微程序控制器实验报告 (2)

合集下载

计算机组成原理-微程序控制器实验报告

计算机组成原理-微程序控制器实验报告

计算机组成原理实验之微程序控制器实验一、实验目的1.掌握时序发生器的组成原理。

2.掌握微程序控制器的组成原理。

二、实验内容1.实验电路(1)时序发生器电路本实验所用的时序电路见图4.1。

电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。

另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。

图4.1 时序信号发生器(2)微程序控制器电路图4.2微程序控制器电路微地址转移逻辑表达式:A5=D5=μA5;A4=D4=C•P2+μA4;A3=D3=IR7•P1+μA3;A2=D2=IR6•P1+SWC•P0+μA2;A1=D1=IR5•P1+SWB•P0+μA1;A0=D0=IR4•P1+SWA•P0+μA0。

2.一些关键技术(1)微指令格式图4.3微指令格式(3)上述8条指令的微程序流程图如图4.4所示图4.4微程序流程图(4)微程序代码表表4-2微程序代码表微指令KT RRF WRF RRM WRM PR当前微地址00 0C 1E 06 07 0B 1D 0D 0E 0A 02 03 09 04 05 08 0F 下一微地址08 1E 06 07 1E 1D 0D 0E 1D 02 03 02 04 05 04 0F 10P0 1 . . . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . . . . 1P2 . . . . . . . . . . . . . . . . .备用. . . . . . . . . . . . . . . . .TJ . 1 . . 1 1 . 1 1 . 1 . 1 . 1 . .LDIR . . . 1 . . . 1 . . . . . . . . 1PC+1 . . . . . . . . . . . . . . . . .LDPC# . 1 . . . 1 . . . . . . . . . 1AR+1 . . . . . . . . . . . 1 . . 1 . .LDAR# . 1 . . . 1 . . . 1 . . 1 . . . . LDDR1 . . . . . . . . . . . . . . . . . LDDR2 . . . . . . . . . . . . . . . . . LDRi . . . . . . . . 1 . . . . . . . .SW_BUS# . 1 1 . . 1 1 . 1 1 . . 1 1 . 1 . RS_BUS# . . . . 1 . . . . . . . . . . . . ALU_BUS# . . . . . . . . . . . . . . . . . RAM_BUS# . . . . . . . . . . 1 . . . . . . CER# . . . 1 . . . 1 . . . . . . . . 1 CEL# . . 1 . . . 1 . . . 1 . . 1 . . . LR/W# . . 0 . . . 0 . . . 1 . . 0 . . . Cn# . . . . . . . . . . . . . . . . .M . . . . . . . . . . . . . . . . .S0 . . . . . . . . . . . . . . . . .S1 . . . . . . . . . . . . . . . . .S2 . . . . . . . . . . . . . . . . .S3 . . . . . . . . . . . . . . . . .表4-2微程序代码表(续)微指令ADD SUB AND STA LDA JC STP OUT当前微地址10 18 11 19 12 1A 13 1B 14 1C 15 1F 16 17 下一微地址18 0F 19 0F 1A 0F 1B 0F 1C 0F 0F 0F 0F 0FP0 . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . .P2 . . . . . . . . . . 1 . . .备用. . . . . . . . . . . . . .TJ . . . . . . . . . . . . 1 1LDIR . . . . . . . . . . . . . .PC+1 . 1 . 1 . 1 . 1 . 1 1 . 1 1LDPC# . . . . . . . . . . . 1 . .AR+1 . . . . . . . . . . . . . .LDAR# . . . . . 1 . 1 . . . . .LDDR1 1 . 1 . 1 . 1 . . . . . . .LDDR2 1 . 1 . 1 . . . . . . . . .LDRi . 1 . 1 . 1 . . . 1 . . . .SW_BUS# . . . . . . . . . . . . . .RS_BUS# . . . . . . 1 . 1 . . 1 . 1ALU_BUS# . 1 . 1 . 1 . 1 . . . . . .RAM_BUS# . . . . . . . . . 1 . . . .CER# . . . . . . . . . . . . . .CEL# . . . . . . . 1 . 1 . . . .LR/W# . . . . . . 0 . 1 . . . .Cn# . . . 1 . . . . . . . . . .M . 0 . 0 . 1 . 0 . . . . . .S0 . 1 . 0 . 1 . 0 . . . . . .S1 . 0 . 1 . 1 . 0 . . . . . .S2 . 0 . 1 . 0 . 0 . . . . . .S3 . 1 . 0 . 1 . 0 . . . . . .注:后缀为#的信号都是低电平有效信号,为了在控存ROM中用“1”表示有效,这些信号在控制器中经过反相后送往数据通路。

微程序控制器实验报告

微程序控制器实验报告

计算机组成原理实验及课程设计报告书系别:计算机系专业:计算机科学与技术课程:计算机组成原理指导教师:实验人:班级:实验时间:2009.5.28-2009.6.7 编制时间:2009.6.14微程序控制器实验报告(一) 实验目的通过看懂教学计算机中已经设计好并正常运行的数条基本指令(例如:ADD,MVRR,OUT,MVRD,JR,RET 等命令)的功能、格式和执行流程,然后自己设计几条指令的功能、格式和执行流程,并在教学计算机上实现、调试正确。

其最终要达到的目的是: 1. 深入理解计算机微程序控制器的功能、组成知识; 2. 深入的学习计算机各类典型指令的执行流程;3. 对指令的格式、寻址方式、指令系统、指令分类等建立具体的总体的概念;4. 学习微程序控制器的设计工程和相关技术。

(二)实验过程 RCL 指令 一、指令设计a)指令格式及功能:汇编格式: RCL DR机器指令: 00101010 00000000功能:带进位C 循环左移,最高位移入C ,C 移入最低位 b)指令流程图:c)控制信号表: MAPROM MP1 MP2 MP3MP4MP5 MP6 MP7 微指下指CI 3-0 SCC 3-0 0 /MR/W 0 I 2-0 SA I 8-6 SB I 5-3 B 口 A 口 0 SST SSHSCI DC2 DC1 50H 01H30H43H78H00H64H00H说明:把地址位2AH 单元内容修改为50H ,实现译码,找到为程序的入口地址。

二、实验操作:修改MAPROM 和控存 a)MAPROM 的修改:1、 试验箱断电2、取下M APROM ,插入扩展槽,连片选信号(6000H-7FFFH )3、试验箱开电,PC 机开机4、设置试验机工作模式为:连续、内存区、组合逻辑、16位、联机5、运行PCEC16,进行PC 机与试验箱联机取地址带进位C 循环左移6、>E 602BXXXX: 0050提示:修改完之后检查是否破坏了基本指令内存。

计算机组成原理实验报告微程序控制器实验

计算机组成原理实验报告微程序控制器实验

实验三微程序控制器实验一. 实验目的与要求:实验目的:1.理解时序产生器的原理,了解时钟和时序信号的波形;2.掌握微程序控制器的功能,组成知识;3.掌握微指令格式和各字段功能;4.掌握微程序的编制,写入,观察微程序的运行,学习基本指令的执行流程。

实验要求:1.实验前,要求做好实验预习,并复习已经学过的控制信号的作用;2.按练习一要求完成测量波形的操作,画出TS1,TS2,TS3,TS4的波形,并测出所用的脉冲Ф周期。

按练习二的要求输入微指令的二进制代码表,并单步运行五条机器指令。

二. 实验方案:按实验图在实验仪上接好线后,仔细检查无误后可接通电源。

1.练习一:用联机软件的逻辑示波器观测时序信号,测量Ф,TS1,TS2,TS3,TS4信号的方法如下:(1) TATE UNIT 中STOP开关置为“RUN”状态(向上拨),STEP开关置为“EXEC”状态(向上拨)。

(2) 将SWITCH UNIT 中右下角CLR开关置为“1”(向上拨)。

(3) 按动“START”按钮,即可产生连续脉冲。

(4)调试”菜单下的“显示逻辑示波器窗口,即可出现测量波形的画面。

(5)探头一端接实验仪左上角的CH1,另一端接STATE UNIT中的Ф插座,即可测出时钟Ф的波形。

(6)探头一端接实验仪左上角的CH2,另一端接STATE UNIT中的TS1插座,即可测出TS1的波形;(7)探头一端接实验仪左上角的CH1,另一端接STATE UNIT中的TS2插座,即可测出TS2的波形。

(8)将红色探头一端接实验仪左上角的CH1,另一端接STATE UNIT中的TS3插座,即可测出TS3的波形。

(9)将红色探头一端接实验仪左上角的CH1,另一端接STATE UNIT中的TS4插座,即可测出TS4的波形。

2.观察微程序控制器的工作原理:①关掉实验仪电源,拔掉前面测时序信号的接线;②编程写入E2PROM 2816A.将编程开关(MJ20)置为PROM(编程)状态;B.将实验板上STATE UNIT 中的STEP置为STEP状态,STOP置为RUN状态,SWITCH UNIT中CLR开关置为1状态;C.在右上角的SWITCH UNIT中UA5-UA0开关上置表3.2中某个要写的微地址;D.在MK24-MK1开关上置表3.2中要写的微地址后面的24位微代码,24位开关对应24位显示灯,开关置为1时灯亮,为0时灯灭;E.启动时序电路,即将微代码写入到E2PROM 2816的相应地址对应的单元中;F.重复C-E步骤,将表3.2的每一行写入E2PROM 2816。

微程序控制器原理实验报告

微程序控制器原理实验报告

微程序控制器原理实验报告一、引言微程序控制器作为计算机系统的重要组成部分,扮演着指挥和控制计算机操作的关键角色。

本实验报告将对微程序控制器的原理进行探讨,并描述相关实验的设计、步骤、结果和分析。

二、微程序控制器的原理2.1 微程序控制器的概念微程序控制器是一种控制计算机操作的技术,通过将指令集中的每个指令分解为一系列微操作,并以微指令的形式存储在控制存储器中,从而实现指令的执行控制。

2.2 微指令的组成和格式微指令由多个字段组成,每个字段代表一个微操作控制信号。

常见的微指令格式包括微地址字段、条件码字段、操作码字段等。

2.3 微指令的执行过程微指令的执行过程包括指令的取指、译码、执行和写回等阶段。

每个阶段对应微指令的不同部分,通过控制信号的转换和传递,完成相应的操作。

三、微程序控制器的设计与实验3.1 设计思路在进行微程序控制器实验前,需要明确实验的目标和设计思路。

实验通常包括以下几个步骤:确定指令集、确定微指令格式、设计控制存储器、设计控制逻辑电路等。

3.2 实验步骤1.确定指令集:根据实验需求,确定需要支持的指令集。

2.确定微指令格式:根据指令集的要求,设计适合的微指令格式。

3.设计控制存储器:根据微指令格式,设计控制存储器的结构和内容。

4.设计控制逻辑电路:根据微指令的执行过程,设计控制逻辑电路,实现指令的控制和转换。

5.构建实验平台:将设计的控制存储器和控制逻辑电路构建成实验平台,并与计算机系统相连。

6.进行实验:在实验平台上执行指令,观察和记录实验结果。

3.3 实验结果与分析根据实验步骤中的设计和操作,得到了相应的实验结果。

通过比对实验结果和预期效果,可以对微程序控制器的设计和实验进行分析和评估。

四、总结与展望微程序控制器作为计算机系统的关键组成部分,通过微操作的方式实现指令的执行控制。

本实验报告对微程序控制器的原理进行了探讨,并描述了相关实验的设计、步骤、结果和分析。

通过实验,我们深入理解了微程序控制器的工作原理和设计方法。

微程序控制器_实验报告

微程序控制器_实验报告

微程序控制器_实验报告本次实验使用的是微程序控制器,主要涵盖了微程序控制器的概念、微指令的设计、微指令的执行以及测试和调试方法等。

首先,我们需要了解什么是微程序控制器。

微程序控制器是一种专门用于控制计算机操作的控制器,其中的微指令由微程序控制器产生。

微程序控制器的主要优点是提高了计算机系统的可控性和可编程性,可避免在操作过程中出现复杂的电路切换。

在实验中,我们主要是操作微指令的设计和执行。

微指令需要根据指令的类型以及相应的操作码进行设计,确保计算机能够正确地执行指令。

在设计微指令过程中,我们要考虑到指令执行时需要进行的操作、信号的传递以及各个部分之间的协调。

在微指令设计完成后,需要进行微指令的执行。

微指令执行的过程也是十分关键的,这需要对微指令的执行顺序进行精密设计以保证整个计算机发挥最大的性能。

实验中我们了解了基本的微指令执行步骤,包括状态存储器、微指令计数器、微指令发生器以及微指令存储器等。

除了微指令设计和执行外,测试和调试也是实验中比较重要的步骤。

这一步骤旨在确保整个计算机系统能够正常运行,同时也可以在测试过程中发现和纠正存在的错误。

在测试过程中,我们需要编写测试程序,通过输入不同的指令类型和操作码来测试微指令是否能够正确地执行。

在调试过程中,我们需要通过检查微指令执行的每个步骤,找到代码中存在的错误并进行修正,以保证计算机的正常运行。

在实验中,学习了微程序控制器的基本知识,包括微指令的设计和执行以及测试和调试方法。

这些知识对于计算机专业的学生非常重要,可以帮助他们深入了解计算机系统的运行原理及其基本结构。

同时也可以为今后的工作和研究提供基础知识和经验。

计算机组成原理实验报告三微程序控制器实验

计算机组成原理实验报告三微程序控制器实验

微程序控制器实验报告一、实验目的(1)掌握微程序控制器的功能、组成知识。

(2)掌握为程序的编制、写入、观察微程序的运行二、实验设备:PC机一台,TD-CM3+实验系统一套三、实验原理:微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件的为命令序列,完成数据传送和个汇总处理操作,他的执行方法是将控制各部件的微命令的集合进行编码,即将微命令的集合仿照及其指令一眼,用数字代码的形式表示,这种表示陈伟微指令。

这样就可以用一个微指令序列表示一条机器指令,这种为指令序列称作为程序。

微程序存储在一种专用的存储器中,成为控制储存器四、实验步骤1.对为控制器进行读写操作:(1)手动读写:①按图连线:②将MC单元编程开关置为“编程”档,时序单元状态开关置为“单步”档,ADDR 单元状态开关置为“置数”档③使用ADDR单元的低六位SA5…SA0给出微地址MA5…MA0,微地址可以通过MC 单元的MA5…MA0微地址灯显示④CON单元SD27…SD20,SD17…SD10,SD07…SD00开关上置24位微代码,待写入值由MC单元的M23…M024位LED灯显示⑤启动时序电路(按动一次TS按钮),即将微代码写入到E2PROM2816的相应地址对应单元中⑥重复③④⑤三步,将下图微代码写入2816芯片中二进制代码表(2)联机读写:①将微程序写入文件,联机软件提供了微程序下载功能,以代替手动读写微控制器,但微程序得以指定的格式写入本次试验的微程序如下:://************************************************************// :// // :// 微控器实验指令文件 // :// // ://************************************************************// ://***************Start Of MicroController Data****************//$M 00 000001;NOP$M 01 007070;CON(INS)->IR,P<1>$M 04 002405;R0->A$M 05 04B201;R0->B$M 30 001404;A加B->RO$M 32 183001;IN->R0$M 33 280401;R0->OUT$M 35 000035;NOP;//***************End Of MicroController Data*******************// ②写入微程序用联机软件的“【转存】-【装载数据】”功能将改格式文件装载入试验系统。

微程序控制器实验报告

微程序控制器实验报告

一、实验目的1、通过实验,进一步理解微程序控制器的组成结构。

理解微程序控制器的控制原理2、加深理解微程序控制器的工作原理。

掌握指令流程与功能3、理解掌握微程序控制器的设计思路与方法二、实验内容与步骤1、微程序控制器的组成原理控制存储器:实现整个指令系统的所有微程序,一般指令系统是规定的由高速半导体存储器构成,容量视机器指令系统而定,取决于微程序的个数,其长度就是微指令字的长度。

微指令寄存器:存放从控存读出的当前微指令。

微操作控制字段将操作控制信号送到控制信号线上,微地址字段指出下一条微地址的形成。

微地址寄存器:存放将要访问的下一条微指令地址地址转移逻辑:形成将要执行的微指令地址,形成方式:取指令公操作所对应的微程序一般从控存的0地址开始,所以微程序的人口地址0是由硬件控制的。

当出现分支时,通过判别测试字段、微地址字段、和执行部件的反馈信息形成后即微地址。

Cpu设计步骤:1.拟定指令系统2.确定总体结构(数据通路)3.安排时序4.拟定指令流程。

根据指令系统,写出对应所有机器指令的全部微操作机器节拍安排,然后列出操作时间表5.确定微指令的控制方式、下地址形成方式、微指令格式及微指令字长,编写全部的微指令的代码,最后将编写的微指令放入控制存储器中。

微程序控制器的设计步骤(1)设计微程序确定微程序流程图,也就是控制算法流程图。

(2)确定微指令格式微指令格式中的操作控制字段取决于执行部件的子系统需要多少微指令。

假定采用直接控制方式,执行部件需要10个微命令,则操作控制字段需要10位。

测试判别字段取决于微程序流程图中有多少处分支转移。

假定有3处分支,则测试判别字段需要3位。

下址字段取决于微程序流程图的规模。

假定微程序共用50条微指令,则下址字段至少需要6位。

这是因为ROM地址译码时,26=64,6位地址可容纳64条微指令。

(3)将微程序编译成二进制代码(4)微程序写入控制存储器(5)设计硬件电路三、实验现象--CPU 头文件cpu_defsLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;PACKAGE cpu_defs IS --定义程序包,包头,包体TYPE opcode IS (load, store, add, sub, bne); --这个语句适合于定义一些用std_logic 等不方便定义的类型,综合器自动实现枚举类型元素的编码,一般将第一个枚举量(最左边)编码为0 CONSTANT word_w: NATURAL :=8;CONSTANT op_w: NATURAL :=3;CONSTANT rfill: STD_LOGIC_VECTOR(op_w-1 downto 0):=(others =>'0');--FUNCTIOn slv2op(slv:IN STD_LOGIC_VECTOR) RETURN opcode;FUNCTION op2slv(op:in opcode) RETURN STD_LOGIC_VECTOR;END PACKAGE cpu_defs;PACKAGE BODY cpu_defs ISTYPE optable IS ARRAY(opcode) OF STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);--数组有5个元素,其他均0CONSTANT trans_table:optable :=("000", "001", "010", "011", "100");FUNCTION op2slv(op:IN opcode) RETURN STD_LOGIC_VECTOR ISBEGINRETURN trans_table(op);END FUNCTION op2slv;END PACKAGE BODY cpu_defs;--实验7-8 微程序控制器实验LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL,IEEE.NUMERIC_STD.ALL;USE WORK.CPU_DEFS.ALL;--使用自己定义的程序包ENTITY CPU ISPORT( clock : IN STD_LOGIC;--时钟reset : IN STD_LOGIC;--复位mode : IN STD_LOGIC_VECTOR(2 DOWNTO 0); --查看用mem_addr : INUNSIGNED(word_w-op_w-1 DOWNTO 0);--地址output : OUT STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);data_r_out : OUT STD_LOGIC_VECTOR(19 DOWNTO 0);--微指令Rop_out : OUT STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);--操作码add_r_out : OUT UNSIGNED(4 DOWNTO 0) --微地址R);END ENTITY;ARCHITECTURE rtl OF CPU ISTYPE mem_array IS ARRAY (0 TO 2**(word_w-op_w)-1) OF STD_LOGIC_VECTOR(word_w-1DOWNTO 0);--定义RAMSIGNAL mem : mem_array;CONSTANT prog : mem_array:=(0=> op2slv(load) & STD_LOGIC_VECTOR(TO_UNSIGNED(4,word_w-op_w)),1=> op2slv(add) & STD_LOGIC_VECTOR(TO_UNSIGNED(5,word_w-op_w)),2=> op2slv(store) & STD_LOGIC_VECTOR(TO_UNSIGNED(6,word_w-op_w)),3=> op2slv(bne) & STD_LOGIC_VECTOR(TO_UNSIGNED(7,word_w-op_w)), --TO_UNSIGNED转换函数将4转换为5位“00100”4=> STD_LOGIC_VECTOR(TO_UNSIGNED(2,word_w)),5=> STD_LOGIC_VECTOR(TO_UNSIGNED(3,word_w)),OTHERS => (OTHERS =>'0'));TYPE microcode_array IS ARRAY (0 TO 14) OF STD_LOGIC_VECTOR(19 DOWNTO 0); CONSTANT code : microcode_array:=(--控制存储器0=> "00010100010000000001",1=> "00000000000110000010",2=> "00001010000000000011",3=> "00000100001000001111",4=> "00100010000000000000",5=> "00000000000100000000",6=> "00000010100001000000",7=> "00000010100000100000",8=> "00000000000110000100",9=> "01000001000000000101",10=> "00000000000110000110",11=> "00000000000110000111",12=> "00000000000110010000",13=> "10000010000000000000",14=> "00000000000000000000");SIGNAL count : UNSIGNED(word_w-op_w-1 DOWNTO 0);SIGNAL op : STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);SIGNAL z_flag : STD_LOGIC;SIGNAL mdr_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);SIGNAL mar_out : UNSIGNED(word_w-op_w-1 DOWNTO 0);SIGNAL IR_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);SIGNAL acc_out : UNSIGNED(word_w-1 DOWNTO 0);SIGNAL sysbus_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);EGINPROCESS(reset,clock)VARIABLE instr_reg : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE acc : UNSIGNED(word_w-1 DOWNTO 0);CONSTANT zero : UNSIGNED(word_w-1 DOWNTO 0):=(OTHERS =>'0')VARIABLE mdr : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE mar : UNSIGNED(word_w-op_w-1 DOWNTO 0);VARIABLE sysbus : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE microcode : microcode_array;VARIABLE add_r : UNSIGNED(4 DOWNTO 0);VARIABLE data_r : STD_LOGIC_VECTOR(19 DOWNTO 0);VARIABLE temp : STD_LOGIC_VECTOR(4 DOWNTO 0);BEGINIF reset='0' THENadd_r:=(OTHERS =>'0');count <= (OTHERS =>'0');instr_reg := (OTHERS =>'0');acc := (OTHERS =>'0');mdr := (OTHERS =>'0');mar := (OTHERS =>'0');z_flag <='0';mem <= prog;sysbus :=(OTHERS =>'0');ELSIF RISING_EDGE(clock) THEN--microprogram controllerdata_r := code(TO_INTEGER(add_r));IF data_r(4 DOWNTO 0)="01111" THEN --判断下地址temp:="01" & op(2 DOWNTO 0);add_r := UNSIGNED(temp);ELSIF data_r(4 DOWNTO 0)="10000" THENIF z_flag='1' THENadd_r:="01110";ELSEadd_r :="01101";END IF;ELSEadd_r := UNSIGNED(data_r(4 DOWNTO 0));END IF;data_r_out <=data_r;add_r_out <= add_r;--PCIF data_r(16)='1' THEN --PC_bus='1'sysbus := rfill & STD_LOGIC_VECTOR(count);END IF;IF data_r(19)='1' THEN --load_PC='1'count <= UNSIGNED(mdr(word_w-op_w-1 DOWNTO 0));ELSIF data_r(10)='1' THEN --INC_PC='1'count <= count+1;ELSEcount <= count;END IF;--IRIF data_r(15)='1' THEN --load_IRinstr_reg := mdr;END IF;IF data_r(9)='1' THEN --Addr_bus='1'sysbus := rfill & instr_reg(word_w-op_w-1 DOWNTO 0);END IF;op <= instr_reg(word_w-1 DOWNTO word_w-op_w);IR_out <= instr_reg;op_out <=op;--ALUIF data_r(17)='1' THEN --load_ACC='1'acc:=UNSIGNED(mdr);END IF;IF data_r(11)='1' THEN --ALU_ACC='1'IF data_r(6)='1' THEN --ALU_add='1'acc := acc + UNSIGNED(mdr);ELSIF data_r(5)='1' THEN --ALU_sub='1'acc := acc - UNSIGNED(mdr);END IF;END IF;IF data_r(18)='1' THEN --ACC_bus='1'sysbus := STD_LOGIC_VECTOR(acc);END IF;IF acc=zero THENz_flag <='1';ELSEz_flag <='0';END IF;acc_out<= acc;--RAMIF data_r(14)='1' THEN --load_MAR='1'mar := UNSIGNED(sysbus(word_w-op_w-1 DOWNTO 0));ELSIF data_r(12)='1' THEN --load_MDR='1'mdr := sysbus;ELSIF data_r(8)='1' THEN --CS='1'IF data_r(7)='1' THEN --R_NW='1'mdr := mem(TO_INTEGER(mar));ELSEmem(TO_INTEGER(mar))<=mdr;END IF;END IF;IF data_r(13)='1' THEN --MDR_bus='1'sysbus:=mdr;END IF;mdr_out <= mdr;mar_out <= mar;END IF;sysbus_out <=sysbus;END PROCESS;PROCESS(mode,mem_addr)BEGIN--mode=0 -> sysbus--mode=1 -> PC--mode=2 -> result of ALU--mode=3 -> IR--mode=4 -> MAR--mode=5 -> MDR--mode=6 -> memoutput <= (OTHERS =>'0');CASE mode isWHEN "000" =>output<=sysbus_out;WHEN "001" =>output(word_w-op_w-1 DOWNTO 0)<= STD_LOGIC_VECTOR(count);WHEN "010" =>output <= STD_LOGIC_VECTOR(acc_out);WHEN "011" =>output <= IR_out;WHEN "100" =>output(word_w-op_w-1 DOWNTO 0) <= STD_LOGIC_VECTOR(mar_out);WHEN "101" =>output <= mdr_out;WHEN "110" =>output <= mem(TO_INTEGER(mem_addr));WHEN others =>output <= (OTHERS =>'Z');END CASE;END PROCESS;END ARCHITECTURE;现象结果:四、实验体会原本对于控制器的设计还是一片空白,通过实验初步理解微程序控制器的组成结构。

微程序控制器实验报告

微程序控制器实验报告

微程序控制器实验报告微程序控制器实验报告引言微程序控制器是一种常见的计算机控制器,它采用微程序的方式来实现指令的执行。

在本次实验中,我们将学习和探索微程序控制器的工作原理,并通过实验验证其功能和性能。

实验目的本次实验的主要目的是通过设计和实现一个简单的微程序控制器,来深入理解微程序控制器的工作原理和原理图设计。

实验过程1. 设计微指令集在设计微程序控制器之前,首先需要确定微指令集。

微指令集是由一系列微指令组成的,每个微指令对应一个控制信号,用于控制计算机的各个组件的操作。

在本次实验中,我们选择了常见的微指令集,包括存储器读写、算术逻辑运算、数据传输等指令。

2. 设计微指令控制存储器微指令控制存储器是微程序控制器的核心组件,用于存储微指令集。

在本次实验中,我们使用了静态随机存储器(SRAM)来实现微指令控制存储器。

通过将微指令集编码为二进制数,并将其存储在SRAM中的不同地址位置,实现对微指令的存储和读取。

3. 设计微指令解码器微指令解码器用于解析微指令,并产生相应的控制信号。

在本次实验中,我们使用了组合逻辑电路来实现微指令解码器。

通过将微指令的不同位与控制信号相连,实现对微指令的解码和控制信号的生成。

4. 设计微程序计数器微程序计数器用于控制微程序的执行顺序。

在本次实验中,我们使用了计数器和触发器来实现微程序计数器。

通过将微程序计数器的输出与微指令控制存储器的地址输入相连,实现对微指令的顺序读取。

实验结果通过实验,我们成功设计并实现了一个简单的微程序控制器。

在实验中,我们编写了微指令集,并将其存储在微指令控制存储器中。

通过微指令解码器和微程序计数器的协作,我们成功实现了对微指令的解码和执行。

实验结果表明,微程序控制器能够准确地控制计算机的各个组件的操作,并实现指令的执行。

实验总结通过本次实验,我们深入了解了微程序控制器的工作原理和原理图设计。

微程序控制器作为一种常见的计算机控制器,具有灵活性和可扩展性。

微程序控制器实验报告

微程序控制器实验报告

组成原理No.4实验---微程序控制器实验组员:组号:21号时间:周二5、6节【实验目的】(1)掌握时序发生器的组成原理。

(2)掌握微程序控制器的组成原理。

(3)掌握微程序的编制、写入、观察微程序的运行情况【实验设备】TDN-CM++,【实验原理】微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微命令序列,以完成数据传输和各种处理操作。

它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。

这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。

微程序存储在一种专用的存储器中,该存储器称为控制存储器。

实验所用的时序控制电路框图如图1可产生四个等间隔的时序信号TS1~TS4。

在图1中,为时钟信号,由实验台左上方的方波信号源提供,可产生频率及脉宽可调额方波信号;STEP是来自实验板上方中部的一个二进制开关STEP的模拟信号;START键是来自实验板上方左部的一个微动开关START的按键信号。

当STEP开关为EXEC(0TS1~TS4将周而复始地发送出去。

当STEP为STEP(1)时,按下START启动键,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机了。

利用单步方式,每次只读一条微指令,可以观察微指令的代码与当前微指令的执行结果。

另外,如果STEP开关置“STEP”,会使机器停机,CLR开关执行1→0→1操作可以使时序清零。

时序状态图如下图所示。

由于时序电路的内部线路已经连好,因此只需将时序电路与方波信号源连接,即将时序电路的时钟脉冲输入端接至方波信号发生器输入端H23上,按动启动键START后,就可产生时序信号TS1~TS4.时序电路的CLR已接至CLR模拟开关上。

编程开关具有三种状态:PROM(编程)、READ(校验)和RUN(运行)。

微程序控制实验报告 北京交通大学

微程序控制实验报告 北京交通大学

微程序控制器实验报告北京交通大学一、实验目的通过看懂教学计算机中已经设计好并正常运行的数条基本指令(例如:ADD、MVRR、RET等指令)的功能、格式和执行流程,然后自己设计几条指令的功能、格式和执行流程,并在教学计算机上实现、调试正确。

其最终要达到:1.深入理解计算机微程序控制器的组成和运行原理;2.深入地学习计算机各类典型指令的执行流程;3.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念;4.学习微程序控制器的设计过程和相关技术。

二、实验内容综合型实验思考题1:在进行56页到59页的实验时,你可能已经发现不同指令在执行的过程中都会经过相同的微地址,也就是说,不同指令的微程序也有公用部分。

请你找出这些公共的微指令,说明它们所做的工作。

答:公共指令如下:(1)微址为00下址为00的指令,所做工作为:给出微程序的首地址并在启动时执行;(2)微址为30下址为3A的指令,所做工作为:完成检查中断请求。

思考题2:总结机器指令和微程序之间的关系。

答:机器指令和微程序之间的关系总结如下:(1)一条机器指令对应一个微程序,这个微程序是由若干条微指令构成的。

即,一条机器指令所完成的操作划分成若干条微指令来完成,由微指令编成的微程序进行解释和执行;(2)从指令与微指令,程序与微程序,地址与微地址的一一对应关系上看,前者与内存储器有关,而后者与控制存储器有关,与此相关也有相对应的硬设备;(3)机器指令是把程序员编写的程序经编译以后成为机器能执行的以二进制码形式表示的指令;在微程序控制的计算机中通过执行一串微指令完成一条指令的功能;思考题3:总结指令的一般流程。

答:流程如下图:设计型实验1设计几条指令的功能、格式和执行流程,设计每条微指令各字段的具体编码值,包括控制码的各字段、下地址字段、形成下址用到的条件码。

写出指令格式、指令功能、执行流程及对应的微程序,确定各步的控制信号。

设计一条新的机器指令,该指令的功能是把一个通用寄存器的内容与一个内存单元ADR中的内容相加,结果保存到另外一个通用寄存器中,即:DR <- [ADR] + SR1.实验课的分组组号:第1组;2.小组要求使用的操作码和微程序首地址:操作码71H,微程序首地址51H;3.新指令的指令格式:双字长指令:1-8位操作码:01110001;9-12位DR:0000;13-16位SR:0000;17-32位ADR:0000 0000 0000 0000。

微程序控制实验报告(共10篇)

微程序控制实验报告(共10篇)

微程序控制实验报告(共10篇)微程序控制器实验报告计算机组成原理实验报告一、实验目的:(1)掌握微程序控制器的组成原理。

(2)掌握微程序的编制、写入,观察微程序的运行过程。

二、实验设备:PC 机一台,TD-CMA 实验系统一套。

三、实验原理:微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。

它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。

这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。

微程序存储在一种专用的存储器中,称为控制存储器,微程序控制器原理框图如图所示:微程序控制器组成原理框图在实验平台中设有一组编程控制开关KK3、KK4、KK5(位于时序与操作台单元),可实现对存储器(包括存储器和控制存储器)的三种操作:编程、校验、运行。

考虑到对于存储器(包括存储器和控制存储器)的操作大多集中在一个地址连续的存储空间中,实验平台提供了便利的手动操作方式。

以向00H 单元中写入332211 为例,对于控制存储器进行编辑的具体操作步骤如下:首先将KK1 拨至‘停止’档、KK3 拨至‘编程’档、KK4 拨至‘控存’档、KK5 拨至‘置数’档,由CON 单元的SD05——SD00 开关给出需要编辑的控存单元首地址(000000),IN 单元开关给出该控存单元数据的低8 位(00010001),连续两次按动时序与操作台单元的开关ST(第一次按动后MC 单元低8 位显示该单元以前存储的数据,第二次按动后显示当前改动的数据),此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M7——M0 显示当前数据(00010001)。

然后将KK5 拨至‘加1’档,IN 单元开关给出该控存单元数据的中8 位(00100010),连续两次按动开关ST,完成对该控存单元中8 位数据的修改,此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M15——M8 显示当前数据(00100010);再由IN 单元开关给出该控存单元数据的高8 位(00110011),连续两次按动开关ST,完成对该控存单元高8 位数据的修改此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M23——M16 显示当前数据(00110011)。

微程序实验报告

微程序实验报告

一、实验目的1. 理解微程序设计的基本原理和方法。

2. 掌握微程序控制器的设计方法。

3. 提高对计算机组成原理和汇编语言的理解。

二、实验环境1. 操作系统:Windows 102. 开发工具:Keil uVision53. 实验平台:STM32F103C8T6三、实验内容1. 微程序控制器的设计2. 微程序指令集的设计3. 微程序的编译与仿真四、实验步骤1. 微程序控制器的设计(1)确定微程序控制器的基本结构,包括控制单元、指令寄存器、地址计数器、微指令寄存器等。

(2)设计控制单元,实现微指令译码和操作控制功能。

(3)编写微指令序列,实现所需的功能。

2. 微程序指令集的设计(1)根据实验需求,设计微程序指令集,包括指令格式、操作码和操作数。

(2)编写微指令编码表,实现指令集的编码。

3. 微程序的编译与仿真(1)编写微程序代码,实现微程序的功能。

(2)将微程序代码编译成机器代码。

(3)在仿真软件中加载编译后的机器代码,进行仿真实验。

五、实验结果与分析1. 微程序控制器设计结果根据实验需求,设计了一个具有8级微程序的控制器。

控制器包括控制单元、指令寄存器、地址计数器、微指令寄存器等模块。

控制单元根据微指令译码和操作控制信号,实现对微程序的操作。

2. 微程序指令集设计结果根据实验需求,设计了以下微程序指令集:- 立即数加载指令:将立即数加载到指定寄存器。

- 寄存器加载指令:将寄存器内容加载到指定寄存器。

- 立即数存储指令:将立即数存储到指定内存地址。

- 寄存器存储指令:将寄存器内容存储到指定内存地址。

- 立即数加法指令:将立即数与寄存器内容相加,结果存储到寄存器。

- 寄存器加法指令:将寄存器内容与另一个寄存器内容相加,结果存储到寄存器。

- 立即数减法指令:将立即数与寄存器内容相减,结果存储到寄存器。

- 寄存器减法指令:将寄存器内容与另一个寄存器内容相减,结果存储到寄存器。

3. 微程序编译与仿真结果在仿真软件中加载编译后的机器代码,进行仿真实验。

微程序控制器的实验报告

微程序控制器的实验报告

计算机科学与技术系实验报告专业名称计算机科学与技术课程名称计算机组成与结构项目名称微程序控制器实验一、实验目的1.掌握微程序控制器的组成原理;2.掌握微程序的编制、写入、观察微程序的运行情况。

二、实验逻辑原理图与分析2.1 实验逻辑原理图及分析微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微命令序列,以完成数据传输和各种处理操作。

它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。

这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。

微程序存储在一种专用的存储器中,该存储器称为控制存储器,如图所示:微程序控制器组成原理框图控制器是严格按照系统时序来工作的,因而时序控制对于控制器的设计是非常重要的,从前面的实验可以很清楚地了解时序电路的工作原理。

本实验所用的时序单元来提供,分为四拍TS1、TS2、TS3、TS4。

在微程序控制器的组成中,控制器采用3片2816的E^2PROM,具有掉电保护功能,微命令寄存器18位,用两片8D触发器(273)和一片4D(175)触发器组成。

为地址寄存器6位,用三篇正沿触发的双D触发器(74)组成,他们带有清“0”端和预置端。

在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为吓一条微指令地址。

当T4时刻惊醒测试判别式,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。

三、数据通路图及分析(画出数据通路图并作出分析)本实验安排了四条机器指令,分别为ADD(00000000)、IN(00100000)、OUT(00110000)和HLT(01010000),括号中为各指令的二进制代码,指令格式如下:助记符机器指令码说明IN 0010 0000 IN->ROADD 0000 0000 RO+RO->ROOUT 0011 0000 RO->OUTHLT 0101 0000 停机试验中机器指令由CON单元的二进制开关手动给出,其余单元的控制信号均由微程序控制器自动产生,为此可以设计出相应的数据通路图,如下图所示:数据通路图几条机器指令对应的参考微程序流程图如下图所示。

微程序控制器实验报告

微程序控制器实验报告

微程序控制器实验报告11组:082457 刘秀良082396 石冰冰【实验目的】学习微程序的编写方法,了解微程序控制的实现过程【实验设备】TDN-CM++实验仪一套、PC机一台【实验内容】要求编写以下五条指令的微程序,在数据通路图中观察执行过程1、IN R0 INPUT →R02、OUT [ADDR] RAM →LED3、ADD [ADDR],R0 RAM+R0 →R04、STA R0 R0 →RAM5、JMP ADDR RAM →PC【实验步骤】1、连接实验线路2、根据24位微指令格式及指令功能编写相应微程序,按P25所写步骤将微程序写入ROM(或者)3、输入微程序,共有两种方法:(1)通过开关手动输入①将编程开关置为PROM,STEP置为STEP,STOP置为RUN②在SWITCH UNIT用开关置微地址MA5-MA0③在MK24-MK1开关上置24位微码④启动时序电路,按START按钮⑤重复③- ④步,完成输入所有微码(2)直接从电脑输入:将微程序转换为16进制,在CMPP20环境下直接从键盘输入 4、在实验箱上,将中间的编程开关置为”RUN”,在UA5-UA0开关上置微地址,拨动右下角CLR开关(1->0->1),看右上角的6位地址灯,按单步微指令执行,观察数据通路图中的数据流动实验线路注: 从实验箱手动输入微码时: UA5…UA0 => MA5…MA0从电脑输入微码时: UA5…UA0 => SE6…SE1微指令格式五条指令微操作流程注:图中地址是八进制【实验总结】通过本次实验我们掌握了微程序控制的实现过程及使用方法,知道了五条指令微操作流程,加深了对微程序控制的认识。

微程序控制实验报告

微程序控制实验报告

微程序控制实验报告微程序控制实验报告引言:微程序控制是一种通过微指令序列来控制计算机硬件的方法。

通过将指令的操作码映射到微指令序列,可以实现复杂的指令执行过程。

本实验旨在通过设计和实现一个简单的微程序控制器,加深对微程序控制原理的理解。

一、实验目的本实验的主要目的是设计和实现一个8位微程序控制器。

通过该实验,我们将能够:1. 理解微程序控制的工作原理;2. 掌握微程序控制器的设计方法;3. 学习如何使用微指令序列来控制计算机硬件。

二、实验原理微程序控制是一种基于微指令的控制方式,它将指令的操作码映射到一组微指令序列。

这些微指令序列定义了计算机硬件在执行指令过程中的控制信号。

通过微指令序列,我们可以实现复杂的指令执行过程,如数据传输、算术逻辑运算、分支跳转等。

三、实验设计本实验中,我们设计了一个简单的8位微程序控制器。

该控制器包括以下几个模块:1. 指令寄存器(IR):用于存储当前执行的指令;2. 指令译码器(ID):将指令的操作码解码为微指令地址;3. 微指令存储器(MS):存储微指令序列;4. 控制信号发生器(CG):根据微指令地址生成控制信号;5. 数据通路(DP):执行指令的计算机硬件。

四、实验步骤1. 设计微指令序列:根据指令集的要求,设计一组微指令序列,包括数据传输、算术逻辑运算、分支跳转等操作。

2. 实现微指令存储器:使用存储器芯片或其他逻辑门电路实现微指令存储器,并将微指令序列存储其中。

3. 实现指令译码器:设计指令译码器,将指令的操作码解码为微指令地址。

4. 实现控制信号发生器:根据微指令地址生成控制信号,控制数据通路的操作。

5. 实现数据通路:根据指令要求,设计并实现数据通路,包括寄存器、算术逻辑单元等。

6. 连接各个模块:将指令寄存器、指令译码器、微指令存储器、控制信号发生器和数据通路连接起来,形成一个完整的微程序控制器。

五、实验结果与分析经过实验,我们成功实现了一个简单的8位微程序控制器。

计算机组成原理实验报告_2

计算机组成原理实验报告_2

计算机组成原理实验报告——微程序控制器实验1.一. 实验目的:2.能看懂教学计算机(TH-union)已经设计好并正常运行的数条基本指令的功能、格式及执行流程。

并可以自己设计几条指令, 并理解其功能, 格式及执行流程, 在教学计算机上实现。

3.深入理解计算机微程序控制器的功能与组成原理4.深入学习计算机各类典型指令的执行流程5.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念6.学习微程序控制器的设计过程和相关技术二. 实验原理:微程序控制器主要由控制存储器、微指令寄存器和地址转移逻辑三大部分组成。

其工作原理分为:1.将程序和数据通过输入设备送入存储器;2.启动运行后从存储器中取出程序指令送到控制器去识别, 分析该指令要求什么事;3.控制器根据指令的含义发出相应的命令(如加法、减法), 将存储单元中存放的操作数据取出送往运算器进行运算, 再把运算结果送回存储器指定的单元中;4、运算任务完成后, 就可以根据指令将结果通过输出设备输出三. 微指令格式:1)微地址形成逻辑TH—UNION 教学机利用器件形成下一条微指令在控制器存储器的地址.下地址的形成由下地址字段及控制字段中的CI3—SCC控制.当为顺序执行时,下地址字段不起作用.下地址为当前微指令地址加1;当为转移指令(CI3—0=0011)时,由控制信号SCC提供转移条件,由下地址字段提供转移地址.2)控制字段控制字段用以向各部件发送控制信号,使各部件能协调工作。

控制字段中各控制信号有如下几类:①对运算器部件为了完成数据运算和传送功能, 微指令向其提供了24位的控制信号, 包括:4位的A、B口地址, 用于选择读写的通用积存器3组3位的控制码I8-I6、I5-I3、I2-I6, 用于选择结果处置方案、运算功能、数据来源。

3组共7位控制信号控制配合的两片GAL20V83位SST, 用于控制记忆的状态标志位2位SCI, 用于控制产生运算器低位的进位输入信号2位SSH, 用于控制产生运算器最高, 最地位(和积存器)移位输入信号②对内存储器I/O和接口部件, 控制器主要向它们提供读写操作用到的全部控制信号, 共3位, 即MRW③对CPU内部总线数据来源的控制, 主要通过3位编码标记为DCD, 来选择把哪一组数据发送到内部总线(IB)上。

计算机组成原理微程序控制器实验报告

计算机组成原理微程序控制器实验报告

计算机组成原理实验报告三:微程序控制器实验2011-05-06 01:00:09|分类:实验报告| 标签:实验微程序字段微指令信号|字号大中小订阅实验三:微程序控制器实验一、实验目的与要求:实验目的:1、掌握时序产生器的原理和具体操作。

2、掌握微程序控制器的功能、组成知识。

3、掌握微程序的编制、写入、观察微程序的运行,学习基本指令的执行流程。

要求:做好实验预习,掌握进位控制运算器的原理。

实验之前,应认真准备,写出实验步骤和具体分析内容,否则实验效率会特别低,一次实验时间根本无法完成实验任务,即使基本做对了,也很难说学懂了些什么重要教学内容。

二、实验方案:【1】、连接好实验线路,检查无误后接通电源。

【2】、编程:(1)将编程开关(MJ20)置为PROM(编程)状态;(2)将STATE UNIT中的STEP置为"STEP"状态,STOP置为"RUN"状态;(3)在UA5-UA0开关上置要写的某个微地址(八进制);(4)在MK24-MK1开关上置要写的微地址相应的24位微代码,24位开关对应24位显示灯,开关量为"1"灯亮,为"0"灯灭;(5)启动时序电路(按动启动按钮START),即将微代码写入到E2PROM2816的相应地址对应的单元中;(6)重复(3)~(5)步骤将每一条微指令写入E2PROM2816。

【3】、校验:(1)将编程开关置为READ状态;(2)将STEP开关置为"STEP"状态,STOP开关置为"RUN"状态;(3)在开关UA5~UA0上置好要读的某个微地址;(4)按动START键,启动时序电路,观察显示灯MD24-MD1的状态,检查读出的微代码是否已写入的相同。

如果不同在将开关置于PROM编程状态,重新执行编程步骤;(5)重复(3)、(4)步骤将每一条微指令从E2PROM2816中读出。

微程序控制器设计实验报告

微程序控制器设计实验报告

微程序控制器设计实验报告竭诚为您提供优质⽂档/双击可除微程序控制器设计实验报告篇⼀:微程序控制器的设计与实现微程序控制器的设计与实现⼀、设计⽬的1、巩固和深刻理解“计算机组成原理”课程所讲解的原理,加深对计算机各模块协同⼯作的认识。

2、掌握微程序设计的思想和具体流程、操作⽅法。

3、培养学⽣独⽴⼯作和创新思维的能⼒,取得设计与调试的实践经验。

4、尝试利⽤编程实现微程序指令的识别和解释的⼯作流程。

⼆、设计内容按照要求设计⼀指令系统,该指令系统能够实现数据传送,进⾏加、减运算和⽆条件转移,具有累加器寻址、寄存器寻址、寄存器间接寻址、存储器直接寻址、⽴即数寻址等五种寻址⽅式。

三、设计具体要求1、仔细复习所学过的理论知识,掌握微程序设计的思想,并根、据掌握的理论写出要设计的指令系统的微程序流程。

指令系统⾄少要包括六条指令,具有上述功能和寻址⽅式。

2、根据微操作流程及给定的微指令格式写出相应的微程序3、将所设计的微程序在虚拟环境中运⾏调试程序,并给出测试思路和具体程序段4、撰写课程设计报告。

四、设计环境1、伟福cop2000型组成原理实验仪,cop2000虚拟软件。

2、Vc开发环境或者Java开发环境。

五、设计⽅案(1)设计思想编写⼀个指令系统,根据所编写的指令的功能来设计相应的微程序。

⾸先利⽤moV传送指令来给寄存器和累加器传送⽴即数,实现⽴即数寻址;利⽤寄存器寻址⽅式,⽤ADDc指令对两者进⾏相加运算;利⽤寄存器间接寻址⽅式,⽤sub指令实现减运算;利⽤累加器寻址⽅式,⽤cpL指令实现对累加器寻址;利⽤存储器寻址⽅式,⽤Jmp指令实现程序的⽆条件跳转。

这样,所要设计的指令系统的功能就全部实现了。

(2)微指令格式采⽤⽔平微指令格式的设计,⼀次能定义并执⾏多个并⾏操作微命令的微指令,叫做⽔平型微指令。

其⼀般格式如下:按照控制字段的编码⽅法不同,⽔平型微指令⼜分为三种:全⽔平型(不译法)微指令,字段译码法⽔平型微指令,以及直接和译码相混合的⽔平型微指令。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组成原理No、4实验---
微程序控制器实验
组员:
组号:21号
时间:周二5、6节ﻩ
【实验目的】
(1)掌握时序发生器的组成原理。

(2)掌握微程序控制器的组成原理。

(3)掌握微程序的编制、写入、观察微程序的运行情况
【实验设备】
TDN-CM++,
【实验原理】
微程序控制器的基本任务就是完成当前指令的翻译与执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微命令序列,以完成数据传输与各种处理操作。

它的执行方法就就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。

这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。

微程序存储在一种专用的存储器中,该存储器称为控制存储器。

实验所用的时序控制电路框图如图1
所示,
可产生四个等间隔的时序信号TS1~TS4。


图1中,为时钟信号,由实验台左上方的
方波信号源提供,可产生频率及脉宽可调额
方波信号;STEP就是来自实验板上方中部的
一个二进制开关STEP的模拟信号;START
键就是来自实验板上方左部的一个微动开关
START的按键信号。

当STEP开关为EXEC(0)时,一旦按下START启动键,时序信号TS1~TS4将周而复始地发送出去。

当STEP为STEP(1)时,按下START启动键,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机了。

利用单步方式,每次只读一条微指令,可以观察微指令的代码与当前微指令的执行结果。

另外,如果STEP开关置“STEP”,会使机器停机,CLR开关执行1→0→1操作可以使时序清零。

时序状态图如下图所示。

ﻩ由于时序电路的内部线路已经连好,因此只需将时序电路与方波信号源连接,即将时序电路的时钟脉冲输入端接至方波信号发生器输入端H23上,按动启动
键START后,就可产生时序信号TS1~TS4、时序电路的CLR已接至CLR 模拟开关上。

ﻩ编程开关具有三种状态:PROM(编程)、READ(校验)与RUN(运行)。

微指令格式如
下:
【实验步骤】
(一)机器指令对应的参考微程序流程图,如下图
将全部微程序指令格式变成二进制代码,可得到如下图所示的二进制代码表。

(二)连接电路图:按照下图所示连接实验电路图。

(3)观察时序信号
观察方波信号源的输出端H23,调节电位器W1,使输出波形的频率最慢。

将时序电路中的“STOP”开关置为“RUN”,“STEP”开关置为“EXEC”。

按动START键,测量TS1~TS4各点的波形,比较她们的相互关系,画出波形,并标注测量所得的脉冲宽度,见下图:
注:其中TS2~TS4的高电平宽度所测结果与TS1的相同,在图中未标注。

(四)实际操作
①编程:
将编程开关置为PROM(编程状态)。

将“STATE UNIT”单元中的STEP开关置为“STEP”,STOP开关置为“RUN”状态。

用二进制模拟开关置微地址UA5~UA0。

在MK24~MK1开关上置微代码,置0显示灯亮,置1灭。

按动START键,则将微代码写入到对应的地址单元中。

重复后三步操作,将需要的微代码写入到芯片中。

②校验:
将编程开关READ(校验)状态。

将“STATEUNIT”单元中的STEP开关置为“STEP”,STOP开关置为“RUN”状态。

用二进制开关置好微地址UA5~UA0。

按动START键,读出微代码,观察显示灯的状态就是否与写入的相同。

若不同,则编写错误,重新编程。

③单步运行:
将编程开关置于“RUN(运行)”状态。

将“STATEUNIT”单元中的STEP开关置为“STEP”,STOP开关置为“RUN”状态。

使CLR开关从1→0→1,此时微地址寄存器MA5-MA0清“0”,从而给出运行微指令的入口地址为000000(二进制)。

按动START键,启动时序电路,则每按动一次,读出一条微指令后停机,微地址显示灯与微命令显示灯将显示所读出的一条指令。

④强置运行:
通过UA5~UA0端口人为置分支地址,试验中置微地址为001010(12)
⑤连续运行:
将编程开关置于“RUN(运行)”状态。

将单步开关“STEP”置为“EXEC”状态。

使CLR开关从1→0→1,此时微地址寄存器清“0”,从而给出运行微指令的入口地址为000000(二进制)。

按动START键,则可连续读出微指令。

【实验结果】
ﻩ实验中所置微地址为001010(12),连续运行后,就得出连续的000111(07)与001101(15)。

可知操作正确。

【问题分析】
ﻩﻩﻩﻩ。

相关文档
最新文档