Ec 22b a +, Φ m3=-Ebc .(D) Φ m1=Eac , Φ m2=Ec 22b a +, Φ m3=Ebc . 5. 如图10.4所示,xy 平面内有两相距为L 的无限长直载流导线,电流的大小相等,方向相同且平行于x 轴,距坐标原点均为a ,Z 轴上有一点P 距两电流均为2a ,则P 点的磁感应强度B(A) 大小为3μ0I /(4πa ),方向沿z 轴正向. (B) 大小为μ0I /(4πa ),方向沿z 轴正向. (C) 大小为3μ0I /(4πa ),方向沿y 轴正向. (D) 大小为3μ0I /(4πa ),方向沿y 轴负向.二.填空题1. 一带正电荷q 的粒子以速率v 从x 负方向飞过来向x 正方向飞去,当它经过坐标原图10.1图10.2图10.4图10.3点时, 在x 轴上的x 0点处的磁感应强度矢量表达式为B = ,在y 轴上的y 0处的磁感应强度矢量表达式为 .2. 如图10.5真空中稳恒电流I 流过两个半径分别为R 1 、R 2的共面同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入流出,则圆心O 点磁感应强度B 0 的大小为 ,方向为 ;3. 在真空中,电流由长直导线1沿半径方向经a 点流入一电阻均匀分布的圆环,再由 b 点沿切向流出,经长直导线2 返回电源(如图10.6),已知直导线上的电流强度为I ,90︒,则圆心O 点处的磁感应强度的大小B =.三.计算题1. 一半径R = 1.0cm 的无限长1/4I = 10.0A 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感应强度.2. 如图10.7,无限长直导线载有电流I , 旁边有一与之共面的长方形平面,长为a ,宽为b ,近边距电流I 为c ,求过此面的磁通量.毕奥—萨伐尔定律(续) 磁通量 磁场中的高斯定理一.选择题 B C A B D 二.填空题1. 0,[μ0qv /(4πy 02)]k2. (μ0I /4)( 1/R 2-1/R 1),垂直纸面向外,3. μ0I /(4πR )三.计算题 1、解:电流截面如图,电流垂直纸面向内,取窄无限长电流元d I =j d l =jR d θ j =I /(2πR/4)=2I /(πR )d I =2I d θ/π d B =μ0d I /(2πR )=μ0I d θ/(π2R ) d B x =d B cos(θ+π/2) =-μ0I sin θd θ/(π2R )d B y =d B sin(θ+π/2)=μ0I cos θd θ/(π2R )()[]⎰-=πππθθμ22sin R d I B x =-μ0I /(π2R ) ()[]⎰=πππθθμ22cos R d I B y=-μ0I /(π2R )B =( B x 2+B y 2)1/2=2μ0I /(π2R )与x 轴夹角 =α225°图10.7。