一元一次不等式与不等式组 综合测试题
《一元一次不等式》综合提优卷(含答案)
《一元一次不等式》综合提优卷(含答案)一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣23.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.不等式组的解集在数轴表示正确的是()A.B.C.D.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种二.填空题(共10小题)11.3的解集是.12.不等式组的解集是.13.若不等式组无解,则m的取值范围是.14.当m的取值范围是时,关于x的方程1的解不大于11.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到人以上时,该公交车才不会亏损.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树棵;女同学种树棵.三.解答题(共8小题)21.解不等式组:.22.解不等式组:并把它的解集在数轴上表示出来.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是;(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费元,在乙商场需花费元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a},min{﹣1,2,a}.(1)请填空:max{c﹣1,c,c+1}=;若m<0,n>0,min{3m,(n+3)m,﹣mn}=;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【解答】解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;C、a>b两边都乘以得,故本选项错误;D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.故选:A.【点评】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x<﹣1﹣3,合并同类项,得:2x<﹣4,系数化为1,得:x<﹣2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x﹣1>2x+2,得:x<﹣3,解不等式2+5x≤3(6﹣x),得:x≤2,则不等式组的解集为x<﹣3.故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣3≥0,得:x≥1,解不等式x﹣1<5﹣x,得:x<3,则不等式组的解集为1≤x<3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.不等式组的解集在数轴表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1≤3,得:x≤2,解不等式﹣2x﹣6<﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 【分析】分别求出每一个不等式的解集,根据口诀:同大取大及不等式组的最小整数解求解即可.【解答】解:解不等式2,得:x≥4+m,解不等式x﹣4≤3(x﹣2),得:x≥1,∵不等式组的最小整数解是2,∴1<4+m≤2,解得﹣3<m≤﹣2,故选:B.【点评】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 【分析】分别求出每个不等式的解集,结合不等式组整数解的个数可得a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,则不等式组的解集为a<x<2,∵不等式组有3个整数解,∴不等式组的整数解为1、0、﹣1,则﹣2≤a<﹣1,故选:B.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式的基本步骤,并根据不等式组整数解的情况确定字母a的取值范围.8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨【分析】首先根据题意可知总工作量为30×8=240吨不变,故卸货速度v与卸货时间t 之间为反比例关系,即vt=240,将t≤5代入,即可求出答案.【解答】解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数关系式为v,∵v,∴t,∵t≤5,∴5,解得:v≥48.即平均每天至少要卸载48吨.故选:B.【点评】本题考查了一元一次不等式的应用,解答该类问题的关键是确定两个变量之间的函数关系.9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b【分析】解方程求出x,根据方程的解是非负数得出0,求出不等式的解集即可.【解答】解:,5(2x+a)=3(4x+b),10x+5a=12x+3b,10x﹣12x=3b﹣5a,﹣2x=3b﹣5a,x,∵关于x的方程的解是非负数,∴0,解得:a b,b a,故选:C.【点评】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式等知识点,能求出方程的解是解此题的关键.10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过2000元的资金、两种商品均售完所获利润大于380元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:x<37,∵x为整数,∴x=34、35、36,∴该店进货方案有3种,故选:A.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.二.填空题(共10小题)11.3的解集是x≥7.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项可得.【解答】解:去分母,得:x﹣1≥6,移项、合并,得:x≥7,故答案为:x≥7.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.不等式组的解集是3≤x<4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式1<1,得:x<4,解不等式2﹣3x≤﹣7,得:x≥3,则不等式组的解集为3≤x<4,故答案为:3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.若不等式组无解,则m的取值范围是m≤2.【分析】求出第一个不等式的解集,根据口诀:大大小小找不到可得答案.【解答】解:解不等式x﹣2<3x﹣6,得:x>2,∵不等式组无解,∴m≤2,故答案为:m≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.当m的取值范围是m≤1时,关于x的方程1的解不大于11.【分析】解关于x的方程得出x,再根据解不大于11得出关于m的不等式,解之可得答案.【解答】解:解关于x的方程1得x,根据题意,得:11,解得m≤1,故答案为:m≤1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为2<x<2.5.【分析】根据新定义得出2≤x+0.5<3且﹣2≤1﹣x<﹣1,再分别求出其解集,继而找到其解集的公共部分即可.【解答】解:∵[x+0.5]=2,且[1﹣x]=﹣2,∴2≤x+0.5<3且﹣2≤1﹣x<﹣1,解2≤x+0.5<3得1.5≤x<2.5,解﹣2≤1﹣x<﹣1得2<x≤3,∴2<x<2.5,故答案为:2<x<2.5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价120元商店老板才能出售.【分析】设这件商品的进价为x,根据题意可得高出进价80%的价格标价为360元,列出方程,求出x的值,然后再求出最低出售价,用标价﹣最低出售价即可得出答案.【解答】解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360﹣240=120(元).故答案为:120.【点评】本题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为t.【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出:一定存在一个整数k,满足满足下列关系:,并分情况讨论得出k的取值,再得t的取值范围.【解答】解:解不等式①得:x,解不等式②得:x<3﹣2t,则不等式组的解集为:x<3﹣2t,∵不等式组有3个整数解,∴一定存在一个整数k,满足满足下列关系:,解不等式组①得,,解不等式组②得,,(1)当,即时,则,于是,,解得,,∴k,∵k为整数,∴k=3,∴,∴t;(2)当时,即时,不存在整数k,∴此时无解;(3)当,此时无解;(4)当,即k时,则,于是,,解得,,∴,不存在整数k,∴此时无解.综上,t.故答案为:t.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.难点是由不等式组有3个整数解,得出t的不等式组,以及分情况解k及t.难度大.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是2.【分析】根据题中已知条件得出关于bd的不等式,直接进行解答即可.【解答】解:已知13,即1<4﹣bd<3所以解得1<bd<3因为b,d都是整数,则bd一定也是整数,因而bd=2.【点评】读懂题目,把题目中的式子转化为一般的式子是解决本题的关键.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到2000人以上时,该公交车才不会亏损.【分析】设当每月乘客量达到x人以上时,该公交车才不会亏损,根据题意列出不等式,求出不等式的解集即可.【解答】解:设当每月乘客量达到x人以上时,该公交车才不会亏损,则1.5x﹣3000≥0,解得:x≥2000,故答案为:2000.【点评】此题主要考查了函数的表示方法,解题的关键首先正确理解题意,然后根据题目的数量关系列出关系式即可求解.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树104棵;女同学种树96棵.【分析】关系式为:8×(原来每行树的棵数+1)>100;8×(原来每行树的棵数﹣1)<100,把相关数值代入求得整数解,根据男同学种的树比女同学种的树多可得男同学和女同学原来种的每行树的棵数,乘以8即为总的种树棵树.【解答】解:设原来每行树的棵数为x.,解得11.5<x<13.5,∵x为整数,∴x为12,13.∵男同学种的树比女同学种的树多,∴男同学每行种13棵树,女同学每行种12棵树.∴男同学种了13×8=104棵树,女同学种了12×8=96棵树.故答案为:104;96.【点评】考查一元一次不等式组的应用;得到种树总棵数和100的2个关系式是解决本题的关键.三.解答题(共8小题)21.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+5>3,得:x>﹣2,解不等式,得:x≥2,则不等式组的解集为x≥2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.解不等式组:并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+6>3(x+1),得:x,解不等式,得:x≤4,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.【分析】(1)先解每个不等式得出其解集,结合已知的不等式组的解集得出关于k的方程,解之即可;(2)根据不等式组只有2个整数解知01,解之即可.【解答】解:(1)解不等式2x+4>0,得:x>﹣2,解不等式3x﹣k<6,得:x,则不等式组的解集为﹣2<x,∵该不等式组的解集为﹣2<x<3,∴3,解得k=3;(2)∵不等式组只有2个正整数解,∴23,解得0<k≤3.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式的能力,并根据不等式组的整数解个数得出关于k的不等式组.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是③;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是3x﹣3=﹣3(答案不唯一);(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围0<m≤1.【分析】(1)求出三个方程的解,并解不等式组求出其解集,从而得出答案;(2)解不等式组求出其解集,得出其整数解,继而得出答案;(3)先求出方程的解和不等式组的解集,根据关联方程的概念得到关于m的不等式组,解之即可得出答案.【解答】解:(1)解方程3x﹣1=0得:x,解方程x+1=0得:x,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:x,所以不等式组的关联方程是③,故答案为:③;(2)解不等式(x﹣2)<2x+1,得:x>﹣1,解不等式,得:x,∴不等式组的解集为﹣1<x,则不等式组的整数解为x=0,∴此不等式组的关联方程可以为3x﹣3=﹣3,故答案为:3x﹣3=﹣3(答案不唯一);(3)解方程1﹣x=﹣7+3x,得:x=2,解方程6(x)=10﹣x,得:x=3,解不等式3x﹣m≥x+3m,得:x≥2m,解不等式x﹣m x+3,得:x<m+3,则不等式组的解集为2m≤x<m+3,根据题意知2m≤2且m+3>3,解得0<m≤1,故答案为:0<m≤1.【点评】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?【分析】(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元,列方程组求解.(2)设建立中型图书馆a个,根据要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,列出不等式组求解.【解答】解:(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据题意列方程组:.解得:.答:建立每个中型图书馆需要5万元,建立每个小型图书馆需要3万元.(2)设建立中型图书馆a个,根据题意得:.解得:5≤a≤7.∵a取正整数,∴a=5,6,7.∴10﹣a=5,4,3答:一共有3种方案:方案一:中型图书馆5个,小型图书馆5个;方案二:中型图书馆6个,小型图书馆4个;方案三:中型图书馆7个,小型图书馆3个.【点评】本题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式组求解.26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,则a≥3(100﹣a),解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80(100﹣a)],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.【点评】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费280元,在乙商场需花费270元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.【分析】(1)在甲商场累计购物超过200元,超出200元的部分按80%收费,则多出的100元按80%收费,于是得到小红在甲商场所花费用为200+(300﹣200)×80%;在乙商场累计购物超过100元,超出100元的部分按85%收费,则多出的200元按85%收费,于是得到小红在乙商场所花费用为100+(300﹣100)×80%;(2)与(1)的思路一样,用x代替300即可;(3)讨论:当0.8x+40>0.85x+15时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,小红在甲商场购物的实际花费少,然后分别解不等式或方程确定x的范围或值即可.【解答】解:(1)当x=300时,小红在甲商场所花费用为200+(300﹣200)×80%=280(元);在乙商场所花费用为100+(300﹣100)×85%=270(元);故答案为280,270;(2)x>200,小红在甲商场所花费用为200+(x﹣200)×80%=(0.8x+40)元;在乙商场所花费用为100+(x﹣100)×85%=(0.85x+15)元;(3)当0.8x+40>0.85x+15时,解得x<500,所以当200<x<500时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,解得x=500,所以当x=500时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,解得x>500,所以当x>500时,小红在甲商场购物的实际花费少.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,。
(完整版)一元一次不等式和一元一次不等式组(经典难题)
一元一次不等式和一元一次不等式组1.某同学说213a a -+一定比21a -大,你认为对吗?说明理由。
2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1) 请列出x>y 成立的关于m 的不等式。
(2) 运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。
3.要使不等式(1)12a x x a ->+-的解集为x<-1,求a 的取值范围。
4.已知关于x 的一元一次方程4131x m x -+=-的解都是负数,求m 的取值范围.5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,322x -的值不小于213x +与1的差。
7.m 取何值时,关于x 的方程6151632x m m x ---=-的解大于1?8.如果方程组24122x y m x y m -=+⎧⎨-=-⎩的解满足3x-y>0,求m 的取值范围.9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是 .11.对于整数a ,b ,c ,d ,定义bd ac c d ba -=,已知3411<<d b,则b +d 的值为_________.12.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当310)3(2kk -<-时,求关于x 的不等式k x x k ->-4)5(的解集.15.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.16.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.17.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.18.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,3215只有4个整数解,求a 的取值范围.22.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。
第3章 一元一次不等式综合测试试题(含解析)
第三章:一元一次不等式综合测试答案一.选择题:1.答案:C解析:解不等式3x ≤2(x -1)得:2-≤x ,故选择C2.答案:B解析:解不等式x -3≤3x +1得:2-≥x ,故选择B3.答案:C解析:解不等式3(x -1)≤5-x 得:2≤x , ∵非负整数解为:0,1,2共3个, 故选择C4.答案:B 解析:解不等式组⎩⎨⎧≤->+0421x ax 得:21≤<-x a∵不等式组⎩⎨⎧≤->+0421x ax 有解,∴3,21<∴<-a a ,故选择B5.答案:B解析:原不等式可化为323255104xx x -≤---, 去分母,得6(4x -10)-15(5-x )≤10(3-2x )去括号,得24x -60-75+15x ≤30-20x. 合并同类项,得59x ≤165. 系数化为1,得x ≤59165所以原不等式的非负整数解是0,1,2. 故选择B6.答案:C解析:设从第六天起平均每天至少要读x 页, 由题意得:4005≥x ,解得:80≥x ,故选择C解析:把方程组⎩⎨⎧=++=+3313y x k y x 转化为:444+=+k y x∴44+=+k y x ,∴1440<+<k 解得:04<<-k ,故选择A答案:B解析:∵x <0,y >0,x +y <0,y x >,∴x y y x >->>-,故选择B答案:B解析:解不等式①,得x >-52. 解不等式②,得x <2a .∵不等式组恰有三个整数解, 2<2a ≤3. 231≤<a ,故选择B10.答案:B解析:设最多可打x 折,由题意得:%5100010001500≥-x解得:7.0≥x ,故最多可打7折,故选择B二.填空题:11.答案:4解析:解不等式2(x+k)-2>k 得:22kx ->, ∵不等式2(x+k)-2>k 的解集是x >-1, 122-=-k,解得:4=k12.答案:26解析:设较大的偶数是x ,则较小的偶数是x -2. 根据题意,得x +x -2≥49. 解得x ≥25.5.所以x 的最小值是26,即较大的偶数最小是26.解析:解不等式组⎩⎨⎧>->+1312x a x 得:11-<<a x∵不等式组⎩⎨⎧>->+1312x a x 的解为1<x <3,∴4,31=∴=-a a14.答案:1<x +y <5解析:由x -y =3,得x =y +3. ∵x >2,∴y +3>2,解得y >-1. 又∵y <1,∴-1<y <1. 把x =y +3代入x +y , 得x +y =y +3+y =2y +3, 而1<2y +3<5, ∴1<x +y <5.15.答案:3解析:由题意,得a 1+a 2≤a 3,a 2+a 3≤a 4,a 3+a 4≤a 5, ∴当a 1=1时,a 2=2,a 3=3,a 4=5或6,a 5=9, ∴a 3=3.16.答案:152解析:设幼儿园共有小朋友x 人,共有玩具y 件,由题意得:⎩⎨⎧<--<=+4)1(50593x y yx解得:3230<<x ,∴31=x ,即小朋友为31人, 共有玩具15259313=+⨯=y三.解答题:17.解析:(1)去括号得:5x -10+8<6x -6+7. 移项得:5x -6x <10-8-6+7. 合并得:-x <3.系数化为1得:x>-3.(2)解不等式①,得x>-1. 解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.18.解析:(1)解不等式3x +a 2<1得:32ax -<,解不等式031>-x 得:31<x ∴3132=-a ,∴1=a . (2)∵不等式123<+ax 的解都是不等式031>-x 的解,∴3132≤-a ,解得1≥a19.解析:关于x 的方程2x -3m =2m -4x +4的解为645+=m x 根据题意得:3187645mm --≥+ 去分母,得4(5m +4)≥21-8(1-m ).去括号,得20m +16≥21-8+8m. 移项、合并同类项,得12m ≥-3. 系数化为1,得m ≥-41 所以当m ≥-41时,方程的解不小于3187m --, 所以m 的最小值为-4120.解析:(1)由题意得:()152523+≤+k k解得k ≥413(2)解不等式①,得x ≤3. 解不等式②,得x<a. ∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3; 当a<3时,不等式组的解集为x<a.21.解析:(1)解⎩⎨⎧+=---=+a y x a y x 317得:⎩⎨⎧--=-=423a y a x∵x 为非正数,y 为负数, ∴⎩⎨⎧<≤00y x 即⎩⎨⎧<--≤-04203a a 解得⎩⎨⎧->≤23a a∴a 的取值范围是-2<a ≤3.(2)∵-2<a ≤3,∴a -3≤0,a +2>0, ∴|a -3|+|a +2|=3-a +a +2=5. (3)不等式2ax +x <2a +1可化简为 (2a +1)x <2a +1.∵不等式的解为x >1, ∴2a +1<0,∴a <-21. 又∵-2<a ≤3,∴-2<a <-21. ∵a 为整数,∴a =-1.22.解析:(1)设购买平板电脑a 台,则购买学习机(100-a)台,由题意,得 3 000a +800(100-a)≤168 000.解得a ≤40. 答:平板电脑最多购买40台.(2)设购买的平板电脑a 台,则购买学习机(100-a)台,根据题意,得 100-a ≤1.7a.解得a ≥37271. ∵a 为正整数,∴a =38,39,40,则学习机依次买:62台,61台,60台. 因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.23.解析:(1)∵()()815723--<-+x x .解得6>x . ∴不等式的最小整数解是7. 将x =7代入3x -ax =2,得719=a ∴aa 197-=19-7=12.(2)①∵523=++c b a , 132=-+c b a , 解得:37-=c a , c b 117-=, ∵0≥a ,0≥b ,∴037≥-c ,0117≥-c , ∴11773≤≤c , ②()()23711737373-=--+-=-+=c c c c c b a S∵11773≤≤c ,∴1121379≤≤c , ∴1112375-≤-≤-c∴S 的最大值为111-,最小值为75-。
第二章一元一次不等式与一元一次不等式组综合测试题含答案
第二章 一元一次不等式与一元一次不等式组 综合测试题 一、选择题(每小题3分,共30分)1.若关于x 的不等式组的解集表示在数轴上如图1所示,则这个不等式组的解集是( )A. x ≤2B. x >1C. 1≤x <2D. 1<x ≤22.已知实数a ,b ,若a >b ,则下列结论正确的是( )A. a -5<b -5B. 2<2C. 3a <3bD. 3a >3b 3.不等式4-3x ≥2x -6的非负整数解有( )A. 1个B. 2个C. 3个D. 4个4.关于x 的不等式-≥1的解集如图2所示,则a 的值为( )A. -1B. 0C. 1D. 25.若不等式-2>0的解集为x <-2,则关于y 的方程2=0的解为( )A. y =-1B. y =1C. y =-2D. y =2图1 0 图-3 32 1 -2 -1 06.若>0,且b<0,则a,b,-a,-b的大小关系为()A. -a<-b<b<aB. -a<b<-b<aC. -a<b<a<-bD. b<-a<-b<a7.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在8.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 ,长与宽的比为3∶2,则该行李箱的长的最大值为()A. 30B. 160C. 26D. 789.图3是测量一颗玻璃球体积的过程:①将300 3的水倒进一个容量为500 3的杯子中;②将四颗相同的玻璃球放入水中,结果水没有满;③再将一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A. 20 3以上,30 3以下B. 30 3以上,40 3以下C. 40 3以上,50 3以下D. 50 3以上,60 3以下图Oxy-2y=ny=-4图10.如图4,直线y =-与y =4n (n ≠0)的交点的横坐标为-2,则关于x 的不等式->4n >0的整数解为( )A. -1B. -5C. -4D. -3二、填空题(每小题4分,共32分)11.写出一个解集为x ≥1的一元一次不等式___.12.如图5,已知函数y =2与函数y =-3的图象交于点P ,则不等式-3>2的解集是___.图4 O x y P -6 y =-3y =213.如果a<b ,那么3-23-2b.14.不等式13(x -m )>3-m 的解集为x >1,则m 的值为___.15.某市组织开展“吸烟有害健康”的知识竞赛,共25道题,答对一题得4分,不答或答错扣2分,得分不低于60分获奖,那么获奖至少需要答对道题.16.若关于x 的一元一次不等式组100x x a -<⎧⎨->⎩,无解,则a 的取值范围是__.17.定义新运算:对于任意实数a ,b 都有a △b =-a -1,例如:2△4=24-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x 的值大于5而小于9,那么x 的取值范围是___. 18.按下列程序进行运算(如图6):规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行___次才停止;若运算进行了5次才停止,则x 的取值范围是___.三、解答题(共58分)19.(6分)解不等式213x --926x +≤1,并把解集表示在数轴上. 图是 否 输入 x 乘以3 减去2停止 大于24420.(8分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥,>,并写出不等式组的整数解. 21.(10分)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每只22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少只球拍?22.(10分)已知实数a 为常数且a ≠3,解不等式组()233112022x x a x -+≥-⎧⎪⎨-+<⎪⎩,①,②并根据a 的取值情况写出其解集.23.(12分)已知某工厂计划用库存的302 m 2木料为某学校生产500套桌椅,供该校1250名学生使用.该厂生产的桌椅分为A ,B 两种型号,有关数据如下:设生产A 型桌椅x 套,生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y 元.(1)求y 与x 之间的关系式,并指出x 的取值范围;(2)求总费用y 最小时的值.24.(12分)阅读下面的材料,回答问题:已知(x -2)(6+2x )>0,求x 的取值范围.解:根据题意,得20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<. 分别解这两个不等式组,得x >2或x <-3.故当x >2或x <-3时,(x -2)(6+2x )>0.(1)由(x -2)(6+2x )>0,得出不等式组20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<,体现了 思想.(2)试利用上述方法,求不等式(x -3)(1-x )<0的解集.附加题(15分,不计入总分)25.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1.解决下列问题:(1)[-4.5]=___,<3.5>=___;(2)若[x ]=2,则x 的取值范围是___;若<y >=-1,则y 的取值范围是___.(3)已知x ,y 满足方程组[][]3233 6.x y x y ⎧+=⎪⎨-=-⎪⎩,求x ,y 的取值范围.参考答案一、1. D 2. D 3. C 4. D 5. D 6. B 7. A 8. D 9. C 10. D二、11. 答案不唯一,如2≥3 12. x <4 13. > 14. 4 15. 19 16. a ≥1 17. 72<x <11218. 4 2<x ≤4 提示:通过计算知,经过4次运算后结果大于244. 若运算进行了5次才停止,则有第一次结果为3x -2,第二次结果为3(3x -2)-2=9x -8,第三次结果为3(9x -8)-2=27x -26,第四次结果为3(27x -26)-2=81x -80,第五次结果为3(81x -80)-2=243x -242.由题意,得8180244243242244.x x -≤⎧⎨->⎩,解得2<x ≤4.三、19. 不等式的解集为x ≥-2,在数轴上表示如图所示:20. 不等式组的解集是-1≤x <2,不等式组的整数解是-1,0,1.21. 解:设购买球拍x 只.根据题意,得1.5×20+22x ≤200,解得x ≤8711. 由于x 取整数,故x 的最大值为7.----0 1 2答:孔明应该买7只球拍.22. 解:解不等式①,得x ≤3;解不等式②,得x <a .因为a 是不等于3的常数,所以当a >3时,不等式组的解集为x ≤3;当a <3时,不等式组的解集为x <a .23. 解:(1)由题意,得生产B 型桌椅(500-x )套,则y =(100+2)(120+4)(500-x )=-2262 000.又()()2350012500.50.7500302x x x x +-≥⎧⎪⎨+-≤⎪⎩,,解得240≤x ≤250,所以y =-2262 000(240≤x ≤250).(2)因为-22<0,所以y 随x 的增大而减小.所以当x =250时,总费用y 最小,最小值为56 500元.24. 解:(1)转化(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x>3或x<1.所以不等式(x-3)(1-x)<0的解集是x>3或x<1.25. 解:(1)-5 4(2)2≤x <3 -2≤y <-1提示:因为 [x ]=2表示不大于x 的最大整数是2,所以[2]=2,[3]=3.所以x 可以等于2,不可以等于3,即2≤x <3;因为<y >=-1表示大于y 的最小整数是-1,所以<-2>=-1,<-1>=0.所以y 可以等于-2,不可以等于-1,即-2≤y <-1.(3)解方程组[][]32336x y x y ⎧+=⎪⎨-=-⎪⎩,,得[]13x y ⎧=-⎪⎨=⎪⎩,.因为[x]=-1表示不大于x的最大整数是-1,所以[-1]=-1,[0]=0.所以x可以等于-1,不可以等于0,即-1≤x<0;因为<y>=3表示大于y的最小整数是3,所以<2>=3,<3>=4.所以y可以等于2,不可以等于3,即2≤y<3.。
一元一次不等式和一元一次不等式组测试题及答案
一元一次不等式和一元一次不等式组一.填空题:(每小题2分,共20分)1.若x<y,则x?2 y?2;(填“<、>或=”号)ab??,则3a_____b;(填“<、>或=”号) 3.不等式2x≥x?2的解集是_________;393?2y4.当y_______时,代数式的值至少为1;5.不等式6?12x?0的解集是______ ___;42.若?6.不等式7?x?1的正整数解为:;7.若一次函数y?2x?6,当x___ __时,y?0;8.x的3与12的差不小于6,用不等式表示为__________________; 59.不等式组??2x?3?0的整数解是______________;?3x?2?0?3x?2y?p?1的解满足x>y,则P的取值范围是_________; 4x?3y?p?1?b10.若关于x的方程组?二.选择题:(每小题3分,共30分) 11.若a>,则下列不等式中正确的是()(A) a?b?0 (B) ?5a??5b (C) a?8?b?8 (D) ab? 4412. 关于x的不等式2x-a≤-1的解集如图所示,则a的取值是()A. 0B.-3C. -2D.-1 ( 第12题)13.已知两个不等式的解集在数轴上如图表示,那么这个解集为()(A) x≥?1 (B) x?1(C) ?3?x??1 (D) x??3?x?8?4x-1,14.如果不等式组?的解集是x?3,那么m的取值范围是( )?x?mA. m≥3B. m≤3C.m=3D. m<315.下列不等式求解的结果,正确的是()(A)不等式组??x??3?x??5的解集是x??3 (B)不等式组?的解集是x??5?x??5?x??4?x?5?x?10(C)不等式组?无解(D)不等式组?的解集是?3?x?10?x??7?x??316.把不等式组??x?1?0的解集表示在数轴上,正确的是图中的()?x?1?01。
(完整版)一元一次不等式及一元一次不等式组及答案
一元一次不等式及一元一次不等式组一. 填空题(每题3分)1. 若582112 --m x 是关于x 的一元一次不等式,则m =_________. 2. 不等式0126 x -的解集是____________.3. 当x _______时,代数式423x +的值是正数. 4. 当2 a 时,不等式52+x ax 的解集时________. 5. 已知13222 k xk +-是关于x 的一元一次不等式,那么k =_______,不等式的解集是_______.6. 若不等式组⎩⎨⎧--3212 b x a x 的解集为11 x -,则()()11-+b a 的值为_________.7. 小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有_______个.8. 小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买________枝钢笔.二. 选择题(每题3分)9.下列不等式,是一元一次不等式的是 ( )A.24)1(2++-y y yB.0122--x x C.613121 + D.2++x y x 10.4与某数的7倍的和不大于6与该数的5倍的差,若设某数为x ,则x 的最大整数解是( ) A.1 B.2 C.-1 D011.若代数式72+a 的值不大于3,则a 的取值范围是( )A.4≤aB.2-≤aC.4≥aD.2-≥a12.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )折A.6B.7C.8D.913.若不等式组⎩⎨⎧a x x 3的解集是a x ,则a 的取值范围是( ) A.3 a B 3=a . C.3 a D.3≥a14.不等式()()0352 x x -+的解集是( ) A.253- x x 且 B.253 x x 或- C.325 x - D.253 x - 15.若不等式组⎩⎨⎧b x a x 无解,则不等式组⎩⎨⎧--bx a x 22 的解集是( )A.a x b --22B.22--a x bC.b x a --22D.无解16.如果,2323,11--=++=+x x x x 那么x 的取值范围是( ) A.321-≤≤-x B.1-≥x C.32-≤x D.132-≤≤-x 三. 解答题17.解下列不等式组(每题5分) 1)⎪⎩⎪⎨⎧+---+43233231x x x x x 2)().3212352⎪⎩⎪⎨⎧-+≤+x x x x18.当m 在什么范围内取值时,关于x 的方程()()x m x m --=-+4122有:(1) 正数解。
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷(含答案)
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷一.选择题(共8小题,满分24分)1.①3>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个2.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.﹣a>﹣b C.a+2>b+2 D.2a>2b3.用不等式表示图中的解集,以下选项正确的是()A.x>1 B.x<1 C.x≥1 D.x≤14.解不等式时,去分母步骤正确的是()A.1+x≤1+2x+1 B.1+x≤1+2x+6C.3(1+x)≤2(1+2x)+1 D.3(1+x)≤2(1+2x)+65.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b<0的解集为()A.x B.x<C.x>3 D.x<36.已知点P(3a﹣9,a﹣1)在第二象限,且它的坐标都是整数,则a=()A.1 B.2 C.3 D.07.关于x的不等式组有四个整数解,则a的取值范围是()A.B.C.D.8.某学校要召学生代表大会,规定各班每10人推选1名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[] B.y=[] C.y=[] D.y=[]二.填空题(共8小题,满分24分)9.x的3倍与2的差不小于1,用不等式表示为.10.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).11.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.12.不等式1﹣4x≥x﹣8的非负整数解为.13.若不等式组的解集是x<3,则m的取值范围是.14.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生产汽车x辆应满足的不等式为.15.已知关于x的不等式组有2019个整数解,则m的取值范围是.16.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.三.解答题(共7小题,满分52分)17.解不等式(组):(1)19﹣3(x+7)≤0 (2)18.解不等式组,并把它的解集在数轴上表示出来.19.已知不等式组:(1)解此不等式组;(2)直接写出x可能取到的所有整数之和为.20.学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.21.字母m、n分别表示一个有理数,且m≠n.现规定min{m,n}表示m、n中较小的数,例如:min{3,﹣1}=﹣1,min{﹣1,0}=﹣1.据此解决下列问题:(1)min{﹣,﹣}=.(2)若min{,2)=﹣1,求x的值;(3)若min{2x﹣5,x+3}=﹣2,求x的值.22.如图,直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3);直线y=1﹣mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等式kx+b>1﹣mx的解集是x>﹣.(1)分别求出k,b,m的值;(2)求S△ACD.23.2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下隆重举行.组公(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两纪念品发放其中甲种纪念品每件售价120元,乙种纪念品每件售价80元,(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?参考答案一.选择题(共8小题)1.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选:C.2.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b,2a>2b.故选:B.3.【解答】解:由题意,得x≥1,故选:C.4.【解答】解:,去分母得:3(1+x)≤2(1+2x)+6,故选:D.5.【解答】解:∵一次函数y=﹣2x+b的图象过A(0,3),∴b=3,∴函数解析式为y=﹣2x+3,当y=0时,x=,∴B(,0),∴不等式﹣2x+b<0的解集为x>,故选:A.6.【解答】解:∵点P(3a﹣9,a﹣1)在第二象限,∴,解得1<a<3,又∵它的坐标都是整数,∴a=2,故选:B.7.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有四个整数解,是9、10、11、12,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:B.8.【解答】解:由题意可得,当各班人数除以10的余数不大于6时,应舍去,当各班人数除以10的余数大于等于7时,就增加一名代表,故y与x的函数关系式是y=[],故选:B.二.填空题(共8小题)9.【解答】解:由题意得:3x﹣2≥1,故答案为:3x﹣2≥1.10.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.11.【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0 ∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.12.【解答】解:∵1﹣4x≥x﹣8,∴﹣4x﹣x≥﹣8﹣1,﹣5x≥﹣9,x≤,则该不等式的非负整数解为1和0,故答案为:1、0.13.【解答】解:解不等式x+8>4x﹣1,得:x<3,∵不等式组的解集为x<3,∴m≥3,故答案为:m≥3.14.【解答】解:设原来每天生产汽车x辆,则改进工艺后每天生产汽车(x+6)辆,根据题意,得:15(x+6)>20x,故答案为:15(x+6)>20x.15.【解答】解:∵解不等式①得:x>1﹣m,解不等式②得:x≤3,∴不等式组的解集是1﹣m<x≤3,∵关于x的不等式组有2019个整数解,∴﹣2016≤1﹣m<﹣2015,解得:2016<m≤2017,故答案为:2016<m≤2017.16.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.三.解答题(共7小题)17.【解答】解:(1)19﹣3(x+7)≤0,19﹣3x﹣21≤0,﹣3x≤21﹣19,﹣3x≤2,x≥﹣;(2)∵解不等式①得:x<2,解不等式②得:x>﹣4,∴不等式组的解集是﹣4<x<2.18.【解答】解:不等式组整理得:,解得:2<x≤4,表示在数轴上,如图所示:19.【解答】解:(1)解不等式①得:x<2,解不等式②得:x≥﹣4,则不等式组的解集为﹣4≤x<2.(2)∵符合不等式组的所有整数为﹣4,﹣3,﹣2,﹣1,0,1,∴﹣4﹣3﹣2﹣1+0+1=﹣9,故答案为﹣9.20.【解答】解:设买电脑x台,则在甲店花费:3000x×80%=2400x(元),在乙店花费:3000(x﹣1)×90%=2700x﹣2700(元)如果在甲店买合算,则2400x<2700x﹣2700,解得:x>9;如果在乙店买合算,则2400x>2700x﹣2700,解得:x<9;如果花费一样:2400x=2700x﹣2700,解得:x=9.答:这个学校买电脑9台时,两个店花费一样,多于9台时,在甲店买合算.21.【解答】解:(1)根据题中的新定义得:min{﹣,﹣}=﹣;故答案为:﹣;(2)由2>﹣1,得到=﹣1,解得:x=﹣1;(3)若2x﹣5=﹣2,解得:x=1.5,此时x+3=4.5>﹣2,满足题意;若x+3=﹣2,解得:x=﹣5,此时2x﹣5=﹣15<﹣2,不符合题意,综上,x=1.5.22.【解答】解:(1)∵直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3),,解得:k=,b=3,∵关于x的不等式kx+b>1﹣mx的解集是x>﹣,∴点D的横坐标为﹣,将x=﹣代入y=x+3,得:y=,将x=﹣,y=代入y=1﹣mx,解得:m=1;(2)对于y=1﹣x,令y=0,得:x=1,∴点C的坐标为(1,0),∴S△ACD=×[1﹣(﹣2)]×=.23.【解答】解:(1)设甲种纪念品购买了x件,乙种纪念品购买了(100﹣x)件,根据题意得120x+80(100﹣x)=9600,解得x=40,则100﹣x=60,答:设甲种纪念品购买了40件,乙种纪念品购买了60件;(2)设购买甲种纪念品m件,乙种奖品购买了(100﹣m)件,根据题意,得,解得≤m≤35,∵m为整数,∴m=34或m=35,当m=34时,100﹣m=66;当m=35时,100﹣m=65;答:组委会有2种不同的购买方案:甲种纪念品34件,乙种奖品购买了66件或甲种纪念品35件,乙种奖品购买了65件.。
第9章 一元一次不等式(不等式组)测试题 2022--2023学年人教版七年级数学下册
一元一次不等式(不等式组)测试题一、选择题(共30分,每题3分)1.若关于x 的不等式2﹣m ﹣x >0的正整数解共有3个,则m 的取值范围是( ) A .﹣1≤m <0B .﹣1<m ≤0C .﹣2≤m <﹣1D .﹣2<m ≤﹣12.已知关于x ,y 的方程组343x y ax y a +=-⎧⎨-=⎩,其中﹣3≤a ≤1,下列结论:①当a =﹣2时,x ,y的值互为相反数;②51x y =⎧⎨=-⎩是方程组的解;③当a =﹣1时,方程组的解也是方程x +y =1的解;④若1≤y ≤4,则﹣3≤a ≤0.其中正确的个数是( ) A .1个B .2个C .3个D .4个3.在4,3,2,1,0,32-,103-中,能使不等式3x ﹣2>2x 成立的数有( ) A .1个 B .2个C .3个D .4个4.若m <n ,则下列不等式错误的是( )A .m ﹣6<n ﹣6B .6m <6nC .66m n> D .﹣6m >﹣6n5.已知a <b ,那么下列正确的是( ) A .ac 2<bc 2B .﹣a <﹣bC .2﹣a >2﹣bD .5a <2b6.下列式子是一元一次不等式的是( )A .x +y <0B .x 2>0C .32xx >+ D .10x< 7.x 是不大于5的数,则下列表示正确的是( ) A .x >5B .x ≥5C .x <5D .x ≤58.已知m >n ,则下列不等式中一定成立的是( ) A .m >n +1B .﹣4m >﹣4nC .m +1>n +2D .m ﹣1>n ﹣2A.a-2>b+2B.85a b< C.ac<bc D.-a+3<-b+3 9.若a<0,下列式子不成立的是 ( )A.-a+2<3-aB.a+2<a+3C.-2a <-3aD.2a>3a 10.不等式2+x <6的正整数解有( )A .1个B .2个C .3 个D .4个二、填空题(共30分,每题3分)11.若关于x 的不等式2x +1<x +a 的最大整数解为1,则a 的取值范围是 .12.用不等式表示:“x 的2倍与1的差小于3”是 .13.若不等式组213x ax >⎧⎨+<⎩的解集中共有3个整数解,则a 的取值范围是 .14.“x 的2倍与y 的和不大于2”用不等式可表示为 .15.若x 是非正数,则x 0.(填不等号)16.若关于x 、y 的二元一次方程组22x y mx y -=⎧⎨+=-⎩的解满足x ﹣y ≤0,则m 的取值范围是 .17.若关于x 的不等式x ﹣m <0有三个正整数解,则m 的取值范围是 .18.关于x 的不等式组0321x a x ->⎧⎨->-⎩整数解有2个,则a 的取值范围是 .19.关于x 的方程3x+2m=x-5的解为正数,则m 的取值范围是 . 20.关于x 的方程kx+15=6x+13的解为负数,则k 的取值范围是 . 三、解答题1.解列不等式,并把解集在数轴上表示出来。
《第7章 一元一次不等式与不等式组》试卷及答案_初中数学七年级下册_沪科版_2024-2025学年
《第7章一元一次不等式与不等式组》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、已知一元一次不等式(3x−5<4), 那么解集为:A.(x<3)B.(x>3)C.(x<−3)D.(x>−3)2、若不等式组$({.)$的解集是下列哪一项?A.(x>2)且(x≤2)B.(x<2)且(x≥2)C.(x>2)且(x≤6)D. 无解3、下列哪个不是一元一次不等式的正确形式?A. 2x + 3 > 5B. x - 4 ≤ 2C. 3x = 7D. x + 2 < 54、不等式 3x - 5 < 2x + 1 的解集是:A. x < 6B. x < 4C. x > 6D. x > 45、若不等式(3x−7<2x+5)成立,则(x)的取值范围是:A.(x<12)B.(x>12)C.(x<2)D.(x>2)6、设(a<b),下列哪个不等式一定成立?A.(−a<−b)B.(2a<2b)C.(a−3<b−3)D.(a−5<b−5)7、已知不等式 -2x + 3 > 5,解得 x 的取值范围是:A. x < -1B. x > -1C. x ≤ -1D. x ≥ -18、若不等式 3(x - 2) < 2x + 4 成立,则 x 的取值范围是:A. x < 4B. x ≤ 4C. x > 4D. x ≥ 49、若不等式 -3x + 4 > 2x - 1,那么x的取值范围是:A. x < 1B. x > 1C. x < 3D. x > 3 10、不等式组[{2x+3<7x−4>−5]的解集是:A. -4 < x < 2B. -3 < x < 3C. -2 < x < 6D. -1 < x < 5二、计算题(本大题有3小题,每小题5分,共15分)第一题:已知不等式(3x−2<4x+1),求解不等式。
《一元一次不等式和一元一次不等式组》测试题及答案
《一元一次不等式和一元一次不等式组》测试题班级_______ 姓名_________ 得分________一、填空题(本大题共10个小题,每小题3分,满分30分)1.用不等式表示:① a 大于0_____________; ② y x +是负数____________;③ 5与x 的和比x 的3倍小______________________.2.不等式132≤-x 的解集是__________________. 3.用不等号填空:若3_____3;4______4;5______5,b a b a b a b a ---->则. 4.当x _________时,代数代x 32-的值是正数.5.不等式组⎪⎩⎪⎨⎧-≥+<312134x x x x 的解集是__________________. 6.不等式0103≤-x 的正整数解是_______________________.7.2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a8.生产某种产品,原需a 小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b 小时,则____________< b <_____________.9.编出解集为2≥x 的一元一次不等式为___________________________;10.若不等式组⎩⎨⎧><bx a x 的解集是空集,则a 、b 的大小关系是_______________.二、选择题(本大题共8个小题,每小题3分,满分24分)11.下列不等式中,是一元一次不等式的是 ( )A .012>-xB .21<-C .123-≤-y xD .532>+y12.不等式54≤-x 的解集是 ( )A .45-≤xB .45-≥xC .54-≤xD .54-≥x 13.一元一次不等式组⎩⎨⎧>-<-xx x 332312的解集是 ( )A .32<<-xB .23<<-xC .3-<xD .2<x14.如图1,在数轴上所表示的是哪一个不等式的解集 ( )A .121->xB .323-≥+xC .11-≥+xD .42>-x15.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式.下列两个不等式是同解不等式的是 ( )A .484<-x 与12->xB .93≤x 与3≥xC .x x 672<-与x 47≤-D .0321<+-x 与231->x 16.解下列不等式组,结果正确的是 ( )A. 不等式组⎩⎨⎧>>37x x 的解集是3>x B. 不等式组⎩⎨⎧->-<23x x 的解集是23-<<-xC. 不等式组⎩⎨⎧-<-<13x x 的解集是1-<xD. 不等式组⎩⎨⎧<->24x x 的解集是24<<-x 17.若1-=a a,则a 只能是 ( )A .1-≤aB .0<aC .1-≥aD .0≤a18.关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是 ( )A .3>aB .3≤aC .3<aD .3≥a三、解一元一次不等式(或不等式组),并把它们的解集在数轴上表示出来(本大题共2个小题,每小题7分,满分14分)19.276-<x x 20. ⎪⎩⎪⎨⎧≤--<+2123932x x四、解下列一元一次不等式(或组)(本大题共2个小题,每小题8分,满分16分) 21.22. 93621≤-<-x五、(本大题满分8分)23. x 为何值时,代数式2)1(3+-x 的值比代数式331-+x 的值大.六、(本大题满分8分,第1小题3分,第2小题5分)24.已知关于x 、y 的方程组⎩⎨⎧=-=+m y x y x 212. (1)求这个方程组的解;(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.七、列一元一次不等式(或不等式组)解应用题(本大题满分10分)25.某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0.5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)八、先阅读下列知识,然后解答问题(本大题满分10分)26.25.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。
第二章 一元一次不等式与一元一次不等式组测试题(含答案)
第二章 一元一次不等式与一元一次不等式组一、选择题(本大题共7小题,每小题4分,共28分)1.在式子-3<0,x ≥2,x =a ,x 2-2x ,x ≠3,x +1>y 中,是不等式的有( )A .2个B .3个C .4个D .5个2.若a >b 成立,则下列不等式成立的是( )A .-a >-bB .-a +1>-b +1C .-(a -1)>-(b -1)D .a -1>b -1 3.下列说法正确的有( )①x =4是x -3>1的解;②不等式x -2<0的解有无数个;③x >5是不等式x +2>3的解集;④x =3是不等式x +2>1的解;⑤不等式x +2<5有无数个正整数解.A .1个B .2个C .3个D .4个4.不等式2x -1<1的解集在数轴上表示正确的是( )图15.不等式组⎩⎪⎨⎪⎧3x +1<4,12(x +3)-34<0的最大整数解是( ) A .0 B .-1 C .1 D .-26.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的位置如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )图2A .x >1B .x <1C .x >-2D .x <-27.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,从第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块二、填空题(本大题共6小题,每小题4分,共24分)8.若a >b ,要使ac <bc ,则c ________0.9.已知3k -2x 2k -1>0是关于x 的一元一次不等式,那么k =________,此不等式的解集是________.10.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人均分得6个苹果,求学生的人数.若设学生有x 人,则可以列出不等式组为____________________.11.一个两位数,十位上的数字比个位数上的数字小2.若这个两位数在40至60之间,那么这个两位数是________.12.如图3,已知函数y =kx +b 和y =12x -2的图象相交于点P ,则不等式组kx +b <12x -2<0的解是________.图313.已知关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -3)+1,2x +13>x +a 有四个整数解,则a 的取值范围是________.三、解答题(本大题共5小题,共48分)14.(6分)解不等式2x -13-9x +26≤1,并把解集表示在数轴上.15.(8分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组⎩⎪⎨⎪⎧x -22+3≥x +1,1-3(x -1)<8-x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?16.(10分)若a ,b ,c 是△ABC 的三边长,且a ,b 满足关系式|a -3|+(b -4)2=0,c是不等式组⎩⎨⎧x -33>x -4,2x +3<6x +12的最大整数解,求△ABC 的周长.17.(12分)福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?18.(12分)在“美丽广西,清洁乡村”活动中,李家村村支书提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设方案1的购买费和每月垃圾处理费共为y1元,方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x之间的函数关系式;(2)如图4,在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案更省钱?图4参考答案1.[答案] C2.[答案] D3.[解析] B ①解不等式x -3>1,得x >4,则x =4不是不等式x -3>1的解,错误;②解不等式x -2<0,得x <2,则不等式的解有无数个,正确;③解不等式x +2>3,得x >1,错误;④解不等式x +2>1,得x >-1,故x =3是不等式的解,正确;⑤解不等式x +2<5,得x <3,正整数解为1,2,错误.故其中正确的有2个.故选B .4.[答案] D5.[解析] D ⎩⎪⎨⎪⎧3x +1<4,①12(x +3)-34<0,②解不等式①,得x <1.解不等式②,得x <-32.所以不等式组的解集为x <-32,故不等式组的最大整数解为-2.故选D . 6.[解析] B 由图可得直线l 1与直线l 2在同一平面直角坐标系中的交点坐标是(1,-2),且当x <1时,直线l 1在直线l 2的下方,故不等式k 1x +b <k 2x +c 的解集为x <1.故选B .7.[解析] C 设这批电话手表有x 块.由题意,得550×60+(x -60)×500>55000,解得x >104.∴这批电话手表至少有105块.故选C .8.[答案] <[解析] 由不等式a >b 变形得ac <bc ,即不等式的两边都乘c 后,不等号的方向改变.由不等式的基本性质3,得c 是负数,所以c <0.9.[答案] 1 x <32[解析] ∵原式是关于x 的一元一次不等式,∴2k -1=1,解得k =1,∴原不等式为-2x +3>0,∴x <32. 10.[答案] ⎩⎪⎨⎪⎧43-6(x -1)<3,43-6(x -1)≥0 11.[答案] 46或57[解析] 设这个两位数的个位数字为x ,则十位数字为x -2.根据题意,得40<(x -2)×10+x <60,解得6011<x <8011.又因为x 为整数,所以x =6或7.所以对应十位数字为4,5,所以这个两位数是46或57.12.[答案] 2<x <413.[答案] -3≤a <-83[解析] ⎩⎪⎨⎪⎧x <2(x -3)+1,①2x +13>x +a ,②解不等式①,得x >5.解不等式②,得x <1-3a ,所以不等式组的解集为5<x <1-3a .由题设可知5<x <1-3a 中包含四个整数,这四个整数应为6,7,8,9,由此可知9<1-3a ≤10,解得-3≤a <-83.14.解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6.移项,得4x -9x ≤6+2+2.合并同类项,得-5x ≤10.系数化为1,得x ≥-2.即不等式的解集为x ≥-2.把解集表示在数轴上,如图.15.解:⎩⎪⎨⎪⎧x -22+3≥x +1,①1-3(x -1)<8-x ,②解不等式①,得x ≤2.解不等式②,得x >-2.∴原不等式组的解集为-2<x ≤2.∵作业的题号为正整数,∴今天的数学作业是第1,2题.16.解:∵a ,b 满足关系式|a -3|+(b -4)2=0,∴a =3,b =4.解不等式x -33>x -4,得x <92.解不等式2x +3<6x +12,得x >52. 则该不等式组的解集为52<x <92, 其最大整数解为4,∴c =4.故△ABC 的周长=3+4+4=11.即△ABC 的周长为11.17.[解析] (1)抓住每人每天可制作衬衫3件或裤子5条,列一元一次方程求解;(2)由于制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,而要求每天获得利润不少于2100元,于是可以利用一元一次不等式求解.解:(1)设应安排x 名工人制作衬衫.根据题意,得3x =5(24-x ),解得x =15.所以24-x =24-15=9.答:应安排15名工人制作衬衫,9名工人制作裤子.(2)设应安排y 名工人制作衬衫.根据题意,得3×30y +5×16(24-y )≥2100,解得y ≥18.答:至少应安排18名工人制作衬衫.18.解:(1)对于方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元,交费时间为x 个月,则y 1与x 之间的函数关系式为y 1=250x +3000;同样,对于方案2可得y 2与x 之间的函数关系式为y 2=500x +1000.(2)对于y 1=250x +3000,当x =0时,y 1=3000;当x =4时,y 1=4000,过点(0,3000),(4,4000)画直线(第一象限内)就是函数y 1=250x +3000的图象.用同样的方法可以画出函数y 2=500x +1000的图象.(3)①由250x +3000<500x +1000,得x >8,所以当使用寿命大于8个月时,方案1更省钱;②由250x +3000=500x +1000,得x =8,所以当使用寿命等于8个月时,两种方案费用相同;③由250x +3000>500x +1000,得x <8,所以当使用寿命小于8个月时,方案2更省钱.。
北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析
北师大版八年级数学下册第2章单元测试卷(二)一元一次不等式和一元一次不等式组学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.若3a >,则下列各式正确的是( )A .14a +<B .30a -<C .41a ->-D .21a -<2.对于不等式组015x x ≥⎧⎨+<⎩,下列说法正确的是( ) A .此不等式组的解集是44x -≤<B .此不等式组有4个整数解C .此不等式组的正整数解为1,2,3,4D .此不等式组无解3.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c x x x ++++++﹣﹣的最小值是( ) A .2a c - B .22a b c ++ C .22a b c ++ D .22a b c +- 4.如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程()414a x+()343a x -=的解,那么a 的取值是( ). A .2a > B .2a < C .718a > D .718a < 5.不等式231x +≥的解集是( )A .1x ≤-B .1x ≥-C .2x -≤D .2x ≥-6.如图所示,两函数y 1=k 1x +b 和y 2=k 2x 的图象相交于点(m ,−2),则关于x 的不等式 k 1x +b >k 2x的解集为( )A .x >mB .x <-1C .x >-1D .x <m7.若a >b ,则下列不等式成立的是( )A .a 2>b 2B .1﹣a >1﹣bC .3a ﹣2>3b ﹣2D .a ﹣4>b ﹣3 8.下列变形属于移项的是( )A .由3x =-7+x ,得3x =x -7B .由x =y ,y =0,得x =0C .由7x =6x -4,得7x +6x =-4D .由5x +4y =0,得5x =-4y9.若不等式组的解集为0<x <1,则a 的值为( )A .1B .2C .3D .410.已知一次函数1y kx b =+与2y ax c =+的图象如图所示,则不等式kx b ax c +>+的解集为( )A .3x >B .3x <C .1x >D .1x < 11.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .12.如果关于x的分式方程1 311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3B.0C.3D.9二、填空题(本大题共6小题,每小题3分,共18分)13.若一次函数(1)2y k x k=-++的图像不经过第三象限,则k的取值范围是_____.14.若不等式组841x xx m+>-⎧⎨≤⎩的解集为x<3,则m的取值范围是____________.15.如图,在平面直角坐标系中,点A、B的坐标分别为()1,4、()3,4,若直线y kx=与线段AB有公共点,则k的取值范围为__________.16.若关于x,y的二元一次方程组2134x y ax y-=-⎧⎨+=⎩的解满足40x y-<,则a的取值范围是________.17.若关于x的一元一次不等式组21122x ax x->⎧⎨->-⎩的解集是21x-<<,则a的取值是__________.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y≤0.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.小明今年12岁,老师告诉他:“我今年的年龄是你的3倍小4岁”,接着老师又问小明:“再过几年我的年龄正好是你的2倍?”请你帮助小明解决这一问题.20.2020年疫情期间,某公司为了扩大经营,决定购进6台机器用于生产口罩.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产口罩的数量如下表所示.经过预算,本次购买机器所耗资金不能超过36万元,(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于42万个,那么为了节约资金应选择什么样的购买方案?21.解下列不等式:(1)2x-3≤12(x+2);(2)3x>1-36x-.22.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.23.解不等式组:1011122xx-≥⎧⎪⎨--<⎪⎩,并求出它的最小整数解.24.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组综合测试练习题(无超纲)
第二章一元一次不等式和一元一次不等式组综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤32、已知a<b,则()A.a﹣2>b﹣2 B.﹣a+1>﹣b+1 C.ac<bc D.a b c c3、已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b 4、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2C .若﹣2a >2b ,则a <bD .若ac 2<bc 2,则a <b5、已知两直线()0y kx k k =+≠与36y x =-相交于第四象限,则k 的取值范围是( )A .60k -<<B .30k -<<C .3k <-D .6k <-6、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 27、若x <y ,则下列不等式中不成立的是( )A .x -5<y -5B .16x <16yC .x -y <0D .-5x <-5y8、如图,l 1反映了某公司产品的销售收入与销售量的关系;l 2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )A .小于12件B .等于12件C .大于12件D .不低于12件9、已知一次函数111y k x b =+与一次函数222y k x b =+中,函数1y 、2y 与自变量x 的部分对应值分别如表1、表2所示:表1:表2:则关于x 的不等式11221k x b k x b +>++的解集是( )A .0x <B .0x >C .01x <<D .1x >10、﹣(﹣a )和﹣b 在数轴上表示的点如图所示,则下列判断正确的是( )A .﹣a <1B .b ﹣a >0C .a +1>0D .﹣a ﹣b <0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数y kx b =+(k 、b 是常数,0k ≠)的图像与x 轴交于点()2,0,与y 轴交于点()0,m .若1m ,则k 的取值范围为______.2、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2a c _______2b c (3)c -a_______c -b(4)-a |c |_______-b |c |3、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 4、有人问一位教师所教班级有多少人,教师说:“一半学生在学数学,四分之一学生在学音乐,七分之一学生在读外语,还剩下不足六位学生在操场踢足球”,则这个班有_______名学生.5、定义新运算:对于任意实数a ,b 都有:a ⊕b =a (a ﹣b )+1.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式﹣3⊕x <15的解为 _____.三、解答题(5小题,每小题10分,共计50分)1、根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式.(1)15x -<;(2)413x -≥;(3)1142x -+≥; (4)410x -<-.2、解不等式组3(1)1922x x x x +≥-⎧⎪⎨+>⎪⎩,并把解集表示在数轴上.3、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人.(1)若亲友团有6人,甲、乙旅行社各需多少费用?(2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)4、(1)解不等式4x ﹣1>3x ;(2)解不等式组3(1)5(1)21531123x x x x -≤+-⎧⎪-+⎨>-⎪⎩. 5、解不等式组并把它的解集在数轴上表示出来 ()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩-参考答案-一、单选题1、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.2、B【分析】根据不等式的性质逐项分析即可.【详解】解:A、∵a<b,∴a-2<b-2,故不符合题意;B、∵a<b,∴-a>-b,∴-a+1>-b+1,,故符合题意;C、∵a<b,当c≤0时,ac<bc不成立,故不符合题意;D、∵a<b,当c>0时,a bc c不成立,故不符合题意;故选B.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.3、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C.当c=0时,不等式不成立,故C选项不正确,不符合题意;D.不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.故选:D.【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.4、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D、若ac2<bc2,则a<b,故本选项正确,符合题意;【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.5、A【分析】先求出交点坐标,然后列不等式组即可求解.【详解】解:由题意得,36y kx k y x =+⎧⎨=-⎩, 解得6393k x k k y k --⎧=⎪⎪-⎨-⎪=⎪-⎩, ∵两直线()0y kx k k =+≠与36y x =-相交于第四象限, ∴603903k k k k --⎧>⎪⎪-⎨-⎪<⎪-⎩, ∴-6<k <0;故选:A .【点睛】本题考查一次函数的图象及性质,以及不等式组的解法,能够掌握直线交点坐标的求法,牢记象限内点的坐标特点是解题的关键.6、C根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.7、D【分析】根据不等式的性质逐项分析即可.【详解】解:A. ∵x <y ,∴x -5<y -5,故不符合题意;B. ∵x <y ,∴1166x y <,故不符合题意; C. ∵x <y ,∴x-y <0,故不符合题意;D. ∵x <y ,∴55x y ->-,故符合题意;故选D .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.8、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.9、D【分析】用待定系数法求出1y 和2y 的表达式,再解不等式即可得出答案.【详解】由表得:(0,3),(1,4)在一次函数111y k x b =+上,∴11134b k b =⎧⎨+=⎩, 解得:1113k b =⎧⎨=⎩, ∴13y x =+,(0,4),(1,3)在一次函数222y k x b =+上,∴22243b k b =⎧⎨+=⎩, 解得:2214k b =-⎧⎨=⎩, ∴24y x =-+,∴11221k x b k x b +>++为341x x +>-++,解得:1x >.故选:D .【点睛】本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.10、B【分析】化简﹣(﹣a )=a ,根据数轴得到a <﹣1<﹣b <0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a )=a ,由数轴可得a <﹣1<﹣b <0,∵a <﹣1,∴﹣a >1,故A 选项判断错误,不合题意;∵﹣b <0,∴b >0,b ﹣a >0,故B 正确,符合题意;∵a <﹣1,∴a +1<0,故C 判断错误,不合题意;∵a <﹣b ,∴a +b <0,∴﹣a ﹣b >0,故D 判断错误,不合题意.故选:B .【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.二、填空题1、12k <-【分析】将已知点()2,0、()0,m 代入y kx b =+后可得2m k =-,再根据m 的取值范围可得k 的取值范围.【详解】解:∵一次函数y kx b =+(k 、b 是常数,0k ≠)的图像与x 轴交于点()2,0,与y 轴交于点()0,m , ∴02m b k b =⎧⎨=+⎩, ∴2m k =-,∵1m ,∴21k ->,即12k <-.故答案为:12k <-.【点睛】本题考查待定系数法求一次函数解析式,解一元一次不等式,能代入点求得m 和k 的关系是解题关键.2、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.3、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键. 4、28【分析】根据题意可以列出相应的不等式,又根据一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,可知该班学生一定是2、4、7的倍数,从而可以解答本题.【详解】解:设这个班有x人,由题意可得:1116247x x x x---<,解得,x<56,又∵一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,∴该班学生一定是2、4、7的倍数,∴x=28,故答案为:28.【点睛】本题考查一元一次不等式的应用,解答此类问题的关键是列出相应的不等式,注意要联系实际情况和题目中的要求.5、53 x<【分析】根据题目中所给的新运算先进行化简,然后再解不等式求解即可.【详解】解:∵3x-⊕()()331x=-⨯--+,931x=++,310x=+.∵315x -⊕<,∴31015x +<, ∴53x <. 故答案为:53x <.【点睛】题目主要考查整式的混合运算及解不等式,理解题中定义的新运算,熟练掌握解不等式的方法是解题关键.三、解答题1、(1)6x <(2)1≥x(3)6x ≤-(4)52x > 【分析】(1)根据不等式的性质1解答即可;(2)先根据不等式的性质1,再根据不等式的性质2解答;(3)先根据不等式的性质1,再根据不等式的性质3解答;(4)根据不等式的性质3解答即可;(1)解:15x -<,两边加上1得:1151x -+<+,解得:6x <;(2)解:413x -≥,两边加上1得:41131x -+≥+,即44x ,两边除以4得:1≥x ;(3) 解:1142x -+≥, 两边减去1得:111412x -+-≥-,即132x -≥, 两边除以12-得:6x ≤-;(4)解:410x -<-,两边除以4-得:52x >. 【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.2、23x -≤<,图见解析【分析】分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题.【详解】 解:3(1)1922x x x x +≥-⎧⎪⎨+>⎪⎩①② 由①得 2x ≥-由②得 3x <把不等式组的解集表示在数轴上,如图,∴原不等式组的解为23x -≤<【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键.3、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.4、(1)1x >;(2)133x -≤<.【分析】(1)直接移项化简即可求得(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)4x ﹣1>3x ;431x x -> 解得1x >;(2)3(1)5(1)21531123x x x x -≤+-⎧⎪⎨-+>-⎪⎩①② 解不等式①得:3x ≥-, 解不等式②得:13x <∴不等式组的解集为133x -≤< 【点睛】本题考查了解不等式和解不等式组,正确的计算以及求不等式组的解集是解题的关键.5、542x ≤<图见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.【详解】 解:()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩①②解不等式①得:4x ≤, 解不等式②得:52>x , ∴不等式组的解集为:542x ≤<,数轴上表示解集为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式组的解集,解题的关键在于能够熟练掌握求不等式组的解集的方法.。
专题09 一元一次不等式的应用与一元一次不等式组(原卷版)
专题09 一元一次不等式的应用与一元一次不等式组一、一元一次不等式实际问题1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:.7.收费问题:分类讨论,起步价,超过部分价格分好设x 即可8.几何问题:判断是哪种类型,如果是长方形则设长和宽x 即可列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.注意(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;=100%´利润利润率进价32101010abcd a b c d =´+´+´+(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.二、一元一次不等式组不等式组的概念如,等都是一元一次不等式组.(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.解一元一次不等式组1.一元一次不等式组的解集:注意:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.注意:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取整数.2562010x x ->ìí-<î7021163159x x x ->ìï+>íï+<î类型一、行程问题【解惑】(2023春·全国·七年级专题练习)小茗要从石室联中到春熙路IFS 国际金融中心,两地相距1.7千米,已知他步行的平均速度为90米/分钟,跑步的平均速度为210米/分钟,若他要在不超过12分钟的时间内到达,那么他至少需要跑步多少分钟?设他要跑步的时间为x 分钟,则列出的不等式为( )A .()2109012 1.7x x +-³B .()2109012 1.7x x +-£C .()21090121700x x +-³D .()21090121700x x +-£【融会贯通】1.(2023·黑龙江哈尔滨·统考一模)甲、乙两车分别从相距200千米的A 、B 两地相向而行,甲乙两车均保持匀速行驶,若甲车行驶2小时,乙车行驶3小时,两车恰好相遇:若甲车行驶4小时,乙车行驶1小时,两车也恰好相遇.(1)求甲乙两车的速度(单位:千米/小时)是多少.(2)若甲乙两车同时按原速度行驶了1小时,甲车发生故障不动了,为了保证乙车再经过不超过2小时与甲车相遇,乙车提高了速度,求乙车提速后的速度至少是每小时多少千米?2.(2023春·全国·七年级专题练习)在爆破时,如果导火索燃烧的速度是0.015m/s,人跑开的速度是3m/s,那么要使点导火索的施工人员在点火后能够跑到100m以外(包括100m)的安全地区,这根导火索的长度至少应取多少米?3.(2022春·上海·八年级期中)小明早上七点骑自行车从家出发,以每小时18千米的速度到距家7千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分赶到学校,那么他每小时步行的速度至少是多少千米?4.(2021春·山西·七年级校联考期末)小宇骑自行车从家出发前往地铁2号线的B站,与此同时,一列地铁从A站开往B站.3分钟后,地铁到达B站,此时小宇离B站还有2400米.已知A、B两站间的距离和小宇家到B站的距离恰好相等,这列地铁的平均速度是小宇骑车的平均速度的5倍.(1)求小宇骑车的平均速度(2)如果此时另有一列地铁需10分钟到达B站,且小宇骑车到达B站后还需2分钟才能走到地铁站台候车,那么他要想乘上这趟地铁,骑车的平均速度至少应提高多少?(假定这两列地铁的平均速度相同)5.(2021·广西百色·校联考一模)邓老师从学校出发,到距学校2160米的某商场买学习奖品,她步行了9分钟然后换骑共享单车,全程共用15分钟(转换方式所需时间忽略不计).已知邓老师骑共享单车的平均速度是步行速度的3倍.(1)邓老师步行和骑共享单车的平均速度分别是多少?(2)若邓老师仍然以步行和骑共享单车的方式分别按原来速度原路返回,买完奖品时正好10:31,为赶上10:45的数学课,问路上最多可步行多少米?类型二、工程问题【解惑】(2022秋·重庆丰都·九年级校考期中)众所周知,我国新疆盛产棉花,品种多且质量好,其中天然彩棉最具特色.每年4月底至5月初是种植天然彩棉的最佳季节.某农场今年有8480亩待种棉地,计划全部播种天然彩棉.农场现有雇佣工人若干名,且每个工人每小时种植棉花的面积相同.农场先将所有工人分成A、B、C三组,其中C组比A组多5人,且A、B、C三组工人每天劳动时间分别为12小时,10小时,8小时.一开始三组工人刚好用了8天完成了3200亩棉地的种植;接下来,农场安排A组工人每天劳动8小时,C组工人每天劳动12小时,B组工人劳动时间不变,这样调整后的三组工人也刚好用了8天完成了3280亩棉地的种植.为了不错过种植的最佳季节,农场决定从其他农场紧急雇佣3m名工人,平均分配给A、B、C三组进行支援,此时A、B、C三组工人每天劳动时间仍分别为8小时,10小时,12小时,以确保剩下的棉地在4天内完成全部种植,则3m的最小值为______.【融会贯通】1.(2022春·海南海口·七年级校考期中)5月份是空调销售和安装的高峰时期.某区域售后服务中心现有600台已售空调尚待安装,另外每天还有新销售的空调需要安装.设每天新销售的空调台数相同,每个空调安装小组每天安装空调的台数也相同.若同时安排3个装机小组,恰好60天可将空调安装完毕;若同时安排5个装机小组,恰好20天就能将空调安装完毕.(1)求每天新销售的空调数和每个空调安装小组每天安装空调的台数;(2)如果要在5天内将空调安装完毕,那么该区域售后服务中心至少需要安排几个空调安装小组同时进行安装?2.(2023春·广东佛山·八年级校考阶段练习)小明借到一本72页的图书,要在10天之内读完,开始2天每天只读5页,在剩下的时间里,小明每天至少要读多少页?3.(2023春·八年级单元测试)现有甲乙两个工程队参加一条道路的施工改造,受条件阻制,每天只能由一个工程队施工.甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成340米施工任务;若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成260米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)要改造的道路全长1300米,工期不能超过30天,那么乙工程队至少施工多少天?类型三、利润问题【解惑】(2023春·山东济南·八年级校考阶段练习)某种笔记本原售价是每本7元,凡一次购买3本或以上可享受优惠价格,第1种:3本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本是()A.7本B.8本C.9本D.10本类型四、和差倍分问题【解惑】(2020·湖南常德·统考一模)我国的《洛书》中记载着世界上最古老幻方:将1-9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中字母m 所能表示的所有数中最大的数是()A.6B.7C.8D.9【融会贯通】1.(2023·云南·模拟预测)某校为活跃班级体育大课间,计划分两次购进一批羽毛球和乒乓球.第一次分别购进羽毛球和乒乓球30盒和15盒,共花费675元;第二次分别购进羽毛球和乒乓球12盒和5盒,共花费265元.若两次购进的羽毛球和乒乓球的价格均分别相同.(1)羽毛球和乒乓球每盒的价格分别是多少元?(2)若购买羽毛球和乒乓球共30盒,且乒乓球的数量少于羽毛球数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.2.(2022秋·黑龙江哈尔滨·九年级哈尔滨德强学校校考阶段练习)某班级为学习成绩进步的学生购买奖品,计划购买同一品牌的钢笔和自动铅笔,到文教店查看定价后发现,购买1支钢笔和5支自动铅笔共需50元,购买3支钢笔和2支自动铅笔共需85元.(1)求该品牌的钢笔、自动铅笔每支的定价分别是多少元;(2)如果该班级需要自动铅笔的数量是钢笔的数量的2倍还多8个,现在文教店进行促销活动,全场商品一律八折出售,且班级购买钢笔和自动铅笔的总费用不超过620元,那么该班级最多可购买多少支该品牌的钢笔?5.(2023春·福建漳州·七年级统考期中)某商场进货40件A商品和30件B商品共用了760元,进货50件A商品和10件B商品共用了840元.(1)求A、B两种商品的进价.(2)该商场在某次进货中,B商品的件数比A商品的件数的2倍少4件,且A、B两种商品的总件数至少为26件,总费用不超过248元,请问该商场有哪几种进货方案?类型五、利息问题【解惑】(2013·浙江杭州·统考一模)某企业向银行贷款100万元,一年后归还银行106.6多万元,则年利率高于_____%.【融会贯通】元.可使年利润超过35000元?类型六、收费问题【解惑】【融会贯通】份最多可用水多少立方米?类型七、数字问题【解惑】(2020·七年级统考课时练习)一个两位数,它的十位数上的数字比个位上的数字大2.且这个两位数小于40,则这个两位数是________.【融会贯通】类型八、几何问题【解惑】(2021春·山东潍坊·七年级统考期末)如图,一机器人在平地上按图中的程序行走,要使机器人行走的路程大于10m,则a的值可能是()A.90°B.45°C.36°D.24°【融会贯通】1.(2022·福建·模拟预测)小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算了这个内角的度数为___ .2.(2023春·全国·七年级专题练习)将长为4,宽为a(a大于2且小于4)的长方形纸片按如图①所示的方式折叠并压平,剪上一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则n=时,a的值为___________.操作终止.当33.(2023春·江苏·七年级专题练习)如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动.设旋转时间为t秒.(1)当t=5时,则∠POQ的度数是______.(2)求射线OQ返回时t的值取值范围.(3)在旋转过程中,当020POQ °<У°时,求t 的取值范围.(注:此题主要考查,把不等式变等式来求,分三种情况,求相遇,相距30度的t ,再写三个不等式范围)4.(2023春·江苏·七年级专题练习)长方形的一边长为2米,另一边长为()8x +米,它的周长不大于48米,求x 的取值范围.5.(2021春·七年级课时练习)若多边形有且只有四个钝角,那么此多边形的边数至多是多少?类型九、一元一次不等式组中取整【解惑】(2023·山东泰安·统考一模)不等式组3x m x <ìí³î有4个整数解,则m 的取值范围是( )A .67m ££B .67m <<C .67£<m D .67m <£【融会贯通】1.(2023春·安徽滁州·七年级校考期中)关于x 的不等式组0251x a x x ->ìí-<-î有且仅有5个整数解,则a 的取值范围是( )A .54a -<£-B .54a -£<-C .43a -<£-D .43a -£<-2.(2022春·四川泸州·七年级统考期末)若关于x 的一元一次不等式组231220x x a +>ìí-£î恰有3个类型十、一元一次不等式组中有、无解(2022秋·浙江·八年级专题练习)若不等式12x x m <£ìí>î有解,则m 的取值范围是( )A .2m <B .2m ³C .1m <D .12m £<【融会贯通】类型十一、一元一次不等式组与二元一次方程组求解【融会贯通】1.(2022春·重庆·七年级校考期中)已知关于x ,y 的二元一次方程组242x y ax y a +=-ìí-=-î的解关于x ,y 满足0x <,2y £,则a 的取值范围为________.2.(2023春·七年级单元测试)整数m 满足关于x ,y 的二元一次方程组5321x y mx y +=ìí+=î的解是正整数,且关于x 的不等式组5406x m x ->ìí£î有且仅有2个整数解,则m 为_____.3.(2022春·江苏泰州·七年级校联考阶段练习)若关于x ,y 的二元一次方程组23122x y a x y +=-ìí+=î,(1)若x +y =1,求a 的值.(2)若﹣3≤x ﹣y ≤3,求a 的取值范围.(3)在(2)的条件下化简|a |+|a ﹣2|.4.(2023秋·贵州铜仁·八年级统考期末)已知关于x ,y 的二元一次方程组32121x y m x y m +=+ìí+=-î①②,当m 为何值时,x y <且320x y ->?5.(2021春·甘肃兰州·八年级校考期中)已知关于x,y的二元一次方程组713x y ax y a+=--ìí-=+î的解x为非正数,y为负数,求a的取值范围.类型十二、一元一次不等式组的新定义【解惑】(2023年广东省深圳市三十五校中考模拟数学试卷)定义新运算“Ä”,规定:2a b a bÄ=-,若关于x的不等式组30xx a aÄ>ìíÄ>î的解集为6x>,则a的取值范围是________.【融会贯通】1.(2023春·安徽合肥·七年级合肥市第四十二中学校考期中)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:3.(2023春·安徽合肥·七年级中国科技大学附属中学校考阶段练习)对x ,y 定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中m ,n 均为非零常数).例如:()1,133T m n =+.已知()1,10T -=,()0,28T =.(1)求m ,n 的值;(2)已若关于p 的不等式组()()2,244,32T p p T p p a ì->ïí-£ïî恰好有3个整数解,求a 的取值范围;4.(2022秋·湖南长沙·八年级校考开学考试)定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组M :21x x >ìí>î是N :21x x >-ìí>-î的“子集”.(1)若不等式组:A :1415x x +>ìí-<î,B :2113x x ->ìí>-î,则其中______不等式组是不等式组M :21x x >ìí>î的“子集”(填A 或)B ;(2)若关于x 的不等式组1x ax >ìí>-î是不等式组21x x >ìí>î的“子集”,则a 的取值范围是______;。
一元一次不等式组测试题(含答案)
一元一次不等式(组)测试题(总分:150分 时间60分钟) 姓名 分数 一、选择题(每题4分,共40分)1.已知实数a b 、满足11a b +>+,则下列选项可能错误....的是( ) A .a b > B .22a b +>+ C .a b -<- D .23a b >2.下列不等式组中,解集是2<x <3的不等式组是( )A 、⎩⎨⎧>>23x xB 、⎩⎨⎧<>23x xC 、⎩⎨⎧><23x xD 、⎩⎨⎧<<23x x 3.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A 、B 、C 、D 、 4.不等式组31025x x +>⎧⎨<⎩的整数解的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个5.若6556x x -=-,则x 的取值范围是( )A.56x > B.56x < C.56x ≤ D.56x ≥ 6.在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a <12 B 、a <0 C 、a >0 D 、a <-127. 方程|4x -8|+2(x-y-m )=0,当y >0时,m 的取值范围是( ) A .O <m <1 B .m≥2 C .m <2 D .m≤28.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A 、①与②B 、②与③C 、③与④D 、①与④ 9.如果不等式组x a x b ≥⎧⎨≤⎩无解,那么不等式组⎩⎨⎧-<->b x a x 22的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解 10.关于x 的方程211x a x +=-的解是正数,则以的取值范围是( )A .a >-1B .a >-1且a≠0C .a <-1D .a <-1且a≠-2二、填空题(每题4分,共32分)11.不等式1732x ->的正整数解是 .12.已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是 .13.不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是 . 14.不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________15.已知不等式03≤-a x 的正整数解恰好是1、2、3,则a 的取值范围是___________。
初一数学一元一次不等式练习题汇总(复习用)
一元一次不等式和一元一次不等式组测试题一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2; 2. 若2-x <0,x________2;3. 若xy>0,则xy_________0; 4. 代数式536x-的值不大于零,则x__________;5. a 、b 关系如下图所示: 比较大小|a|______b,-;1______,1_________1bb b a --- 6. 不等式13-3x >0的正整数解是__________;7. 若|x-y|=y-x,是x___________y;8. 若x ≠y,则x 2+|y|_________0; 9. 不等式组⎩⎨⎧+--023,043 x x 的解集是____________.二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a 的取值范围是( ). (A)a >0; (B)a ≥0; (C)a <0; (D)自然数.2.不等式23>7+5x 的正整数解的个数是( ). (A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m ≠n,则|m|≠|n|; (B)若a+b=0,则ab >0;(C)若ab <0,且a <b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x 取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若11|1|-=--x x ,则x 的取值范围是( ). (A)x >1; (B)x ≤1; (C)x ≥1; (D)x <1. 三、解答题1. 解不等式(组),并在数轴上表示它们的解集.(1)213-x (x-1)≥1; (2)21322-++-x x x ; (3)⎪⎩⎪⎨⎧≥--+.052,1372x x x (4)⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x2. x 取什么值时,代数式251x -的值不小于代数式4323+-x的值. 3. K 取何值时,方程k x 332-=5(x-k)+1的解是非负数. 4. k 为何值时,等式|-24+3a|+0232=⎪⎭⎫⎝⎛--b k a 中的b 是负数?参考答案一、1.-3>-π,-22<(-0.2)2; 2.x >2; 3.xy >0; 4.X ≥2; 5.|a|>b,-b a 11 ,-b <-b1; 6.1,2,3,4; 7.x ≤y; 8.x 2+|y|>0; 9.无解. 二、1.A; 2.C; 3.D 4.D; 5.B. 三、1.(1)x ≤-3;(2)x <1;(3)2≤x <8;(4)x <0;2.x ≤-1127;3.k ≥21;4.k >-48. 华师七下第8章一元一次不等式能力测试题一、填空题(每空3分,共27分) 1.(1)不等式123x <的解集是________; (2)不等式327x -<的非负整数解是________;(3)不等式组21527x x ->⎧⎨-<⎩的解集是______________;(4)根据图1,用不等式表示公共部分x 的范围______________. 2.当k ________时,关于x 的方程2x -3=3k 的解为正数.3.已知0, 0a b <<,且a b <,那么ab ________b 2(填“>”“<”“=”). 4.一个三角形的三边长分别是3,1-2m ,8,则m 的取值范围是________. 5.若不等式()327m x -<的解集为13x >-,则m 的值为________. 6.若不等式组121x m x m +⎧⎨>-⎩≤无解,则m 的取值范围是________.二、选择题(每小题4分,共24分)7. 如果不等式()22m x m ->-的解集为1x <,那么( ) A .2m ≠B .2m >C .2m <D .m 为任意有理数8.如果方程()a b x a b -=-有惟一解1x =-,则( ) A .a b =B .a b ≠C .a b >D .a b <9.下列说法①2x =是不等式36x ≥的一个解;②当12a ≠时,210a ->;③不等式3≥1恒成立;④不等式230x -->和23y <-解集相同,其中正确的个数为( ) A .4个B .3个C .2个D .1个10.下面各个结论中,正确的是( ) A .3a 一定大于2a B .13a 一定大于a C .a +b 一定大于a -b D .a 2+1不小于2a11.已知-1<x <0,则x 、x 2、1x三者的大小关系是( ) A .21x x x<<B .21x x x<<C .21x x x<< D .21x x x<< 12.已知a =x +2,b =x -1,且a >3>b ,则x 的取值范围是( )图1A .x >1B .x <4C .x >1或x <4D .1<x <4三、解答题13.解下列不等式(组).(12分)(1)()2232633x x x ⎛⎫---⎡⎤ ⎪⎣⎦⎝⎭≥ (2)()40.30.5 5.8115134x x x x -<+⎧⎪⎨->-+⎪⎩ 14.已知满足不等式531x -≤的最小正整数是关于x 的方程()()941a x x +=+的解,求代数式的值.(12分)15.某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a 元.现欲从中分流出x 人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a 元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)华师七下第8章一元一次不等式能力测试题参考答案一、填空题 1. (1)16x < (2)0,1,2 (3)3x > (4)32x -<≤ 2.k >-1 3.> 4.52x -<<- 5.193m =-6.2m ≥ 二、选择题7.C8.D9.A 10.D 11.D 12.D 三、解答题13.(1)47x ≥-(2)x <2 14.19315.18千米/时 16.15人功16人 一、选择题:(每小题3分,共30分)1、下列不等式中,是一元一次不等式的是 ( )A 012>-x ;B 21<-;C 123-≤-y x ;D 532>+y ; 2、“x 大于-6且小于6”表示为( )A -6<x<6;B x>-6,x ≤6;C -6≤x ≤6;D -6<x ≤6; 3、 解集是x ≥5的不等式是 ( )A x+5≥0B x –5≥0C –5–x ≤0D 5x –2 ≤–94、不等式组⎩⎨⎧x -2≤0x +1>0的解是()A 、x ≤2B 、x ≥2C 、-1<x ≤2D 、x >-15、不等式组240,10x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )6、下列不等式组无解的是( ) A .2010x x -<⎧⎨+<⎩ B. 1020x x -<⎧⎨+>⎩ C. 1020x x +>⎧⎨->⎩ D. 1020x x +<⎧⎨->⎩7、不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是( )A .1个B .2个C .3个D .4个 8、等式组⎩⎨⎧+>+<+1,159m x x x 的解集是2>x ,则m 的取值范围是( )A . m ≤2B . m ≥2C .m ≤1D . m >19、关于x 的一元一次方程4x-m+1=3x-1的解是负数,则m 的取值范围是 ( )A m=2B m>2C m<2D m ≤2 10、ax>b 的解集是( )A .a b x >; B . a b x <; C .abx =; D .无法确定; 二、填空题(每题4分,共20分) 1、不等式122x >的解集是: ;不等式133x ->的解集是: ; 2、不等式组⎩⎨⎧-+0501>>x x 的解集为 . 不等式组3050x x -<⎧⎨-⎩>的解集为 .3、不等式组2050x x ⎧⎨-⎩>>的解集为 . 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .4、当x 时,3x -2的值为正数;x 为 时,不等式183x -的值不小于7; 5、已知不等式组2145x x x m ->+⎧⎨>⎩无解,则m 的取值范围是三、解不等式(组),并在数轴上表示它的解集(每题6分,共24分)(1)11(1)223x x -<-(2)532(1)314(2)2x xx -≥⎧⎪⎨-<⎪⎩(3)14321<--<-x (4)2(1)41413x x x x +-<⎧⎪+⎨>-⎪⎩三、 根据题意列不等式(组)——只列式,不求解;(每题6分,共12分)1、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?解:设 ,依题意得:2、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少? 解:设 ,依题意得:四、解答题:(每题7分,共14分)1、若方程组212x y x y m+=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 给出下列数学表达式: ①−3<0; ②4x+3y>0; ③x=5; ④x2−xy+y2; ⑤x+2>y−7.其中不等式的个数是.( )A. 5B. 4C. 3D. 12. 下列不等关系表示正确的是.( )A. a是负数可表示为a>0B. x不大于3可表示为x>3C. m与4的差是负数可表示为m−4<0D. x与2的和为非负数可表示为x+2>03. 已知2m>4m,那么.( )A. m一定是正数B. m是0或负数C. m是非负数D. m一定是负数4. 设a,b,c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是.( )A. c<b<aB. b<c<aC. c<a<bD. b<a<c5. 等式√x−3√x+1=√x−3x+1成立的x的取值范围在数轴上可表示为( )A. B. C. D.6. 已知关于x的不等式(1−a)x>1的解集为x<11−a,则a的取值范围是( )A. a≥1B. 0≤a<1C. a>1D. 0<a≤17. 欲用甲、乙两种运输车将46t抗旱物资运往灾区,甲种运输车载质量为5t,乙种运输车载质量为4t,若安排车辆不超过10辆,则甲种运输车至少应安排.( )A. 4辆B. 5辆C. 6辆D. 7辆8. 某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若小李想买下标价为360元的这种商品,商店老板让价的最大限度为.( )A. 160元B. 120元C. 100元D. 82元9. 函数y =kx +b(k,b 为常数,且k ≠0)的图象如图所示,则关于x 的不等式kx +b >0的解集为.( )A. x >0B. x <0C. x <2D. x >210. 如图,一次函数y =kx +b(k,b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)的图象相交于点P ,则不等式kx +b >ax 的解集是.( )A. x >1B. x <1C. x >2D. x <211. 用若干辆载重量为6吨的货车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A. {6x −(4x +18)>06x −(4x +18)≤5B. {(4x +18)−6(x −1)>0(4x +18)−6(x −1)≤5C. {6(x −1)−(4x +18)⩾06(x −1)−(4x +18)<5D. {(4x +18)−6(x −1)⩾0(4x +18)−6(x −1)<5 12. 若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a 的取值范围是( ) A. 7<a <8 B. 7<a ≤8 C. 7≤a <8 D. 7≤a ≤8第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 当x________时,代数式x+32−5x−16的值是非负数.14. 如图,一次函数y=x+b与一次函数y=kx+4的图象相交于点P(1,3),则关于x的不等式x+b>kx+4的解集是.15. 不等式组╔╔ \ begin{cases}3x+1 .16. 我们定义|a bc d |=ad−bc,例如|2345|=2×5−3×4=−2,则不等式组1<|1x34|<3的解集是.三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式与不等式组 综合测试题
一、填空(每小题3分,共30分)
1.如果,则 (用“>”或“<”填空).
2.当 时,式子的值大于的值.
3.满足不等式组的整数解为 .
4.不等式的负整数解是 .
5.某足协举办了一次足球比赛,计分规则为:胜一场积3分,平一场积1
分,负一场积0分.若甲队比赛了5场后的积7分,则甲队平 场.
6.若不等式组的解集中任何一个的值均在的范围内,则a的取值范围是 .
7.k满足时,方程的解是正数.
8.不等式组的解集是 .
9.已知不等式的正整数解是1,2,则a的取值范围是
.
10.尚明要到离家5千米的某地开会,若他6时出发,计划8时前赶到,那
么他每小时至少
走 千米.
二、选择(每小题3分,共30分)
11.若,那么下列结论错误的是( )
A. B. C. D.
12.一个数的与-4的差不小于这个数的2倍加上5所得的和,则可列不等
式是( )
A. B. C. D.
13.已知关于的不等式组的解集为,则的值是( )
A. B.-2 C.-4 D.
14.若不等式组有解,那么的取值范围是( )
A. B. C. D.
15.已知,若要使不为负数,则k的取值范围是( )
A. B. C. D.
16.若不等式的解集是,则a的值是( )
A.34
B.22
C.-3
D.0
17.一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,
女儿按半价优惠.”乙旅行社告知:“家庭旅游可按团体票价,即每人
均按全价的收费.”若这两家旅行社的票价相同,那么( )
A.甲比乙优惠
B.乙比甲优惠
C. 甲与乙相同
D.与原来票价相同
18.不等式组的解集是,则m的取值范围是( )
A. B. C. D.
19.已知,化简等于( )
A. B.-2 C.2 D.
20.不等式组的整数解的和为( )
A.1
B.0
C.-1
D.-2
三、解答题(60分)
21.求下列不等式(组)的解集(8分)
⑴ ⑵
22.求使不等式和同时成立的自然数.(8分)
23.如果,求不等式的解集.(8分)
24.若不等式组无解,那么不等式有没有解?若有解,请求出不等式组的解集;若没有请说明理由?(8分)
25.已知不等式的负整数解是方程的解,试求出不等式组的解集.(8分)
生活应用:
26.某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元,已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题:
品名厂家批发价
(元/只)市场零售价(元/只)
篮球130160
排球100120
⑴该采购员最多可购进篮球多少只?
⑵若该商场把100只球全部以零售价售出,为使商场的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元?(10分)
27.2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.
(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?
(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?
比赛项目票价(元/场)
男篮1000
足球800
乒乓球500
第七章综合评价答案
一,填空
1.> 解析:在的两边同时乘以-3,再同时加上,即可得到.
2.解析:由题意知,故可得
3. -2,-1,0,1 解析:不等式组的解集为,
故整数解为-3,-2,-1,0,1.
4.-2, -1 解析:不等式组的解集为,故负整数解为-1.-2
5.1场或4场 解析:设甲队胜了场,平了场.由题意可得可求得,取整数为1,2,可求得=4或1.
6. 解析:不等式组的解集为由题意知,不等式所有的解均在的范围内,所以可得故可得.
7.k<2 解析:方程的解为,由于方程的解为正数,所以,即,故k<2.
8.
9. 解析:不等式的解集是,由题意可知,故.
10.2.5 解析:设每小时走千米,可得,求得,故每小时至少走2.5千米.
二、选择
11.C
12.B 解析:理解“不小于”的意思.
13.B 解析:不等式化为,所以不等式组的解集为由题意可得
,解之得,故.
14.C 解析:由不等式的解集确定的方法可以得到.
15.C 解析:由不等式得,由于不为负,所以,求得,故选C.
16.B 解析:由不等式可得,由题意得,1求得a=22,故选B.
17.B 解析:设票价为a元,则甲旅行社的收费=2a+=2.5a;乙旅行社的收费=×3=2.4a.因为a>0,所以2.4a.<2.5a,故乙比甲便宜,选B.
18.A 解析:不等式组化为,由题意得,
,可得,故选A.
19.C 解析:原式=3-+-1=2,故选C.
20.A 解析:不等式组的解集为,整数解为1,故和为1,选A.
三、解答题
21.⑴⑵
22.4,5,6,7,8,9,10,11 解析:由题意知,可列不等式组为,解不等式组可得,取自然数为4,5,6,7,8,9,10,11.
23. 解析:由题意知不等式可以化为,因为,所以5m-2>0,故可得.
24.不等式组有解,解集为.
解析:由已知条件知-a≥a,得a≤0 ;作差=2a<0,所以a+1<1-a,故不等式组,有解,解集为.
25. 解析:解不等式可得,取负整数为-1.把代入中可得a=5.把a=5代入不等式组得,求得解集为.
26. 解:(1)设采购员最多可购进篮球只,则排球是(100-)只,
依题意得:.
解得. ∵是整数 ,∴=60.
答:购进篮球和排球共100只时,该采购员最多可购进篮球60只.
(2)由表中可知篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,即篮球60只,此时排球40只,商场可盈利(元).即该商场可盈利2600元.
27. 解:(1)设预订男篮门票张,则乒乓球门票张.
由题意得,
解得.
.
答:可订男篮门票张,乒乓球门票张.
(2)设男篮门票与足球门票都订张,则乒乓球门票张.
由题意,得
解得.
由为正整数可得.答:他能预订男篮门票张,足球门票张,乒乓球门票张.。