坐标方法的简单应用(基础)知识讲解
2坐标方法的简单应用知识讲解
2坐标方法的简单应用知识讲解一、2坐标方法的基本概念1.坐标系:在平面几何中,我们通常使用笛卡尔坐标系。
它由两根相交的互相垂直的坐标轴构成。
水平轴称为x轴,垂直轴称为y轴。
原点是坐标轴的交点,用(0,0)表示。
2.坐标:每个点在坐标系中都有唯一的坐标表示。
坐标以有序对的形式表示,即(x,y)。
其中,x表示点在x轴上的位置,y表示点在y轴上的位置。
例如,点A的坐标为(3,4),表示它在x轴上的位置是3,y轴上的位置是43.距离公式:根据勾股定理,两点之间的距离可以通过坐标计算。
假设点A的坐标是(x1,y1),点B的坐标是(x2,y2),两点之间的距离d可以计算为:d=√((x2-x1)²+(y2-y1)²)。
4.直线方程:点斜式是一种表示直线的公式形式。
点斜式的一般形式为:y-y1=k(x-x1),其中k是直线的斜率,(x1,y1)是直线上的已知点坐标。
通过已知点和斜率,我们可以计算直线的方程。
二、2坐标方法的应用场景1.点的位置关系:通过坐标之间的大小关系,我们可以判断一个点在另一个点的上方、下方、左方或右方。
例如,如果点A的坐标为(2,3),点B的坐标为(3,4),我们可以发现点B在点A的右上方。
2.图形的性质和关系:通过坐标计算,我们可以确定图形的几何性质和关系。
例如,通过计算线段的长度、角的大小等,我们可以判断图形的形状和特性。
3.相交和平行关系:通过坐标计算,我们可以判断直线之间的相交关系和平行关系。
例如,通过直线的斜率和截距,可以判断两条直线是否平行或者相交。
4.解方程组:2坐标方法可以应用于解二元一次方程组。
通过给定的两个方程,我们可以用代数的方法求出未知数的值,从而解决问题。
三、2坐标方法的提高技巧1.把握几何关系:在使用2坐标方法时,要深入理解图形的几何关系。
通过观察和分析图形的特点,可以简化问题和计算过程。
2.利用对称性:对称性是2坐标方法中常用的技巧。
通过利用图形的对称性,可以减少步骤和计算量。
七年级数学下册 7.2 坐标方法的简单应用纠错必备素材 (新版)新人教版
1 坐标方法的简单应用
一、混淆坐标轴上坐标特征
例1 已知点P (m ,2m -1)在x 轴上,则点P 的坐标为 . 错解:因为点P 在x 轴上,所以m=0,2m -1=-1.
故点P 的坐标为(0,-1).
剖析:错误的原因是把x 轴、y 轴上的点的坐标特征搞混了,x 轴上的点的坐标特征是纵坐标为0,而不是横坐标为0.
正解:由点P 在x 轴上,知2m -1=0,可得m=12
. 所以点P 的坐标是(12
,0). 跟踪训练1 过点A (2,-3)作垂直于y 轴的直线交y 轴于点B ,那么B 点的坐标为
【 】
A .(0,2)
B .(2,0)
C .(0,-3)
D .(-3,0)
二、混淆平移的规律
例2 将点(5,3)向上平移3个单位长度得到的点的坐标是 . 错解:(8,3).
剖析:将一个点上下平移时,其横坐标不变,将纵坐标相应变化;将一个点左右平移时,其纵坐标不变,将横坐标相应变化.故将点(5,3)向上平移3个单位长度得到点的坐标应为(5,6).
正解:(5,6).
跟踪训练2 将点P (2,-3)向右平移2个单位长度得到的点是【 】
A .(2,-3)
B .(4,-3)
C .(2,-1)
D .(0,-3) 答案
1.C
2.B。
人教版七下数学7-2坐标方法的简单应用课时2
后的线段 A′B
4
3
2
1
-6 -5 -4 -3 -2 -1 O
-1
-2
-3
-4
-5
-6
B′
B
A′
A
1 2 3 4 5 6 x
1. 作出线段两个端点平移
后的对应点.
2. 连接两个对应点,所得
线段即为所求.
各点坐标有什么变化?
纵坐标都增加2.
y
6
5
4
G,H,它们的坐标分别是什么?如果直接平移正方
形 ABCD,使点 A 移到点 E,它和我们前面得到的正
方形位置相同吗?
y
可求出点 E,F,G,H 的坐
标分别是(5, − 3),(5, − 4),
(6,−4),(7,−3).
A
B
6
5
D4
C3
2
1
-6 -5 -4 -3 -2 -1 O
-1
如果直接平移正方形 ABCD,
∴ 点 A6 的坐标为(9,12).
y
x
点的坐标规律探索题的求解步骤
1. 根据题意适当地写出一些点的坐标;
2. 观察这些点的横、纵坐标与其序号之间的关系,
找到规律;
3. 根据规律,写出所求点的坐标.
A′
C′
B′
随堂练习
1.(2020•绵阳中考)平面直角坐标系中,将点 A(−1,
2) 先向左平移 2 个单位,再向上平移 1 个单位后得到
的点 1 的坐标为 (−3,3) .
将点A (−1,2)先向左平移
2个单位,横坐标−2,
再向上平移1个单
位纵坐标+1,
坐标方法的简单应用-用坐标表示地理位置(黑龙江省哈尔滨市)
小敏家;出校 小敏家 门向南走100m, ( 300,-175)再向东走300m, 最后向南走75m。
需要更完整的资源请到 新世纪教 育网 -
需要更完整的资源请到 新世纪教 育网 -
活动4:
建立适当的直 角坐标系,标 出萧红故居, 太阳岛风景区, 防洪纪念塔, 圣索菲亚教堂, 儿童公园,森 林植物园,二 龙山风景区, 松峰山风景区 的坐标 。
9.2 坐标方法的简单应用
9.2.1 用坐标表示地理位置
需要更完整的资源请到 新世纪教 育网 -
需要更完整的资源请到 新世纪教 育网 -
需要更完整的资源请到 新世纪教 育网 -
我们先请同学们介绍自己的家在 哪儿?
Y
D
点A(-100,0)
200
C
点B(200,0) 点C(250,150) 点D(0,350)
X
150
A
100
E
B
200
50
需要更完整的资源请到 新世纪教 育网 -
需要更完整的资源请到 新世纪教 育网 -
再 见
需要更完整的资源请到 新世纪教 育网 -
(3,-2)
-4 在一次“寻宝”游戏中,寻宝人已经找到了坐标为 (3,2)和(3,-2)的两个标志点,并且知道藏宝 地点的坐标为(4,4),除此之外不知道其他信息, 如何确定直角坐标系找到“宝藏”?请跟同伴交流。 需要更完整的资源请到 新世纪教
育网 -
一个直四棱柱的俯视图如图示,请建立适当 的坐标系画出俯视图,并标出个顶点的坐标
需要更完整的资源请到 新世纪教 育网 -
如果以学校校门作为开始点,向大家 介绍自己家的位置。
需要更完整的资源请到 新世纪教 育网 -
坐标方法的简单应用
第2节坐标方法的简单应用第一课时用坐标表示地理位置要点突破一、建立平面直角坐标系表示地理位置的过程:(1)选择一个适当的参照点为原点,确定x轴、y轴的正方向,一般以向东方向为x轴正方向,向北方向为y轴正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度,比例尺的选择必须恰当,既不为过大,也不能过小,以画出的图形的大小恰当为好;(3)在坐标平面内画出这些点,写出各个地点的名称。
注意:①要说清楚坐标系的建立方法;②根据比例尺确定单位长度。
典例剖析:例1:(2007年泸州)如图是某市市区四个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,建立平面直角坐标系(保留坐标系的痕迹),并用坐标表示下列景点的位置:①动物园_____________________②烈士陵园____________________思路探索:本题答案不唯一,可以以任意一个旅游景点为原点,一般以水平方向为x轴,竖直方向为y轴建立平面直角坐标系,如以金凤广场为原点,则动物园(1,2),烈士陵园(-2,-3)。
解析:以金凤广场为原点,水平方向为x 轴,竖直方向为y 轴建立平面直角坐标系,则动物园(1,2),烈士陵园(-2,-3)规律总结:利用平面直角坐标系可以绘制区域内一些地点分布情况的平面图。
其过程分为以下三步:(1)建立适当的直角坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)在坐标轴上标出单位长度;(3)在坐标平面内描出各点,写出它们的坐标。
例2:某城市A 地和B 地之间经常有车辆来往,H 地和D 地间也经常有车辆来往.四地的坐标为:A(-3,2),D(1,1),H(-5,-3),B(-1,-4),拟建一座加油站,那么加油站建立在哪里对大家都方便,是给出具体的位置.-3234-2o-11234-3-4xy-2-1-4-515思路探索:加油站建在两条公路相交的位置对两大家都方便,因此我们可以描出这四地位置的坐标,连结AB ,HD ,求出交点坐标。
7.2.1坐标方法的简单应用(1)用坐标表示地理位置 学历案
7.2.1 用坐标表示地理位置【学习目标】1.会建立平面直角坐标系描述地理位置;2.能利用方向和距离描述地理位置.【知识链接】1.已知点P(x, |x|),则点P一定()A.在第一象限B.在第一或第四象限C.在x轴上方D.不在x轴下方2.若点P(x,y)的坐标满足xy=0(x≠y),则点P在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上【自主学习】精读课本P73—P75,回答下列问题:3.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为______,确定x轴、y轴的_______________;(2)根据具体问题确定______________;(3)在坐标平面内画出这些点,写出各点的__________和各个地点的__________.4.一般地,能够建立平面直角坐标系,用__________表示地理位置. 此外,还能够用____________和_________表示平面内物体的位置.【合作交流】5.如图,矩形ABCD的长与宽分别是6和3,建立适当的直角坐标系,并在图中写出各个顶点的坐标.6.如图,象棋盘上,若“帅”位于点(-1,-2),“马”位于点(2,-2),则“炮”位于点()A. (-3,1)B. (0,0)C. (-1,0)D. (1,-1)【激情探究】7.根据以下条件利用下面的坐标轴画一幅示意图,标出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走1 500 m,再向北走2 000 m.小强家:出校门向西走2 000 m,再向北走3 500 m,最后向东走500 m.小敏家:出校门向南走1 000 m,再向东走3 000 m,最后向南走750 m.解:根据条件,三个同学的回家路线都是以__________为起点,所以能够选择_________所在的位置为原点,以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表_____m长.8. 如图,一艘船在A处遇险后向相距35 n mile位于B处的救生船报警,如何用方向和距离描述救生船相对于遇险船的位置?救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?DCB ADCB A【过关检测】9.根据以下条件画一幅地图,标出中山公园的南门、游乐园、望春亭、牡丹园的位置:(1)游乐园:进南门,向北走100米,再向东走100米(2)望春亭:进南门,向北走200米,再向西走300米.(3)牡丹园:进南门,向北走600米,再向东走200米.10.如图,货轮与灯塔相距40 海里,如何用方向和距离描述灯塔相对于货轮的位置?反过来,如何用方向和距离描述货轮相对于灯塔的位置?【课后作业】11.如图,雷达探测器测得六个目标A、B、C、D、E、F出现,按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°),按照此方法在表示目标A、B、D、E的位置时,其中表示不准确的是()A.A(5,30°) B.B(2,90°) C.D(4,240°) D.E(3,60°)12.如图是聊城市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以光岳楼为原点,画出平面直角坐标系,并用坐标表示光岳楼、金凤广场、动物园的位置.13.如下图是某学校的平面示意图,如果实验楼所在位置的坐标为(-2,-3),教学楼所在位置的坐标为(-1,2),那么图书馆所在的位置的坐标为(,),旗杆所在的位置的坐标为(,).14.建立平面直角坐标系,描出△ABC的三个顶点A(-1,3),B(-2,0),C(-4,0),在平面直角坐标中描出A、B、C三点,并求出△ABC的面积.。
专题08 坐标方法的简单应用
专题八 坐标方法的简单应用要点归纳1.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的 为原点,确定x 轴,y 轴的 ; (2)根据具体问题确定 ;(3)在平面内画出这些点,写出各点的 和各个地点的 . 2.一般地,在平面直角坐标系中,将点(x ,y )向右或向左平移a 个单位,可以得到对应点 或 ;将点(x ,y )向上或向下平移b 个单位长度,可以得到对应点 或 .3.一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形 平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形 平移a 个单位长度. 典例讲解:一、用坐标表示位置:表示地理位置的方法有多种,主要有“方位角+距离”确定法,平面直角坐标系法,经纬度法等. 因为平面直角坐标系是最简单、最常用的坐标系,表示地理位置直观、方便.【例1】如图1是一个动物园浏览示意图,试设计确定这个动物园中每个景点位置的一种方法,并画图说明.思路点拨:根据已知条件,建立适当的直角坐标系表示地理位置.答案不唯一,可以以任何一个景点为原点,以水平方向为x 轴,竖直方向为y 轴建立直角坐标系.若以景点的相对中心位置南门为原点,则两栖动物(4,1),飞禽(3,4),狮子园(-4,5),马园(-3,-3). 解:答案不唯一,若以南门为原点,各点坐标如上述.如图2所示. 方法规律:(1)建立直角坐标系的关键在于确定原点.一般来说,要选择明显的或大家熟悉的地点为原点,这样才能清楚地表明其他地点的位置;(2)直角坐标系描点时,找准横坐标、纵坐标.为防止发生错误,描点时按“先横后纵”顺序;(3)借助直角坐标系中数对研究图形问题,是数形结合思想的运用.数形结合,把几何问题代数化,抽象问题具体化,直观易懂.图2图1二、用坐标平移【例2】把(0,-2)向右平移3个单位长度,在向下平移1个单位长度所到达位置的坐标是( )A.(-3,2)B.(3,-2)C.(3,-3)D.(0,-3) 思路点拨:根据“横坐标,右移加,左移减;纵坐标,上移加,下移减”确定点的位置,点(0,2)133,23,3−−−−−−−−→−−−−−−−−→右移下移个单位长度个单位长度点()点()解:C方法规律:点的平移,左右移,纵坐标不变;上下移,横坐标不变. 【例3】如图,三角形A 1B 1C 1是由三角形ABC 经过平移得到的. (1)请你写出平移的过程;(2)如果点N (a ,b ),求点M 的坐标.思路点拨:图形的平移,往往是抓住一组对应点进行突破,通过对应点进行突破,通过对应点坐标变化,发现平移规律,对于多次平移,可分解左右平移和上下平移,并且其结果不受沿某轴平移先后顺序的影响. 解:(1)方法一:选点A 移到点A 1,则A (-5,-2)→A ‘(-5,1)→A 1(1,1)由此可知,△A 1B 1C 1是由△ABC 先向上平移3个单位长度,再向右平移6个单位长度得到的. 方法二:A (-5,-2)→→A ‘(1,2)→A 1(1,1).由此可知,△A 1B 1C 1是由△ABC 先向右平移6个单位长度,再向上平移3个单位长度得到的. (2)如果点N (a ,b ),则点M 坐标为(a -6,b -3).拓展探究一、用坐标表示对称:坐标,不仅可以表示平移,而且可以表示轴对称,中心对称.(1)点P (m ,n )关于x 轴的对称点P 1(m ,-n ),即横坐标不变,纵坐标互为相反数; (2)点P (m ,n )关于x 轴的对称点P 2(-m ,n ),即纵坐标不变,横坐标互为相反数; (3)点P (m ,n )关于x 轴的对称点P 3(-m ,-n ),即横纵坐标都互为相反数.【例1】在平面直角坐标系中,直线l 过点M (3,0),且平行于y 轴. (1)如果△ABC 三个顶点的坐标分别是A (-2,0),B (-1,0),C (-1,2),△ABC 关于y 轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点坐标; (2)如果点P 的坐标是(-a ,0),其中a >0,点P 关于y 轴的对称点是P 1,P 1关于直线l 的对称点是P 2,求PP 2的长.思路点拨:关于y 轴,直线l 对称,通过画图利用对称的性质求坐标和线段的长度,关于直线x=3对称,纵坐标不变,横坐标之和为3的2倍.解:(1)△A 2B 2C 2的三个顶点坐标分别是A 2(4,0),B 2(5,0),C 2(5,2); (2)如图1,当0<a≤3时,∵P 与P 1关于y 轴对称,P (-a ,0),∴P 1(a ,0), 设P 2(x ,0),又∵P 1与P 2关于直线x=3对称,∴3-x=a -3,解得:x=6-a . 则PP 2=6-a (-a )=6-a+a=6.综上,PP 2的长度为6.方法规律:问题(2)中,P 1,P 2关于直线x=3对称,P 1与P 2的相对位置两种情况,因此分a >3,0<a≤3两类讨论,需要结合图形试试,发现P 1与P 2有两种相对位置,才能准确进行分类.A 链接中考1.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向 2.多层楼的电影院确定一个座位需要的数据是( )A .1个B .2个C .3个D .4个关于原点对称关于y 轴对称关于x 轴对称图1图23.方格纸上有A .B 两点,若以A 点为原点建立平面直角坐标系,则点B 的坐标为(-5,3),若以点B 为原点建立平面直角坐标系,则点A 的坐标为( )A .(-5,3)B .(5,-3)C .(-5,-3)D .(5,3)4.平面直角坐标系中,点P (-2,-3)先向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )A .(-3,0)B .(-1,0)C .(-3,-6)D .(-1,6) 5.如图所示的平面坐标系内,画在透明胶片上的 □ABCD ,点A 的坐标是(0,2),现将这张胶片平移,使点A 落在点A ′(5,-1)处,则此平移可以是( )A .先向右平移5个单位,再向下平移1个单位B .先向右平移5个单位,再向下平移3个单位C .先向右平移4个单位,再向下平移1个单位D .先向右平移4个单位,再向下平移3个单位6.如图,把图中的⊙A 经过平移得到⊙O ,如果左图中⊙A 上一点P 的坐标为(m ,n ),那么平移后在右图中的对应点P ′的坐标为( )A .(m +2,n +1)B .(m -2,n -1)C .(m -2,n +1)D .(m +2,n -1)7.如图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是 .8.如图,用方向和距离表示火车站相对于仓库的位置是 , 若仓库的位置用(1,1)表示,那么火车站的位置表示为 . 9如图所示,长方形ABCD 在坐标平面内,点A 的坐标是1),且边AB ,CD 与x 轴平行,边AD ,BC 与y 轴平行,AB =4,AD =2. (1)求点B ,C ,D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?10.如图,正方形ABCD 的边长为4,请你建立适当的坐标系,写出各个顶点的坐标.第7题图第6题图第5题图第8题图北65412313.在直角坐标系中,描出点(1,0),(1,2),(3,1),(1,1),并用线段依次连接起来. (1)纵坐标不变,横坐标分别加2,所得图案与原图相比,有什么变化? (2)横坐标不变,纵坐标分别乘以-1呢? (3)横坐标,纵坐标都变成原来的2倍呢?14.如图所示,在雷达探测区内,可以建立平面直角坐标系表示位置,某次行动中,当我方两架飞机在 A (-1,-2)与B (3,2)位置时,可疑飞机在(-1,6)位置,你能找到这个直角坐标系的横、纵坐标的位置吗?把它们表示出来,并确定可疑飞机的所处方位.15.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做P 的伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4……,这样依次得到点A 1,A 2,A 3 ……,A n . (1)若点A 1的坐标为(3,1),则点A 3的坐标为 ,点A 坐标为 ;(2)若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n ,均在x 轴上方,求a ,b 应满足的条件.C 决战中考D CBA16.如图所示,⊙A1B1C1是由⊙ABC平移后的到的,已知⊙ABC中任意一点P(x0,y0)经过平移后对应点为P0(x0-6,y0-2).(1)已知A(2,6),B(1,3),C(5,3),Q(3,5),请写出A1,,B1,C1,Q1的坐标(2)式说明⊙A1B1C1是如何由⊙ABC平移得到的?(3)连接A1,A,CC1,求出五边形A1B1C1CA的面积.17.在平面直角坐标系中,已知O是原点,四边形ABCD是长方形,A,B,C的坐标分别是A(-3,1),B(-3,3),C(2,3).(1)求点D的坐标;(2)将长方形ABCD以每秒1个单位长度的速度水平向右平移,2秒钟后所得到的四边形A1,B1C1D1四个顶点的坐标格式多少?(3)18.如图1,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现在同时点A、B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点CD,连接AC,BD.(1)求点C、D的坐标及四边形ABCD的面积S四边形ABCD(2)在y轴上是否存在一点P,连接P A,PB,使得S⊙P AB= S四边形ABCD,若存在这样一点,求出点P坐标,若不存在,试说明理由;(3)点P是线段BD上一个动点,连接PC,PO,当点P在BD上移动时(不于B,D重合)给出下列结论⊙DCP BOPCPO∠+∠∠的值不变;⊙DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个正确结论并求值.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右为正,向下向左为负,如果从A到B记为AB(+1,+4),从BA到记作BA (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向. (1)图中AC ( , ),BC ( , ),CD ( , );(2)若这只甲虫从A 处去甲虫P 处行走的路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置;(3)若这只甲虫行走的路线为AB ,请计算该甲虫走过的路程;(4)若图中另有两个格点M ,N ,且M (3-a ,b -4),MN (5-a ,b -2)则N A 应记为什么?20.阅读理解: 我们知道:任意两点关于他们所连线段的中心成中心对称 ,在平面直角坐标系中,任意两点P (x 1,,y 1),Q (x 2,y 2),的对称中心的点坐标为(1212,22x x y y ++). 观察应用(1)如图,在平面直角坐标系中,若点P 1,(0,-1),P 2(2,-3)的对称中心是点A ,则A 的坐标为 ;(2)另取两点B (-1,6.2),C (-1,0),有一电子青蛙从P 1,处开始依次关于点A ,B ,C 做循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到P 2关于点B 对称的P 3 ,第三次再跳到点P 3 关于点C 的对称点P 4处,第四次再跳到点P 4 关于点A 的对称点P 5处,…则点P 3,P 8的坐标分别是 , ; (3)求出点P 2016的坐标。
坐标方法的简单应用
注意:不同的原点产生的地理位置的坐标会改变吗?
.
7
解:如图所示,建立平面直角坐标系. 校门(0,0), 图书馆(3,1), 花坛(3,4), 体育场(4,7), 教学大楼(0,7), 国旗杆(0,3), 实验楼(-4,6), 体育馆(-3,2).
.
8
变式:如图是某中学的 校区平面示意图(一个 方格的边长代表1个单 位长度),花坛的位置 用(5,2)表示,请建 立平面直角坐标系,并 用坐标表示校门、图书 馆、体育场、教学大楼 、国旗杆、实验楼和体 育馆的位置.
C(-2,0)、A1(3,4)、C1(4,2);
(2)连接AA1,CC1,四边形ACC1A1的
面积=S△AA1C1+S△AC1C
∵S△AA1C1=S△AA1C1=
1 72 7 2
∴ 四边形ACC1A1的面积=14. .
A
B1
P 1
C O1
22
C1
x
小结
一、表示物体的地理位置的方法
(1)用坐标表示物体的地理位置;
.
9
知识点二:用方向和距离表示地理位置
自学研讨2
思考: 我们知道,通过建立平面直角坐标系,可 以用坐标表示平面内点的位置。还有其他方法吗?
如图,一艘船在A处遇险后向相距35 n mile位于 B处的救生船报警.
(1)如何用方向和距离描述救生船相对于遇险船 的位置?
(2)救生船接到 报警后准备前往救援,
(2)上、下平移: 横坐标不变,上加下减
原图形上的点(x,y) 向上平移b个单位 (x,y+b) 原图形上的点(x,y) 向. 下平移b个单位 (x20,y-b)
展示交流4
1.三角形ABC中,BC边上的中点为M,把三角形 ABC向右平移2个单位长度,再向下平移3个单位长 度后,得到三角形A1B1C1. 边B1C1的中点M1的坐标 为(-1,0),则点M 的坐标为 (-3, 3) . 2.已知三角形ABC, A(-3,2),B(1,1),C(-1,-2),现 将三角形ABC平移,使点A到点(1,-2) 的位置上,则点 B,C的坐标分别为 (5,-3) , (3,-6) .
7[1].2_坐标方法的简单应用(第3课时)优质课公开课课件
课堂练习<1>
1.写出A、B、C、D、E各点在数轴上的坐标。
B
D CE
A
-4 -3 -2 -1 0 1 2 3 x
答:A点的坐标是3 C点的坐标是0 E点的坐标是1
B点的坐标是-3.5 D点的坐标是-1.5
思考
雁塔
如图,是
北
某城市旅
钟楼
碑林
游景点的
中心广场
示意图。
(1)你 是如何确
大成殿
定各个景
表示甲处的位置,那么“(2,4)→(3,4)→(4,4)
一 →(4,3) →(4,2)”表示从甲处到乙处的一种路线, 想 并规定甲到乙只能向右或向下走,用上述表示
法至少写出另外三种路线。一共有多少种路线?
练
一 练
6巷 5巷 4巷
甲
!
3巷
2巷
乙
1巷 1街 2街 3街 4街 5街 6街
想 如图,甲处表示2街与4巷的十字路口, 乙处表示4街与2巷的十字路口,如果用(2,4)
点的位置 的?
影月湖
科技大学
如果以“中
心广场”为
雁塔
原点作两条
北
相互垂直的 数轴,分别
钟楼
碑林
取向右和向
中心广场
上的方向为
数轴的正方
向,一个方
大成殿
格的边长看
做一个单位
长度,那么
你能表示
“碑林”的 位置吗?
科枝大学
影月湖
“大成殿”
的位置呢?
(纵轴) y
5
平面直角坐
标系
4
3
2
1
-4
-3
-2
-1
0 -1
坐标方法的简单应用知识点(含例题)
坐标方法的简单应用1.用坐标表示地理位置用坐标表示地理位置的过程和方法(1)建立坐标系,选择一个__________参照点为原点,确定__________的__________.参照点不同,地理位置的坐标也不同. (2)根据具体问题确定__________.(3)在坐标平面内画出这些点,并写出各点的__________和各个地点的__________.2.用坐标表示平移在平面直角坐标系中,(1)将点(x ,y )向右平移a 个单位长度,对应点的横坐标__________a ,而纵坐标不变,即坐标变为__________.(2)将点(x ,y )向左平移a 个单位长度,对应点的横坐标__________a ,而纵坐标不变,即坐标变为__________.(3)将点(x ,y )向下平移a 个单位长度,对应点的纵坐标__________a ,而横坐标不变,即坐标变为__________.(4)将点(x ,y )向上平移a 个单位长度,对应点的纵坐标__________a ,而横坐标不变,即坐标变为__________.3.图形上点的坐标变化与图形平移间的关系(1)横坐标变化,纵坐标不变:原图形上的点(x ,y )(),x a y +−−−−−−→向右平移a 个单位 原图形上的点(x ,y )(),x a y -−−−−−−→向左平移a 个单位(2)横坐标不变,纵坐标变化:原图形上的点(x ,y )(),x y b +−−−−−−→向上平移b 个单位 原图形上的点(x ,y )(),x y b -−−−−−−→向下平移b 个单位(3)横坐标、纵坐标都变化:原图形上的点(x ,y )(),x a y b ++−−−−−−−→向右平移a 个单位,向上平移b 个单位 原图形上的点(x ,y )(),x a y b +-−−−−−−−→向右平移a 个单位,向下平移b 个单位原图形上的点(x ,y )(),x a y b -+−−−−−−−→向左平移a 个单位,向上平移b 个单位 原图形上的点(x ,y )(),x a y b --−−−−−−−→向左平移a 个单位,向下平移b 个单位K 知识参考答案:1.(1)适当的,x 轴和y 轴,正方向(2)单位长度(3)坐标,名称2.(1)加上,(x +a ,y )(2)减去,(x -a ,y )(3)减去,(x ,y -a )(4)加上,(x ,y +a )一、用坐标表示地理位置1.确定坐标原点用坐标表示地理位置时,要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置.不同的原点产生的地理位置的坐标也不同.原点不同,地理位置的坐标也不同.用适当的位置表示原点,可以降低计算的难度. 2.如何确定x 轴与y 轴的方向坐标轴的方向通常是选择以水平线为x 轴,以向右为正方向(正东),以竖直线为y 轴,以向上为正方向(正北),这样可以使东西南北的方向与地理位置的方向保持一致.【例1】如图,是A ,B ,C ,D 四位同学的家所在位置,若以A 同学家的位置为坐标原点建立平面直角坐标系,那么C 同学家的位置的坐标为(1,5),则B ,D 两同学家的坐标分别为A.(2,3),(3,2)B.(3,2),(2,3)C.(2,3),(-3,2)D.(3,2),(-2,3)【答案】D【解析】建立平面直角坐标系如图,点B(3,2),D(−2,3),故选D.【例2】张强在某旅游景点的动物园的大门口看到这个动物园的平面示意图(如图),若以大门为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,其他四个景点大致用坐标表示肯定错误的是A.熊猫馆(1,4)B.猴山(6,0)C.百鸟园(5,-3)D.驼峰(3,-2)【答案】C【解析】若以大门为坐标原点建立直角坐标系,根据各点在坐标系中的位置及坐标的符号,可判定熊猫馆,猴山,百鸟园在第一象限,而驼峰在第四象限,观察各选项可知C 选项百鸟园在第四象限,故C错误,故选C.【例3】在一次“寻宝”游戏中,“寻宝”人找到了如图所示标志点A(3,3),B(5,1),则“宝藏”所在地点C的坐标为A.(6,4) B.(3,3)C.(6,5) D.(3,4)【答案】A【解析】如图,根据点A(3,3),B(5,1)可确定如图所示的平面直角坐标系,所以点C 的坐标为(6,4).【例4】如图,已知棋子“車”的位置表示为(–2,3),棋子“馬”的位置表示为(1,3),则棋子“炮”的位置可表示为A.(3,2) B.(3,1)C.(2,2) D.(–2,2)【答案】A【解析】棋子“车”的坐标为(–2,3),棋子“马”的坐标为(1,3),它们的纵坐标都是3,它们的横坐标分别为–2,1,可以确定棋子“炮”的坐标为(3,2).【例5】如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为A.(2,3) B.(0,3)C.(3,2) D.(2,2)【答案】D【解析】若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.【例6】如图是某学校的平面示意图.A,B,C,D,E,F分别表示学校的第1,2,3,4,5,6号楼.(1)写出A,B,C,D,E的坐标;(2)位于原点北偏东45°的是哪座楼,它的坐标是多少?【解析】(1)根据平面直角坐标系得:A(2,3),B(5,2),C(3,9),D(7,5),E(6,11).(2)位于原点北偏东45°的点是点F,其坐标为(12,12).二、用坐标表示平移1.一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作一次平移得到.2.对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.3.在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或下)平移a个单位长度.【例7】如图所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到A';将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B';则A'与B'相距A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度【答案】A【例8】如图所示,点G(–2,–2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′,则G′的坐标为A.(6,5) B.(4,5)C.(6,3) D.(4,3)【答案】D【解析】本题主要考查了用坐标表示平移.注意左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.将点G先向右平移6个单位长度,即G′的横坐标为–2+6=4,再向上平移5个单位长度,即G′的纵坐标为–2+5=3,所以G′的坐标为(4,3),故选D.【例9】将线段AB在坐标系中作平行移动,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A(-2,1),B(0,0),则它平移的情况是A.向上平移了1个单位长度,向左平移了1个单位长度B.向下平移了1个单位长度,向左平移了1个单位长度C.向下平移了1个单位长度,向右平移了1个单位长度D.向上平移了1个单位长度,向右平移了1个单位长度【答案】B【解析】由点A,B的平移规律可知,此题规律是(x–1,y–1),照此规律可知线段AB 向下平移了1个单位长度,向左平移了1个单位长度.故选B.【名师点睛】本题考查了平移变换,根据左右平移,横坐标变化,纵坐标不变,上下平移,横坐标不变,纵坐标变化,熟记“左减右加,下减上加”是解题关键.【例10】在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(__________);点A4n的坐标为(__________)(n是正整数).【答案】10,0;2n,0.【解析】观察发现,第4次跳动至点的坐标是(2,0),第8次跳动至点的坐标是(4,0),第12次跳动至点的坐标是(6,0),则第4n次跳动至点的坐标是(2n,0),故A20(10,0),故答案为:(10,0);(2n,0).【例11】将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′;(2)分别写出A′,B′,C′的坐标.【解析】(1)如图:(2)A′(2,0),B′(-1,-7),C′(7,-2).。
七年级数学下册《坐标方法的简单应用》基础知识讲解与例题解析
坐标方法的简单应用(基础)知识讲解【学习目标】1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】【第二讲平面直角坐标系用坐标系绘制地点分布图】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化. 【典型例题】类型一、用坐标表示地理位置1.(2015春•建昌县期末)课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A.(5,4) B.(4,4)C.(3,4) D.(4,3)【答案】B.【解析】解:如图,小慧的位置可表示为(4,4).【总结升华】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200米的B处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?【思路点拨】建立适当的直角坐标系,把A、B、C三点的位置用坐标表示出来.【答案与解析】解:如图所示,以B点为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-200,0)、B(0,0)、C(800,-600).若以A为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(0,0)、B(200,0)、C(1000,-600).若以C为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A (-1000,600)、B (-800,600)、C (0,0).【总结升华】对于本题,选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.当然,就本题而言,选择B 点为坐标原点更贴切一些.举一反三:【变式】如图所示是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度),请以某景点为坐标原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼________,金风广场________,动物园________.【答案】本题的答案不唯一,现给出三种答案:(1)如果以山峡会馆为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(-3,1),金风广场的位置是15,2⎛⎫-- ⎪⎝⎭,动物园的位置是(4,4);(2)如果以光岳楼为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(0,0),金风广场的位置是12,12⎛⎫-- ⎪⎝⎭,动物园的位置是(7,3);(3)若以动物园为坐标原点,水平方向为横轴.取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼(-7,-3),金风广场19,42⎛⎫-- ⎪⎝⎭,动物园(0,0). 类型二、用坐标表示平移3.(2016•徐州模拟)在平面直角坐标系中,将点A 向左平移1个单位长度,再向下平移4个单位长度得点B ,点B 的坐标是(2,﹣2),则A 点的坐标是 .【思路点拨】首先设点A 的坐标是(x ,y ),根据平移方法可得A 的对应点坐标为(x ﹣1,y ﹣4),进而可得x ﹣1=2,y ﹣4=﹣2,然后可得x 、y 的值,从而可得答案.【答案】(3,2).【解析】解:设点A 的坐标是(x ,y ),∵将点A 向左平移1个单位长度,再向下平移4个单位长度得点B ,可得B 的对应点坐标为(x ﹣1,y ﹣4),∵得到点B 的坐标是(2,﹣2),∴x ﹣1=2,y ﹣4=﹣2,∴x =3,y=2,∴A 的坐标是(3,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6);(3)(-4,-1),(-2,-9).【变式2】(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是.【答案】(2,4).解:原来点的横坐标是2,纵坐标是1,向上平移3个单位长度得到新点的横坐标不变,纵坐标为1+3=4.即该坐标为(2,4).4.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC 向上平移1个单位长度,得△A 1B 1C 1,再向右平移2个单位长度,得到△A 2B 2C 2,试求A 2、B 2、C 2的坐标;(3)△A 2B 2C 2与△ABC 的大小、形状有什么关系.【思路点拨】 (1)已知AB =6,故只要求得C 到x 轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a 个单位长度,那么图形的点(x ,y )向右(或向左)平移a 个单位长度,可得对应点(x+a ,y )或(x -a ,y ),将图形向上(或向下)平移b 个单位长度,可得到对应点(x ,y+b )或(x ,y -b ).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C 到x 轴的距离为5,所以11651522ABC S AB h ==⨯⨯=△; (2)根据题意求出三角形A 2B 2C 2各顶点的坐标为A 2(2,1),B 2(8,1),C 2(7,6);(3)连接A 2B 2C 2三点可以看出△A 2B 2C 2与△ABC 的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小. 举一反三:【变式】如图,三角形DEF 经过平移后得到三角形ABC ,则点D 坐标为 ,点E 的坐标为 .【答案】D (2,2),E (3,-2).。
七年级数学下册第七章平面直角坐标系7.2坐标方法的简单应用第1课时用坐标表示地理位置教案新版新人教版
课型新授单位主备人教学目标:知识与技能:1.了解用平面直角坐标系来表示地理位置的意义及主要过程;2.培养学生解决实际问题的能力.过程与方法:1.通过学习如何用坐标表示地理位置,发展学生的空间观念.2.通过学习,学生能够用坐标系来描述地理位置.情感、价值观:通过用坐标系表示实际生活中的一些地理位置,培养学生的认真、严谨的做事态度.重点、难点:教学重点:利用坐标表示地理位置.教学难点:建立适当的直角坐标系,利用平面直角坐标系解决实际问题.教学准备:PPT课件和微课等。
教学过程一、创设情景、引入新课观察今天我们学习如何用坐标系表示地理位置,首先我们来探究以下问题.二、自主学习、合作探究探究用坐标表示地理位置的方法活动1:根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走150米,再向北走200米.小强家:出校门向西走200米,再向北走350米,最后再向东走50米.小敏家:出校门向南走100米,再向东走300米,最后向南走75米.问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:10000(即图中1cm相当于实际中10000cm,即100米).由学生画出平面直角坐标系,标出学校的位置,即(0,0).引导学生一同完成示意图.问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地写出三位同学家的位置.活动2:归纳利用平面直角绘制区域内一些地点分布情况平面图的过程.经过学生讨论、交流,教师适当引导后得出结论:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.应注意的问题:用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.对应练习巩固(课件展示)活动3:思考:还有其他表示地理位置的方法,你知道吗?进一步理解如何用坐标表示地理位置.展示问题:如图,一艘船在A处遇险后向相距35 海里位于B处的救生船报警,如何用方向和距离描述救生船相对于遇险船的位置?在实际生活中,我们可以利用方位角和距离描述平面内的地理位置.利用方位角和距离表示平面内点的位置的过程如下:①找到参照点;②在该点建立方向标;③根据方位角和距离表示出平面内的点.对应巩固练习:小明去某地考察环境污染问题,并且他事先知道下面的信息:“日用化工品厂”在他现在所在地的北偏东30度的方向,距离此处3千米的地方; “调味品厂”在他现在所在地的北偏西45度的方向,距离此处2.4千米的地方;“321号水库”在他现在所在地的南偏东27度的方向,距离此处1.1千米的地方.根据这些信息可以画出表示各处位置的一张简图:用方位角和距离表述物体位置:小明在调味品厂的南偏东45度,距离调味品厂2.4千米的地方活动4 由坐标确定平面直角坐标系一次军事演习中,“红军”已经找到了M、N两个“蓝军”的据点,已算出其坐标分别为(2,5)和(1,-2),并且还知道“蓝军”的主力据点K的坐标为(6,3),请根据上述信息在图中建立坐标系,并在图上标注据点K的位置。
数学6.2《坐标方法的简单应用》教案(人教版七年级下)
第六章平面直角坐标系6.2坐标方法的简单应用
教学任务分析
(1) 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;
(2) 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3) 在坐标平面内画出这些点,写出各个点的坐标和各个地点的名称.
y
x
小强家(-150,350)
小刚家(150,200)
50
O(学校门)
图1
活动2
如图2是某中学的平面示意图的一部分,请你想一个办法描述各个场所的位置,在用坐标的方法来表示位置时,你能从中得到什么启发?
图2
说明:教师可以使用课件演示以上述任意一个地点为坐标原点,水平方向为x 轴,竖直方向为y 轴的建立坐标系的情形.
学生活动设计
学生小组合作,分组讨论,可以用坐标的方法来表示各个场所的位置,因此首先要建立平面直角坐标系,如何建立呢?这里有很多方法:可以以实验楼为坐标原点,也可以以宿舍为坐标原点,也可以以学校大门为坐标原点等等.若以学校大门为坐标原点建立坐标系,此时宿舍的坐标(2,7),实验楼(-2,6),教学楼(0,4),操场(2,4),办公楼(0,2).
图6
活动7
小结与作业
小结
1.利用坐标方法表示位置.
2.图形的平移实质就是点的平移.
3.点在平移时点的坐标的变化规律.
作业:
习题6.2 学生总结
记录作业
巩固加深。
2坐标方法的简单应用(提高)知识讲解
坐标方法的简单应用(提高)知识讲解【学习目标】1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示地理位置1.小明写信给他的朋友介绍学校的有关情况:校门正北方100米处是教学楼,从校门向东50米,再向北50米是科教楼,从校门向西100米,再向北150米是宿舍楼……请画出适当的平面直角坐标系表示校门、教学楼、科技楼、宿舍楼的位置,并写出这四个点的坐标.【思路点拨】选取校门所在的位置为原点,并以正东,正北方向为x轴、y轴的正方向,可以容易地写出三个建筑物的坐标.否则就较复杂.【答案与解析】解:(1)平面直角坐标系及学校的建筑物位置如图所示,比例尺为1:10000.(2)校门的坐标为(0,0);教学楼的坐标为(0,100);科技楼的坐标是(50,50);宿舍楼的坐标为(-100,150).【总结升华】选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.举一反三:【变式】一个探险家在日记上记录了宝藏的位置,从海岛的一块大圆石O出发,向东1000m,向北1000m,向西500m,再向南750m,到达点P,即为宝藏的位置.(1)画出坐标系确定宝藏的位置;(2)确定点P的坐标.【答案】解:根据数据的特点,选择250作为单位长度,以大圆石O为原点,建立平面直角坐标系.(1)如图,中心带有箭头的线是行动路线,点P的位置如图所示.(2)点P的坐标是(500,250)2.如图是一所学校的平面示意图,已知国旗杆的坐标为(-1,1),写出其他几个建筑物位置的坐标.若国旗杆的坐标为(3,1),则其他几个建筑物位置的坐标是否发生改变?若改变,请写出坐标,若不改变,请说明理由.【答案与解析】解:当国旗杆的坐标是(-1,1)时,校门的坐标是(-4,1),实验楼的坐标是(2,-2),教学楼的坐标是(2,1),图书馆的坐标是(1,4);若国旗杆的坐标是(3,1),则校门的坐标是(0,1),实验楼的坐标是(6,-2),教学楼的坐标是(6,1),图书馆的坐标是(5,4).【总结升华】根据已知点确定平面直角坐标系,进一步求得要求点的坐标.举一反三:【变式】(双流县)如图的方格图是某学校平面示意图,若建立适当的平面直角坐标系,花坛的位置可用坐标(3,0)表示,则教学楼的位置用坐标表示为 .【答案】(2,1).类型二、用坐标表示平移3.如图,三角形ABC 的顶点坐标分别为A (-3,3),B(-2,7),C (0,5).将三角形ABC 进行平移后,得到三角形A ′B ′C ′,已知A ′(0,-2).(1)求点B ′、C ′的坐标.(2)画出三角形A ′B ′C ′.(3)求三角形ABC 和三角形A ′B ′C ′的面积大小.【思路点拨】画出平面直角坐标系,根据点A 与点A ′的坐标,找出向右与向下的单位,得到平移过程.从而找出点B ′、C ′的位置及坐标,将A ′、B ′、C ′顺次连结,便画出三角形A ′B ′C ′.【答案与解析】解:(1)由A (-3,3)平移后为A /(0,-2),可得此平移为:向右沿x 轴平移了3个单位长度,向下沿y 轴平移了5个单位长度,所以:B /(-5,2),C /(3,0).(2)作图如下:(3)如图,分别作B /M ⊥x 轴,C /N ⊥x 轴,A /M ⊥y 轴, ////111(24)(53)453222211ABC A B C B MA C A NS S S S S '''∆∆==--=⨯+⨯+-⨯⨯-⨯⨯=//△△梯形B MNC【总结升华】平移只改变图形的位置,不改变图形的大小和形状.举一反三:【变式】已知三角形ABC 三个顶点的坐标为A(-2,3),B(-4,-1),C(2,0).三角形ABC 中任意一点P(x 0,y 0)经平移后对应点为P 1(x 0+5,y 0+3).将三角形ABC 作同样的平移得到三角形A 1B 1C 1:(1)求A 1B 1C 1的坐标.(2)求三角形ABC 和△A 1B 1C 1的面积大小.【答案】解:(1)A 1(3,6),B 1(1,2),C 1(7,3).(2)ABC A B C S S '''=△△11124246143222=-⨯⨯-⨯⨯-⨯⨯=24-4-3-6=11. 类型三、综合应用4.在A 市北300km 处有B 市,以A 市为原点,东西方向的直线为x 轴,南北方向的直线为y 轴,并以50km 为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C (10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km ,问经几小时后,B 市将受到台风影响?并画出示意图.【思路点拨】当台风中心移动到据B点200千米时,B市将受到台风影响,从而求出台风中心的移动距离,除以速度,即可求出所需时间.【答案与解析】解:∵台风影响范围半径为200km,∴当台风中心移动到点(4,6)时,B市将受到台风的影响.所用的时间为:50×(10-4)÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)【总结升华】考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.举一反三:【变式】一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.【答案】在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C.。
坐标方法的简单应用 第1课时 人教版七年级数学下册
新知探究 跟踪训练
如图,货轮与灯塔相距 40 n mile,如何用方向和距离
描述灯塔相对于货轮的位置?反过来,如何用方向和
距离描述货轮相对于灯塔的位置?
解:灯塔在货轮南偏东 50°方向,
北
且相距 40 n mile; 货轮在灯塔北偏西 50°方向,且
50°
相距 40 n mile.
随堂练习
1. 如图,小红从点 O出发,先向西走 40 米,再向南走
的格点上,若点 A 的坐标为(0,2),点 B 的坐标
为(2,0),则点 C 的坐标是( D ) y
A.(2,2) C.(1,1)
B.(1,2) D.(2,1)
A2
C
O
B2 x
由已知点的坐标确定坐标原点的方法 1. 先确定已知点所在的象限,得到原点在已知点的 什么位置; 2. 根据已知点的坐标,通过将已知点左右或上下平 移得到原点的具体位置.
反过来,由“两直线平行,内错角相等”可得 BA 与 正南方向所成的角是 60º,所以遇险船在救生船南偏 西 60º的方向上,再由 BA 的长就可以确定遇险船相 对于救生船的位置.
由图可知:
方向和距离
(1) 救生船在遇险船北偏东 60°的方向上,与遇险船的
距离是 35 n mile,用北偏东 60°,35 n mile 就可以确
7.2坐标方法的简单应用
课时1
初中数学
七年级下册 RJ
知识回顾
象限内点的坐标符号特征
点的位置
横坐标 的符号
纵坐标 的符号
第一象限 +
+
第二象限 −
+
第三象限 −
−
第四象限 +
−
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标方法的简单应用(基础)知识讲解
【学习目标】
1.能建立适当的平面直角坐标系描述物体的位置.
2. 能在同一坐标系中,感受图形变换后点的坐标的变化.
【要点梳理】
要点一、用坐标表示地理位置
根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.
要点诠释:
(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.
(2)应注意比例尺和坐标轴上的单位长度的确定.
要点二、用坐标表示平移
1.点的平移:
在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).
要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.
2.图形的平移:
在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:
(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.
(2)平移只改变图形的位置,图形的大小和形状不发生变化.
【典型例题】
类型一、用坐标表示地理位置
1.如图,已知长方形ABCD的边长AB=6,BC=3,建立适当的坐标系并求A、B、
C、D的坐标.
【思路点拨】本题建立直角坐标系的方法有多种,属于开放型题型,要充分运用矩形的四个角为直角,对边平行且相等,轴对称性,建立适当的坐标系,并能方便地写出A、B、C、D四个点的坐标.
【答案与解读】
解:如图:A(0,0),B(6,0),C(6,3),D(0,3).
【总结升华】建立平面直角坐标系的关键是先确定原点,再确定x轴、y轴,建立不同的平面直角坐标系,各顶点的坐标也不同.
2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200M的B 处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?
【思路点拨】建立适当的直角坐标系,把A、B、C三点的位置用坐标表示出来.
【答案与解读】
解:如图所示,以B点为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-200,0)、B(0,0)、C(800,-600).
若以A 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴正方向,建立平面直角坐标系,A 、B 、C 各点的位置为A (0,0)、B (200,0)、C (1000,-600).
若以C 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴正方向,建立平面直角坐标系,A 、B 、C 各点的位置为A (-1000,600)、B (-800,600)、C (0,0).
【总结升华】对于本题,选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.当然,就本题而言,选择B 点为坐标原点更贴切一些.
举一反三:
【变式】如图所示是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度),请以某景点为坐标原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼________,金风广场________,动物园________.
【答案】本题的答案不唯一,现给出三种答案:
(1)如果以山峡会馆为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(-3,1),金风广场的位置是
15,2⎛⎫-- ⎪⎝⎭
,动物园的位置是(4,4);
(2)如果以光岳楼为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(0,0),金风广场的位置是12,12⎛⎫-- ⎪⎝⎭
,动物园的位置是(7,3);
(3)若以动物园为坐标原点,水平方向为横轴.取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼(-7,-3),金风广场19,42⎛⎫
-- ⎪⎝⎭
,动物园(0,0). 类型二、用坐标表示平移
3.(荆门)将点P 向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P 的坐标是.
【思路点拨】在平面直角坐标系中,图形的平移与图形上某点的平移相同,本题需注意的是已知新点的坐标,求原来点的坐标,注意平移的顺序的反过来的运用. 【答案】(1,2).
【解读】新点P′的横坐标是-1,纵坐标是3,点P′向右平移2个单位,再向下平移1个单位得到原来的点P ,即点P 的横坐标是-1+2=1,纵坐标为3-1=2.则点P 的坐标是(1,
2).
举一反三:
【变式1】已知:两点A(-4,2)、B(-2,-6),
(1)线段AB的中点C坐标是;
(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是,B1点的坐标
是.
(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是,B2点的坐标
是.
【答案】(1)(-3,2)。
(2)(1,2),(3,-6)。
(3)(-4,-1),(-2,-9).
【变式2】点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).
【答案】2、4.
4.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,
5).
(1)求△ABC的面积;
(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;
(3)△A2B2C2与△ABC的大小、形状有什么关系.
【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.
【答案与解读】
解:(1)点C到x轴的距离为5,
所以
11
6515
22
ABC
S AB h
==⨯⨯=
△
;
(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);
(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.
【总结升华】平移只改变图形的位置,不改
变图形的形状和大小.
举一反三:
【变式】如图,三角形DEF经过平移后得
到三角形ABC,则点D坐标为,点E的坐
标为.
【答案】D(2,2),E(3,-2).。