基因工程:第四章-酵母基因工程
基因工程第四章载体
(4) 插入失活型质粒载体
载体的克隆位点位于其某一个选择性 标记基因内部。
如pDF41、pDF42、pBR329。
外源DNA
抗菌素抗性
无抗菌素抗性
(5)正选择的质粒载体 Direct selection vectors
直接选择转化后的细胞。
只有带有选择标记基因的转化菌细胞才 能在选择培养基上生长。
如pUR2、pTR262等。
目前通用的绝大部分质粒载体都是正 选择载体。
(6) 表达型质粒载体
主要用来使外源基因表达出蛋白质产物。
注意启动子的性质,终止子、起始 密码、终止密码的阅读正确。
如果在大肠杆菌里表达,必须把所克隆的 真核生物的基因置于大肠杆菌的转录—翻 译信号控制之下。
表达载体的结构
1)普通载体元件
b)细菌抗性原理 Ampr基因编码-内酰胺酶,特异地 切割氨苄青霉素的-内酰胺环。
ii)氯霉素(chloramphenicol,Cml)
a)抑菌原理 通过与50S核糖体亚基结合,干扰细胞 蛋白质的合成并阻止肽键的形成。杀死 生长的细菌。
b)细菌抗性原理
Cmlr 编码乙酰转移酶,特异地使氯霉 素乙酰化而失活。
(2)长度 6.3 kb。
(3)选择标记
大肠杆菌素(colicin)E1和对E1免疫 的基因(immE1)
① colicin E1基因的结构
cea 结构基因
imm
kil
免疫基因 溶菌基因
② 杀死不含有ColE1细菌的原因 cea + kil基因产物
③ 不被其他细菌的colicin E1所杀死的原因 imm基因
① 双抗菌素抗性选择标记 插入失活,分两次先后选择: 没有获得载体的寄主细胞 在Amp或Tet中都死亡。
酵母菌在基因工程中的应用
酵母菌在基因工程中的应用酵母菌是一类单细胞真核生物,是生物科学研究中的一种常见模式生物。
它们普遍存在于自然界中,可以在发酵食品的制备以及生命科学研究领域发挥着重要的作用。
在基因工程领域中,酵母菌更是被广泛应用,成为了基因工程领域的重要工具之一。
下面我们就来看看,酵母菌在基因工程领域中都有哪些应用吧。
一. 酵母菌作为表达宿主酵母菌是一类常见的蛋白表达宿主,能够快速高效地表达蛋白质,是一种常见的蛋白质产生工具。
一般来说,通过基因工程手段将需要表达的蛋白质的基因导入酵母菌中,利用其自身繁殖特性,迅速高效地表达出需要的蛋白质。
此外,在表达蛋白质的过程中,酵母菌的生长条件相对简单,可以通过温度、氧气、营养等因素的控制来实现高效的表达。
二. 酵母菌在药物研究中的应用当前,越来越多的药物研发都依赖于基因工程技术,而酵母菌则成为了药物研发中的重要工具之一。
通过将需要研发的靶点基因导入酵母菌中,可以模拟药物对生物体内靶点的作用过程。
此外,还可以通过酵母菌对药物副作用的研究,为药物的准确作用机制提供参考。
三. 酵母菌在癌症研究中的应用对于癌症的研究一直以来都是生物学家们所关注的重要问题之一。
而酵母菌则成为了癌症研究中的重要研究工具之一。
通过将癌症相关基因导入到酵母菌中,并通过对其复制、修复和细胞凋亡等过程的研究,可以更好地理解癌症的发生机制和治疗过程,为癌症的诊断和治疗提供更好的参考。
四. 酵母菌在基因组研究中的应用对于生命科学研究而言,基因组研究是一项重要的研究领域。
而目前,酵母菌的基因组研究也在不断地发展。
利用酵母菌基因组研究这一工具,可以揭示基因与生物型之间的关系,探寻基因突变造成遗传性疾病的可能机制,还可以帮助人们更好地理解基因间相互作用,促进基因工程技术的发展。
总之,随着基因工程技术的不断发展,酵母菌作为一种常见的模式生物,也在越来越多的领域中发挥着重要的作用。
通过其快速高效的蛋白表达能力以及对生物学过程的模拟研究,酵母菌为人们揭示了生物世界中的许多秘密。
第四章 基因工程的质粒载体
SC
2 质粒DNA的转移
(1)质粒的类型:在大肠杆菌中的质粒,可 以分为:
接合型质粒:能自我转移
具有自主复制的基因,控制细菌配对和质粒接合转 移的基因。
非接合型质粒 不能自我转移
按接合转移功 能分类
非接合型质粒
主要基因
自主复制基因,产生大肠杆菌素基因
按抗性记号 分类
Col质粒
接合型质粒
自主复制基因,抗菌素抗性基 因
第二代 酵母表达 穿梭质粒 体系
第三代 哺乳类细 病毒、脂质体 胞表达体系
第四代 基因直接 DNA本身 导入
细菌 酵母 培养动物细胞 生殖细胞、 体细胞、个体
(三)基因工程载体必须具备的条件:
※(1)有复制起点 ※(2)具有若干个限制性内切酶的单一识别位点 ※(3)具备合适的筛选标记 ※(4)具备合适的拷贝数目
(c)所示,F质粒无力帮助mob-突变体进行转移,其中F性须和转移装置虽已 形成,但ColE1 DNA并没有发生缺口。
(d)表示另一种具mob+表型并带有一个顺式显性突变的ColE1突变体,它缺 失了bom位点。在这样的寄主细胞中,虽然能够合成mob蛋白质,但由于不 能发生缺口,因此仍然不能够转移。
3.若质粒DNA经过适当的核酸内切 限制酶切割之后,发生双链断裂形成 线性分子(IDNA),通称L构型
第4章 载体的选择与构建
大多数自主转移质粒都有tra基因和oriT位点,它们在质粒 自主转移过程中起着重要作用。
tra 基因:大多数 tra 基因的产物与性菌毛的形成 (F 、 RP4 和 pKMl01 都 编码一根性菌毛 )、杂交对的形成有关;有些 tra基因编码作用于 oriT位 点的内切酶,使质粒中的一条 DNA链产生切口,从而开始转移;有些 tra基因则与质粒转移调控等有关。
pMB1, colE1 replicon 修饰的pMB1 replicon pSC101 pUB110 pE194 replicon
拷贝数15~20
宿主范围小:肠细菌
拷贝数500~700 宿主范围小:肠细菌(pUC系列) 拷贝数5 50 5 宿主范围广 多种革兰氏阴性菌 广 多种革兰氏阳性菌 广 多种革兰氏阳性菌
pSC101 replicon
1.4 质粒的不稳定性 ★
分离不稳定性:在细胞分裂过程中,有一个子细胞没有获得质粒 DNΑ
拷贝,并最终增殖成为无质粒的优势群体;
结构不稳定性:由转位作用和重组作用所引起的质粒 DNA的重排与缺失
质粒的分配方式: 主动分配 平均分配:每个子细胞刚好获得一半数目的质粒拷贝 配对位点分配:只有一对质粒呈主动分配,其余的是随机分配。 主动分配存在着有效的质粒拷贝数控制系统,从而保证了质粒的高度稳 定性 随机分配 分配不稳定,部分子细胞没有质粒,并在生长过程中具有优势而逐渐使 含质粒细胞比例越来越少
RBS,融合tag) 基因敲除质粒(筛选系统,目的基因的 同源片段) 辅助性质粒(例如提供位点特异性重组酶)
1.3 质粒的复制 ★
1.3.1 复制子(replicon) 包括复制起点(ori)、复制控制元件、复制蛋白编码基因的遗 传单元
酵母基因工程技术的综述与进展展望
酵母基因工程技术的综述与进展展望引言:酵母是一类常见的真核生物,广泛存在于自然界中。
由于酵母具有独特的细胞结构和代谢特性,成为许多科学研究的理想模型生物。
基因工程技术的发展使得研究者们能够通过编辑和改造酵母的基因组,来实现多种生物学和应用学的目标。
本文将对酵母基因工程技术的现状进行综述,并展望未来的发展前景。
一、酵母基因工程技术的发展历程酵母基因工程技术的研究始于20世纪70年代。
最早的酵母基因工程是通过改变酵母细胞的遗传背景,来研究基因功能。
而后,随着重组DNA技术的引入,酵母基因工程迅速发展起来。
1981年,科学家们成功地将人类基因插入到酵母细胞中,这是一个重大突破。
随后的几十年间,酵母基因组测序的完成以及基因敲除和基因重组技术的发展进一步推动了酵母基因工程技术的成熟。
二、酵母基因工程技术的应用领域1. 功能基因组学研究:通过酵母基因组的全面敲除和突变,可以研究基因的功能和相互作用。
这有助于更好地理解酵母细胞的生物学过程,也有助于揭示生物学中的一些基本原理。
2. 药物筛选和开发:酵母作为模型生物,在药物筛选和开发领域具有重要地位。
通过构建酵母表达外源蛋白的系统,可以进行大规模的化合物筛选,以寻找新的药物靶点和治疗方法。
3. 工业应用:酵母在生物技术和食品工业中具有广泛的应用。
例如,酵母可以被用于生产酒精、酵母提取物和酵母蛋白等。
通过基因工程技术改造酵母菌株,可以增加产量和改良产品的品质。
三、酵母基因工程技术的挑战与限制尽管酵母基因工程技术在许多领域中取得了显著进展,但仍然面临一些挑战和限制。
1. 基因组稳定性:酵母细胞往往会发生基因组重排和位点突变等现象,这导致基因敲除和基因重组等操作的结果不一致。
因此,在酵母基因工程中,确保基因组的稳定性仍然是一个关键问题。
2. 效率和选择性:目前的酵母基因工程技术中,基因敲除和基因重组等操作的效率相对较低,并且选择性也较差,这限制了其在实际应用中的广泛推广。
基因工程-第四章
(4) 插入失活型质粒载体 载体的克隆位点位于其某一个选择性标记基因内部。
抗菌素抗性
外源DNA 无抗菌素抗性
(5)正选择的质粒载体(Direct selection vectors)
直接选择转化后的细胞。只有带有选择标记基因的转化 菌细胞才能在选择培养基上生长。
目前通用的绝大部分质粒载体都是正选择载体。
各类载体
pBR322 外源基因Pst I
Tet中存活 但在Amp中死亡
外源基因BamH I Amp中存活 但在Tet中死亡
pBR322 外源基因Pst I
Tet中存活 但在Amp中死亡
外源基因BamH I Amp中存活 但在Tet中死亡
3. pUC系列
•University of California 的 J. Messing 和 J. Vieria 于1978年,在pBR322 的基础上改造而成,如 pUC7、pUC8、pUC9、pUC10、pUC11、pUC18、 pUC19。 • 元件来源
• 质粒空间构型与电泳速率
分子量相同的,scDNA最快、l DNA次之、ocDNA最 慢。
OC L
SC
质粒的生物学基本特性
1.自主复制性
• 质粒复制子是质粒 DNA 中能自主复制并维持正常拷贝数的 一段最小的核酸序列单位。
• 两部分组成:复制起始区(ori)及其相关的调控元件。 • 质粒能利用寄主细胞的 DNA 复制系统进行自主复制。 • 质粒 DNA 上的复制子结构决定了质粒与寄主的对应关系
必要的条件能力。
理想载体至少必备的条件
① 能在宿主细胞中自主复制 ②容易进入宿主细胞 ③ 容易插入外来核酸片段 ④ 容易从宿主细胞中分离纯化,便于重组操作 ⑤ 具有合适的筛选标记 ⑥ 具有针对受体细胞的亲缘性或亲和性
基因工程概要
基因工程概要第一章:绪论让幸福的细胞不凋亡;让开心的基因多表达;让健康的质粒常转染;让快乐的双链不变异;让烦恼的片段永封闭。
一、基因工程的基本定义基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。
二、四大里程碑遗传物质的明确——DNA;DNA双螺旋结构理论(半保留复制及其中心法则);基因遗传密码子的破译;基因转移载体的发现。
三、三大技术发明工具酶的发明:内切酶、合成酶、连接酶;基因合成和测序(合成仪、测序仪);PCR技术(PCR扩增仪)。
四、基因的现代概念移动基因;断裂基因;假基因;重复基因;重叠基因;或嵌套基因五、工具酶种类核糖核酸酶;脱氧核糖核酸酶; DNA连接酶;DNA聚合酶;RNA聚合酶;反转录;限制性核酸内切酶。
第二章:重组DNA技术基础1、DNA组成与结构:核酸、一级结构、二级结构和高级结构;2、RNA的组成与功能:mRNA、tRNA、rRNA.3、核酸的理化性质:(1)一般性质:核酸的溶解度.;酸碱性;核酸的高分子性质粘度: DNA>RNA dsDNA > ssDNA;核酸的紫外吸收(OD260)单核苷酸 > ssDNA(或RNA) > dsDNA;核酸的化学性质:核酸中的嘌呤和嘧啶能进行脱氨、聚合、烷基化等反应等。
(2)DNA的变性:DNA变性的本质是双链间氢键的断裂;(3)DNA的复性与分子杂交 : DNA复性(renaturation)的定义:在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象,这一现象称为复性。
热变性的DNA 经缓慢冷却后即可复性,这一过程称为退火(annealing) ;减色效应: DNA复性时,其溶液OD260降低的现象.(4)核酸酶:核酸酶是指所有可以水解核酸的酶.(5)核酶:催化性RNA 作为序列特异性的核酸内切酶降解mRNA; 催化性DNA人工合成的寡聚脱氧核苷酸片段,也能序列特异性降解RNA。
基因工程 酵母单杂交技术的原理及应用
酵母单杂交是在酵母双杂交的基础上,20世纪90年年代中期又发展起来的--用于核酸和文库蛋白之间的研究。
在酵母单杂交系统中,省略了在酵母双杂交系统中采用的BD-X蛋白质杂交体,而用特异的DNA序列取代DNAGal4结合位点。
将已知的特定顺式作用原件构建到最基本启动子(Pmin)上游,把报告基因连接到Pmin下游。
编码待测转录因子cDNA与已知酵母转录激活结构域(AD)融合表达载体导入酵母细胞,该基因产物如果能够和顺式作用原件结合,就能激活Pmin启动子,使报告基因得到表达。
转录因子与顺式元件结合,激活最基本启动子Pmin,使报告基因表达,若连接如3个以上顺式作用元件,可增强转录因子的识别和结合效率。
优点:简单易行,无需分离纯化蛋白,酵母菌属于真真核生物,杂交体系检测到的与DNA结合的蛋白质是处于自然构象克服了体外研究时蛋白通常处于非自然构象的缺点,因而灵敏性很高。
缺点:有时由于插入的靶元件与酵母内源转录激活因子可能发生相互作用,或插入的靶元件不需要转录激活因子就可以激活报道基因的转录,因而存在假阳性结果。
如果酵母表达的AD杂合蛋白对细胞有毒性或者融合蛋白在宿主细胞内不能稳定的表达,或者融合蛋白发生错误折叠,或者不能定位于细胞核内,以及融合的GAL4-AD封闭了蛋白上与DNA作用的位点则都可能干扰AD杂合蛋白结合于靶元件的能力,从而产生假阴性的结果。
酵母单杂交系统应用:1. 鉴别DNA结合位点,并发现潜在的结合蛋白基因,目前对于酵母单杂交技术的应用主要体现在这方面。
Chew et al(1999)应用酵母单杂交技术证实了在大鼠脑中存在的COUP-TFⅠ、EAR2和NURR1等蛋白质GRIK5基因的内含子结合蛋白。
2. 对DNA结合结构域进行分析如果能得到DNA结合结构域的结构信息,就可以用酵母单杂交技术对该结构进行分析.Mak et al(1996)运用此技术测试哺乳动物具有基本的螺旋- 环- 螺旋(bHLH)结构的转录因子,通过对肌调节因子4(MRF4)的研究,证实其具有转录活性。
大学《基因工程学》教学大纲
《基因工程学》课程教学大纲(Genetic Engineering)一、课程说明课程编码:02200200课程总学时(理论总学时/实践总学时):48(48/0)周学时(理论学时/实践学时):4(4/0)学分:31.课程性质:专业必修课。
2.适用专业与学时分配:适用生物技术专业。
教学内容与学时分配3.课程教学目的与要求:本课程的授课对象是生物技术专业的本科生。
课程简介:《基因工程》是生物技术专业的专业必修课程。
其以分子遗传学理论为基础,以分子生物学和微生物学的现代方法为手段而建立起来的一门技术学科。
基因工程兴起于20世纪70年代初,它的问世带动了生物技术的兴起和发展,是现代生物技术的核心内容。
基因工程课程的主要内容包括基因的分离、基因的克隆、基因的表达、植物基因工程、动物基因工程、药物基因工程和基因治疗等。
它是生命科学学院生物技术专业本科生的主干专业课程之一,它是生物工程(包括基因工程、细胞工程、酶工程、发酵工程)中最重要的课程,其它三大工程是建立在基因工程基础之上的,同时也为生物技术制药等后继学科奠定了重要的理论基础。
课程目标:设置本课程是为了让生物技术专业的学生理解和掌握基因工程的技术原理,通过本课程学习,掌握基因操作的工具酶,基因克隆常用载体,目的基因的分离与合成,重组体的构建,重组体向宿主细胞的导入,重组体克隆的筛选与鉴定以及克隆基因的表达,同时了解基因工程在生物学领域中的应用与发展前景。
对学生达到毕业要求贡献如下:1)了解基因工程学的历史、发展和前沿知识。
2)掌握基因工程学的基础理论、基本知识和基本技能;教学要求:学完基因工程学后,学生将具备以下能力:1)具有良好的自学能力;2)综合运用所掌握的基因工程学理论知识和技能、从事生物科学及其相关领域科学研究的能力。
4.本门课程与其它课程关系:先修课程为生物化学、微生物学、分子生物学、细胞学等,具备基础理论知识及实验能力是基因工程学课程的基础。
课程标准
《基因工程》课程标准课程编号:09060281课程类别:必修课程学时:56(理论32,实验24)学分:3学分一、课程的性质和任务基因工程是获取、整理、破译、编辑和表达生物体遗传信息(基因)的一种操作平台与技术,它以细胞生物学、分子生物学和分子遗传学的基本理论体系为指导,在基因的分离克隆、基因表达调控机制的诠释、基因编码产物的产业化、生物遗传性状的改良乃至基因治疗等方面正日益显示出愈来愈高的实用价值。
本课程的主要内容为基因工程概论、分子克隆单元操作、大肠杆菌基因工程、真菌基因工程、昆虫基因工程、高等动物基因工程、高等植物基因工程、蛋白质工程等,将DNA重组技术归纳为切、接、转、增、检五大基本操作单元,进而按照受体细胞的生物学分类,逐一展开各系统基因工程的原理和应用。
重点讲述基因工程技术应用的策略和思路,并力求以图解的方式取代繁琐的描述。
本课程全程采用多媒体教学手段进行。
根据本科教学加强基础、注重素质、整体优化的原则,本门课程旨在为学生讲述基因工程的基本原理、单元操作与应用策略,学生学好本门课程可为从事生物、农业、环保、医药领域的研究与应用开发工作打下良好基础。
具体任务是:(一)熟悉和掌握基因工程基本概念、基本原理、基本技术和典型设备。
(二)学会根据生产、科研要求和技术选择分子操作的技术和设备。
(三)了解基因工程在各领域的应用、新的知识与技术,了解其最新研究成果和发展状态。
二、本课程的基本内容:第一章基因工程概论(一)教学目的与要求掌握基因工程的含义和主要内容以及基因工程诞生的理论基础与技术突破。
了解基因工程的发展和在社会生产中的应用和安全性的问题。
(二)教学重点与难点1.教学重点:基因工程的含义;基因工程诞生的理论基础与技术突破。
2.教学难点:基因工程诞生的理论基础与技术突破。
(三)课时安排2课时(四)教学内容1. 基因工程的基本概念2. 基因工程的的发展简史3. 基因工程技术研究的主要内容第二章DNA重组克隆的单元操作(一)教学目的与要求掌握载体的基本结构和质粒载体、噬菌体载体的特点、构建原理;掌握限II型制性核酸内切酶的切割原理和部分常用的限制性核酸内切酶的识别位点与切割末端。
基因工程知识点全
第一章基因工程概述1。
什么是基因工程,基因工程的基本流程?基因工程(Genetic engineering)原称遗传工程.从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状。
因此,供体、受体和载体称为基因工程的三大要素.1。
分离目的基因2。
限制酶切目的基因与载体3.目的基因和载体DNA在体外连接4.将重组DNA分子转入合适的宿主细胞,进行扩增培养5。
选择、筛选含目的基因的克隆6。
培养、观察目的基因的表达第二章基因工程的载体和工具酶1. 基因工程载体必须满足哪些基本条件?➢具有对受体细胞的可转移性或亲和性。
➢具有与特定受体细胞相适应的复制位点或整合位点。
➢具有多种单一的核酸内切酶识别切割位点。
➢具有合适的筛选标记.➢分子量小,拷贝数多.➢具有安全性。
2。
质粒载体有什么特征,有哪些主要类型?1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1。
克隆质粒2.测序质粒3.整合质粒4。
穿梭质粒5.探针质粒6。
表达质粒3。
质粒的构建(1)删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量.一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定.(2)灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数(3)加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受体细胞。
(4)在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头(Polylinker),便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入。
(5)根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件。
酵母分子生物学与基因工程研究
酵母分子生物学与基因工程研究酵母是一种单细胞真菌,广泛存在于自然界中,是一种极其重要的生物资源。
在生命科学中,酵母因具有不同寻常的遗传和分子生物学特性而成为一个实验科学家和生物技术研究人员的常用模型。
酵母分子生物学和遗传学的研究已经深化了对细胞周期、蛋白合成、遗传调控和细胞衰老等基本问题的理解。
同时,经过多年的研究,我们也发现,酵母很容易进行基因工程,因而被广泛应用于基因工程研究中。
一、酵母分子生物学研究在酵母分子生物学领域的研究中,人们主要关注酵母的遗传和生化特性,实现对酵母细胞的细致控制和扰动。
其中最重要的研究方向是研究细胞周期、蛋白合成、遗传调控和细胞衰老等基本问题。
1. 细胞周期细胞周期是细胞分裂和增殖的基本过程。
在酵母中,细胞周期通过调节细胞分裂周期的步骤来进行。
酵母细胞在离子和氧气充足的情况下生长很快,其细胞周期仅为2至4小时。
如果细胞受到应激,细胞周期的长度可能会变长,这是因为生长阶段被严重延迟,同时分裂阶段也需要时间来进行。
因此,酵母的细胞周期可以被建模和对其进行数据分析。
这有助于把酵母作为一个模型细胞使用,并对细胞分裂周期进行研究。
2. 蛋白合成蛋白合成是细胞生命周期中最重要的基本过程之一。
酵母呈现了很多不同类型的蛋白质合成模式,包括编码激活特定结构的蛋白质,以及在酵母细胞死亡、肿瘤和其他疾病中起作用的重要酶类的合成。
因此,进行酵母蛋白质合成研究能够进一步加深对细胞生长和分裂的理解。
3. 遗传调控酵母被广泛地应用于生物学研究的原因之一就在于它们的积累很快。
通过遗传杂交和新基因引入等方案,可以确保酵母具有人工引入的基因。
基因诱变和细胞群集分析在酵母敲除和过度表达中也被广泛应用。
因此,酵母的研究有助于理解遗传调控的机制。
4. 细胞衰老酵母的寿命很短,通常仅为数天或数周。
它们的寿命不受疾病、能量饥饿和其他外部因素的干扰。
因此,研究酵母序列和药物等因素对细胞衰老的影响可以为人类提供有关寿命和衰老机制的信息。
生物技术概论论文-酵母基因工程菌的构建过程及其在食品领域中的应用
酵母基因工程菌的构建过程及其在食品领域中的应用随着科技的发展,食品生物技术在食品工业发展中的地位和作用越来越大,已经渗透到食品工业的方方面面,特别是基因工程技术等技术在21世纪的食品工业中充当重要的角色。
而工程菌就是用基因工程的方法,使外源基因得到高效表达的菌类细胞株系,是采用现代生物工程技术加工出来的新型微生物,具有多功能、高效和适应性强等特点。
主要应用于治理海洋石油泄漏,生产基因工程药物,酵母基因工程中等方面。
而酵母基因工程中,酵母基因工程菌就是菌类细胞株系用的是酵母菌,能够发挥着一定的功能,可以提高发酵的效率。
酵母基因工程的优点:1.是真核生物,大多具有价高的安全性。
2.繁殖速度快,能大规模生产,具有降低基因工程产品成本的潜力。
3.将原核生物中已知的分子和基因操作技术与真核生物中复杂的转运后修饰能力相结合,能方便外缘基因的操作。
4.采用高表达启动子,可高效表达目的基因,而且可诱导调控。
5.提供了翻译后加工和分泌的环境,使得产物和天然蛋白质一样或类似。
6.酵母菌可表达外源蛋白与末端前导肽融合,指导新生肽分泌,同时在分泌过程中可对表达的蛋白进行糖基化修饰。
7.不会形成不溶性的包涵体,易于分离提纯8.移去起始甲硫氨酸,避免了在作为药物中使用中引起免疫反应的问题。
9.酵母菌(主要是酿酒酵母)已完成全基因组测序,他具有比大肠杆菌更完备的基因表达控制机制和对表达产物的加工修饰和分泌能力。
10.酵母可进行蛋白的N-乙酰化,C-甲基化,对定向到膜的胞内表达蛋白具有重要意义。
构建基因工程菌是一个复杂、繁琐的过程,因此构建酵母基因要注意:1、结构简单,易于研究2、繁殖能力强,数目多3、成本低,易于培养、4易于观察。
一.酵母基因工程菌的构建过程:1.目的基因的获取:获取目的基因是实施基因工程的第一步,有三种方法提取目的基因。
(1)从自然界中已有的物种中分离出来:.从基因文库中获取目的基因(俗称:鸟枪法):将含有某种生物的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物不同的基因,称为基因文库。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UBC4-UBC5双突变型:
UBC4-UBC5双突变型能大幅度削弱泛
素介导的蛋白降解。
7个泛素连接酶基因的突变对衰减蛋白 降解作用同样有效。
6、内源性蛋白酶缺陷型的突变宿主菌
酿酒酵母具有20多种蛋白酶 空泡蛋白酶基因PEP4野生型和
pep4-3突变株
B-半乳糖苷酶活性明显升高
(三) 酵母菌的载体系统
酵母基因工程
酵母菌作为外源基因表达受体菌的特征 酵母菌的宿主系统 酵母菌的载体系统 酵母菌的转化系统 酵母菌的表达系统 利用重组酵母生产乙肝疫苗
1974 Clarck-Walker和Miklos发现在多数酿酒酵母 中存在质粒。
1978 Hinnen将来自一株酿酒酵母的leu2基因导入 另一株酿酒酵母,弥补了后者leu2的缺陷, 标志着酵母表达系统建立。
酵母菌有4个泛素编码基因:
UBI1 编码泛素-羧基延伸蛋白52 对数生长期表达 稳定期关闭
UBI2 编码泛素-羧基延伸蛋白52 对数生长期表达 稳定期关闭
UBI3 编码泛素-羧基延伸蛋白76 对数生长期表达 稳定期关闭
UBI4 编码泛素五聚体
对数生长期关闭 稳定期表达
酵母菌有7个泛素连接酶基因:
UBC1、UBC2、UBC3、UBC4、UBC5、UBC6、UBC7
酵母菌表达外源基因的优势: 全基因组测序,基因表达调控机理清楚,遗传 操作简便。 具有真核生物蛋白翻译后加工修饰系统。 能将外源基因表达产物分泌至培养基中。 大规模发酵工艺简单、成本低廉。
不含特异性病毒、不产毒素,被美国FDA认定为 安全的基因工程受体系统。
酵母菌表达外源基因的缺点:
表达产物的糖基化位点和结构特点 与高等真核生物有差距。
特点:
可利用甲醇作为唯一碳源; 表达水平高; 产物糖基化更合理。
其它酵母:
已有60多种酵母菌建立了转化系统。 乳酸克鲁维酵母(Kluyveromyces lactis) 非洲酒裂殖酵母(Schizosaccharomyces pombe)
酿酒酵母的遗传学和分子生物学 研究最详尽,但巴斯德毕赤酵母表达 外源基因最理想。
泛素降解途径衰减的酿酒酵母
UBI4缺陷型: 在酿酒酵母菌中,泛素主要由UBI4基因
表达。 UBI4突变株能正常生长,但细胞内游离
泛素分子的浓度比野生株低得多,是外源基 因表达的理想受体。
UBA1缺陷型:
UBA1编码泛素激活酶E1,是一种看 家基因。
UBA1突变株是致死性的,但其等位 基因缺陷是非致死性的,且能削弱泛素介 导的蛋白降解。
3、提高外源蛋白表达产率的突变宿主菌
能提高外源基因表达或分泌的突变类型
突变类型 生物效应 ssc1 改善外源蛋白分泌 ssc2 提高外源基因表达 rgr1 提高外源基因表达 ose1 提高外源基因表达 ssc11 改善外源蛋白分泌 rho 提高外源基因表达
作用位点 钙离子依赖型ATP酶 转录后加工 转录水平 转录水平 羧肽酶Y 转录水平
外侧糖链添加缺陷
如:人1-抗胰蛋白酶、人tPA在酿酒酵母 mnn9和och1突变株中高活性表达。
5、减少泛素依赖型蛋白降解的突变宿主菌
泛素介导的蛋白质降解作用
靶蛋白 Lys HOOC
泛素 76aa
泛素连接酶E3
靶蛋白 Lys 泛素连接酶E3
靶蛋白 Lys
蛋白 酶体
靶蛋白降解 泛素释放
酵母菌泛素依赖型蛋白降解系统的编码基因:
1981 Hitzeman用酿酒酵母成功表达人IFN。
1983 我国首次用酵母菌表达HBV HBsAg基因。
1996 完成第一个真核生物--酿酒酵母全基因组测序。
(一)酵母菌作为外源基因表达受体菌的特征
酵母菌(Yeast)是一群以芽殖或裂殖方式 进行无性繁殖的单细胞真核生物。
如果说E.coli是外源基因最成熟的 原核生物表达系统,Yeast则是最成熟 的真核生物表达系统。
酿酒酵母中的2环状质粒:
野生型,双链、环状, 6318bIRs: 反向重复序列,同源重组 FLP: 编码产物驱动IRs同源重组
REP1
FLP
IR
A ori IR
REP2
同源重组
REP: 编码产物控制质粒稳定性
B
STB: REP结合位点
人工构建酵母质粒的共同特点: 含有E.coli质粒复制起点,便于克隆操作; 含有多个单一酶切位点,便于克隆操作; 含有在酵母和E.coli中进行选择的双标记; 除YIp型质粒外均为穿梭载体。
无性繁殖(芽殖或裂殖)、单细胞、 真核生物; 繁殖方式与原核类似,易于操作; 基因表达调控机理与高等真核类似。
2、用于外源基因表达的酵母宿主菌
酿酒酵母(Saccharomyces cerevisiae):
最成熟的真核细胞表达系统; 表达水平低; 产物过度糖基化。
甲醇酵母:
巴斯德毕赤酵母 (Pichia pastoris) 多形汉逊酵母 (Hansenula polymorpha)
(二)酵母菌的宿主系统
用作模式真核生物的酵母宿主菌 用于外源基因表达的酵母宿主菌 提高重组蛋白表达产率的突变宿主菌 抑制超糖基化作用的突变宿主菌 减少泛素依赖型蛋白降解作用的突变宿主菌 内源性蛋白酶缺陷型的突变宿主菌
1、用作模式真核生物的酵母宿主菌
酿酒酵母(Saccharomyces cereviasiae):
如: rho突变株中人溶菌酶表达量提高10倍。
4、抑制超糖基化的突变宿主菌
酵母菌普遍拥有蛋白质糖基化系统, 但野生型酵母菌对外源蛋白的糖基化反应 很难控制,呈超糖基化倾向。
措施:构建超糖基化缺陷突变株。
抑制超糖基化的突变类型
突变类型
生物效应
mnn
甘露糖生物合成缺陷
alg
Asn侧链糖基化缺陷
och
野生型质粒:2质粒(酿酒酵母) 人工构建质粒:
酵母附加型质粒(YEp) 酵母复制型质粒(YRp) 酵母着丝粒质粒(YCp) 酵母人工染色体(YAC) 酵母整合型质粒(YIp)
除酵母外,其它几种酵母的细胞内也 含有野生型的相似质粒。
结合酵母属:pSR1、pSB1、pSB2 克鲁维酵母属:pKD1
YEp质粒:
复制子:源自2质粒;
拷贝数:50-100;
不稳定:培养几代后 ,质粒丢失率高达 50-70%,主要由于 分配不均匀所致。
YRp质粒:
复制子:源自酵母染色体的ARS;