超临界萃取法.

合集下载

超临界萃取法

超临界萃取法
(3)循环法是动态法和静态法的结合,首先 将萃取剂流体充满试样萃取管,然后用循 环泵使流体反复多次经过试样,最后输入 吸收管,适用于动态法不宜萃取的试样和 场合。
7.影响因素
(1) 压力的影响 压力的改变会使超临界流体对物质的溶解能力
发生很大的改变。利用这种特性,只需改变萃 取剂流体的压力,就可把试样中的不同组分按 它们在流体中溶解度的大小的不同萃取分离出 来。在低压下溶解度大的物质先被萃取,随着 压力的增加,难溶物质也逐渐与基体分离。
1、概述
超临界流体:在高于临界压力与临界 温度时,物质的一种状态。它们的物 理性质介于液体和气体之间。
超临界流体萃取(Supercritical Fluid Extraction, SFE)是用超临界流体作为 萃取剂进行萃取的一种技术。由于超 临界流体有好的溶解力和扩散系数, 容易渗透到固体的孔隙中,快速进行 两相平衡交换大大提高萃取效率和速 度,成为样品预处理与各种色谱方法 联用的重要手段。
超临界萃取分离法
(Supercritical Fluid Extraction, SFE)
超临界流体萃取发展简史
1887年,Hannary和Hogarth首次报道了超临界乙醇溶解 金属卤化物的现象。
1943年,Messmore首次提出利用压缩气体的溶解力作为 分离过程基础,从而才发展出一种新的分离方法 —SFE法。
3、超临界萃取装置(3)
HA120-50-01 超临界萃取装置 南通华兴石油仪器有限公司
4、超临界萃取流程示意图



冷凝器
热 器









提携剂
CO2贮槽
补充CO2

超临界萃取技术

超临界萃取技术

1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。

超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。

在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。

因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。

常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。

由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。

早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。

直到20世纪70年代以后才真正进入发展高潮。

1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。

超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。

1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。

超临界流体的物性较为特殊。

表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较相应值作了比较。

从表中可以看出:①超临界流体的密度接近于液体密度,而比气体密度高得多。

另一方面.超临界流体是可压缩的,但其压缩性比气体小得多;②超临界流体的扩散系数与气体的扩散系数相比要小得多,但比液体的扩散系数又高得多;③超临界流体的粘度接近于气体的粘度,而比液体粘度低得多。

超临界流体萃取法名词解释

超临界流体萃取法名词解释

超临界流体萃取法名词解释一、什么是超临界流体萃取法1、超临界流体萃取法(superconductiv):利用具有临界压力和温度的液态或气态物质作为萃取剂,使其在临界压力下进行萃取。

超临界萃取可使一些难溶于有机溶剂的物质如萜类、生物碱等以萃取相析出而达到分离提纯的目的,也可以从矿物质中萃取有用元素,如萃取铅、锌、金等。

2、超临界流体的特性:⑴密度大,黏度小。

⑵沸点高,临界温度高。

⑶具有非活性性质,无毒。

⑷密度与组成的关系为:密度ρ比黏度(mPa·s),其数值与超临界流体种类有关。

⑸对非极性或弱极性化合物(如极性或非极性植物油)能显示很好的萃取效果。

⑹在水溶液中易于与其他物质混合均匀。

⑺在一定条件下可发生相变。

二、超临界流体萃取的原理1、超临界流体的特性:⑴密度大,黏度小。

⑵沸点高,临界温度高。

⑶具有非活性性质,无毒。

⑷密度与组成的关系为:密度ρ比黏度(mPa·s),其数值与超临界流体种类有关。

⑸对非极性或弱极性化合物(如极性或非极性植物油)能显示很好的萃取效果。

⑹在水溶液中易于与其他物质混合均匀。

⑺在一定条件下可发生相变。

三、超临界流体萃取的装置简介2、超临界流体萃取机理:分散在液体中的固体颗粒与水接触,将溶解度极低的溶质微粒子吸附在固体颗粒表面上形成吸附层,再经分离回收其他产品。

一般认为超临界状态下溶质微粒间的相互作用主要是静电作用。

由于超临界流体具有独特的物理化学性质,所以在萃取过程中一般情况下,溶质被包容在固体颗粒周围,形成类似于海绵状结构,超临界流体中的溶质粒子就象海绵吸水一样吸附了水分子,使溶质以自由流动的形式移动到萃取相。

四、超临界流体萃取技术应用:通过萃取精油,合成高纯度单方或复方精油;从天然植物中提取维生素、氨基酸等营养保健品;萃取香料中有用成分,制备具有特殊香气的精油;从海洋生物中提取活性物质,制取生物药物等。

超临界co2萃取法

超临界co2萃取法

超临界co2萃取法超临界co2萃取法:超临界CO2流体萃取(SFE)是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。

技术原理:在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。

当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。

技术特点:1、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。

因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来;2、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性;3、萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本;4、CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好;5、CO2气体价格便宜,纯度高,容易制取,且在生产中可以重复循环使用,从而有效地降低了成本;6、压力和温度都可以成为调节萃取过程的参数,通过改变温度和压力达到萃取的目的,压力固定通过改变温度也同样可以将物质分离开来;反之,将温度固定,通过降低压力使萃取物分离,因此工艺简单容易掌握,而且萃取的速度快。

技术应用:超临界CO2萃取的特点决定了其应用范围十分广阔。

如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取,色素的提取等;在香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。

超临界流体萃取技术

超临界流体萃取技术

超临界流体萃取技术技术原理超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。

在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。

当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。

萃取装置超临界萃取装置可以分为两种类型,一是研究分析型,主要应用于小量物质的分析,或为生产提供数据。

二是制备生产型,主要是应用于批量或大量生产。

超临界萃取装置从功能上大体可分为八部分:萃取剂供应系统,低温系统、高压系统、萃取系统、分离系统、改性剂供应系统、循环系统和计算机控制系统。

具体包括二氧化碳注入泵、萃取器、分离器、压缩机、二氧化碳储罐、冷水机等设备。

由于萃取过程在高压下进行,所以对设备以及整个管路系统的耐压性能要求较高,生产过程实现微机自动监控,可以大大提高系统的安全可靠性,并降低运行成本。

超临界流体萃取的特点(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。

因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,是100%的纯天然;(3)萃取和分离合二为一,当饱含溶解物的CO2-SCF流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取效率高而且能耗较少,节约成本;(4)CO2是一种不活泼的气体,萃取过程不发生化学反应,且属于不燃性气体,无味、无臭、无毒,故安全性好;(5)CO2价格便宜,纯度高,容易取得,且在生产过程中循环使用,从而降低成本;(6)压力和温度都可以成为调节萃取过程的参数。

超临界流体萃取法原理

超临界流体萃取法原理

超临界流体萃取法原理
超临界流体萃取 (Supercritical Fluid Extraction, SFE) 是一种分离提取化合物的方法,它利用超临界流体的特性可以同时具有气相和液相的特性,可以有效地溶解物质,并实现快速、高效的提取过程。

超临界流体是指在临界点以上的温度和压力条件下处于气-液两相临界状态的流体。

超临界流体具有高扩散性、低黏度、低表面张力等特点,可与溶质发生快速的质量传递,提高提取速度和效率。

超临界流体萃取法的原理是利用超临界流体在超临界状态下的溶解度随温度和压力的变化而变化的特性。

首先,选择适当的溶剂作为超临界流体,常用的超临界流体有二氧化碳和丙烷。

溶解度的调控可以通过控制温度和压力来实现。

在超临界流体萃取过程中,溶液中的溶质被溶解在超临界流体中,形成溶液。

然后,通过改变温度和压力,使超临界流体发生相变,转化为气相,从而实现溶质的分离提取。

提取后的溶质可以通过降温和减压将其回收。

超临界流体萃取法广泛应用于天然产物、食品、药物、环境等领域的提取分离过程中。

其优点包括操作简便、提取速度快、无需使用有机溶剂、对萃取物的损伤小等。

此外,超临界流体的可调节性使得可以根据不同物质的特性来进行选择性提取,提高提取效果。

总而言之,超临界流体萃取法利用超临界流体的特性进行溶解和分离,是一种高效、环保的提取方法,具有较广泛的应用前景。

超临界萃取技术

超临界萃取技术

超 临 界 流 体 萃 取 的 应 用
医药工业 化学工业
中草药提取 酶,纤维素精制
金属离子萃取 烃类分离 共沸物分离 高分子化合物分离 植物油脂萃取
食品工业
酒花萃取 植物色素提取 天然香料萃取 化妆品原料提取精制
化妆品香料
压缩机
萃取釜
制冷MVC-760L
二氧化碳循环泵

超临界萃取技术的应用
应 用 范 围
还有其他辅助设备,如阀门,流量计等。
4.超临界流体萃取的方法
热 交 换 器
萃 取 釜
分 离 釜
CO2
热交换器 压缩机或泵 过滤器 超临界 CO 2 萃取的基本流程
三种超临界流体萃取流程示意图
4. 超临界流体萃取的方法
(2)影响工艺流程的因素: 萃取过程系统的组成各不相同,在设计工 艺流程时,仍有一些共同的因素要考虑 原料的性质、 萃取条件 萃取操作方式 分离操作方式 溶剂的回收和处理等。
一、概 述
(Super fluid extraction,简称SFE)
原理:
是利用超临界流体(SCF),即温度和压 力略超过或靠近超临界温度(Tc)和临界 压力(Pc),介于气体和液体之间的流体 作为萃取剂,从固体或液体中萃取出某种 高沸点和热敏性成分,以达到分离和纯化 目的的一种分离技术。
超临界流体萃取过程:
超临界流体萃取技术
(Super fluid extraction,简称SFE)
超临界流体萃取(supercriticl fluid
extraction)也叫流体萃取、气体萃取 或蒸馏萃取 作为一种分离过程,是基于一种溶剂 对固体或液体的萃取能力和选择性, 在超临界状态下较之在常温常压下可 得到极大的提高。

超临界萃取法

超临界萃取法

超临界萃取技术特点
CO2是一种不活泼的气体,萃取过程不发生化学反应, 安全性 好,同时,CO2价格便宜,纯度高,容易取得,所以成本较 低 压力和温度都可以成为调节萃取过程的参数。通过改变温度 或压力达到萃取目的。因此工艺简单易掌握,而且萃取速 度快。
超临界流体提取装置较复杂,不适合分析水样,且在高压下操 作有一定的危险性,而且成本较高,所以限制其广泛应用。
(4)易于在线联用,实现自动化. 超临界流体萃取与 其它分析方法联用,消除了样品可能发生的损失、 降解和污染,而可以缩短分析时间。
(5)基本解决了溶剂对环境的污染。大多数SFs相对 惰性、纯净、无毒。
(6)效率高,费用低。
(7)有利于萃取受热不稳定的物质。CO2和N2O具有 低的临界温度(分别是31℃和36℃,选用这些低临 界温度的超临界萃取,就可以在较低温度下萃取 热不稳定化合物,但CO2安全性好。
超临界流体萃取分离的操作方式11动态法是超临界流体萃取剂一次直接通过试样萃取管使被分离的组分直接从试样中分离出来适用动态法是超临界流体萃取剂一次直接通过试样萃取管使被分离的组分直接从试样中分离出来适用于萃取在超临界流体萃取剂中溶解度较大的物质且于萃取在超临界流体萃取剂中溶解度较大的物质且于萃取在超临界流体萃取剂中溶解度较大的物质且于萃取在超临界流体萃取剂中溶解度较大的物质且试样基体又很容易被超临界流体渗透的情况
3、超临界萃取装置(3)
HA120-50-01
超临界萃取装置 南通华兴石油仪器有限公司
4、超临界萃取流程示意图
萃 取 器 萃 取 器 冷凝器 加 热 器 分 离 器 CO2贮槽 提携剂 补充CO2
图4-1 一种固体物料的SCFE流程示意图
贮 槽
萃取产物

超临界流体萃取法

超临界流体萃取法

超临界流体萃取法超临界流体萃取法,又称为超临界流体提取法,是一种先进的绿色化学分离技术。

它利用临界点附近的高压高温条件下的超临界流体来进行物质的萃取、分离和纯化,具有高效、环保等显著优势。

本文将介绍超临界流体萃取法的原理、应用及前景展望。

## 原理与基础知识超临界流体是介于气态和液态之间的状态,在高压高温下具有较高的溶解能力和扩散能力,因此在化学分离领域具有独特的优势。

超临界流体萃取法的基本原理是通过控制温度和压力,将物质置于超临界条件下,使其与超临界流体发生相互作用,实现目标物质的萃取。

这种方法避免了传统有机溶剂的使用,减少了环境污染,符合绿色化学的发展方向。

## 超临界流体的特性### 1. 高溶解度超临界流体的溶解度随压力和温度的变化呈现出极大的变化,使其能够高效地溶解多种物质,包括极性和非极性物质。

### 2. 温和条件相比传统的溶剂萃取方法,超临界流体萃取法所需的温度和压力通常较低,有利于保护热敏感物质的活性。

### 3. 选择性通过调节超临界流体的性质和条件,可以实现对特定物质的选择性萃取,从而达到高效分离的目的。

## 应用领域### 1. 天然产物提取超临界流体萃取法在提取天然产物中得到了广泛的应用,如植物提取物、海洋生物活性成分等。

其高效、温和的特性使其能够保留大部分活性成分,同时减少了杂质的同时萃取。

### 2. 药物制备在药物制备领域,超临界流体萃取法可以用于分离和纯化药物成分,提高药物的纯度和活性,同时避免了有机溶剂残留的问题。

### 3. 食品工业在食品工业中,超临界流体萃取法可以用于提取食品中的香精、色素等活性成分,保证食品的天然和健康。

### 4. 环境保护由于超临界流体萃取法的绿色环保特性,它在处理废水、废弃物等方面也有着广泛的应用前景。

## 前景展望随着绿色化学的发展和对环保要求的日益提高,超临界流体萃取法将在化学工业、生物工程、医药等领域得到更广泛的应用。

同时,随着研究的深入,超临界流体萃取技术也将不断创新和完善,为各个领域提供更为高效、环保的分离方法。

超临界流体萃取法名词解释

超临界流体萃取法名词解释

超临界流体萃取法名词解释超临界流体萃取法:利用某些具有超临界相平衡点的溶剂在极短的时间内萃取极小量物质的一种方法。

这是指用极性较大的有机溶剂萃取极性较小的无机或有机物质的萃取方法。

该法可适用于萃取低沸点,低极性物质,操作简便,但选择性差。

萃取温度和压力一般较高。

例如,可用于萃取三氯甲烷、四氯化碳等低极性有机溶剂难以萃取的物质,并且易于制备高纯度产品。

1、定义:利用具有超临界相平衡点的溶剂在极短的时间内萃取极小量物质的一种方法。

这是指用极性较大的有机溶剂萃取极性较小的无机或有机物质的萃取方法。

该法可适用于萃取低沸点,低极性物质,操作简便,但选择性差。

萃取温度和压力一般较高。

例如,可用于萃取三氯甲烷、四氯化碳等低极性有机溶剂难以萃取的物质,并且易于制备高纯度产品。

2、特点: (1)由于临界点超过液体的蒸气压,故需要很高的压力和温度,才能使被萃取的组分透过萃取相,而不能直接加热,只有加强搅拌,才能促进传质。

( 2)对物质的溶解度要求很严格,以避免萃取不完全。

3、工艺过程:(1)萃取相的配制与精制①按照生产要求配制混合溶剂。

②将欲提取的物质配成质量浓度为0.2%的萃取溶液,然后在超临界萃取器中加热萃取。

③当加入欲萃取的溶质达到一定的量时,即发生萃取作用。

4、操作要点:(1)萃取压力为0.3~0.4MPa,萃取温度一般为80~120 ℃,萃取相的粘度一般为15~50Pa·S。

(2)欲提取的溶质可先经预萃取,除去杂质后再进行萃取。

5、注意事项:①萃取压力及温度都应高于临界点压力和温度。

②不同的萃取组分应选用不同的萃取相,特别是选择溶解度大的溶质。

6、优缺点:(1)优点①操作温度低,萃取时间短,反应物耗量少。

②可用较低的温度和压力得到高纯度的有机萃取剂。

③易于回收和循环使用。

④工艺设备结构紧凑,设备投资省,自动化程度高。

⑤适用范围广,可用于对水体、空气、土壤、岩石等各种介质中微量组分的分离,也可用于化工产品的精制。

超临界萃取

超临界萃取

9.3
超临界萃取
图9-12 用CO2 从咖啡豆中脱除咖啡因的CO2是一种很理想的萃取剂,它不仅不会在生理上引起问 题,而且对咖啡因有极好的选择性。经CO2处理后的咖啡豆除 了提取咖啡因外,其他芳香物质并不损失,CO2也不会残留于 咖啡豆中。 对于其他一些天然产物的超临界萃取工艺也进行了大量 的应用研究工作,如从酒花及胡椒等物料中提取香味成分和 香精等。利用超临界CO2流体在温度为40~80℃,压力为80~ 610Bar条件下,从大豆中提取香油,其质量与用己烷浸取的 产物质量相同。按中试结果计算,超临界萃取的成本仅为己 烷法的2/3。
9.3
超临界萃取
9.3.3 超临界萃取的典型过程及应用实例
1 超临界萃取的典型过程 超临界萃取的典型过程是由萃取阶段和分离阶段组合 而成。在萃取阶段,超临界流体将所需组分从原料中提取 出来。在分离阶段,通过变化某个参数或其他方法,使萃 取组分从超临界流体中分离出来,并使萃取剂循环使用。 根据分离方法的不同,可以把超临界萃取的典型过程分为 三类:等温法、等压法和吸附吸收法。如图9-11所示。
9.3
超临界萃取
图9-11 超临界萃取的三种典型过程
T1<T2 P1=P2 T1=T2 P1>P2 1-萃取槽;2-膨胀阀; 1-萃取槽;2-加热器; 3-分离槽;4-压缩机 3-分离槽;4-泵;5- 冷却器; (a) 等温法 (b) 等压法 T1=T2 P1=P2 1-萃取槽;2-吸收 剂(吸附剂);3-分 离槽;4-泵 (c) 吸附法
9.3
超临界萃取
图9-10
CO2的p-V-T相图
9.3
超临界萃取
9.3.2 超临界萃取的过程特征
1.超临界流体萃取一般选用化学性质稳定,无腐蚀性, 其临界温度不过高或过低的物质做萃取剂,这类分离技术特 别适宜于提取或精制热敏性、易氧化物质。 2.超临界流体萃取剂具有良好的溶解能力和选择性,且 溶解能力随压力增加而增大。降低超临界相的密度可以将其 包含的溶质凝析出来,过程无相变。

超临界萃取法课件

超临界萃取法课件

制备药物中间体
超临界萃取技术可用于制备药物 中间体,如手性化合物、高纯度 化学原料等,提高药物的质量和 纯度。
药物合成
超临界萃取技术可以用于药物合 成过程中的反应介质和产物分离 ,简化分离步骤,提高合成效率 。
在食品工业的应用
食品风味成分提取
食品添加剂合成
超临界萃取技术可用于提取食品中的 风味成分,如咖啡、茶、香料等,保 持食品原有风味。
总结词:原料粒度对传质速率有影响,应根据实际情况选择合适的粒度范围。
萃取时间
萃取时间也是影响超临界萃取效率的因素之一。在一定时间内,随着萃取的进行,溶质的溶解和扩散 逐渐趋于平衡,萃取效率不再明显提高。因此,选择合适的萃取时间对于提高效率和节省成本至关重 要。
总结词:在保证溶质充分溶解和扩散的前提下,应尽量缩短萃取时间以提高效率和降低成本。
பைடு நூலகம்
特点与优势
特点
超临界萃取技术具有萃取效率高、操作条件温和、对环境友好、可实现工业化生产等特点。
优势
与其他传统分离技术相比,超临界萃取法具有较高的选择性、较低的能耗和溶剂消耗、操作简便等优 势。此外,该技术还可以用于提取一些传统方法难以处理的物质,如热敏性物质和易氧化物质。
02
超临界萃取流程
萃取流程
节能技术
采用先进的节能技术,降 低超临界萃取过程的能耗 。
资源回收利用
实现超临界萃取过程中资 源的回收和再利用,提高 资源利用率。
拓展应用领域
生物医药领域
超临界萃取技术在生物医 药领域的应用,如天然产 物的提取和药物制备。
环境治理领域
利用超临界萃取技术处理 环境污染问题,如土壤修 复和水处理。
食品工业领域
01

超临界流体萃取技术的主要特点介绍

超临界流体萃取技术的主要特点介绍

超临界流体萃取技术的主要特点介绍超临界流体萃取技术是一种利用超临界流体作为萃取剂,将目标化合物从原材料或混合物中分离和提取出来的方法。

它具有以下主要特点:1. 温和条件:超临界流体萃取技术一般在相对较低的温度和压力条件下进行,相较于传统的溶剂萃取方法,它更为温和。

这样可以避免目标化合物的热敏性或化学变性,保证其纯度和活性。

2. 高选择性:超临界流体萃取技术具有较高的选择性,可以根据不同化合物的溶解度、极性和蒸汽压等特性,调节操作参数来实现对目标化合物的选择性提取。

这使得分离纯化更为简单和高效。

3. 溶剂可回收性:超临界流体本身具有很高的溶解能力和渗透性,它可以在短时间内快速和彻底地溶解目标化合物。

与传统有机溶剂相比,超临界流体萃取技术的溶剂可回收性更好。

在萃取过程结束后,只需降低温度和压力,超临界流体可转变为气态,易于分离和回收,减少了对环境的污染和资源的浪费。

4. 可控性和可扩展性:超临界流体萃取技术可以通过调节操作条件,例如温度、压力、流速等参数,来实现对目标化合物的可控提取。

它还可以与其他工艺方法(如色谱、结晶等)进行组合,以进一步提高分离纯化效果。

此外,该技术也具有较好的可扩展性,可以适应不同规模的实际应用需求。

5. 环境友好性:与传统有机溶剂相比,超临界流体萃取技术更加环保。

超临界流体一般是无毒、无害和可再生的,它不会对环境造成污染和危害。

因此,该技术在绿色化工和环保领域具有广泛的应用前景。

总之,超临界流体萃取技术具有温和条件、高选择性、溶剂可回收性、可控性和可扩展性等主要特点。

它在分离纯化、化工加工和环保领域中具有广泛的应用价值和发展前景。

超临界流体萃取技术是一种基于超临界流体的物质分离方法,它结合了化学和物理的原理,具有温和条件、高选择性、溶剂可回收性、可控性和可扩展性等许多独特的特点。

因此,该技术在各个领域中得到了广泛应用,并为研究人员和工程师提供了新的可能性。

首先,超临界流体萃取技术具有温和条件,这是其与传统溶剂萃取方法的显著区别之一。

超临界萃取法提取银杏内酯的工艺流程

超临界萃取法提取银杏内酯的工艺流程

超临界萃取法提取银杏内酯的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!超临界萃取法是一种高效的提取技术,被广泛应用于植物药物活性成分的提取。

超临界萃取名词解释

超临界萃取名词解释

超临界萃取名词解释
超临界萃取,又称超临界流体抽提,是一种分离或提取方法,它使用特殊的溶剂,其临界点高于室温,从而抽取某种物质。

这一方法常被用来从天然物质中提取有价值的成分,并且在提取过程中避免直接接触溶液,能够确保所提取成分的洁净度。

超临界萃取的基本原理是利用溶剂的临界状态,以及溶剂和成分之间的相互作用产生的冷却效果,来将某种物质从大量的混合物中分离出来。

当溶剂的温度升高到临界点时,溶剂的密度和体积会降低,溶质的浓度也会降低,这种相变的外观常常表现为溶剂的状态转变,也就是液体转变为气体,也可能是气体转变为固体。

而且,超临界萃取还受到温度控制,可以控制出比例,也可以控制纯度。

在超临界萃取过程中,溶剂和物质之间的相互作用是很重要的,溶剂和物质之间的作用取决于溶剂的特性,物质的特性和温度。

超临界萃取的抽提过程可以通过调整溶剂的压力来控制,以便达到较高的抽提效率和效果。

超临界萃取的一个优点是,可以在抽提过程中更精确地控制物质的提取效率,因为超临界萃取可以更精确地控制物质在液体和气体状态之间的转换,从而更有效地抽取物质。

此外,一个明显的优点是,超临界抽取不会影响物质的性质,因为它是在低温和低压的状态下完成的,而且可以确保抽取的成分的洁净度。

总之,超临界萃取是一种十分有效的分离抽提方法。

它不仅可以有效地从天然物质中抽取有价值的成分,还可以有效地控制物质的抽
提效率,确保所抽出成分的洁净度,同时不会改变物质的性质,因此得到了越来越多应用在食品、药物和农药中的广泛应用。

超临界流体萃取法(1)..

超临界流体萃取法(1)..

本试验采用水蒸气蒸馏法和 CO2超临界萃取法进行沙枣花中挥 发油的提取,以挥发油得率为参考标准,通过正交试验对提取 条件进行优选提取。前者工艺简单、成本低,但提取率相对也 较低,且其过程易造成对热不稳定及易氧化成分的破坏。由上 面两个表格,可以明显的看出:采用超临界CO2提取得到的沙 枣花中的挥发油的含量明显高于水蒸气蒸馏法。
4. 超临界流体萃取工艺流程
CO2-超临界萃取的工艺流程图
工业大生产中的设备图
5.超临界流体萃取的应用
4.1 可以用于挥发油的提取
廉宜君等采用正交试验,以挥发油得率为指标,比较超临界 CO2萃取及水蒸气蒸馏两种方法的提取效果,从而确定挥发
油的最佳提取工艺。在最佳提取工艺条件下,采用水蒸气蒸
馏法,挥发油的平均得率为0.820 g/100 g;而在最佳提取工 艺条件下,采用超临界CO2萃取的挥发油的平均得率为 1.38 g/100 g,由此可见,采用超临界CO2萃取可以大大增加挥发 油的得率。

2、超临界流体萃取法的原理 3、发展历史


4、超临界流体萃取的设备
5、超临界流体萃取法的应用 6、超临界流体萃取法的特点
1、超临界流体的含义
1.1超临界流体的含义
超临界流体(Supercritical fluid, SF)是一种物质状态,
当物质在超过临界温度及临界压力以上,气体与液体的性质 会趋近于类似,最后会达成一个均匀相之流体现象。超临界 流体类似气体具有可压缩性,而且又兼具有类似液体的流动 性,密度一般都介于0.1到1.0g/ml之间。它是一种处于临界
高天然物产品的质量; 5.提取时间快,生产周期短; 6.工艺流程简单,操作方便,节省劳动力和大量有 机溶剂,能耗低,无残留溶剂,减少三废污染; 7.应用于分析或与GC、IR、MS、LC等联用成为一种 高效的分析手段,将其用于中药质量分析,能客 观地反映中药中有效成分的真实含量。

超临界萃取

超临界萃取

溶剂+萃取质 原料A+B
萃取
分离
萃取剂循环
萃取质A 萃取剂补充
萃取残质B
超临界流体提取工艺流程图
过滤器
钢瓶 储气柜
压缩机
恒 泵 温 器
萃 取 器
分 离 器
分 泵 恒 温 离 器 器
吸收器
流 量 计
分离工程

超临界流体萃取系统主要由四部分组成:
溶剂压缩机(高压泵); 萃取器; 温度、压力控制系统; 分离器或吸收器。 其它辅助设备包括:辅助泵、阀门、背压 调节器,流量计、换热器等。
6—二氧化碳泵
图1 中自萃取器底部放出的萃取相经过节流降压, 使溶剂的溶解度 减小而进入分离器中析出, 自分离器顶部放出的二氧化碳进冷凝器 冷凝成液体后用泵增压到萃取压力, 并使之经蒸发器汽化, 然后进入 萃取器循环使用。
2.等压变温萃取流程
是压力不变,控制温度的一种 系统。富含溶质的超临界流体 经热交换器加热后温度升高, 溶质的溶解度降低,溶质亦可
超临界萃取的应用 1医药工业 超临界流体一般可作为溶剂、抗溶剂或溶质,而且超临界流体萃 取工艺可以在低温下操作,因此特别适合热稳定性较差的物质分 离,且无其他残留物。由于很多药物的有效成是不易稳定存在的, 在提取过程中容易损失,因此在制备过程中运用超临界流体萃取 技术可以很好的解决这一问题。现在已经能用该技术成功的提取 了生物碱、黄酮、生育酚、吗啡等天然活性产品,在超细药物粒 子制备中取得了进展[3],另外超临界萃取技术还可以用于丹皮有效 成分的提取等[4]。 2食品工业 运用该技术可以对咖啡豆脱咖啡因、烟草脱尼古丁、奶制品脱胆 固醇、萃取啤酒花中的有效成分,以及从天然食物中提取食品加 剂如卵磷脂、麦芽油、茶油,食用香料如八角油、茴香油,食用 色素如辣椒红[1]、番茄红等。其中对啤酒花有效成分的提取,咖啡 豆脱咖啡等实现了工业化和产业化[2]。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超临界萃取分离法
(Supercritical Fluid Extraction, SFE)
超临界பைடு நூலகம்体萃取发展简史
1887年,Hannary和Hogarth首次报道了超临界乙醇溶解 金属卤化物的现象。
1943年,Messmore首次提出利用压缩气体的溶解力作为 分离过程基础,从而才发展出一种新的分离方法 —SFE法。
超临界萃取技术特点
CO好 低2是,一同种时不,活CO泼2的价气格体便,宜萃,取纯过度程高不,发容生易化取学得反,应所,以安成全本性较 压力和温度都可以成为调节萃取过程的参数。通过改变温度或
压力达到萃取目的。因此工艺简单易掌握,而且萃取速度 快。
超临界流体提取装置较复杂,不适合分析水样,且在高压下操
3、超临界萃取技术特点
可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效 地防止了热敏性物质的氧化和逸散;
不用有机溶剂, 防止了提取过程对人体的毒害和对环境的污染, 是100%的纯天然;(环境友好)
萃取和分离合二为一,压力下降能使CO2与萃取物迅速成为两 相(气液分离)而立即分开,不仅萃取效率高而且能耗较 少,节约成本;
作有一定的危险性,而且成本较高,所以限制其广泛应用。
为什么选择CO2超临界流体作为萃取剂
(i)临界温度低(31.3°C)适于分析热不稳定性样品 (ii)无毒,对人体无害,易纯化获得高纯度,可达
99.999%。 (iii)CO2 隋性气体,适于多种检测器,并在190 nm以上
无紫外吸收。 (iv)有相当极性,选择性好,能溶解大部分非极 性,
中强极性样品。 (v)价格便宜。 缺点为极性太弱,对极性化合物溶解力差。
水:23.5 各种具有液 体密度的压 缩气体与液 体的溶剂力 比较分度表
2.SFE优点
(1)快速
由于萃取过程的动力学可知,传质阻力最终决定萃取的速度。
超临界流体的密度是气体的100-1000倍,和液体相近。因此, 它具有和液体相似的溶剂力。扩散系数是液体的10-100倍,使 得其对基体有很强的穿透能力。因此,溶质的传质阻力较小, 可以获得快速高效的分离,通常仅需10-60分即可完成。
70年代,SFE工作的中心逐渐转移到食品工业中,建立 从天然产品中提取有效成分或脱除有害物质的工 艺流程,其中包括对咖啡、茶、烟草和香料的 SFE。
80年代,发展迅速,成为分析化学中一种新的样品制备 手段。
90年代,对各种环境中微量污染物的萃取成为SFE应用 的热点。
21世纪,SFE在环境分析、食品分析与安全、手性药物 分析等发挥着重要作用。
多环芳烃 杀虫剂 蜡 脂肪 烷烃
SFE vs. Soxhlet Extraction (per extraction)
15minutes
24 hours
15minutes
24 hours
45minutes
16 hours
10-40minutes
7 hours
15minutes
48 hours
(2)萃取过程易于控制并具有选择性 温度恒定,压力降低:萃取倾向于弱极性的分析物;
2、基本原理
① 超临界流体萃取分离法是利用超临界流体做萃取剂 在两相之间进行的一种萃取方法。
② 超临界流体是介于气液之间的一种物态,它只能在 物质的温度和压力超过临界点时才能存在。
③ 超临界流体的密度大,与液体相仿,所以它与溶质 分子的作用力很强,很容易溶解其他物质。
④ 另一方面,它的粘度较小,接近气体,传质速率很 高;加上表面张力小,容易渗透固体颗粒,保持较 大的流速,使萃取过程在高效、快速、经济的条件 下完成。
1955年,Todd和Elgihj研究了脂肪酸和高分子醇在超临界 乙烯中的溶解性和相平衡,提出可以利用超临界 密度的改变对组分进行萃取的观点。
50年代,美国的Kerr-McGee精炼公司发展了一种渣油 的超临界流体萃取过程。
1962年,开始用于分析,建立超临界流体色谱(SFC)
超临界流体萃取发展简史
超临界萃取基本原理
萃取 选择性萃取
分离提纯
基本原理
扩 通散 过改力体变超系系 扩T临压数 散、界力大 、P流增可, 溶体加改粘解随 而变度、着 极溶小分密 性解闭 增能 配大等,利作用用程序升压可将
改变体不系同温极度性或的压成分力进,行使分被 萃取部的提分取析。物析出,达到 提取和分离的目的。
萃取 + 富集
(4)易于在线联用,实现自动化. 超临界流体萃取与 其它分析方法联用,消除了样品可能发生的损失、 降解和污染,而可以缩短分析时间。
压力升高:萃取倾向于强极性和高分子量的分析物
压力和温度的较小变化都会使其密度(溶剂力)有很大 变化。所以通过改变萃取压力和萃取温度,可改变SFs的 溶剂力,从而实现对特定组分的萃取。这个特性还允许 我们在不同的压力下萃取一个复杂样品,从而实现选择 性萃取。
(3)后处理简单,即萃取物易于和二氧化碳分离 溶剂萃取在分析痕量有机物时需要浓缩,这样费时,而且 还会引起挥发性物质的损失。反之,一些SFs在室温时是 气体(如CO2),浓缩步骤可以大大简化。
2、基本原理
超临界流体萃取分离过程的原理是利用超临界流体的溶 解能力与其密度的关系,即利用压力和温度对超临界流 体溶解能力的影响而进行的。在超临界状态下,将超临 界流体与待分离的物质接触,使其有选择性地把极性大 小、沸点高低和分子量大小的成分依次萃取出来。当然 ,对应各压力范围所得到的萃取物不可能是单一的,但 可以控制条件得到最佳比例的混合成分,然后借助减压 、升温的方法使超临界流体变成普通气体,被萃取物质 则完全或基本析出,从而达到分离提纯的目的,所以超 临界流体萃取过程是由萃取和分离组合而成的。
1、概述
超临界流体:在高于临界压力与临界 温度时,物质的一种状态。它们的物 理性质介于液体和气体之间。
超临界流体萃取(Supercritical Fluid Extraction, SFE)是用超临界流体作为 萃取剂进行萃取的一种技术。由于超 临界流体有好的溶解力和扩散系数, 容易渗透到固体的孔隙中,快速进行 两相平衡交换大大提高萃取效率和速 度,成为样品预处理与各种色谱方法 联用的重要手段。
相关文档
最新文档