2018届高三理科数学答题模板 几何概型

合集下载

2018届高三理科数学答题模板 立体几何中角度问题

2018届高三理科数学答题模板 立体几何中角度问题

高考立体几何中角度问题【直线与平面所成的角】直线与平面所成的角的定义:①直线和平面所成的角有三种:a.斜线和平面所成的角:一条直线与平面α相交,但不和α垂直,这条直线叫做平面α的斜线.斜线与α的交点叫做斜足,过斜线上斜足以外的点向平面引垂线,过垂足与斜足的直线叫做斜线在平面α内的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.b.垂线与平面所成的角:一条直线垂直于平面,则它们所成的角是直角。

c.一条直线和平面平行,或在平面内,则它们所成的角为00.②取值范围:00≤θ≤900.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

最小角定理:斜线和它在平面内的射影所成的角(即线面角),是斜线和这个平面内的所有直线所成角中最小的角。

【求直线与平面所成的角的方法】(1)找角:求直线与平面所成角的一般过程:①通过射影转化法,作出直线与平面所成的角;②在三角形中求角的大小.(2)向量法:设PA是平面α的斜线,,向量n为平面α的法向量,设PA与平面α所成的角为θ,则【异面直线所成的角】异面直线所成角的定义:直线a、b是异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则把直线a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角。

两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。

【求异面直线所成角的步骤】A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

B、证明作出的角即为所求角;C、利用三角形来求角。

【二面角】半平面的定义:一条直线把平面分成两个部分,每一部分都叫做半平面.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

2018届高三理科数学解析几何解答题解题方法规律技巧详细总结版

2018届高三理科数学解析几何解答题解题方法规律技巧详细总结版

2018届高三理科数学解析几何解题方法规律技巧详细总结版【简介】圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现. 【3年高考试题比较】通过比较近三年的高考题,不难发现,集中考察的是抛物线和椭圆,椭圆出现的较多,均主要考察的是直线与椭圆或抛物线的位置关系,近几年也出现了与圆的综合问题,难度没有特别大的跳跃,比较平稳,都是以运算为主要考察对象.从考查形式上分析,主要是求解圆锥曲线方程,轨迹问题(也涉及到挖点),定点问题,范围问题等.【必备基础知识融合】一、椭圆1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质二、双曲线1.双曲线的定义平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质曲线的虚轴,它的长三、抛物线1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质3. 的焦点的直线与抛物线交于1122(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ; (3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p. 四、曲线与方程 1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上点的坐标与一个二元方程f (x ,y )=0的实数解满足如下关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,将其转化为x ,y 的方程式,并化简. (5)证明——证明所求方程即为符合条件的动点轨迹方程.3.两曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解. 若此方程组无解,则两曲线无交点. 五、直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2·|y 1-y 2|【解题方法规律技巧】典例1:已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165, 故△POM 的面积为165.【规律方法】求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法,直接根据题目提供的条件列出方程; (2)定义法,根据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等. 典例2:已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.(2)证明由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 【规律方法】利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简. (2)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略.典例3:已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.【规律方法】(1)求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(2)理解解析几何中有关曲线的定义是解题关键.(3)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.典例4:如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.【规律方法】“相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 0,y 0);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y );(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程. 典例5:已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.【规律方法】(1)求椭圆方程的基本方法是待定系数法,先定形,再定量,即首先确定焦点所在位置,然后根据条件建立关于a,b的方程组,如果焦点位置不确定,可设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),求出m,n的值即可.(2)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(3)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 提醒 利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.典例6:已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.【规律方法】(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.(3)涉及弦的中点、斜率时,一般用“点差法”求解.典例7:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x+3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|PA |·|PB |,并求λ的值.(1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1. 由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.① 方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).【规律方法】有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.典例8:设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围.又点P ⎝⎛⎭⎫-12,y 0在弦MN 的垂直平分线上,所以y 0=-12k +m . 所以m =y 0+12k =34y 0.由点P ⎝⎛⎭⎫-12,y 0在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0. 【规律方法】处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.典例9:已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.典例10:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形.(1)求椭圆的方程;(2)过点S ⎝⎛⎭⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0, Δ=144k 2+64(9+18k 2)>0,x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9, QA →=(x 1,y 1-1),QB →=(x 2,y 2-1),QA →·QB →=x 1x 2+(y 1-1)(y 2-1)=(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)·-169+18k 2-4k 3·12k 9+18k 2+169=0, ∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1).【规律方法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.典例11:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.从而|BM |=|1-y M |=⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1. ∴|AN |·|BM |=⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4. 当x 0=0时,y 0=-1,|BM |=2,|AN |=2,所以|AN |·|BM |=4.故|AN |·|BM |为定值.【规律方法】圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.典例12:设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |FA |,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.由(1)知F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k 24k 2+3,12k 4k 2+3. 由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k . 因为直线MH 的方程为y =-1k x +9-4k 212k . 设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k消去y ,解得x M =20k 2+912(k 2+1). 在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1, 解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64或⎣⎡⎭⎫64,+∞. 典例13:已知圆x 2+y 2=1过椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b 2=1相交于A ,B 两点.记λ=OA →·OB →,且23≤λ≤34. (1)求椭圆的方程;(2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围.由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d ,则S =12|AB |d =12|AB |,所以64≤S ≤23. 即△OAB 的面积S 的取值范围是⎣⎡⎦⎤64,23. 【规律方法】解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.典例14:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x 2+(y -b )2=a 2相切.(1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出定点坐标;(3)在(2)的条件下求△AMN 面积的最大值.②m =±1时,l MN :x =-65,过点⎝⎛⎭⎫-65,0.∴l MN 恒过定点⎝⎛⎭⎫-65,0.(3)由(2)知S △AMN =12×45|y M -y N |=25⎪⎪⎪⎪4m m 2+4+4m 4m 2+1=8⎪⎪⎪⎪⎪⎪m 3+m4m 4+17m 2+4=8⎪⎪⎪⎪m +1m 4⎝⎛⎭⎫m +1m 2+9=84⎪⎪⎪⎪m +1m +9⎪⎪⎪⎪m +1m . 令t =⎪⎪⎪⎪m +1m ≥2,当且仅当m =±1时取等号, ∴S △AMN ≤1625,且当m =±1时取等号. ∴(S △AMN )max =1625. 【规律方法】处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【归纳常用万能模板】1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM的斜率与直线l 的斜率的乘积为定值.A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0.7分故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b 2k 2+1.10分 于是直线OM 的斜率k OM =y M x M=-12k , 即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.12分❶列出方程组,解出a 2,b 2得4分.❷设出直线l 的方程后与椭圆方程联立消去y 得到关于x 的方程准确者得4分.❸求出点M 的坐标得1分,再得到直线OM 的斜率与直线l 的斜率的乘积为定值得2分. ❹结论得1分.解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值. 第二步:探究一般情况.探究一般情形下的目标结论.第三步:下结论,综合上面两种情况定结论.2. (本小题满分12分)(2016·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPN Q 面积的取值范围.由题设得A (-1,0),B (1,0),所以|AB |=2,由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0).4分得分点②(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 6分得分点③高考状元满分心得1.正确使用圆锥曲线的定义:牢记圆锥曲线的定义,能根据圆锥曲线定义判断曲线类型,如本题第(1)问就涉及椭圆的定义.2.注意分类讨论:当用点斜式表示直线方程时,应分直线的斜率存在和不存在两种情况求解,易出现忽略斜率不存在的情况,导致扣分,如本题第(2)问中的得分10分,导致失2分.3.写全得分关键:在解析几何类解答题中,直线方程与圆锥曲线方程联立后得到的一元二次方程,根据一元二次方程得到的两根之和与两根之积、弦长、目标函数等一些关键式子和结果都是得分点,在解答时一定要写清楚.解题程序第一步:利用条件与几何性质,求|EA|+|EB|=4.第二步:由定义,求点E的轨迹方程x24+y23=1(y≠0).第三步:联立方程,用斜率k表示|MN|.第四步:用k表示出|PQ|,并得出四边形的面积.第五步:结合函数性质,求出当斜率存在时S 的取值范围.第六步:求出斜率不存在时面积S 的值,正确得出结论.【易错易混温馨提醒】一、忽视椭圆的焦点轴导致方程出错.易错1:已知椭圆2222:1(0)y x W a b a b +=>>的焦距与椭圆22:14x y Ω+=的短轴长相等,且W 与Ω的长轴长相等,这两个椭圆在第一象限的交点为A ,直线l 与直线OA (O 为坐标原点)垂直,且l 与W 交于,M N 两点.(1)求W 的方程;(2)求MON ∆的面积的最大值.【答案】(1)22143y x +=(2联立223{ 143y x my x =-++=得2231183120x mx m -+-=,设()()1122,,,M x y N x y ,分别计算MN 和O 到直线l 的距离为d 得MON ∆的面积)221312S d MN m m =≤+-=进而得解.二、多解问题的取舍.易错2:已知椭圆2222:1(0)x yC a ba b+=>>的左、右焦点分别为1F,2F,B为椭圆的上顶点,12BF F∆为A 为椭圆的右顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于,M N 两点(,M N 不是左、右顶点),且满足MA NA ⊥,试问:直线l 是否过定点?若过定点,求出该定点的坐标,否则说明理由.【答案】(Ⅰ) 22143x y +=;(Ⅱ)直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.解得: 12m k =-, 227k m =-,且均满足22340k m +->, 当12m k =-时, l 的方程为()2y k x =-,直线过定点()20,,与已知矛盾; 当227k m =-时, l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫ ⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.三、巧用均值不等式求最值,避免大量运算.易错3:已知椭圆()222210x y a b a b +=>>的离心率e =左、右焦点分别为12,F F ,且2F 与抛物线24y x =的焦点重合.(1)求椭圆的标准方程;(2)若过1F 的直线交椭圆于,B D 两点,过2F 的直线交椭圆于,A C 两点,且AC BD ⊥,求AC BD +的最小值.【答案】(1)椭圆的标准方程为22132x y +=;(2)AC BD +的最小值为5.解析:(1)抛物线24y x =的焦点为()1,0,所以1c =,又因为1c e a a ===a = 所以22b =,所以椭圆的标准方程为22132x y +=. (2)(i )当直线BD 的斜率k 存在且0k ≠时,直线BD 的方程为()1y k x =+,代入椭圆方程22132x y +=, 并化简得()2222326360k x k x k +++-=. 设()11,B x y , ()22,D x y ,则2122632k x x k +=-+, 21223632k x x k -=+,四、多元的最值问题.易错4:平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.解 (1)由题意知3a 2+14b 2=1.又a 2-b 2a =32,解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.(ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.五、不能完全用韦达定理代换的坐标的处理..易错5:已知椭圆2222:1(0)x yC a ba b-=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点1F,2F为顶点的三角形的周长为)41.(1)求椭圆C的标准方程;(2)设该椭圆C与y轴的交点为M,N (点M位于点N的上方),直线y=kx+4与椭圆C相交于不同的两点,A B ,求证:直线MB与直线NA的交点D在定直线上.【答案】(1)22184x y+= (2)见解析直线NA的方程62AAkxy xx+=-②联立①②,得()233A B A B B Akx x x x y x x ++==- 222241622212116421B B k k x k k K x K -⎛⎫++ ⎪++⎝⎭--+ 82221116421B B k x k k x k ⎛⎫+ ⎪+⎝⎭==++,即1cy =∴直线MB 与直线NA 的交点D 在定直线1y =上 六、求曲线方程时的挖点问题易错6:已知定点()3,0A -、()3,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)设直线l 与曲线C 交于P 、Q 两点,若直线AP 与AQ 斜率之积为118-,求证:直线l 过定点,并求定点坐标.【答案】(1)曲线C 的方程为2219x y += ()3x ≠±;(2)直线l 过定点,定点坐标为()1,0.故曲线C 的方程为2219x y += ()3x ≠±. (Ⅱ)由已知直线l 斜率为0时,显然不满足条件。

2018届高考数学(理)热点题型:解析几何(Word版,含答案解析,全站免费)

2018届高考数学(理)热点题型:解析几何(Word版,含答案解析,全站免费)

双曲线的渐近线方程为 y=±bax,
2b 由题意得 a2+ b2= 3,②
联立 ①② 解得 b= 3,a=1,
2
所求双曲线的方程为 x2-y3= 1,选 D.
(2)设点 B 为椭圆的左焦点,点 M(2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥ |AB|+ |AC|=2a,所以 |AM |+|AC|≥ 2a- |BM|,而 a= 4,|BM|= ( 2+ 3)2+1= 26,所
M 的纵坐标
1 yM=- 4,
x= பைடு நூலகம்,
所以点 M 在定直线 y=- 14上.
②由①知直线 l 的方程为 y=mx-m22,
m2
m2
令 x=0,得 y=- 2 ,所以 G 0,- 2 ,

P
m2 m, 2
,F
1 0, 2
,D
2m3 4m2+
1,
-m2 2(4m2+
1)

所以
S1=
12·
( |GF|·m=
【类题通法】 (1)在椭圆和双曲线中,椭圆和双曲线的定义把曲线上的点到两个焦
点的距离联系在一起,可以把曲线上的点到一个焦点的距离转化为到另一个焦点
的距离, 也可以结合三角形的知识, 求出曲线上的点到两个焦点的距离 . 在抛物线
中,利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数
形结合的思想去解决有关的最值问题 .
0),因为过 F1 且倾斜角为 45°的直线 l 的斜率为 1,所以直线 l 的方程为 y=x+ 2,
y=x+ 2,
则原点到
| l 的距离 d=
2| =1,故 ②正确;③设 A(x1,y1),B(x2,y2),由

【大师特稿】2018届高考数学(理)热点题型:立体几何(含答案)

【大师特稿】2018届高考数学(理)热点题型:立体几何(含答案)

立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC?平面ABC,∴PO⊥OC.又∵PO,AB?平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO?平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z),∴n ·BC →=0,n ·BD →=0,∴2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ,则sin θ=PD→·n|PD →||n |=1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211.【类题通法】利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范. 【对点训练】如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F. (1)证明:EF ∥B 1C.(2)求二面角E-A 1D-B 1的余弦值.(1)证明由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D?面A 1DE ,B 1C?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD.以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E-A 1D-B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD ,所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解取AD 的中点O ,连接PO ,CO.因为PA =PD ,所以PO ⊥AD.因为PO?平面PAD ,平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD.因为CO?平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z),则n ·PD →=0,n ·PC→=0,即-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M(0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM?平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为PA 的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D 的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为PA,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM?平面PBC,DE?平面PBC,∴DE∥平面BPC.(2)解由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8). 假设AB 上存在一点F 使CF ⊥BD ,设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0),由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0),设平面FPC 的法向量为n =(x ,y ,z). 又PC →=(0,6,-8),FC →=-8,163,0.由n ·PC →=0,n ·FC →=0,得6y -8z =0,-8x +163y =0,即z =34y ,x =23y ,不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817. 又由图可知,该二面角为锐二面角,故二面角F -PC -D 的余弦值为817.热点三立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H.将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ;(2)求二面角B -D ′A -C 的正弦值.(1)证明由已知得AC ⊥BD ,AD =CD.又由AE =CF 得AE AD =CFCD ,故AC ∥EF.因此EF ⊥HD ,从而EF ⊥D ′H.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH. 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD.(2)解如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则m ·AB →=0,m ·AD ′→=0,即3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则n ·AC →=0,n ·AD ′→=0,即6x 2=0,3x 2+y 2+3z 2=0,。

2018届高三理科数学答题模板 三角函数的图象与性质

2018届高三理科数学答题模板 三角函数的图象与性质

三角函数的图象与性质知识梳理【正弦、余弦函数的图象与性质】(定义域、值域、单调性、奇偶性等)正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,1.正弦函数2.余弦函数函数图像的性质正弦、余弦函数图象的性质:由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。

【正切余切函数的图像与性质】正切函数的图像:余切函数的图像:正切函数的性质:(1)定义域:(2)值域是R,在上面定义域上无最大值也无最小值;(3)周期性:是周期函数且周期是π,它与直线y=a的两个相邻交点之间的距离是一个周期π;(4)奇偶性:是奇函数,对称中心是无对称轴;(5)单调性:正切函数在开区间内都是增函数。

但要注意在整个定义域上不具有单调性。

余切函数的性质:(1)定义域:{x|x≠kπ,k∈Z}(2)值域:实数集R;(3)周期性:是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π(4)奇偶性:奇函数,图像关于(,0)(k∈z)对称,实际上所有的零点都是它的对称中心(5)单调性:在每一个开区间(kπ,(k+1)π),(k∈Z)上都是减函数,在整个定义域上不具有单调性示范例题【2017年高考全国1卷,理9】 已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D【考点】三角函数图像变换.【点拨】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.答题思路【命题意图】高考主要考查函数y =Asin (ωx +φ)的图象变换,考查函数y =Asin(ωx +φ)解析式中参数φ的求法。

【大师特稿】2018届高考数学(理)热点题型:立体几何(含答案)

【大师特稿】2018届高考数学(理)热点题型:立体几何(含答案)

立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC⊂平面ABC,∴PO⊥OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D→=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D ­B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D 的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC.(2)解由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H-xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ, 则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

2018年高考数学 专题35 立体几何中的探索问题黄金解题模板

2018年高考数学 专题35 立体几何中的探索问题黄金解题模板

专题35 立体几何中的探索问题【高考地位】探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.【方法点评】方法一 直接法使用情景:立体几何中的探索问题解题模板:第一步 首先假设求解的结果存在,寻找使这个结论成立的充分条件;第二步 然后运用方程的思想或向量的方法转化为代数的问题解决;第三步 得出结论,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在..例1.【2018河南漯河市高级中学第三次模拟】如图, AB 为圆O 的直径,点,E F 在圆O 上,且//AB EF ,矩形ABCD 所在的平面和圆O 所在的平面垂直,且1,2AD EF AF AB ====.(1)求证:平面AFC ⊥平面CBF ;(2)在线段CF 上是否存在了点M ,使得//OM 平面ADF ?并说明理由.【变式演练1】如图,三棱柱111ABC A B C -中,底面ABC 为正三角形,1AA ⊥底面ABC ,且13AA AB ==, D 是BC 的中点.(1)求证: 1//A B 平面1ADC ;(2)求证:平面1ADC ⊥平面1DCC ;(3)在侧棱1CC 上是否存在一点E ,使得三棱锥C ADE -的体积是98?若存在,求出CE 的长;若不存在,说明理由.(2)∵底面为正三角形,是的中点,∴AD CD ⊥, ∵ 平面,平面, ∴. ∵, ∴ 平面, ∵ 平面,∴平面平面.(3)假设在侧棱上存在一点,使三棱锥的体积是.【变式演练2】已知长方形ABCD中,AB=3,AD=4.现将长方形沿对角线BD折起,使AC=a,得到一个四面体A-BCD,如图所示.(1)试问:在折叠的过程中,直线AB与CD能否垂直?若能,求出相应a的值;若不能,请说明理由;(2)求四面体A-BCD体积的最大值.【解析】(2)由于△BCD面积为定值,所以当点A到平面BCD的距离最大,即当平面ABD⊥平面BCD时,该四面体的体积最大,此时,过点A在平面ABD内作AH⊥BD,垂足为H,则有AH⊥平面BCD,AH就是该四面体的高.在△ABD中,AH=AB ADBD⋅=125,S△BCD=12×3×4=6,此时V A-BCD=13S△BCD·AH=245,即为该四面体体积的最大值.点睛:翻折问题的解决中要关注翻折过程中的变量与不变量,特别是过程中哪些边和哪些角是不变的。

考点46 几何概型-2018版典型高考数学试题解读与变式(解析版)

考点46 几何概型-2018版典型高考数学试题解读与变式(解析版)

典型高考数学试题解读与变式2018版考点46 几何概型一、知识储备汇总与命题规律展望1.知识储备汇总:(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)特点:①无限性:试验中所有可能出现的结果(基本事件)有无限多个.②等可能性:试验结果在每一个区域内均匀分布.(3)几何概型的概率公式:P(A)=构成事件A的区域长度角度试验全部结果所构成的区域长度角度2.命题规律展望:几何概型是高考考查的重点与热点,以函数、不等式、数列、定积分等知识为载体,主要考查利用集合概型知识求几何概型的概率,题型为选择题、填空题,分值为5分,难度为基础题或中档题.二、题型与相关高考题解读1.与长度角度有关的几何概型1.1考题展示与解读例1 【2016高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()(A)710(B)58(C)38(D)310【命题意图探究】本题主要考查与长度有关的几何概型问题,是基础题. 【答案】B【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为40155 408-=,故选B.【解题能力要求】应用意识,运算求解能力【方法技巧归纳】求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度).然后求解,要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度、角度).1.2【典型考题变式】【变式1:改编条件】若正方形ABCD边长为4,E为四边上任意一点,则AE的长度大于5的概率等于()A. 132B.78C.38D.1812【答案】D【解析】设M N ,分别为BC 或CD 靠近点C 的四等分点,则当E 在线段,CM CN 上时, AE 的长度大于5, E 所能取到点的长度为2, 正方形的周长为16, AE ∴的长度大于5,的概率等于21=168,故选D.【变式2:改编结论】在区间[]1,5内随机取一个数m ,则方程22241m x y +=表示焦点在y 轴上的椭圆的概率是( ) A.35 B. 15 C. 14 D. 34【答案】D【解析】若方程22241m x y +=表示焦点在y 轴上的椭圆,则24m >,解得2m >, 25m << ,故方程22241m x y +=表示焦点在y 轴上的椭圆的概率是523514P -==-,故选D. 【变式3:改编问法】已知,直线和曲线有两个不同的交点,它们围成的封闭平面区域为,向区域上随机投一点,点落在区域内的概率为,若,则实数的取值范围为( )学+科网 A.B.C.D.【答案】B2.与面积有关的几何概型2.1考题展示与解读例2【2017课标1,理】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4【命题意图探究】本题主要考查利用几何图形的对称性计算几何概型,是基础题.【答案】B【解题能力要求】数形结合思想,运算求解能力【方法技巧归纳】求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.2.2【典型考题变式】【变式1:改编条件】如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自白色区域的概率为()34A.64πB.32πC.16π D. 8π 【答案】D【解析】由题意得正方形的内切圆的半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为22242418ππππ⨯-⨯-⨯⨯=,由几何概型概率公式可得所求概率为2888ππ=,选D 。

2018届高三理科数学答题模板 空间向量与立体几何

2018届高三理科数学答题模板 空间向量与立体几何

空间向量与立体几何【空间位置关系的向量证明】用向量证明线线、线面、面面的垂直、平行关系:设直线l,m的方向向量为a,b,平面α,β的法向量为u,v,则(1)线线平行l∥m a∥b a=kb;(2)线面平行l∥αa⊥u a·u=0;(3)线面垂直l⊥αa∥u a=ku;(4)面面平行α∥βu∥v u=kv;(5)面面垂直α⊥βu⊥v u·v=0。

【证明平行的其他方法】①根据线面平行的判定定理:(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量;②根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.【空间角的向量求法】异面直线所成角:(其中为异面直线a,b所成角,分别表示异面直线a,b的方向向量)。

直线AB与平面所成角:二面角的平面角:【运用数量积判断空间向量的垂直】利用数量积判断空间向量的垂直:利用数量积判断空间向量的垂直用坐标表示:利用数量积判断空间向量的垂直问题一般有两类:一类是已知条件中给出垂直,让求参数或其它向量的关系,这时我们就利用向量垂直的充要条件数量积等于零,得到关系式;一类是让判断或求证垂直的问题,那么我们就想方设法去求数量积,求得数量积为零。

【2017年高考全国Ⅲ卷,理19】如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.【答案】(1)证明略;(2 试题解析:(1)由题设可得,ABD CBD △≌△,从而AD DC =. 又ACD △是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于ABC △是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB △中,222BO AO AB +=.又AB BD =,所以2222BO DO BO AO AB BD 22+=+==, 故90DOB ∠= . 所以平面ACD ⊥平面ABC .故()()11,0,1,2,0,0,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭. 设()=x,y,z n 是平面DAE 的法向量,则00AD AE ⎧⋅=⎪⎨⋅=⎪⎩ ,,n n即0,10.2x z x y z -+=⎧⎪⎨-++=⎪⎩可取⎛⎫= ⎪ ⎪⎝⎭n .设m 是平面AEC 的法向量,则00AC AE ⎧⋅=⎪⎨⋅=⎪⎩,,m m同理可取(0,=-m .则cos ,⋅==n m n m n m . 所以二面角D -AE -C. 【考点】二面角的平面角;二面角的向量求法【点拨】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,m n 互补或相等,故有cos cos ,||θ=⋅=m m n nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.答题思路【命题意图】 高考对本部分内容的考查以能力为主,重点考查空间想象能力,线面关系、面面关系、数形结合的思想等.【命题规律】 高考试题对该部分内容考查的主要角度有两种:一种是利用立体几何的知识证明线面关系、面面关系;一种是考查学生利用空间向量解决立体几何的能力.重点对该部分内容的考查仍将以能力考查为主,要求学生有良好的空间想象能力和立体几何素养.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下两步:第一步:利用题意证得二面角为90°即可 解决本问题有两种思路,一种是证明二面角的平面角为90°,第二种方法是由线面垂直证明面面垂直,然后利用判断定理来证明结论,本题中中的结论适合用第一种方法来证明结论.第二步:建立空间直角坐标系求解二面角的余弦值 解决第二问的关键是建立合适的空间直角坐标系,以点O 为坐标原点,建立空间直角坐标系,结合点的坐标求得平面的法向量(0,=-m ,⎛⎫= ⎪ ⎪⎝⎭n ,然后利用公式cos ,⋅==n m n m n m 求得余弦值即可,注意余弦值的正负需要进行取舍. 【方法总结】(一)刻画直线与平面方向的向量1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线(2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组,s 利用数量积为零解出,,x y z 的比值即可(二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n表示平面,αβ的法向量)1、判定类(1)线面平行:a b a b ⇔ ∥∥ (2)线面垂直:a b a b ⊥⇔⊥(3)面面平行:m n αβ⇔∥∥(4)面面垂直:m n αβ⊥⇔⊥2、计算类:(1)两直线所成角:cos cos ,a ba b a b θ⋅==(2)线面角:sin cos ,a ma m a mθ⋅==(3)二面角:cos cos ,m nm n m nθ⋅==或cos cos ,m nm n m nθ⋅=-=-(视平面角与法向量夹角关系而定)(4)点到平面距离:设A 为平面α外一点,P 为平面α上任意一点,则A 到平面α的距离为A AP n d nα-⋅=,即AP在法向量n 上投影的绝对值。

2018高考备考:数学答题模板【八篇】

2018高考备考:数学答题模板【八篇】

2018高考备考:数学答题模板【八篇】导读:本文2018高考备考:数学答题模板【八篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

(1)解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h ④结合性质求解。

(2)构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

【第二篇:解三角形问题】(1)解题路线图① a 化简变形;b 用余弦定理转化为边的关系;c 变形证明。

② a 用余弦定理表示角;b 用基本不等式求范围;c 确定角的取值范围。

(2)构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

【第三篇:数列的通项、求和问题】(1)解题路线图①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

(2)构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

【第四篇:利用空间向量求角问题】(1)解题路线图①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

专题52 几何概型-高考全攻略之备战2018年高考数学理考

专题52 几何概型-高考全攻略之备战2018年高考数学理考

(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.一、几何概型1.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件发生的可能性相等.3.几何概型的概率计算公式() P AA构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4.必记结论(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型.二、随机模拟用计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法.这个方法的基本步骤是:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN=作为所求概率的近似值.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值.考向一与长度有关的几何概型求解与长度有关的几何概型的问题的关键是将所有基本事件及事件A包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件A发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件A的概率.典例1 某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是A.12B.13C.23D.35【答案】A故所求概率为201402=,选A.典例2 在区间[]0,2上随机抽取一个数x ,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭”发生的概率为 A .34 B .23 C .13D .14【答案】A【解析】区间[]0,2的长度为2,由1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭可得302x ≤≤, 所以所求事件的概率为P =33224-=.1.公共汽车在7:00到7:20内随机到达某站,李老师从家里赶往学校上班,7:15到达该站,则她能等到公共汽车的概率为A .13 B .23 C .14D .342.在长度为10的线段AB 上任取一点C (不同于A ,B ),则以AC ,BC 为半径的圆的面积之和小于58π的概率为 A .B .C .D .考向二 与面积有关的几何概型求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率. 必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.“面积比”是求几何概型的一种重要的方法.典例3 在如图所示的扇形AOB中,∠AOB=,半圆C切AO于点D,与圆弧AB切于点B,若随机向扇形AOB内投一点,则该点落在半圆C外的概率为....-,典例4 如图,已知A(a,0)(a>0),B是函数f(x)=2x2图象上的一点,C(0,2),若在矩形OABC内任取一点P,则点P落在阴影部分的概率为________.【答案】3.圆O 内有一内接正三角形,向圆O 内随机投一点,则该点落在正三角形内的概率为A B .C .D .4.已知1Ω是集合()22{,|1}x y x y +≤所表示的区域,2Ω是集合(){,|1}x y x y +≤所表示的区域,向区域1Ω内随机地投一个点,则该点落在区域2Ω内的概率为________.考向三 与体积有关的几何概型的求法用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解.典例5 一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是A.512B.23C.127D.425【答案】C5.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食落在圆锥外面”的概率是A.π14-B.π12C.π4D.π112-考向四随机模拟的应用利用随机模拟试验可以近似计算不规则图形A的面积,解题的依据是根据随机模拟估计概率()AP A=随机取的点落在中的随机取点频数的总次数,然后根据()随机取点构的成事全部件的区结果构成的区域面积域面积AP A=列等式求解.典例6 《周髀算经》中给出了勾股定理的绝妙证明,如图是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积分别称朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.设勾股形中勾股比为1若向弦图内随机抛掷3000颗图钉,则落在黄色图形内的图钉数约为A .134B .268C .402D .536【答案】C6.如图,在一不规则区域内,有一边长为1 m 的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为 375,以此试验数据为依据可以估计出该不规则图形的面积为A .83m 2B .2 m 2C .38m 2D .3 m 21.在[]0,π内任取一个实数x ,则1sin 2x ≤的概率为 A .2 3B .1 2C .13D .1 42.若任取[]0,1、x y ∈,则点(),P x y 满足y x >的概率为A .23 B .13 C .12D .343.在区间[]0,4上随机地选择一个数,p 则方程2380x px p -+-=有两个正根的概率为A .13 B .23 C .12D .144.在直角坐标系中,任取n 个满足x 2+y 2≤1的点(x ,y ),其中满足|x|+|y|≤1的点有m 个,则用随机模拟的方法得到的圆周率π的近似值为A .4mn B .4n m C .2m nD .2n m5.某校航模小组在一个棱长为6米的正方体房间内试飞一种新型模型飞机,为保证模型飞机安全,模型飞机在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为 A .127B .116C .38D .8276.如图,在矩形ABCD 中,AB BC =1,以A 为圆心、1为半径作圆弧DE ,点E 在线段AB 上,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是A .1 4B .13 C .25D .357.已知函数()2,01(e 1,1e x x f x x x⎧≤<⎪=⎨≤≤⎪⎩为自然对数的底数)的图象与直线e 、x x =轴围成的区域为E ,直线e 1、x y ==与x 轴、y 轴围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为 A .43e B .23e C .23D .2e8.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .3π 10B .3π 20C .3π110-D .3π120-9.有一根长为1米的细绳,将细绳随机剪断,则两截的长度都大于18米的概率为__________. 10.一个正方体的外接球的表面积为48π,从这个正方体内任取一点,则该点取自正方体的内切球内的概率为__________.11.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一天内随机到达,若两船同时到达则有一艘必须等待,试求这两艘轮船中有一艘在停靠泊位时必须等待的概率.12.某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域; (2)求小陈比小李至少晚5分钟到班的概率.13.已知函数()22(,f x ax bx a a b =-+∈R ).(1)若a 从集合{}0,1,2,3中任取一个元素,b 从集合{}0,1,2,3中任取一个元素,求方程()0f x =有实根的概率;(2)若b 从区间[]0,2中任取一个数,a 从区间[]0,3中任取一个数,求方程()0f x =没有实根的概率.1.(2017新课标全国Ⅰ理科)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π42.(2016新课标全国Ⅰ理科)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12 C .23D .343.(2017江苏)记函数()f x D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .4.(2016山东理科)在[1,1]-上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y -+=相交”发生的概率为.1.【答案】C2.【答案】C【解析】设AC =x ,则BC =10-x ,0<x <10,由题意πx 2+π(10-x )2<58π,得x 2-10x +21<0,得3<x <7, 故所求的概率为.3.【答案】C4.【答案】2π【解析】易知1Ω的面积1πS =,2 Ω的面积22S =, 根据几何概型可得所求事件的概率为P=2.π5.【答案】D【解析】由题意可知,正方体的体积V =8,圆锥的体积V 1=212ππ1233⨯⨯⨯=,所以“鱼食落在圆锥外面”的概率是P=1π112V V V -=-. 6.【答案】A【解析】由几何概型的概率计算公式及题意可近似得到正方形不规则图形S S =3751000,所以该不规则图形的面积大约为1000375=83(m 2).1.【答案】C【解析】若1sin 2x ≤,则在[]0,π内π5π0π66或x x ≤≤≤≤, 所以所求概率为π216π03P ⨯==-.选C .2.【答案】C【解析】根据几何概型的概率计算公式可知P =11112112⨯⨯=⨯.故选C .3.【答案】A【解析】因为方程2380x px p -+-=有两个正根,所以()243800,380p p p p ∆⎧=--≥⎪>⎨⎪->⎩所以8p ≥或 84,3p <≤ 又因为[]0,4,p ∈所以所求概率为841343P -==. 4.【答案】D5.【答案】D【解析】依题意得,模型飞机“安全飞行”的概率为(626-)3=827,故选D. 6.【答案】B【解析】连接AC ,交圆弧DE 于点M .在Rt △ABC 中,ABBC =1,所以tan ∠BAC=BC AB =,即∠BAC =π6. 要使直线AP 与线段BC 有公共点,则点P 必须在圆弧EM 上,于是所求概率为P =π16π32=.故选B . 7.【答案】A【解析】由题意,区域F 的面积为e; 区域E 的面积S =1e2011d d x x x x +⎰⎰=31e 0114|ln |33x x +=, 所以在区域F 内任取一点,则该点落在区域E 内的概率为43e. 8.【答案】D【解析】由题意,直角三角形内切圆的半径r =8151732+-=, 所以现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率P =18159π3π21208152⨯⨯-=-⨯⨯. 9.【答案】3410.【答案】【解析】因为一个正方体的外接球的表面积为48π,所以这个正方体的棱长为4,而棱长为4的正方体的体积为43,该正方体的内切球的半径为2,体积为×23,所以所求概率P =.11.【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则0≤x <24,0≤y <24.若有一艘在停靠泊位时必须等待,则|y-x|<6,如图中阴影部分所示,所以所求概率为1-=1-=.12.【解析】(1)用,x y 分别表示小陈、小李到班的时间,则][10,3010,30,x y ⎡⎤∈∈⎣⎦,所有可能结果对应坐标平面内一个正方形区域ABCD,如图所示.(2)小陈比小李至少晚到5分钟,即5x y -≥,对应区域为△BEF ,则所求概率为1151592202032△BEFABCDS P S ⨯⨯===⨯.“b a ≥或0a =”.于是此时,a b 的取值情况为()()()()()()()()()()0,0,0,1,0,2,0,3,1,2,1,3,2,3,1,1,2,2,3,3,即A 包含的基本事件数为10.故 “方程()0f x =有实根”的概率为()105168P A ==. (2)从区间[]0,2中任取一个数,b 从区间[]0,3中任取一个数,a 则试验的全部结果构成区域(){,|03,02}a b a b ≤≤≤≤, 这是一个长方形区域,其面积为236⨯=,设“方程()0f x =没有实根”为事件B ,则事件B 所构成的区域为(){,|03,02,}a b a b a b ≤≤≤≤>,其面积为162242-⨯⨯=.由几何概型的概率计算公式可得“方程()0f x =没有实根”的概率为()4263P B ==.1.【答案】B秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 2.【答案】B【解析】由题意,这是一个几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B . 【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等. 3.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--. 【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率. 4.【答案】34【解析】直线y =kx 与圆22(5)9x y -+=相交,需要满足圆心到直线的距离小于半径,即3d =<,解得3344k -<<,而[1,1]k ?,所以所求概率P =33224=.。

2018高考数学考点突破— 几何概型

2018高考数学考点突破— 几何概型

几何概型【考点梳理】1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果有无限多个. (2)等可能性:每个试验结果的发生具有等可能性. 3.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).【考点突破】考点一、与长度(角度)有关的几何概型【例1】(1)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13 B.12 C.23D.34(2)如图所示,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________.[答案] (1)B (2)13[解析] (1)如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B.(2)以A 为圆心,以AD =1为半径作圆弧交AC ,AP ,AB 分别为C ′,P ′,B ′.依题意,点P ′在上任何位置是等可能的,且射线AP 与线段BC 有公共点,则事件“点P ′在上发生”.又在Rt △ABC 中,易求∠BAC =∠B ′AC ′=π6.故所求事件的概率P ==π6·1π2·1=13.【类题通法】1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.(1)第(2)题易出现“以线段BD 为测度”计算几何概型的概率,导致错求P =12.(2)当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 【对点训练】1.设A 为圆周上一点,在圆周上等可能地任取一点与A 连接,则弦长超过半径2倍的概率是( )A.34B.12C.13D.35[答案] B[解析] 作等腰直角△AOC 和△AMC ,B 为圆上任一点,则当点B 在上运动时,弦长|AB |>2R ,∴P ==12.2.在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.[答案] 34[解析] 由直线y =kx 与圆(x -5)2+y 2=9相交,得|5k |k 2+1<3, 即16k 2<9,解得-34<k <34.由几何概型的概率计算公式可知P =34-⎝ ⎛⎭⎪⎫-342=34.考点二、与面积有关的几何概型【例2】从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2nm C.4m n D.2m n[答案] C[解析] 因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n ,所以π=4m n . 【例3】在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( ) A.14 B.316C.916D.34[答案] D[解析] 由x ,y ∈[0,4]可知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16,S 阴影=(2+4)×42=12. 故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.【类题通法】1. 与面积有关的平面图形的几何概型,解题的关键是对所求的事件A 构成的平面区域形状的判断及面积的计算,基本方法是数形结合.2.解题时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解. 【对点训练】1.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是( )A.π3 B .π C .2π D .3π[答案] D[解析] 设阴影部分的面积为S ,且圆的面积S ′=π·32=9π. 由几何概型的概率得S S ′=13,则S =3π. 2.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.12+1π C.12-1π D.14-12π[答案] D[解析] |z |=(x -1)2+y 2≤1,即(x -1)2+y 2≤1,表示的是圆及其内部,如图所示.当|z |≤1时,y ≥x 表示的是图中阴影部分.∵S 圆=π×12=π, S 阴影=π4-12×12=π-24.故所求事件的概率P =S 阴影S 圆=π-24π=14-12π.考点三、与体积有关的几何概型【例3】在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12 C.π6 D .1-π6[答案] B[解析] 设“点P 到点O 的距离大于1”为事件A .则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=23π.∴P (A )=23-23π23=1-π12.【类题通法】对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解. 【对点训练】如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M -ABCD 的体积小于16的概率为________.[答案] 12[解析] 设四棱锥M -ABCD 的高为h ,由于V 正方体=1. 则13·S ABCD ·h <16, 又S ABCD =1,∴h <12, 即点M 在正方体的下半部分, ∴所求概率P =12V 正方体V 正方体=12.。

2018届高三理科数学答题模板 圆锥曲线的离心率

2018届高三理科数学答题模板 圆锥曲线的离心率

圆锥曲线的离心率【椭圆】椭圆的第一定义:平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。

椭圆的第二定义:平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。

【椭圆的离心率】椭圆的焦距与长轴长之比叫做椭圆的离心率。

即:椭圆中离心率的求法:在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,从而求离心率或离心率的取值范围.【双曲线】双曲线第一定义:平面内与两定点F1,F2的距离的差的绝对值等于定长2a(小于|F1F2|)的点的轨迹叫双曲线,即||PF1|-|PF2||=2a(2a<|F1F2|)。

若2a=|F1F2|,则轨迹是以F1,F2为端点射线,若2a>|F1F2|,则轨迹不存在;若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

双曲线的第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(e>1)的动点的轨迹叫双曲线。

【曲线的离心率】到给定点与给定直线的距离之比,称为该双曲线的离心率。

即:离心率:【抛物线】抛物线的定义:平面内与一个定点F和一条定直线l(F∈l)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线,抛物线的定义也可以说成是:平面内与一个定点F和一条定直线l的距离的比等于1的点的轨迹.【抛物线离心率】抛物线则点到定点和到定直线的距离相等,所以离心率=1【2017年高考全国Ⅲ卷,理10】已知椭圆C:22220)1(x ya ba b+=>>的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线20bx ay ab-+=相切,则C的离心率为A B C D.1 3【答案】A【考点】椭圆的离心率的求解;直线与圆的位置关系【点拨】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a,c,代入公式e=ca;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).答题思路【命题意图】 高考对本部分内容的考查以能力为主,重点考查离心率及其范围的求解,圆锥曲线的几何意义,函数与方程的思想等.【命题规律】 高考试题对该部分内容考查的主要角度有两种:一种是求解圆锥曲线的离心率;一种利用离心率考查参数的范围.重点对该部分内容的考查仍将以能力考查为主,利用题意找到a,b, c 的关系,得出方程或者不等式即可处理该问题.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下两步:第一步:利用题意得到关于a,b,c 的方程或不等式 解决本问题的基础和关键是找到关于实数a,b,c 的齐次方程,直线与圆相切,则圆心到直线的距离为圆的直径,据此即可得出关于实数a,b,c 的齐次方程,它是解决本题的基础;第二步:解方程求得圆锥曲线的离心率 利用222a b c =+将方程整理可得2223a c =, 利用齐次方程结合离心率的定义求解圆锥曲线的离心率即可. 【方法总结】 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+,①2a :长轴长,也是同一点的焦半径的和:122PF PF a += ② 2b :短轴长 ③ 2:c 椭圆的焦距 (2)双曲线:222c b a =+①2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a -= ② 2b :虚轴长 ③ 2:c 椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。

2018届高三理科数学答题模板 根据三视图求几何体的表面积与体积

2018届高三理科数学答题模板 根据三视图求几何体的表面积与体积

根据三视图求几何体的表面积与体积【空间几何体的三视图】光线从几何体的前面向后面正投影,得到投影图,叫做几何体的正视图;光线从几何体的左面向右面正投影,得到投影图,叫做几何体的侧视图;从几何体的上面向下面正投影,得到投影图,叫做几何体的俯视图。

几何体的正视图、侧视图、俯视图统称为几何体的三视图。

【柱、锥、台和球的侧面积和体积】【几何体的表面积】(1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和【求组合体的两种方法】(1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图. (2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值。

【多面体的面积和体积公式】【旋转体的面积和体积公式】【2017年高考全国II卷,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.B.C.D.【答案】B【考点】三视图、组合体的体积【点拨】求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.答题思路【命题意图】高考对本部分内容的考查以读图、识图能力以及空间想象能力为主,重点考查根据几何体的三视图确定其体积或表面积,在考查三视图的同时,又考查了学生的空间想象能力及运算与推理能力.【命题规律】从近几年的高考试题来看,三视图是高考的热点,题型多为选择题、填空题,难度中、低档.高考对三视图的考查主要考查由三视图得出几何体的直观图,求其表面积、体积或由几何体的表面积、体积得出某些量;试题难度逐年有所增加,近几年组合体、几何体的切割及非正常状态下放置的棱锥的三视图成为高考考查的热点.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下三步:第一步:观察三视图,确定几何体形状观察三视图,确定该几何体是一个组合体,下半部分是一个圆柱,上半部分是圆柱的一半;第二步:由三视图确定相关数据根据三视图,可知圆柱的底面半径为3,下半高为4,上半部分高为6;第三步:利用公式求表面积体积借助圆柱的体积计算公式,分别求出两部分的体积,再相加.【方法总结】1.空间几何体的三视图三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形.他具体包括:(1)正视图:物体前后方向投影所得到的投影图;它能反映物体的高度和长度;(2)侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度;(3)俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度.2.三视图画法规则高平齐:主视图与左视图的高要保持平齐长对正:主视图与俯视图的长应对正宽相等:俯视图与左视图的宽度应相等3.由三视图还原几何体时,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综合起来,定整体.4.画三视图应注意的问题(1)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.(2)确定正视、侧视、俯视的方向,观察同一物体方向不同,所画的三视图也不同.5.解答三视图题目时:(1)可以从熟知的某一视图出发,想象出直观图,再验证其他视图是否正确;(2)视图中标注的长度在直观图中代表什么,要分辨清楚;(3)视图之间的数量关系:正俯长对正,正侧高平齐,侧俯宽相等.6.由三视图求几何体体积的步骤(1)应先根据三视图得到几何体的直观图;(2) 若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.7.由三视图求几何体表面积应注意的问题以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.注意多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.旋转体的表面积问题注意其侧面展开图的应用.8.从能力上来看,三视图着重考查空间想象能力,即空间形体的观察分析和抽象的能力,要求是“四会”:①会画图——根据题设条件画出适合题意的图形或画出自己想作的辅助线(面),作出的图形要直观、虚实分明;②会识图——根据题目给出的图形,想象出立体的形状和有关线面的位置关系;③会析图——对图形进行必要的分解、组合;④会用图——对图形或其某部分进行平移、翻折、旋转、展开或实行割补术;考查逻辑思维能力、运算能力和探索能力.9.易错警示(1)不能正确把握投影方向、角度致误;不能正确确定点、线的投影位置;不能正确应用实虚线区分可见线与非可见线.是解决三视图问题常出现的错误(2) 求组合体的表面积时,要忽视重叠部分不再是组合体表面积的一部分.(3)底面是梯形的四棱柱侧放时,容易和四棱台混淆.(4)当三视图都在全等的正方形内时,常通过构造正方体,把几何体放到正方体内求解.1.【2017年高考全国Ⅰ卷,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A.10B.12C.14D.16【答案】B【解析】由三视图可画出立体图该立体图平面内只有两个相同的梯形的面()S=+⨯÷=24226梯S=⨯=6212全梯故选B2.【2017年高考北京卷,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)(B)C)(D)2【答案】B【解析】试题分析:几何体是四棱锥,如图l==,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,故选B.【考点】三视图【点拨】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.3.【2017年高考浙江卷,理3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12+πB .32+πC .123+πD .323+π 【答案】A【解析】【考点】 三视图【点拨】思考三视图中·华.资*源%库 还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.【2017年高考山东卷,理13】由一个长方体和两个圆柱体构成的几何体的三视图如右图,则该几何体的体积为.【答案】【解析】试题分析:该几何体的体积为.【考点】1.三视图.2.几何体的体积.【点拨】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.3.利用面积或体积公式计算.5.【2017黑龙江大庆三模】已知某几何体的三视图如图所示,则该几何体的表面积为A. B. C. D.【答案】D【解析】由三视图可知,该几何体为三棱锥,如下图所示,根据上图计算可得三棱锥的表面积为.故选择D.6.【2017辽宁省实验中学考前模拟】某几何体的三视图如图所示,其体积为A. B. C. D.【答案】B7.【2017吉林吉大附中6月模考】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=A. B. C. D.【答案】B8.【2017黑龙江虎林最后冲刺】如图所示,这是一个几何体的三视图,则该几何体的体积为A. B. C. D.【答案】A【解析】由三视图可知:该几何体分为上下两部分,下半部分是长、宽、高分别为的长方体,上半部分为底面半径为1,高为2的两个半圆柱,故其体积为,故选A.9.【2017辽宁鞍山最后一次模】如图是某四棱锥的三试图,且该四棱锥的顶点都在同一球面上,则该四棱锥的外接球的表面积为A. B. C. D.【答案】C【解析】如图四棱锥就是题中的几何体,它是正方体中的一部分,正方体棱长为10.记正方体棱长为,四棱锥外接球半径为,则,解得,所以,故选C.11.【2017辽宁沈阳三模】已知一个三棱锥的三视图如右图所示,则该三棱锥的体积为A. 9B. 21C. 25D. 34【答案】B12.【2017内蒙古鄂尔多斯三拟】某三棱锥的三视图如图所示,则该三棱锥的体积为A. 1B.C.D.【答案】D8.【2017甘肃省肃南5月联考】若某几何体的三视图(单位:)如图所示,则此几何体的侧面积等于A. B. C. D.【答案】C【解析】由三视图知:几何体是圆锥,其中圆锥的母线长为5,底面直径为6,∴圆锥的侧面积(cm2),故选C.9.【2017黑龙江哈尔滨三模】北宋数学家沈括的主要数学成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n层,上底由个物体组成,以下各层的长、宽依次各增加一个物体,最下层(即下底)由个物体组成,沈括给出求隙积中物体总数的公式为.已知由若干个相同小球粘黏组成的几何体垛积的三视图如图所示,则该垛积中所有小球的个数为A. B. C. D.【答案】A【解析】由题意知:,故选A.13.【2017青海西宁二模】某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是等腰三角形,俯视图是正方形,则该四棱锥的体积是A. 8B.C. 4D.【答案】D14.【2016年高考全国Ⅱ卷,理6】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A.20B.24C.28D.32【答案】C【考点】三视图,空间几何体的表面积【点拨】空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积要注意各几何体重叠部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.【方法】三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.15.【2016年高考全国Ⅰ卷,理6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π【答案】A 【解析】由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的18,即该几何体是78个球,设球的半径为R ,则37428ππR 833V =⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和,即22734π2π217π84⨯⨯+⨯⨯=,故选A . 【考点】三视图及球的表面积与体积【点拨】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键.16.【2016年高考全国Ⅲ卷,理9】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(A)18+54+【答案】B【解析】 试题分析:由三视图知该几何体是一个斜四棱柱,所以该几何体的表面积为2362332354S =⨯⨯+⨯⨯+⨯⨯=+,故选B .【考点】空间几何体的三视图及表面积.17.【2016年高考四川卷,理13】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,所以,该三棱锥的体积为1122132V =⨯⨯⨯=. 【考点】三视图,几何体的体积【点拨】本题考查三视图和几何体的体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.。

考点46 几何概型-2018版典型高考数学试题解读与变式(原卷版)

考点46 几何概型-2018版典型高考数学试题解读与变式(原卷版)

1典型高考数学试题解读与变式2018版考点46 几何概型一、 知识储备汇总与命题规律展望1.知识储备汇总:(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)特点:①无限性:试验中所有可能出现的结果(基本事件)有无限多个. ②等可能性:试验结果在每一个区域内均匀分布.(3)几何概型的概率公式:P (A )=构成事件A 的区域长度角度试验全部结果所构成的区域长度角度2.命题规律展望:几何概型是高考考查的重点与热点,以函数、不等式、数列、定积分等知识为载体,主要考查利用集合概型知识求几何概型的概率,题型为选择题、填空题,分值为5分,难度为基础题或中档题.二、题型与相关高考题解读 1.与长度角度有关的几何概型1.1考题展示与解读例1 【2016高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) (A )710 (B )58 (C )38 (D )310【命题意图探究】本题主要考查与长度有关的几何概型问题,是基础题. 【解题能力要求】应用意识,运算求解能力【方法技巧归纳】求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度).然后求解,要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度、角度). 1.2【典型考题变式】【变式1:改编条件】若正方形ABCD 边长为4,E 为四边上任意一点,则AE 的长度大于5的概率等于( ) A.132 B. 78 C. 38 D. 18【变式2:改编结论】在区间[]1,5内随机取一个数m ,则方程22241m x y +=表示焦点在y 轴上的椭圆的概率是( )A. 35B.15C.14D.34【变式3:改编问法】已知,直线和曲线有两个不同的交点,它们围成的封闭平面区域为,向区域上随机投一点,点落在区域内的概率为,若,则实数的取值范围为()A. B. C. D.2.与面积有关的几何概型2.1考题展示与解读例2【2017课标1,理】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4【命题意图探究】本题主要考查利用几何图形的对称性计算几何概型,是基础题.【解题能力要求】数形结合思想,运算求解能力【方法技巧归纳】求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.2.2【典型考题变式】【变式1:改编条件】如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自白色区域的概率为()学科+网23A.64πB.32πC.16π D. 8π 【变式2:改编结论】如图,在菱形ABCD 中, 3AB =, 60BAD ∠=,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为0p ,则圆周率π的近似值为( )A. 07.74pB. 07.76pC. 07.79pD. 07.81p【变式3:改编问法】2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )学!科网A.27265mm π B. 236310mm π C. 23635mm π D. 236320mm π3.与体积有关的几何概型 3.1考题展示与解读例3 在棱长为a 的正方体中随机地取一点P ,则点P 与正方体各表面的距离都大于3a的概率为 ( ) A.127 B. 116 C. 19 D. 13【命题意图探究】本题主要考查正方体的体积与球体体积的计算及几何概型,是基础题.【解题能力要求】空间想象能力,运算求解能力【方法技巧归纳】求解与体积有关的几何概型时,关键是弄清某事件对应的几何体的体积,必要时可根据题意构造三个变量,把变量看成点的坐标,找到全部试验结果构成的空间几何体,以便求解. 3.2【典型考题变式】【变式1:改编条件】一个球形容器的半径为3cm ,里面装满纯净水,因不小心混入了1个感冒病毒,从4中任取1mL 水含有感冒病毒的概率为( ) A.13 B. 13π C. 136π D. 49π【变式2:改编结论】在球内任取一点,则点在球的内接正四面体中的概率是( ) A.B.C.D.【变式3:改编问法】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取一点M ,则四棱锥M -ABCD 的体积小于16的概率为______. 4.几何概型与其他知识的交汇 4.1考题展示与解读例4【2016高考山东理数】在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y 相交”发生的概率为 . 学&科网【命题意图探究】本题主要考查直线与圆的位置关系、几何概型,是中档题. 【解题能力要求】化归与转换思想、运算求解能力【方法技巧归纳】与其他知识交汇的几何概型问题,先用相关知识计算出满足条件的长度或面积或体积,再利用几何概型公式计算其概率. 4.2【典型考题变式】【变式1:改编条件】已知x , y 是[]01,上的两个随机数,则()P x y ,到点()10,的距离大于其到直线x=-1的距离的概率为( ) A.112 B. 1112 C. 14 D. 34【变式2:改编结论】已知P 是ABC ∆所在平面内一点, 40PB PC PA ++=,现在ABC ∆内任取一点,则该点落在PBC ∆内的概率是__________.学科+网 【变式3:改编问法】设是由轴,直线和曲线围成的曲边三角形区域,集合,若向区域上随机投一点,点落在区域内的概率为,则实数的值是( ) A.B. C. D.三、课本试题探源必修3 P142页习题3.3 B 第1题:甲、乙两艘轮船都要在某一泊位停靠6小时,假定它们在一昼夜的时间段中随机的到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率.5四.典例高考试题演练1.【广东省化州市2018届第二次模拟】如图,正方形ABCD 内得图形来自宝马汽车车标的里面部分,正方形内切圆中黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机一点,则此点取自黑色部分的概率是( )A.14 B. 4π C. 8π D. 122.【广西柳州高中、南宁市二中2018届第二次联考】老师计算在晚修19:00-20:00解答同学甲乙的问题,预计解答完一个学生的问题需要20分钟.若甲乙两人在晚修内的任意时刻去问问题是相互独立的,则两人独自去时不需要等待的概率( )学&科网 A.29 B. 49 C. 59 D. 793.【四川省南充高中2018届三检】若b , []1,1c ∈-,则方程2220x bx c ++=有实数根的概率为( ) A.23 B. 12 C. 56 D. 344.【广西桂林市十八中2018届第三次月考】若在()0,π上任取实数x ,则2sin 2x >的概率为( ) A.12 B. 22 C. 14D. 245.【辽宁省沈阳市交联体2018届上学期期中】设不等式组01{01x y ≤≤≤≤表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于1的概率是( ) A.4π B. 22π- C. 6π D. 44π- 6.【湖南师大附中2018届11月考】在区间[]0,4上随机地选择一个数p ,则方程2380x px p -+-=有两个正根的概率为( ) A.13 B. 23 C. 12 D. 147.【黑龙江省齐齐哈尔市八中2018届9月考】矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落6在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为 ( ) A. 16 B. 16.32 C. 16.34 D. 15.96 8.【广东省揭阳市第三中学2018届10月考】在区间上随机选取一个数x ,若的概率为,则实数的值为A.32B. 2C. 4D. 5 9.【2018届河南三门峡市一高11月考】在平面直角坐标系中,记抛物线2y x x =-与x 轴所围成的平面区域为M ,该抛物线与直线y kx =(0k >)所围成的平面区域为A ,向区域M 内随机抛掷一点P ,若点P落在区域A 内的概率为827,则k 的值为( ) A. 13 B. 23 C. 12 D. 3410.【2017•咸阳三模】某人从甲地去乙地共走了500m ,途经一条宽为xm 的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能被找到的概率为,则河宽为( )A .80mB .100mC .40mD .50m11.【2017•商丘二模】若不等式组表示的区域Ω,不等式(x ﹣)2+y 2表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为( ) A .114 B .10C .150D .5012.【2018届高三南京市联合体学校调研测试】欧阳修在《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止。

高考数学答题模板12个

高考数学答题模板12个

高考数学答题模板12个1500字高考数学答题模板12个1. 解方程模板:首先列出方程:a(x - m)^2 + n = b然后展开方程:ax^2 - 2amx + am^2 + n = b移项并化简:ax^2 - 2amx + am^2 + n - b = 0将方程视为一元二次方程,使用求根公式:x = (2am ±√(4a(b-n) + 4a^2m^2))/ (2a)化简并整理得最终答案。

2. 圆的相关模板:圆的标准方程:(x - a)^2 + (y - b)^2 = r^2其中,圆心为 (a, b),半径为 r。

根据题目给出的条件,代入方程中求解。

3. 三角形的模板:勾股定理:a^2 + b^2 = c^2 (三角形中,a、b 为直角边,c 为斜边)根据给出的条件,利用勾股定理求解。

4. 几何图形的模板:首先画出几何图形,标出已知的条件和需要求解的量。

根据已知条件,利用几何定理、相似性原理等,搭建等式或者比例关系,并解方程求解。

5. 求导模板:根据给出的函数关系,利用求导公式对函数进行求导。

注意计算过程的细节,利用链式法则、乘积法则等进行计算。

最后化简求解得结果。

6. 极限求解模板:对于一般的函数极限求解,可以利用函数极限的性质进行求解。

根据题目的要求,利用夹逼准则、洛必达法则等方法求解极限。

7. 统计问题模板:根据题目的要求计算平均数、方差、标准差等统计量。

注意计算过程的细节,并进行适当的整理和化简。

8. 概率问题模板:根据已知的概率模型和条件,利用概率公式计算概率。

注意计算过程的细节,并进行适当的整理和化简。

9. 计算题模板:根据题目给出的计算式和条件,一步一步进行计算。

注意计算的细节,进行适当的化简和整理。

10. 综合题模板:综合题一般包含多个题目要求,根据每个小题的要求进行分析和求解。

先分析每个小题的要求,并给出解题思路。

然后分别解答每个小题,并按照题目要求进行整理和化简。

2018届高考数学(理)热点题型:解析几何(含答案解析)

2018届高考数学(理)热点题型:解析几何(含答案解析)

解析几何热点一 圆锥曲线的标准方程与几何性质圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常考题型.【例1】(1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1D.x 2-y 23=1(2)若点M(2,1),点C 是椭圆x 216+y 27=1的右焦点,点A 是椭圆的动点,则|AM|+|AC|的最小值为________.(3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=2px(p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若直线PQ 经过焦点F ,则椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为________.答案 (1)D (2)8-26 (3)2-1解析 (1)双曲线x 2a 2-y 2b 2=1的一个焦点为F(2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±ba x ,由题意得2ba 2+b2=3,② 联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y23=1,选D.(2)设点B 为椭圆的左焦点,点M(2,1)在椭圆内,那么|BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以|AM|+|AC|≥2a-|BM|,而a =4,|BM|=(2+3)2+1=26,所以(|AM|+|AC|)最小=8-26.(3)因为抛物线y 2=2px(p >0)的焦点F 为⎝ ⎛⎭⎪⎫p 2,0,设椭圆另一焦点为E.如图所示,将x =p 2代入抛物线方程得y =±p,又因为PQ 经过焦点F ,所以P ⎝ ⎛⎭⎪⎫p 2,p 且PF⊥OF.所以|PE|=⎝ ⎛⎭⎪⎫p 2+p 22+p 2=2p , |PF|=p ,|EF|=p. 故2a =2p +p ,2c =p ,e =2c2a=2-1.【类题通法】(1)在椭圆和双曲线中,椭圆和双曲线的定义把曲线上的点到两个焦点的距离联系在一起,可以把曲线上的点到一个焦点的距离转化为到另一个焦点的距离,也可以结合三角形的知识,求出曲线上的点到两个焦点的距离.在抛物线中,利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题. (2)求解与圆锥曲线的几何性质有关的问题关键是建立圆锥曲线方程中各个系数之间的关系,或者求出圆锥曲线方程中的各个系数,再根据圆锥曲线的几何性质通过代数方法进行计算得出结果.【对点训练】已知椭圆x 24+y 22=1的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 交椭圆于A ,B 两点,以下结论:①△ABF 2的周长为8;②原点到l 的距离为1;③|AB|=83.其中正确结论的个数为( ) A.3 B.2C.1D.0答案 A解析 ①由椭圆的定义,得|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,又|AF 1|+|BF 1|=|AB|,所以△ABF 2的周长为|AB|+|AF 2|+|BF 2|=8,故①正确;②由条件,得F 1(-2,0),因为过F 1且倾斜角为45°的直线l 的斜率为1,所以直线l 的方程为y =x +2,则原点到l 的距离d =|2|2=1,故②正确;③设A(x 1,y 1),B(x 2,y 2),由⎩⎨⎧y =x +2,x 24+y 22=1,得3x 2+42x =0,解得x 1=0,x 2=-423,所以|AB|=1+1·|x 1-x 2|=83,故③正确.故选A. 热点二 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例2】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值. (1)解 由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)证明 设直线l :y =kx +b(k≠0,b ≠0), A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.【类题通法】解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.【对点训练】已知抛物线C :y 2=2px(p>0)的焦点F(1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.(1)解 因为抛物线y 2=2px(p>0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C 的方程为y 2=4x.(2)证明 ①当直线AB 的斜率不存在时,设A ⎝ ⎛⎭⎪⎫t 24,t ,B ⎝ ⎛⎭⎪⎫t 24,-t .因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A(8,t),B(8,-t),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A(x A ,y A ),B(x B ,y B ),联立得⎩⎨⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0. 根据根与系数的关系得y A y B =4b k ,因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y B x B =-12,即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32.所以y A y B =4bk=-32,即b =-8k ,所以y =kx -8k , 即y =k(x -8).综上所述,直线AB 过定点(8,0). 热点三 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例3】平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D.直线OD 与过P 且垂直于x 轴的直线交于点M. ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.(1)解 由题意知a 2-b 2a =32,可得a 2=4b 2,因为抛物线E 的焦点F ⎝ ⎛⎭⎪⎫0,12,所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1.(2)①证明 设P ⎝ ⎛⎭⎪⎫m ,m 22(m>0),由x 2=2y ,可得y′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m(x -m).即y =mx -m 22.设A(x 1,y 1),B(x 2,y 2),D(x 0,y 0).联立方程⎩⎨⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m<2+5(或0<m 2<2+5).(*)且x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因为y 0x 0=-14m. 所以直线OD 方程为y =-14mx ,联立方程⎩⎨⎧y =-14m x ,x =m ,得点M 的纵坐标y M=-14,所以点M 在定直线y =-14上.②由①知直线l 的方程为y =mx -m 22,令x =0,得y =-m 22,所以G ⎝⎛⎭⎪⎫0,-m 22,又P ⎝ ⎛⎭⎪⎫m ,m 22,F ⎝ ⎛⎭⎪⎫0,12,D ⎝ ⎛⎭⎪⎫2m 34m 2+1,-m 22(4m 2+1), 所以S 1=12·|GF|·m =(m 2+1)m4,S 2=12·|PM|·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1).所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1,则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t +2,当1t =12, 即t =2时,S 1S 2取到最大值94,此时m =22,满足(*)式,所以P 点坐标为⎝ ⎛⎭⎪⎫22,14.因此S 1S 2的最大值为94,此时点P 的坐标为⎝ ⎛⎭⎪⎫22,14.【类题通法】圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法、或利用判别式构造不等关系、利用隐含或已知的不等关系建立不等式等方法求最值、范围;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值. 【对点训练】如图,设抛物线y 2=2px(p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF|-1. (1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F(1,0), 可设A(t 2,2t),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s≠0),由⎩⎨⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又直线AB 的斜率为2tt 2-1, 故直线FN 的斜率为-t 2-12t,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t.所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M(m ,0),由A ,M ,N 三点共线得2tt 2-m =2t +2t t 2-t 2+3t 2-1, 于是m =2t 2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 热点四 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例4】已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m 3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由. (1)证明 设直线l :y =kx +b(k≠0,b ≠0), A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M =kx M +b =9bk 2+9. 于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m 3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9k x.设点P 的横坐标为x P ,由⎩⎨⎧y =-9k x ,9x 2+y 2=m2得x 2P=k 2m 29k 2+81,即x P=±km 3k 2+9.将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9).四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.【类题通法】(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法. 【对点训练】在平面直角坐标系xOy 中,过点C(2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A(x 1,y 1),B(x 2,y 2). (1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由. (1)证明 法一 当直线AB 垂直于x 轴时, y 1=22,y 2=-2 2. 因此y 1y 2=-8(定值). 当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k(x -2), 由⎩⎨⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值.法二 设直线AB 的方程为my =x -2, 由⎩⎨⎧my =x -2,y 2=4x ,得y 2-4my -8=0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值. (2)解 设存在直线l :x =a 满足条件, 则AC 的中点E ⎝⎛⎭⎪⎫x 1+22,y 12,|AC|=(x 1-2)2+y 21. 因此以AC 为直径的圆的半径r =12|AC|=12(x 1-2)2+y 21=12x 21+4, 又点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a 故所截弦长为 2r 2-d 2=214(x 21+4)-⎝⎛⎭⎪⎫x 1+22-a 2 =x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2.当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.。

2018高考数学真题 理科 11.6考点2 与面积有关的几何概型

2018高考数学真题 理科 11.6考点2 与面积有关的几何概型

第十一章 计数原理、概率、随机变量及其分布
第六节 几何概型
考点2 与面积有关的几何概型
(2018·全国Ⅰ卷(理))下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )
A .p 1=p 2
B .p 1=p 3
C .p 2=p 3
D .p 1=p 2+p 3
【解析】∵S △ABC =12AB ·AC , 以AB 为直径的半圆的面积为12π·(AB 2)2=π8AB 2,
以AC 为直径的半圆的面积为12π·(AC 2)2=π8AC 2,
以BC 为直径的半圆的面积为12π·(BC 2)2=π8
BC 2, ∴S Ⅰ=12AB ·AC ,S Ⅲ=π8BC 2-12AB ·AC , S Ⅱ=(π8AB 2+π8AC 2)-(π8BC 2+12AB ·AC)
=12AB ·AC .
∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=S ⅠS 总,p 2=S ⅡS 总. ∴p 1=p 2.
故选A .
【答案】A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题七几何概型【几何概型的定义及计算】【几何概型的概念】如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。

【几何概型的概率】一般地,在几何区域D中随机地取一点,记事件"该点落在其内部一个区域d内"为事件A,则事件A发生的概率。

说明:(1)D的测度不为0;(2)其中"测度"的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积;(3)区域为"开区域";(4)区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.【几何概型的基本特点】(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.【2017年高考全国Ⅰ卷,理2】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4【答案】B秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p<<,故选B.【考点】几何概型【点拨】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A.答题思路【命题意图】本类问题主要涉及古典概型、几何概型、对立事件概率的计算及概率与统计的综合,要求掌握利用古典概想、几何概型求概率的方法,掌握利用互斥事件概率的加法公式及对立事件的概率公式求概率的方法.【命题规律】本类问题若单独命题 ,一般以客观题形式出现,难度都不大,解答题常与随机变量的分布列及统计结合在一起进行考查.【答题模板】解答本类题目,以2017年高考题为例,一般考虑如下三步:第一步:辨别古典概型还是几何概型因为试验是等可能的,其基本事件的个数是无限个,从而是几何概型;第二步:分别计算事件A 和基本事件所包含的区域长度、面积或体积等设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.第三步:运用几何概型的计算公式计算即可得出结论.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=【方法总结】1.几何概型与古典概型的关系几何概型是古典概型的补充和推广,它要求随机试验的基本事件空间包含无穷多个元素,每个基本事件由在几何空间(一维、二维、三维)中的某一区域G 内随机而取的点的位置来确定;而“基本事件发生或出现是等可能的”这一要求,两种概率模型是高度统一的. 2.与长度或面积有关的几何概型是高考命题的热点,多以选择题或填空题的形式呈现,试题难度不大,多为容易题或中档题.重点关注:与线段长度有关的几何概型;与一元不等式有关的几何概型;与距离有关的几何概型.求解与面积有关的几何概型的注意点:求解与面积有关的几何概型时,关键是弄清某事件对应的面积以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.3.解决几何概型问题,注意把握好以下几点: (1)能正确区分古典概型与几何概型.例1:在区间[0,10]上任意取一个整数x ,则x 不大于3的概率为________. 例2:在区间[0,10]上任意取一个实数x ,则x 不大于3的概率为________.例1的基本事件总数为有限个11,不大于3的基本事件有4个,此为古典概型,故所求概率为.例2的基本事件总数为无限个,属于几何概型,所求概率为.(2)准确分清几何概型中的测度.例3:在等腰Rt△ABC 中,∠C =90°,在直角边BC 上任取一点M ,求∠CAM <30°的概率. 例4:在等腰Rt△ABC 中,∠C =90°,在∠CAB 内过点A 作射线交线段BC 于点M ,求∠CAM <30°的概率.例3中的测度定性为线段长度,当∠CAM0=30°,CM0=AC=C B.满足条件的点M等可能的分布在线段CM0上,故所求概率等于=.例4中的测度定性为角度,过点A作射线与线段CB相交,这样的射线有无数条,均匀分布在∠CAB内,∠CAB=45°.所以所求概率等于==.(3)科学设计变量,数形结合解决问题.例5:某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待时间不多于10分钟的概率.例6:某人午觉醒来,发现表停了,求表停的分钟数与实际分钟数差异不超过5分钟的概率.例5是《必修3》P136的例题,此题中的变量(单变量)可看作是时间的长度,故所求概率为=.例6容易犯解例5形成的定势思维的错误,得到错误答案=.原因在于没有认清题中的变量,本题的变量有两个:手表停的分钟数和实际分钟数,都可取[0,60]内的任意时刻,故所求概率需用到面积型几何概型,由|x-y|≤5结合线性规划知识可解,所求概率为=.通过这两道例题我们也可以看出,单变量多用线型测度,多变量需用面积(或体积)型测度.在画好几何图形后,利用数形结合思想。

1. 【2017年高考江苏卷7】记函数()f x=D.在区间[4,5]-上随机取一个数x,则x D∈的概率是.【答案】5 9【考点】几何概型概率【点拨】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.2.【2017湖南长沙一中模考二】在区间[1,2]上任选两个数x,y,则2yx<的概率为 ( )A. B. C. D.【答案】A3.【2017湖南长沙雅礼中学模考二】在如图所示的锐角三角形空地中,有一内接矩形花园(阴影部分),其一边长为x(单位:m).将一颗豆子随机地扔到该空地内,用A表示事件:“豆子落在矩形花园内”,则()P A的最大值为()A.14 B. 512 C. 12 D. 34【答案】C【解析】设矩形的另一边为y ,由三角形相似可得402,40420xy y x -==- 矩形面积为()()240404004x x x x -+-≤= ,即矩形最大面积为400 ,根据几何概型概率公式可得, ()P A 的最大值为()40011240402P A ==⨯⨯ ,故选C. 4.【2017辽宁葫芦岛协作体6月模考】已知在椭圆方程22221x y a b+=中,参数,a b 都通过随机程序在区间()0,t 上随机选取,其中0t >,则椭圆的离心率在⎫⎪⎪⎭之内的概率为( )A.12 B. 13 C. 14 D. 23【答案】A5.【2017湖北衡水押题卷】已知直角坐标原点O 为椭圆2222:1(0)x y C a b a b+=>>的中心,1F , 2F 为左、右焦点,在区间()0,2任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O : 2222x y a b +=-没有交点”的概率为( )【答案】A【解析】满足题意时,椭圆上的点()cos ,sin P a b θθ 到圆心()0,0O 的距离:()()222222cos 0sin 0d a b r a b θθ=-+->=+ ,整理可得2222222222sin sin 11,111sin 1sin 1sin 2b b e a a θθθθθ>∴=-<-=<+++ , 据此有:21,02e e <<<,题中事件的概率p ==本题选择A 选项.6.【2017江西重点中学联盟联考二】如图,在边长为2的正方形ABCD 中, M 是AB 的中点,过,,C M D 三点的抛物线与CD 围成阴影部分,则向正方形内撒一粒黄豆落在阴影部分的概率是( )A.16 B. 13 C. 12 D. 23【答案】D7.【2017湖北武汉四月调研】在长为16cm 的线段MN 上任取一点P ,以,MP NP 为邻边作一矩形,则该矩形的面积大于260cm 的概率为( )A.14 B. 12 C. 13 D. 34【答案】A【解析】本题为一维几何概型,设MP x =,则16NP x =-, (016)x <<,矩形面积为:()1660x x ->, 610x << ,则该矩形的面积大于260cm 的概率为41164=,选A. 8.【2017福建宁德三质检】已知M 是圆周上的一个定点,若在圆周上任取一点N ,连接MN ,则弦MN 的长不小于圆半径的概率是( ) A.14 B. 13 C. 12 D. 23【答案】D9.【2017湖南常德一模】如图所示,在ABC ∆内随机选取一点P ,则PBC ∆的面积不超过ABC ∆面积一半的概率是A.12 B. 14 C. 13 D. 34【答案】D【解析】 记事件{A PBC =∆的面积超过}2S, 基本事件空间是ABC ∆的面积,如图所示,事件A 的几何度量为图中阴影部分的面积(DE 是三角形的中位线), 因为阴影部分的面积是整个三角形面积的34, 所以()34P A ABC ==阴影部分的面积三角形的面积,故选D.10.【2017重庆巴蜀中学三诊】已知1Ω是集合()22{,|1}x y x y +≤所表示的区域, 2Ω是集合(){,|1}x y x y +≤所表示的区域,向区域1Ω内随机的投一个点,则该点落在区域2Ω内的概率为__________. 【答案】2π【解析】由几何概型可知2P π=.,填2π. 11.【2017河南4月质检】折纸已经成为开发少年儿童智力的一种重要工具和手段,已知在折叠“爱心”活动中,会产生如图所示的几何图形,其中四边形ABCD 为正方形, G 为线段BC 的中点,四边形AEFG 与四边形DGHI 也是正方形,连接EB , CI ,则向多边形AEFGHID 中投掷一点,则该点落在阴影部分的概率为__________.【答案】1312.【2016年高考全国Ⅰ卷,理4】某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)13(B)12(C)23(D)34【答案】B【考点】几何概型【点拨】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.13.【2016年高考全国Ⅰ卷,理4】某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)13(B)12(C)23(D)34【答案】B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402,选B.【考点】几何概型【点拨】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.14.【2016年高考全国Ⅱ卷,理10】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n【答案】C【解析】 试题分析:利用几何概型,圆形的面积和正方形的面积比为22π4S R m S R n==圆正方形,所以4πm n=.选C. 【考点】几何概型【点拨】求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.15.【2016年高考山东卷,理14】在[1,1]-上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y -+=相交”发生的概率为 . 【答案】34【考点】直线与圆位置关系;几何概型【点拨】本题是高考常考知识内容,考查几何概型概率的计算.本题综合性较强,具有“无图考图”的显著特点,涉及点到直线距离的计算.本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.。

相关文档
最新文档