组合逻辑电路的设计实验报告
组合逻辑电路实验报告
组合逻辑电路实验报告实验目的:本实验旨在通过实际操作,加深对组合逻辑电路的理解,掌握组合逻辑电路的设计与实现方法,提高实际动手能力和解决问题的能力。
实验原理:组合逻辑电路是由多个逻辑门组成的电路,其输出仅取决于当前输入的状态,与前一状态或时间无关。
常见的组合逻辑电路包括加法器、减法器、译码器、编码器等。
在实验中,我们将重点研究加法器和译码器的设计与实现。
实验内容:1. 加法器的设计与实现。
首先,我们将学习并掌握半加器和全加器的设计原理,然后利用逻辑门实现半加器和全加器电路。
通过实际搭建电路并进行测试,我们将验证加法器的正确性和稳定性。
2. 译码器的设计与实现。
其次,我们将学习译码器的工作原理和应用场景,并利用逻辑门实现译码器电路。
通过实际操作,我们将验证译码器的功能和性能,并探讨其在数字系统中的应用。
实验步骤:1. 硬件搭建。
根据实验要求,准备所需的逻辑门芯片、连接线、示波器等硬件设备,按照电路图进行搭建。
2. 逻辑设计。
根据实验要求,进行逻辑设计,确定逻辑门的连接方式和输入输出关系。
3. 电路测试。
将输入信号输入到电路中,观察输出信号的变化,记录并分析测试结果。
4. 数据处理。
对测试结果进行数据处理和分析,验证电路的正确性和稳定性。
实验结果与分析:经过实验操作和数据处理,我们成功设计并实现了加法器和译码器电路。
通过测试,我们验证了电路的正确性和稳定性,加深了对组合逻辑电路的理解和掌握。
实验总结:通过本次实验,我们进一步加深了对组合逻辑电路的理解,掌握了加法器和译码器的设计与实现方法,提高了实际动手能力和解决问题的能力。
同时,也发现了实验中存在的问题和不足之处,为今后的学习和实践提供了宝贵的经验和教训。
实验改进:在今后的实验中,我们将进一步完善实验方案,加强实验前的理论学习和准备工作,提高实验操作的规范性和准确性,以及加强实验结果的分析和总结,不断提升实验质量和效果。
结语:通过本次实验,我们深刻认识到了组合逻辑电路在数字系统中的重要性和应用价值,也认识到了实验操作的重要性和必要性。
实验报告组合逻辑电(3篇)
第1篇一、实验目的1. 理解组合逻辑电路的基本概念和组成原理;2. 掌握组合逻辑电路的设计方法;3. 学会使用逻辑门电路实现组合逻辑电路;4. 培养动手能力和分析问题、解决问题的能力。
二、实验原理组合逻辑电路是一种在任意时刻,其输出仅与该时刻的输入有关的逻辑电路。
其基本组成单元是逻辑门,包括与门、或门、非门、异或门等。
通过这些逻辑门可以实现各种组合逻辑功能。
三、实验器材1. 74LS00芯片(四路2输入与非门);2. 74LS20芯片(四路2输入或门);3. 74LS86芯片(四路2输入异或门);4. 74LS32芯片(四路2输入或非门);5. 逻辑电平转换器;6. 电源;7. 连接线;8. 实验板。
四、实验步骤1. 设计组合逻辑电路根据实验要求,设计一个组合逻辑电路,例如:设计一个3位奇偶校验电路。
2. 画出逻辑电路图根据设计要求,画出组合逻辑电路的逻辑图,并标注各个逻辑门的输入输出端口。
3. 搭建实验电路根据逻辑电路图,搭建实验电路。
将各个逻辑门按照电路图连接,并确保连接正确。
4. 测试电路功能使用逻辑电平转换器产生不同的输入信号,观察输出信号是否符合预期。
五、实验数据及分析1. 设计的3位奇偶校验电路逻辑图如下:```+--------+ +--------+ +--------+| | | | | || A1 |---| A2 |---| A3 || | | | | |+--------+ +--------+ +--------+| | || | || | |+-------+-------+||v+--------+| || F || |+--------+```2. 实验电路搭建及测试根据逻辑电路图,搭建实验电路,并使用逻辑电平转换器产生不同的输入信号(A1、A2、A3),观察输出信号F是否符合预期。
(1)当A1=0,A2=0,A3=0时,F=0,符合预期;(2)当A1=0,A2=0,A3=1时,F=1,符合预期;(3)当A1=0,A2=1,A3=0时,F=1,符合预期;(4)当A1=0,A2=1,A3=1时,F=0,符合预期;(5)当A1=1,A2=0,A3=0时,F=1,符合预期;(6)当A1=1,A2=0,A3=1时,F=0,符合预期;(7)当A1=1,A2=1,A3=0时,F=0,符合预期;(8)当A1=1,A2=1,A3=1时,F=1,符合预期。
组合逻辑电路的实验报告
一、实验目的1. 理解组合逻辑电路的基本概念和组成。
2. 掌握组合逻辑电路的设计方法。
3. 学会使用基本逻辑门电路构建组合逻辑电路。
4. 验证组合逻辑电路的功能,并分析其输出特性。
二、实验原理组合逻辑电路是一种数字电路,其输出仅取决于当前的输入,而与电路的先前状态无关。
它主要由与门、或门、非门等基本逻辑门组成。
组合逻辑电路的设计通常遵循以下步骤:1. 确定逻辑功能:根据实际需求,确定电路应实现的逻辑功能。
2. 设计逻辑表达式:根据逻辑功能,设计相应的逻辑表达式。
3. 选择逻辑门电路:根据逻辑表达式,选择合适的逻辑门电路进行搭建。
4. 搭建电路并进行测试:将逻辑门电路搭建成完整的电路,并进行测试,验证其功能。
三、实验设备1. 逻辑门电路芯片:与门、或门、非门等。
2. 连接导线。
3. 逻辑分析仪。
4. 电源。
四、实验内容及步骤1. 设计逻辑表达式以一个简单的组合逻辑电路为例,设计一个4位二进制加法器。
设输入为两个4位二进制数A3A2A1A0和B3B2B1B0,输出为和S3S2S1S0和进位C。
根据二进制加法原理,可以得到以下逻辑表达式:- S3 = A3B3 + A3'B3B2 + A3'B3'B2A2 + A3'B3'B2'B2A1 + A3'B3'B2'B2'B1A0- S2 = A2B2 + A2'B2B1 + A2'B2'B1B0 + A2'B2'B1'B0A0- S1 = A1B1 + A1'B1B0 + A1'B1'B0A0- S0 = A0B0 + A0'B0- C = A3B3 + A3'B3B2 + A3'B3'B2A2 + A3'B3'B2'B2A1 + A3'B3'B2'B2'B1A0 + A2B2 + A2'B2B1 + A2'B2'B1B0 + A2'B2'B1'B0A0 + A1B1 + A1'B1B0 +A1'B1'B0A0 + A0B0 + A0'B02. 选择逻辑门电路根据上述逻辑表达式,选择合适的逻辑门电路进行搭建。
组合逻辑电路的设计实验报告总结
组合逻辑电路的设计实验报告总结这次课程设计是一个关于组合逻辑电路的实验,通过本次实验,让我们初步了解了常用的一些元器件的作用,熟悉了基本电路的设计与连接。
同时在设计的过程中,也培养了我们发现问题,分析问题和解决问题的能力。
我们通过阅读指导书和相关资料来了解关于这方面的知识。
并且指导书上已经给我们介绍了许多电路中的元器件的功能,还给我们举了很多例子,让我们可以理解的更加清楚,并且对这些知识有了一定的掌握。
由于时间有限,所以没能够把整个实验做完,而只是做了其中的几部分。
在这些实验中,我设计的是低通滤波器和二极管的放大电路。
虽然说实验还未全部完成,但我已经从这些设计中看到了自己的不足。
以后还应该多加练习。
希望老师能给我这个机会,对我的不足之处进行指正。
这次实验的题目是关于组合逻辑电路的设计。
其中最重要的就是电路板的制作,我认为本实验的重点就是制作电路板。
虽然说第一次尝试,但是在制作过程中遇到了很多困难。
首先是焊接电路板的过程,因为第一次制作,根本就不知道应该注意什么。
而且不知道怎样去选择器件。
我想这可能是由于我们没有老师的指导。
其次就是在电路板上的印刷电路板,这是由于在电路板的制作过程中忽视了。
比如说焊接过程中会有大量的焊锡留在上面。
最后一点就是在上电路板时,忘记了给每个元器件的电阻标注上符号。
当时我就有点紧张,结果把第一个电阻给贴反了。
而且当时的焊锡还是热的。
虽然说焊接电路板这方面存在着很多问题,但在后面制作过程中也有不少收获。
这次实验的主要目的是: 1、学会画出组合逻辑电路图; 2、对基本电路的设计与连接; 3、能设计出简单的组合逻辑电路; 4、能查阅相关资料; 5、培养我们发现问题,分析问题和解决问题的能力;6、培养严谨的科学态度。
其次就是将两个组合电路连接起来,连接组合电路的时候,要保证电路运行的可靠性。
并且要遵守器件安装的规则。
同时我还明白了一个道理,那就是电路是死的,人是活的,只要你肯动脑筋,一定能设计出好的电路。
组合逻辑电路实验报告
组合逻辑电路实验报告引言组合逻辑电路是由与门、或门和非门等基本逻辑门组成的电路,它的输出仅仅依赖于当前的输入。
在本实验中,我们将学习如何设计和实现组合逻辑电路,并通过实验验证其功能和性能。
实验目的本实验的目的是让我们熟悉组合逻辑电路的设计和实现过程,掌握基本的逻辑门和组合逻辑电路的基本原理,并能够通过实验验证其功能和性能。
实验器材与预置系统本实验使用以下器材和预置系统:•模型计算机实验箱•功能切换开关•LED指示灯•逻辑门芯片实验内容1. 初级组合逻辑电路设计首先,我们将设计一个简单的初级组合逻辑电路。
根据实验要求,该电路需要实现一个2输入1输出的逻辑功能。
1.1 逻辑设计根据逻辑功能的要求,我们可以先用真值表来表示逻辑关系,然后根据真值表来进行逻辑设计。
假设我们需要实现的逻辑功能是“与门”(AND gate),其真值表如下:输入A输入B输出000010100111根据真值表,我们可以得到逻辑方程为:输出 = 输入A AND 输入B。
1.2 逻辑电路设计根据逻辑方程,我们可以得到逻辑电路的设计图如下:+--------------+------ A ---| || AND Gate |--- Output------ B ---| |+--------------+在这个设计图中,A和B为输入引脚,Output为输出引脚,AND Gate表示与门。
1.3 实验验证在实验过程中,我们可以通过观察LED指示灯的亮灭来验证逻辑电路是否正确实现了目标功能。
通过设置不同的输入A 和B,我们可以观察输出是否符合预期结果。
2. 高级组合逻辑电路设计接下来,我们将设计一个更复杂的高级组合逻辑电路。
这个电路由多个逻辑门连接而成,实现多个输入和多个输出的逻辑功能。
2.1 逻辑设计根据实验要求,我们可以先确定需要实现的逻辑功能,并用真值表来表示逻辑关系。
假设我们需要实现的逻辑功能是“四位全加器”(4-bit full adder),其真值表如下:输入A输入B输入C输出S进位输出Cout0000000110010100110110010101011100111111根据真值表,我们可以得到逻辑方程为:输出S = 输入A XOR 输入B XOR 输入C 进位输出Cout = (输入A AND 输入B) OR (输入C AND (输入A XOR 输入B))2.2 逻辑电路设计根据逻辑方程,我们可以使用多个逻辑门来实现四位全加器电路。
组合逻辑电路设计实验报告
组合逻辑电路设计实验报告1.实验题目组合电路逻辑设计一:①用卡诺图设计8421码转换为格雷码的转换电路。
②用74LS197产生连续的8421码,并接入转换电路。
③记录输入输出所有信号的波形。
组合电路逻辑设计二:①用卡诺图设计BCD码转换为显示七段码的转换电路。
②用74LS197产生连续的8421码,并接入转换电路。
③把转换后的七段码送入共阴极数码管,记录显示的效果。
2.实验目的(1)学习熟练运用卡诺图由真值表化简得出表达式(2)熟悉了解74LS197元件的性质及其使用3.程序设计格雷码转化:真值表如下:卡诺图:1010100D D D D D D G ⊕=+=2121211D D D D D D G ⊕=+=3232322D D D D D D G ⊕=+= 33D G =电路原理图如下:七段码显示:真值表如下:卡诺图:2031020231a D D D D D D D D D D S ⊕++=+++=10210102b D D D D D D D D S ⊕+=++= 201c D D D S ++=2020101213d D D D D D D D D D D S ++++= 2001e D D D D S +=2021013f D D D D D D D S +++= 2101213g D D D D D D D S +++=01213g D D D D D S +⊕+=电路原理图如下:4.程序运行与测试格雷码转化:逻辑分析仪显示波形:七段数码管显示:5.实验总结与心得相关知识:异步二进制加法计数器满足二进制加法原则:逢二进一(1+1=10,即Q由1→0时有进位。
)组成二进制加法计数器时,各触发器应当满足:①每输入一个计数脉冲,触发器应当翻转一次;②当低位触发器由1变为0时,应输出一个进位信号加到相邻高位触发器的计数输入端。
集成4位二进制异步加法计数器:74LS197MR是异步清零端;PL是计数和置数控制端;CLK1和CLK2是两组时钟脉冲输入端。
用ssi设计组合逻辑电路实验报告
用SSI设计组合逻辑电路实验报告1. 简介组合逻辑电路是一种基本的数字电路,由多个逻辑门组成,它的输出仅取决于当前输入的电平状态。
本实验将使用SSI(Small Scale Integration)电路芯片设计一个组合逻辑电路,实现特定的功能。
2. 实验设备和材料•741G08集成电路芯片•7404集成电路芯片•排针•面包板•电路连接线3. 实验步骤3.1 准备工作1.将741G08芯片插入面包板的位置1。
2.将7404芯片插入面包板的位置2。
3.将排针插入面包板的位置,作为输入和输出引脚。
3.2 电路设计1.连接电源和接地,确保芯片正常工作。
2.使用电路连接线,将输入信号连接到741G08的输入引脚。
3.使用电路连接线,将输出信号连接到7404的输入引脚。
4.使用电路连接线,将7404的输出引脚连接到外部设备或其他电路。
3.3 编程设计根据实验需求,编写相应的逻辑函数表,确定每个逻辑门的输入和输出关系。
4. 实验结果根据实验设定的逻辑函数表,通过输入不同的信号,观察输出信号的变化。
根据实验结果,验证所设计的组合逻辑电路的功能和正确性。
5. 实验分析5.1 采用的电路芯片•741G08芯片:该芯片是一个4输入与门,可以实现多个输入信号的与运算。
•7404芯片:该芯片是一个非门,可以实现输入信号的取反功能。
5.2 电路设计思路本次实验采用了组合逻辑电路的设计思路,根据实验需求设计了逻辑函数表,并通过逻辑门的组合实现了目标功能。
通过实验,我们可以验证组合逻辑电路的设计与实现方法的有效性。
6. 结论本实验通过使用SSI电路芯片,设计了一个组合逻辑电路,并通过编程验证了其正确性和功能。
通过实验我们可以深入理解组合逻辑电路的设计和工作原理,并将其应用于实际的数字电路中。
参考文献1.张三, 李四. 电子电路设计基础. 机械工业出版社, 2018.2.王五, 赵六. 数字电路设计原理. 清华大学出版社, 2017.。
组合逻辑电路设计实验报告
一、实验目的1. 理解组合逻辑电路的基本原理和组成。
2. 掌握组合逻辑电路的设计方法,包括逻辑表达式的推导和门电路的选择。
3. 学习使用逻辑门电路实现基本的逻辑功能,如与、或、非、异或等。
4. 通过实验验证组合逻辑电路的设计和功能。
二、实验原理组合逻辑电路是一种数字电路,其输出仅取决于当前的输入,而与电路的历史状态无关。
常见的组合逻辑电路包括逻辑门、编码器、译码器、多路选择器等。
三、实验设备1. 74LS系列逻辑门芯片(如74LS00、74LS02、74LS04、74LS08等)2. 逻辑电平显示器3. 逻辑电路开关4. 连接线四、实验内容1. 半加器设计(1)设计要求:实现两个一位二进制数相加,不考虑进位。
(2)设计步骤:a. 根据真值表,推导出半加器的逻辑表达式:S = A ⊕ B,C = A ∧ B。
b. 选择合适的逻辑门实现半加器电路。
c. 通过实验验证半加器的功能。
2. 全加器设计(1)设计要求:实现两个一位二进制数相加,考虑进位。
(2)设计步骤:a. 根据真值表,推导出全加器的逻辑表达式:S = A ⊕ B ⊕ Cin,Cout = (A ∧ B) ∨ (B ∧ Cin) ∨ (A ∧ Cin)。
b. 选择合适的逻辑门实现全加器电路。
c. 通过实验验证全加器的功能。
3. 译码器设计(1)设计要求:将二进制编码转换为相应的输出。
(2)设计步骤:a. 选择合适的译码器芯片(如74LS42)。
b. 根据输入编码和输出要求,连接译码器电路。
c. 通过实验验证译码器的功能。
4. 多路选择器设计(1)设计要求:从多个输入中选择一个输出。
(2)设计步骤:a. 选择合适的多路选择器芯片(如74LS157)。
b. 根据输入选择信号和输出要求,连接多路选择器电路。
c. 通过实验验证多路选择器的功能。
五、实验结果与分析1. 半加器实验结果通过实验验证,设计的半加器电路能够实现两个一位二进制数相加,不考虑进位的功能。
组合逻辑电路的设计实验报告
组合逻辑电路的设计实验报告本实验旨在通过设计和实现组合逻辑电路,加深对数字电路原理的理解,提高实际动手能力和解决问题的能力。
1. 实验目的。
本实验的主要目的是:1)掌握组合逻辑电路的设计原理和方法;2)了解组合逻辑电路的实际应用;3)培养实际动手能力和解决问题的能力。
2. 实验原理。
组合逻辑电路由多个逻辑门组成,根据输入信号的不同组合产生不同的输出信号。
常见的组合逻辑电路包括加法器、减法器、译码器、编码器等。
在本实验中,我们将重点学习和设计加法器和译码器。
3. 实验内容。
3.1 加法器的设计。
加法器是一种常见的组合逻辑电路,用于实现数字的加法运算。
我们将学习半加器和全加器的设计原理,并通过实际电路进行实现和验证。
3.2 译码器的设计。
译码器是将输入的数字信号转换为特定的输出信号的组合逻辑电路。
我们将学习译码器的工作原理和设计方法,设计并实现一个4-16译码器电路。
4. 实验步骤。
4.1 加法器的设计步骤。
1)了解半加器和全加器的原理和真值表;2)根据真值表,设计半加器和全加器的逻辑表达式;3)根据逻辑表达式,画出半加器和全加器的逻辑电路图;4)使用逻辑门集成电路,搭建半加器和全加器的电路;5)验证半加器和全加器的功能和正确性。
4.2 译码器的设计步骤。
1)了解译码器的原理和功能;2)根据输入和输出的关系,设计译码器的真值表;3)根据真值表,推导译码器的逻辑表达式;4)画出译码器的逻辑电路图;5)使用逻辑门集成电路,搭建译码器的电路;6)验证译码器的功能和正确性。
5. 实验结果与分析。
通过实验,我们成功设计并实现了半加器、全加器和译码器的电路。
经过验证,这些电路均能正常工作,并能正确输出预期的结果。
实验结果表明,我们掌握了组合逻辑电路的设计原理和方法,提高了实际动手能力和解决问题的能力。
6. 实验总结。
通过本次实验,我们深入学习了组合逻辑电路的设计原理和方法,掌握了加法器和译码器的设计和实现技术。
SSI组合逻辑电路设计实验报告
华中科技大学《电子线路设计、测试与实验》实验报告实验名称:SSI组合逻辑电路设计实验(软件)院(系):自动化学院实验成绩:指导教师:汪小燕2014 年 4 月24 日一.实验目的1.掌握用SSI(小规模数字集成电路)实现简单组合逻辑电路的方法。
2.掌握简单数字电路的安装于调试技术。
3.进一步熟悉数字万用表、示波器等仪器的使用办法。
4.熟悉用Verilog HDL描述组合逻辑电路的方法,以及EDA仿真技术。
二.实验元器件芯片74HC00 2片,74LS04 一片;若干导线,计算机;QuartusⅡ9.1集成开发环境;面包板;可编程器件实验板;专用的在系统编程电缆。
三.实验原理及参考电路组合逻辑电路的设计流程组合逻辑电路的设计步骤如下图,先根据实际的逻辑问题进行逻辑抽象,定义逻辑状态的含义,在按照给定事件因果关系列出逻辑关系真值表。
然后用给定的器件实现简化后的逻辑表达式,画出逻辑电路图。
QuartusⅡ9.1在设计好电路之后,就可以根据设计的电路,就可以在QuartusⅡ9.1集成开发环境下,通过Verilog HDL语言编程,然后生成相应的波形文件执行仿真,最后再把程序下载到老师给的DE0板子上去,从而通过板子上LED灯的亮和不亮来确定输出的高低电平。
插板在做完仿真之后,就可以根据设计的逻辑图选择相应的芯片进行插板,通过给不同输入高低电平组合来测输出电平的高低,从而检测是否符合实验要求。
四.实验内容全加器/全减器 根据给定的器件,设计一个全加器/全减器电路,使之既能实现1位加法运算又能实现1位减法运算。
当控制变量M=0时,电路实现加法运算;当M=1时,电路实现减法运算。
其框图如下所示,图中,00A B 、 分别为被加(减)数和加(减数),0S 为相加(减)的结果,0C 为进(借)位。
一、 首先,按照组合逻辑电路的设计流程,写出其真值表如下:M0A0B1C -0S0C0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 111111二、根据真值表,。
组合逻辑电路实验报告
甘肃政法学院
本科生实验报告
(组合逻辑电路的设计)
姓名:
学院:
专业:
班级:
实验课程名称:数字电子技术基础
实验日期:
指导教师及职称:
实验成绩:
开课时间:
甘肃政法学院实验管理中心印制
制的算术加法及向高位进位,而不考虑低位进位的逻辑电路,它有两个输入端,两个输出端,半加器的真值表表示为:两个一位二进制半加器的运算类似于十进制运算,区别就是二进制半加器的逢2进1,而十进制中就是逢10进1,两个一位二进制半加器的运算法则为0+0=0;1+0=1;0+1=1;1+1=0,同时向高位进1、
真值表为:
A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
根据真值表,其逻辑表达式为:S=((A′B)(AB′))′C=((AB)′)′
2、半加器的实验原理图如图1所示:
图1
3、密码锁,当A或B单独按下、AB同时按下,或者三个按键同时按下时,锁能被打开,当不符合上述条件时,将使电铃发出警报。
但无法按下时,不报警。
真值表表示为:
A B C E F
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 0
根据真值表,其逻辑表达式为:S=(A′+B)′+(A′+C)′+(B′+C)′
C=(A+C′)′+(B+C′)′
4、密码锁的原理图如图2所示:
图2
5、在连接完电路图之后,对电路的效果进行测验,得出半加器逻辑电路的。
组合逻辑电路设计实验报告
组合逻辑电路设计实验报告一、实验目的1、掌握组合逻辑电路的设计方法。
2、学会使用逻辑门实现给定的逻辑功能。
3、熟悉数字电路实验箱的使用方法。
二、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS00(四 2 输入与非门)、74LS04(六反相器)、74LS10(三 3 输入与非门)、74LS20(双 4 输入与非门)等。
3、导线若干三、实验原理组合逻辑电路是指在任何时刻,输出状态只取决于同一时刻输入信号的组合,而与电路以前的状态无关。
组合逻辑电路的设计可以通过真值表、逻辑表达式、逻辑图等步骤来完成。
首先,根据给定的逻辑问题,列出真值表。
然后,根据真值表写出逻辑表达式,并进行化简。
最后,根据化简后的逻辑表达式画出逻辑图,选择合适的芯片在实验箱上进行连接和测试。
四、实验内容1、设计一个半加器半加器有两个输入 A 和 B,两个输出 S(和)和 C(进位)。
列出真值表:| A | B | S | C ||||||| 0 | 0 | 0 | 0 || 0 | 1 | 1 | 0 || 1 | 0 | 1 | 0 || 1 | 1 | 0 | 1 |写出逻辑表达式:S = A⊕B,C = AB画出逻辑图:使用一个异或门(74LS86)和一个与门(74LS08)实现。
2、设计一个全加器全加器有三个输入 A、B 和 Cin(低位进位),两个输出 S(和)和 Cout(进位)。
列出真值表:| A | B | Cin | S | Cout |||||||| 0 | 0 | 0 | 0 | 0 || 0 | 0 | 1 | 1 | 0 || 0 | 1 | 0 | 1 | 0 || 0 | 1 | 1 | 0 | 1 || 1 | 0 | 0 | 1 | 0 || 1 | 0 | 1 | 0 | 1 || 1 | 1 | 0 | 0 | 1 || 1 | 1 | 1 | 1 | 1 |写出逻辑表达式:S = A⊕B⊕Cin,Cout = AB +(A⊕B)Cin 画出逻辑图:使用两个异或门(74LS86)、两个与门(74LS08)和一个或门(74LS32)实现。
组合逻辑电路实验报告
2.用74LS138产生逻辑函数
1)先将逻辑函数化为最小项为
2)由74LS138真值表知道, 输出端产生信号,将这四个输出端接四输入与非门74LS00
实验过程:
1.数字锁的设计
由于实验室缺少非门,用74LS00代替非门。按如下电路图连线:
通过警报输出和脉冲信号相与输出控制发光二极管闪烁警报
根据数字锁功能得出真值表
G
A
B
C
D
Yo
Ya
0
X
X
X
X
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
1
1
0
1
0
1
0
1
1
0
1
1
0
0
1
1
0
1
1
1
0
1
1
1
0
0
0
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
1
1
0
1
1
0
1
1
1
1
0
0
0
1
1பைடு நூலகம்
1
1
0
1
0
1
1
1
1
组合逻辑电路分析与设计实验报告
一、页组合逻辑电路分析与设计实验报告二、目录1.页2.目录3.摘要4.背景和现状分析4.1逻辑电路的基础概念4.2组合逻辑电路的应用领域4.3当前组合逻辑电路设计的挑战5.项目目标5.1实验目的和预期成果5.2技术和方法论5.3创新点和实际应用6.章节一:逻辑门和基本组合电路7.章节二:组合逻辑电路的设计方法8.章节三:实验操作和数据分析9.章节四:实验结果和讨论10.结论与建议三、摘要四、背景和现状分析4.1逻辑电路的基础概念逻辑电路是数字电路的基本组成部分,它们执行基本的逻辑运算,如与、或、非等。
组合逻辑电路(CLC)是由多个逻辑门组成的电路,其输出仅取决于当前输入的组合,而与电路以前的状态无关。
这种电路广泛应用于各种电子设备中,从计算机处理器到简单的电子玩具。
4.2组合逻辑电路的应用领域组合逻辑电路在现代技术中扮演着关键角色。
它们是计算机处理器、数字信号处理器、通信设备和其他许多电子系统的基础。
随着技术的进步,组合逻辑电路的设计和应用也在不断扩展,例如在、物联网和高速通信领域。
4.3当前组合逻辑电路设计的挑战尽管组合逻辑电路的设计原理相对简单,但在实际应用中面临着一系列挑战。
这些挑战包括提高电路的速度和效率、减少能耗、以及设计更复杂的逻辑功能。
随着集成电路尺寸的不断缩小,量子效应和热效应也对电路的设计和性能提出了新的挑战。
五、项目目标5.1实验目的和预期成果本实验的主要目的是深入理解和掌握组合逻辑电路的设计原理和实验方法。
预期成果包括成功设计和实现一个具有特定功能的组合逻辑电路,并对其进行性能分析。
5.2技术和方法论实验将采用现代电子设计自动化(EDA)工具进行电路设计和仿真。
实验方法将包括理论分析、电路设计、仿真测试和性能评估。
5.3创新点和实际应用本实验的创新点在于探索新的设计方法和优化技术,以提高组合逻辑电路的性能和效率。
实验成果将有望应用于实际电子产品的设计和开发,特别是在需要高性能和低功耗的场合。
组合逻辑电路实验报告
组合逻辑电路实验报告组合逻辑电路的设计组合逻辑电路的设计与分析过程相反,其步骤大致如下:(1)根据对电路逻辑功能的要求,列出真值表;(2)由真值表写出逻辑表达式;(3)简化和变换逻辑表达式,从而画出逻辑图。
组合逻辑电路的设计,通常以电路简单,所用器件最少为目标。
在前面所介绍的用代数法和卡诺图法来化简逻辑函数,就是为了获得最简的形式,以便能用最少的门电路来组成逻辑电路。
但是,由于在设计中普遍采用中、小规模集成电路(一片包括数个门至数十个门)产品,因此应根据具体情况,尽可能减少所用的器件数目和种类,这样可以使组装好的电路结构紧凑,达到工作可靠而且经济的目的。
下面举例说明设计组合逻辑电路的方法和步骤。
例1:试用2输入与非门和反相器设计一个3输入(I0、I1、I2)、3输出(L0、L1、L2)的信号排队电路。
它的功能是:当输入I0为1时,无论I1和I2为1还是0,输出L0为1,L1和L2为1;当I0为0且I1为1,无论I2为1还是0,输出L1为1,其余两个输出为0;当I2为1且另外两个均为0时,输出L2为1,其余两个输出为0。
如I0、I1、I2均为0,则L0、L1、L2也均为0。
解:(1)根据题意列出真值表如下:(2)根据真值表写出各输出逻辑表达式:(3)根据要求将上式变换为与非形式:由此可画出逻辑图,如下图所示。
该逻辑电路可用一片内含四个2输人端的与非门(图中蓝灰色部分)(比如74LS00)和另一片内含六个反相器(74LS04)的集成电路组成。
原逻辑表达式虽然是最简形式,但它需一片反相器和一片3输入端的与门才能实现(见下图),器件数和种类都不能节省,而且三输入端的与门器件不如二输入端的与非门常见。
由此可见,最简的逻辑表达式用一定规格的集成器件实现时,其电路结构不一定是最简单和最经济的。
设计逻辑电路时应以集成器件为基本单元,而不应以单个门为单元,这是工程设计与理论分析的不同之处。
例2 试设计一可逆的4位码变换器。
组合电路实验报告总结(3篇)
第1篇一、实验背景组合逻辑电路是数字电路的基础,它由各种基本的逻辑门电路组成,如与门、或门、非门等。
本实验旨在通过组装和测试组合逻辑电路,加深对组合逻辑电路原理的理解,并掌握基本的实验技能。
二、实验目的1. 理解组合逻辑电路的基本原理和组成。
2. 掌握基本的逻辑门电路的连接方法。
3. 学会使用万用表等实验工具进行电路测试。
4. 提高动手能力和实验设计能力。
三、实验内容1. 组合逻辑电路的组装实验中,我们组装了以下几种组合逻辑电路:(1)半加器:由一个与门和一个或门组成,实现两个一位二进制数的加法运算。
(2)全加器:由两个与门、一个或门和一个异或门组成,实现两个一位二进制数及来自低位进位信号的加法运算。
(3)编码器:将一组输入信号转换为二进制代码输出。
(4)译码器:将二进制代码转换为相应的输出信号。
2. 组合逻辑电路的测试使用万用表对组装好的电路进行测试,验证电路的逻辑功能是否正确。
3. 电路故障排除通过观察电路的输入输出波形,找出电路故障的原因,并进行相应的修复。
四、实验过程1. 组装电路按照实验指导书的要求,将各种逻辑门电路按照电路图连接起来。
注意连接时要注意信号的流向和电平的高低。
2. 测试电路使用万用表测试电路的输入输出波形,验证电路的逻辑功能是否正确。
3. 故障排除通过观察电路的输入输出波形,找出电路故障的原因。
例如,如果输入信号为高电平,但输出信号为低电平,可能是与非门输入端短路或者输出端开路。
五、实验结果与分析1. 半加器通过测试,发现半加器的输出波形符合预期,即当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
2. 全加器通过测试,发现全加器的输出波形符合预期,即当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
3. 编码器通过测试,发现编码器的输出波形符合预期,即当输入信号为高电平时,对应的输出端为低电平;当输入信号为低电平时,对应的输出端为高电平。
4. 译码器通过测试,发现译码器的输出波形符合预期,即当输入信号为高电平时,对应的输出端为低电平;当输入信号为低电平时,对应的输出端为高电平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竭诚为您提供优质文档/双击可除组合逻辑电路的设计实验报告
篇一:数电实验报告实验二组合逻辑电路的设计
实验二组合逻辑电路的设计
一、实验目的
1.掌握组合逻辑电路的设计方法及功能测试方法。
2.熟悉组合电路的特点。
二、实验仪器及材料
a)TDs-4数电实验箱、双踪示波器、数字万用表。
b)参考元件:74Ls86、74Ls00。
三、预习要求及思考题
1.预习要求:
1)所用中规模集成组件的功能、外部引线排列及使用方法。
2)组合逻辑电路的功能特点和结构特点.
3)中规模集成组件一般分析及设计方法.
4)用multisim软件对实验进行仿真并分析实验是否成功。
2.思考题
在进行组合逻辑电路设计时,什么是最佳设计方案?
四、实验原理
1.本实验所用到的集成电路的引脚功能图见附录
2.用集成电路进行组合逻辑电路设计的一般步骤是:
1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表;
2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式;
3)画出逻辑图;
4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。
五、实验内容
1.用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)设计一个一位全加器。
1)列出真值表,如下表2-1。
其中Ai、bi、ci分别为一个加数、另一个加数、低位向本位的进位;si、ci+1分别为本位和、本位向高位的进位。
2)由表2-1全加器真值表写出函数表达式。
3)将上面两逻辑表达式转换为能用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)实现的表达式。
4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。
按图选择需要的集成块及门电路连线,将Ai、bi、ci接逻辑开关,输出si、ci+1接发光二极管。
改变输入信号的状态验证真值表。
2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(b),一枪打兔子(c)。
规则是:打中两枪并且其中有一枪必须是打中鸟者得奖(Z)。
试用与非门设计判断得奖的电路。
(请按照设计步骤独立完成之)
五、实验报告要求:
1.画出实验电路连线示意图,整理实验数据,分析实验结果与理论值是否相等。
2.设计判断得奖电路时需写出真值表及得到相应输出表达式以及逻辑电路图。
3.总结中规模集成电路的使用方法及功能。
篇二:组合逻辑电路实验报告
课程名称:数字电子技术基础实验指导老师:樊伟敏
实验名称:组合逻辑电路实验实验类型:设计类同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)五、实验数据记录和处理七、讨论、心得
一.实验目的
1.加深理解全加器和奇偶位判断电路等典型组合逻辑
电路的工作原理。
2.熟悉74Ls00、74Ls11、74Ls55等基本门电路的功能及其引脚。
3.掌握组合集成电路元件的功能检查方法。
4.掌握组合逻辑电路的功能测试方法及组合逻辑电路
的设计方法。
二、主要仪器设备
74Ls00(与非门)74Ls55(与或非门)74Ls11(与门)导线电源数电综合实验箱
三、实验内容和原理及结果
四、操作方法和实验(:组合逻辑电路的设计实验报告)步骤
六、实验结果与分析(必填)
实验报告
(一)
一位全加器
1.1实验原理:全加器实现一位二进制数的加法,输入有被加数、加数和来自相邻低位的进位;输出有全加和与向高位的进位。
1.2实验内容:用74Ls00与非门和74Ls55与或非门设计一个一位全加器电路,并进行功能测试。
1.3设计过程:
首先列出真值表,画卡诺图,然后写出全加器的逻辑函数,函数如下:si=Ai?bi?ci-1;ci=Aibi+(Ai?bi)c
i-1
异或门可通过Ai?bi?Ab?Ab,即一个与非门;
(74Ls00),一个与或非门(74Ls55)来实现。
ci=Aibi+(Ai?bi)c
再取非,即一个非门(
i-1
?Aibi+(Ai?bi)c
i-1
,通过一个与或非门Aibi+(Ai?bi)c
i-1
,
用与非门)实现。
1.4仿真与实验电路图:仿真与实验电路图如图1所示。
图1
1
实验名称:组合逻辑实验姓名:学号:
1.5实验数据记录以及实验结果
全加器实验测试结果满足全加器的功能,真值表:
(二)
奇偶位判断器
2.1实验原理:数码奇偶位判断电路是用来判别一组代码中含1的位数是奇数还是偶数的一种组合电路。
2.2实验内容:用74Ls00与非门和74Ls55与或非门设计四位数奇偶位判断电路,并进行功能测试。
2.3设计过程:首先列出真值表,画卡诺图,然后写出电路的逻辑函数,即Z=A⊕b⊕c⊕D
,当代码中
含1的位数为奇时,输出为1,二极管发光。
然后根据所提供的元件(两个74Ls00与非门、
三个74Ls55与或非门),对该逻辑函数进行转化,使得能在现有元件的基础上实现该逻辑函数。
Z=((A⊕b)⊕(c⊕D)),可用设计三个异或门来实现,即两个74Ls00与非门(实际用到了6个独立的与非门)、三个74Ls55与或非门来实现。
2.4仿真与实验电路图:仿真与实验电路图如图2所示。
2
图2
实验名称:组合逻辑实验姓名:学号:
数据选择器
(三)
3.1
实验原理:设计一个2选1数据选择器。
2个数据输入端和1个输出端Y和1个选择输入端A。
设A取值分别0、1。