[高中数学必修一]2.3 《幂函数》测试

合集下载

高中数学必修一《幂函数》精选习题(含详细解析)

高中数学必修一《幂函数》精选习题(含详细解析)

高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。

高中数学必修1幂函数试题月考卷

高中数学必修1幂函数试题月考卷

高中数学必修1幂函数试题月考卷一、选择题(每题1分,共5分)1. 下列函数中,哪一个不是幂函数?A. y = x²B. y = x³C. y = 2xD. y = x¹/²2. 当x>0时,函数y=x^α是增函数,则α的取值范围是?A. α>0B. α<0C. α=0D. α≠03. 幂函数y=x^α的图象在第一象限,则α的取值范围是?A. α>0B. α<0C. α=0D. α≠04. 已知幂函数y=x^α在区间(0,+∞)上是减函数,则α的值是?A. α<0B. α=0C. α>0D. α=15. 若幂函数y=x^α在区间(∞,0)上单调递增,则α的值是?A. α>0B. α<0C. α=0D. α=1二、判断题(每题1分,共5分)1. 所有幂函数的图象都过原点。

()2. 幂函数的图象一定关于y轴对称。

()3. 当α为负数时,幂函数的图象在第一象限。

()4. 幂函数y=x^α中,当α为正偶数时,函数为偶函数。

()5. 幂函数y=x^α中,当α为正奇数时,函数为奇函数。

()三、填空题(每题1分,共5分)1. 幂函数y=x^α的图象在第二象限,则α的取值范围是______。

2. 当α=______时,幂函数y=x^α为常数函数。

3. 幂函数y=x^α在区间(∞,0)上单调递减,则α的取值范围是______。

4. 若幂函数y=x^α的图象关于y轴对称,则α的值是______。

5. 幂函数y=x^α的图象在第一、三象限,则α的取值范围是______。

四、简答题(每题2分,共10分)1. 简述幂函数的定义。

2. 幂函数y=x^α的图象可能经过哪些象限?3. 请举例说明什么是偶函数。

4. 请举例说明什么是奇函数。

5. 简述幂函数的性质。

五、应用题(每题2分,共10分)1. 已知幂函数y=x^α,当x=2时,y=8,求α的值。

高中数学必修1幂函数测试卷

高中数学必修1幂函数测试卷
高中数学学科测试试卷
学校:___________姓名:___________班级:___________考号:___________
题号



总分
得分
评卷人
得 分
一.单选题(共__小题)
1.已知幂函数f(x)过点 ,则f(4)的值为( )
A.
B.1
C.2
D.8
答案:A
解析:
解:设幂函数f(x)=xa,x>0,
A.
B.
C.
D.
答案:C
解析:
解:∵函数y= 的定义域是[0,+∞),
∴排除选项A和B,
又∵ ,∴曲线应该是下凸型递增抛物线.
故选:C.
幂函数y=x-1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数 的图象经过的“卦限”是( )
答案:{x|-1≤x<2}
解析:
解:设幂函数f(x)=xα,α为常数.
由于图象过点(2, ),
代入可得: ,
解得 .
∴f(x)= .
可知:函数f(x)在[0,+∞)单调递增,
∵f(a+1)<f(3),
∴0≤a+1<3,
解得-1≤a<2.
∴关于a的不等式f(a+1)<f(3)的解集是{x|-1≤x<2}.
(2)∵f(x)= ,
∴f(25)=
=
=
= ;
(3)∵f(a)= =b,
∴ ,
∴a-1=b2,
∴a= .
答案:
解:(1)设幂函数f(x)=xt,
∵图象过点(9, ),∴ ;
即32t=3-1,∴ ,

高中数学必修1 必修一幂函数专项练习题

高中数学必修1 必修一幂函数专项练习题

必修一幂函数专项练习题1. 下列命题中正确的是( )A. 当α=0时,幂函数y =x α的图象是一条直线B. 幂函数的图象都经过(0,0)、(1,1)两点C. 若幂函数y =x α的图象关于原点对称,则在定义域内y 随x 的增大而增大D. 幂函数的图象不可能在第四象限 2. 幂函数y =x 43,y =x 31,y =x -43的定义域分别是M 、N 、P ,则( )A. M ⊂N ⊂PB. N ⊂M ⊂PC. M ⊂P ⊂ND. A 、B 、C 都不对3. (湖南高考,文)函数f (x )=x 21-的定义域是( ) A. (-∞,0] B. [0,+∞) C. (-∞,0) D. (-∞,+∞)4. (唐山十县联考)函数y =(-21+x )-21的定义域是( ) A. (-∞,-1) B. (-∞,-1] C. (1,+∞) D. [1,+∞) 5. (江西高考,理)已知实数a 、b 满足等式(21)a =(31)b ,下列五个关系式: ①0<b<a ;②a<b<0;③0<a<b ;④b<a<0;⑤a =b ,其中不可能成立的有( )A. 1个B. 2个C. 3个D. 4个6. 下列函数中,是幂函数的为( ) A. y =x x B. y =3x 21 C. y =x 21+1 D. y =x 2-7. 若T1=(21)32,T 2=(51)32,T 3=(21)31,则下列关系式正确的是( ) A. T 1<T 2<T 3 B. T 3< T 1< T 2 C. T 2< T 3< T 1 D. T 2< T 1<T 38. (经典回放)对于幂函数f (x )=x 54,若0<x 1<x 2,则f (221x x +),x x f x f )()(21+的大小关系是( )A. f (221x x +)>x x f x f )()(21+ B. f (221x x +)<x x f x f )()(21+C. f (221x x +)=x x f x f )()(21+D. 无法确定9. 已知函数f (x )=x a +m 的图象经过点(1,3),又其反函数图象经过点(10,2),则f (x )的解析式为_________。

高中数学-幂函数测试题及答案详解

高中数学-幂函数测试题及答案详解

-,-,,- 若)()(12N n xx f n n∈=++,则)(x f 是( )与图像的交点坐标为 .y=设,则使幂函数的....“或③已知幂函数的图象经过点则的值等于④已知向量,则向量在向量影是已知函数若关于的方程有三个不相等的实数根,则实数的取值范围是(.幂函数的图象过点,那么函数的单调..,集合且,则实数的取值范围是f(x) =<f为偶函数,且的值,并确定的解析式;在上值域.已知幂函数)求函数设函数其中仅在处有极值,求,四值,则相应,,-,.-,,-过点,为已知函数(...为方程的解,即为方的根,即的零点,因为据零点存在性定理可得的大致区间为则使幂函数为奇函数且在若是幂函数为奇函数;,上单调递增的,;函数”且或③已知幂函数的图象经过点的值等于④已知向量,,则向量在向量方向上的投影是.”对于任意”③由幂函数的图象经过点(),所以,所以幂函数为,所以④向量方向上的投影是,是已知函数若关于的方程的取值范围是(..线的斜率联立解得,分析图像知,>0,再由图像分析知D答案:D幂函数的图象过点,那么函数的单调递增区.因为函数过点,所以,故函数解析式为,单调增区间为:,集合,则实数的取值范围是f(x) =f(x) >1;则<f.所有正确命题的序号是已知函数.的值,并确定)若,求上值域.) .已知幂函数为偶函数,且在区间)求函数)设函数,其中仅在处有极值,求)f(x)=(2,(2,=即=m=1,f(x)=.∴)1≤a<。

高中数学必修一同步练习题库:幂函数(简答题:一般)

高中数学必修一同步练习题库:幂函数(简答题:一般)

幂函数(简答题:一般)1、已知幂函数的图象经过点.(1)求函数的解析式,并画出图象;(2)证明:函数在上是减函数.2、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围.3、比较大小:1.20.5,1.20.6,0.51.2,0.61.2.4、若,求a的取值范围.5、已知幂函数f(x)=x (m∈N*).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.6、点(,2)与点分别在幂函数f(x),g(x)的图象上,问:当x为何值时,有:①f(x)>g(x)?②f(x)=g(x)?③f(x)<g(x)?7、计算下列各式:(1)(2)8、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.9、已知,且。

求满足的实数的取值范围。

10、已知函数的图象与x、y轴都无公共点,且关于y轴对称,求p的值,并画出图象。

11、已知函数为幂函数,且为奇函数.(1)求的值;(2)求函数在的值域.12、已知幂函数在上是增函数,又(),(1)求函数的解析式;(2)当时,的值域为,试求与的值.13、已知幂函数为偶函数,且在区间上是单调递增函数。

(Ⅰ)求函数的解析式;(Ⅱ)设,若能取遍内的所有实数,求实数的取值范围.14、已知幂函数f(x)=,其中−2<m<2,m∈Z,满足:(1)f(x)是区间(0,+∞)上的增函数;(2)对任意的x∈R,都有f(−x) +f(x)=0.求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.15、已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).16、已知函数f(x)=−且f(4)=.(1)求的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.17、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.18、如图,幂函数的图象关于轴对称,且与轴,轴均无交点,求此函数的解析式及不等式的解集.19、已知函数()是偶函数,且(1)求的解析式;(2)若(,)在区间上为增函数,求实数的取值范围20、已知(是常数)为幂函数,且在第一象限单调递增.(1)求的表达式;(2)讨论函数在上的单调性,并证之.21、已知函数y= (n∈Z)的图像与两坐标轴都无公共点,且其图像关于y轴对称,求n的值,并画出函数图像.22、(本题满分12分)已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记、的值域分别为集合、,若,求实数的取值范围.23、(本小题满分10分)已知幂函数在上单调递增,函数(1)求的值;(2)当时,记的值域分别为,若,求实数的取值范围.24、已知命题P:若幂函数过点,实数满足。

人教新课标版数学高一-必修1测评 2.3幂函数

人教新课标版数学高一-必修1测评 2.3幂函数

第二章 2.3(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分) 1.下列结论中,正确的是( ) A .幂函数的图象都通过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数解析: 当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确; 因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但在它的定义域上不是减函数,故选项D 不正确.答案: C2.下列幂函数中过点(0,0),(1,1)的偶函数是( )A .y =x 12B .y =x 4C .y =x -2D .y =x 13解析: 函数y =x 12定义域为(0,+∞),既不是奇函数也不是偶函数,故A 不正确;函数y =x 4是过点(0,0),(1,1)的偶函数, 故B 正确;函数y =x -2不过点(0,0),故C 不正确;函数y =x 13是奇函数,故D 不正确.答案: B3.设a =⎝⎛⎭⎫1234 ,b =⎝⎛⎭⎫1534 ,c =⎝⎛⎭⎫1212,则( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析: 由y =x 34是[0,+∞)上的增函数,∴⎝⎛⎭⎫1534 <⎝⎛⎭⎫1234 ,由y =⎝⎛⎭⎫12x 是R 上的减函数, ∴⎝⎛⎭⎫1234 <⎝⎛⎭⎫1212 .∴b <a <c . 答案: D4.已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b解析: 由幂函数的图象特征知,c <0,a >0,b >0.由幂函数的性质知,当x >1时,幂指数大的幂函数的函数值就大,则a >b . 综上所述,可知c <b <a . 答案: A二、填空题(每小题5分,共10分) 5.已知幂函数f (x )=x m2-1(m ∈Z )的图象与x 轴,y 轴都无交点,且关于原点对称,则函数f (x )的解析式是________.解析: ∵函数的图象与x 轴,y 轴都无交点, ∴m 2-1<0,解得-1<m <1; ∵图象关于原点对称,且m ∈Z , ∴m =0,∴f (x )=x -1. 答案: f (x )=x -16.已知幂函数f (x )=x α的部分对应值如下表:则不等式f (|x |)≤2的解集是解析: 由表中数据知22=⎝⎛⎭⎫12α,∴α=12,∴f (x )=x 12,∴|x |12≤2,即|x |≤4,故-4≤x ≤4. 答案: {x |-4≤x ≤4}三、解答题(每小题10分,共20分) 7.已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数.求函数f (x )的解析式.解析: ∵f (x )在区间(0,+∞)上是单调增函数,∴-m 2+2m +3>0,即m 2-2m -3<0,-1<m <3.又m ∈Z ,∴m =0,1,2,而m =0,2时,f (x )=x 3不是偶函数,m =1时,f (x )=x 4是偶函数,∴f (x )=x 4.8.已知幂函数f (x )=x a 的图象经过点A ⎝⎛⎭⎫12,2. (1)求实数a 的值;(2)用定义证明f (x )在区间(0,+∞)内的单调性. 解析: (1)∵f (x )=x a 的图象经过点A ⎝⎛⎭⎫12,2, ∴⎝⎛⎭⎫12a=2,即2-a =212,∴a =-12.(2)证明:任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)-f (x 1)=x 2-12 -x 1-12=1x 2-1x 1=x 1-x 2x 1x 2=x 1-x 2x 1x 2·(x 1+x 2).∵x 2>x 1>0,∴x 1-x 2<0,且x 1x 2·(x 1+x 2)>0, 于是f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),所以f (x )=x -12在区间(0,+∞)内是减函数.(10分)已知幂函数f (x )=(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数还经过(2,2),试确定m 的值,并求满足f (2-a )>f (a -1)的实数a 的取值范围.解析: (1)∵m ∈N *, ∴m 2+m =m ×(m +1)为偶数.令m 2+m =2k ,k ∈N *,则f (x )=x 12k =2k x ,∴定义域为[0,+∞),在[0,+∞)上f (x )为增函数. (2)∵2=,∴m 2+m =2,解得m =1或m =-2(舍去),∴f (x )=x 12,令2-a >a -1≥0,可得1≤a <32.。

人教版高中数学必修一《幂函数》综合练习题含答案

人教版高中数学必修一《幂函数》综合练习题含答案

数学1(必修)第三章 函数的应用(含幂函数)[基础训练A 组] 一、选择题1.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( )A .0个B .1个C .2个D .3个2.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点3.若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 21log 的关系是( )A .12log log a b a < B .12log log a b a =C .12log log a b a > D .12log log a b a ≤4. 求函数132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .45.已知函数)(x f y =有反函数,则方程0)(=x f ( ) A .有且仅有一个根 B .至多有一个根 C .至少有一个根 D .以上结论都不对6.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞7.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩二、填空题1.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f = 。

2.幂函数()f x 的图象过点(,则()f x 的解析式是_____________。

高一数学幂函数测试

高一数学幂函数测试

幂函数一. 选择题:1. 如图,函数32x y =的图象是( )yy0 x 0 xA Byy0 x 0 xC D2. 函数3x 与31x y =的两个图象之间( ) A. 关于原点对称 B. 关于x 轴对称C. 关于y 轴对称D. 关于直线x y =对称3. 32)2.1(-=a ,321.1=b ,219.0=c 的大小关系是( ) A. b a c <<B. b c a <<C. c a b <<D. a b c <<4. 已知幂函数21x y =)0,(≠∈∈q Z q N p 且的图象如图,则( ) A. p 为偶数,q 为奇数 B. p 为偶数,q 为负奇数 C. p 为奇数,q 为偶数D. p 为奇数,q 为负偶数y 0 x5. 如图所示,曲线为幂函数nx y =在第一象限的图象,则4321c c c c 、、、大小关系为( )A. 4321c c c c >>>B. 3412c c c c >>>C. 3421c c c c >>>D. 2341c c c c >>>y1cx y = 2c x =4c x y =3c x y =x6. 函数1-=x y 的图象可以看成由幂函数21x y =( )得到的。

A. 向左平移1个单位 B. 向右平移1个单位 C. 向上平移1个单位D. 向下平移1个单位二. 填空题:1. 幂函数)(Q n x y n ∈=,若定义域是R ,则n 的取值可以是 ;若定义域是-R ,则n 的取值可以是 ;若定义域是+R ,则n 的取值可以是 ;若定义域是0≠∈x R x 且,则n 的取值可以是 。

2. 已知)(Z x x y n ∈=:(1)图象关于y 轴对称,则n 为 ;(2)图象关于原点成对称图形,则n 为 ;(3)函数在其定义域内y 的值随x 的增大而增大,则n 为 。

湘教版高中数学必修一2.3《幂函数》同步测试

湘教版高中数学必修一2.3《幂函数》同步测试

高中数学学习材料金戈铁骑整理制作数学:2.3《幂函数》同步测试(湘教版必修1)一、填空:1.当0>n 时,幂函数n x y =的图像都通过 , 两点,在第一象限内,函数值随x 的增大而 。

2.当0<n 时,幂函数n x y =的图像都通过 这一点,在第一象限内,函数值随x 的增大而 。

3.已知)(x f y =是指数函数,若34)32(=-f ,则)21(-f = 。

4.函数1321-=-x y 的定义域为 。

5.已知310log log =+a b b a ,则=-a b b a log log 。

6.函数)1(,11≥+-=x x y 的反函数是 。

7.函数321+=-x y 的反函数是 。

8.若函数1+=x a y 的反函数的图像过点)1,21(,则a = 。

9.函数]1,0[,523421∈+⨯-=-x y x x 的最小值为 。

10.若曲线12||+=x y 与直线b y =无公共点,则b 的取值范围是 。

11.给出下列命题:(1)函数2)1(2+-=x y 在[2,3]上的值域为[3,6]; (2)函数]1,1(,3-∈=x x y 是奇函数;(3)||2x y =在)0,(-∞上是减函数,在),0(+∞上是增函数.其中正确的命题是 。

二、选择:12.函数x e y -=的图像( ) A.与x e y = 的图像关于y 轴对称; B. 与x e y = 的图像关于原点对称 C.与x e y -= 的图像关于y 轴对称; D.与x e y -= 的图像关于原点对称13.为了得到函数123-=-x y 的图像,只需要把函数x y 2=的图像上所有的点( )A.向右平移3个单位长度,再向下平移1个单位长度;B.向左平移3个单位长度,再向下平移1个单位长度;C.向右平移3个单位长度,再向上平移1个单位长度;D.向左平移3个单位长度,再向上平移1个单位长度。

二、解答题:14.求下列函数的反函数(1))21(,22≤≤-=x x x y ; (2)x e y 2=15.已知函数⎪⎩⎪⎨⎧>≤-=-)0(,)0(,12)(21x x x x f x , 解不等式1)(>x f .16.已知5)5.2(,5)5.12(==yx ,求证:111=-y x17.设cb a ,,为不等于1的正数,10≠>N N 且,且ac b =2, 求证:N c N a N c N b N b N a log log log log log log =--。

高中数学 231,232幂函数的概念 幂函数的图象和性质课时检测 湘教版必修1(1)

高中数学 231,232幂函数的概念 幂函数的图象和性质课时检测 湘教版必修1(1)

2.3 幂函数2.3.1 幂函数的概念2.3.2 幂函数的图象和性质 双基达标(限时20分钟)1.下列函数中是幂函数的是 ( ).A .y =3xB .y =(3x )2C .y =x 23D .y =2x答案 C2.下列命题正确的是 ( ).A .当α=0时,函数y =x α的图象是一条直线B .幂函数图象都过点(0,0)和(1,1)C .若幂函数y =x α是奇函数,则y =x α是定义域上的递增函数D .幂函数图象不可能出现在第四象限答案 D3.若幂函数y =x a 2-4a -9为偶函数,则a 的值不可能是 ( ).A .5B .4C .3D .1解析 函数是偶函数,则a 2-4a -9是偶数,将各选项中数值代入可知a =4 时,a 2-4a -9=-9,不符合要求.答案 B4.以下五个数:23,⎝⎛⎭⎫53-12,⎝⎛⎭⎫-233,⎝⎛⎭⎫150,(32)3,由小到大的顺序是________.解析 ∵⎝⎛⎭⎫-233<0,0<⎝⎛⎭⎫53-12<1,⎝⎛⎭⎫150=1,1<⎝⎛⎭⎫323<23,∴⎝⎛⎭⎫-233<⎝⎛⎭⎫53-12<⎝⎛⎭⎫150<⎝⎛⎭⎫323<23.答案 ⎝⎛⎭⎫-233<⎝⎛⎭⎫53-12<⎝⎛⎭⎫150<⎝⎛⎭⎫323<235.已知幂函数y =f (x )的图象过点⎝⎛⎭⎫2,22,则此函数的解析式为________.解析 设f (x )=x α,把⎝⎛⎭⎫2,22代入得α=-12,∴f (x )=x -12.答案 f (x )=x -126.比较下列各组数中两个数的大小. (1)⎝⎛⎭⎫-23-1与⎝⎛⎭⎫-35-1;(2)⎝⎛⎭⎫2334与⎝⎛⎭⎫3423.解 (1)∵幂函数y =x -1在(-∞,0)上是单调递减的, 又-23<-35, ∴⎝⎛⎭⎫-23-1>⎝⎛⎭⎫-35-1.(2)∵函数y 1=⎝⎛⎭⎫23x为递减函数,又34>23,∴⎝⎛⎭⎫2323>⎝⎛⎭⎫2334.又∵函数y 2=x 23在(0,+∞)上是递增函数,且34>23,∴⎝⎛⎭⎫3423>⎝⎛⎭⎫2323,∴⎝⎛⎭⎫3423>⎝⎛⎭⎫2334.综合提高 (限时25分钟)7.下列不等式在a <b <0的条件下不能成立的是 ( ).A .a -1>b -1B .a 13<b 13C .b 2<a 2D .a -23>b -23解析 分别构造函数y =x -1,y =x 13,y =x 2,y =x -23,其中函数y =x -1,y=x 2在(-∞,0)上为递减函数,而y =x 13,y =x -23为(-∞,0)上的递增函数,从而D 项成立.答案 D8.设a ∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x a 的定义域为R 且为奇函数的所有a 的值为 ( ).A .1,3B .-1,1C .-1,3D .-1,1,3 解析 当a =1时,函数y =x 定义域是R 且是奇函数;当a =3时,函数y = x 3定义域是R 且是奇函数.答案 A9.已知函数y =(a 2-5a +7)x a (a 为常数)为幂函数,则a =________. 解析 由题知a 2-5a +7=1,∴a =2或3.答案 2或310.函数f (x )=1x m 2+m +1(m ∈N *)的定义域是________,奇偶性为________,单调递减区间是________.解析 ∵m 2+m =m (m +1),m ∈N *,其值必然是正偶数,∴m 2+m +1必然是正奇数,故f (x )的定义域为{x |x ∈R 且x ≠0},f (x )是奇函 数,在(-∞,0)上单调递减,在(0,+∞)上单调递减.答案 (-∞,0)∪(0,+∞) 奇函数 (-∞,0)和(0,+∞)11.已知函数y =(a 2-3a +2)x a 2-5a +5(a 为常数).(1)a 为何值时,此函数为幂函数?(2)a 为何值时,此函数为正比例函数?(3)a 为何值时,此函数为反比例函数?解 (1)由题意,得a 2-3a +2=1,即a 2-3a +1=0.解得a =3±52,即a =3±52时,此函数为幂函数. (2)由题意,得⎩⎪⎨⎪⎧a 2-5a +5=1,a 2-3a +2≠0. 解得a =4,即a =4时,此函数为正比例函数.(3)由题意得⎩⎪⎨⎪⎧a 2-5a +5=-1,a 2-3a +2≠0. 解得a =3,即a =3时,此函数为反比例函数.12.(创新拓展)已知幂函数y =x 3m -9 (m ∈N +)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N +,∴m =1,2. 又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1, ∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减, ∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.。

2023-2024学年高一上数学必修一:幂函数及函数的应用(附答案解析)

2023-2024学年高一上数学必修一:幂函数及函数的应用(附答案解析)

第1页共8页2023-2024学年高中数学必修一:幂函数及函数的应用
一、选择题(每小题5分,共40分)
1.下列所给出的函数中,是幂函数的是(B )
A .y =-x 3
B .y =x -3
C .y =2x 3
D .y =x 3-1
解析:由幂函数的定义可得y =x -3是幂函数.
2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是(B
)
A .310元
B .300元
C .290元
D .280元
解析:由题意可知,收入y 是销售量x 的一次函数,设y =ax +b (a ≠0),将(1,800),
(2,1300)代入得a =500,b =300.故y =500x +300,当x =0时,y =300.
3.若f (x )为偶函数,且当x ≥0时,f (x )≥2,则当x ≤0时有
(B )
A .f (x )≤2
B .f (x )≥2
C .f (x )≤-2
D .f (x )≥-2
解析:当x ≤0时,-x ≥0,f (x )=f (-x ),所以f (-x )≥2,所以当x ≤0时,f (x )≥2.故选B.
4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a
的图象可能是(C )。

高中数学(必修一)第三章 函数的概念与性质幂函数 练习题

高中数学(必修一)第三章 函数的概念与性质幂函数 练习题

高中数学(必修一)第三章 函数的概念与性质幂函数 练习题(含答案解析)学校:___________姓名:___________班级:_____________一、单选题1.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x = 2.已知幂函数n y x =在第一象限内的图像如图所示,若112,2,,22n ⎧⎫∈--⎨⎬⎩⎭则与曲线1C 、2C 、3C、4C 对应的n 的值依次为( )A .12-、2-、2、12B .2、12、2-、12-C .2、12、12-、2-D .12-、2-、12、23.四个幂函数在同一平面直角坐标系中第一象限内的图象如图所示,则幂函数12y x =的图象是( )A .①B .①C .①D .①4.下列函数中,既是偶函数,又满足值域为R 的是( ) A .y =x 2B .1||||y x x =+C .y =tan|x |D .y =|sin x |5.如下图所示曲线是幂函数y =xα在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12 D ..2,12,-2,-126.若幂函数()f x 经过点,且()8f a =,则=a ( )A .2B .3C .128D .5127.函数()0a y x x =≥和函数()0xy a x =≥在同一坐标系下的图像可能是( )A .B .C .D .8.式子)A .1633- B .1633--C .1633+D .1633-+9.对,a b ∈R ,记{},max ,,a a ba b b a b ≥⎧=⎨<⎩,函数()}2maxf x x -=的图象可能是( )A .B .C .D .二、解答题10.设函数()222f x x x =-+,[],1,x t t t R ∈+∈(1)求实数t 的取值范围,使()y f x =在区间[],1t t +上是单调函数; (2)求函数()f x 的最小值. 11.已知幂函数()223m m y x m --=∈Z 的图像与x 、y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的草图.12.已知幂函数()()25mf x m m x =+-在()0,∞+上单调递增.(1)求()f x 的解析式;(2)若()31f x x k >+-在[1,1]-上恒成立,求实数k 的取值范围. 13.设函数()f x 是定义在R 上的奇函数,且()21x ax b f x x +=++.(1)求实数a ,b 的值;(2)当x ∈⎤⎦,不等式()()22f x mx x ≥-有解,求实数m 的取值范围.三、填空题14.若点(2,4)P ,0(3,)Q y 均在幂函数()y f x =的图象上,则实数0y =_____.15.已知实数a ,b 满足等式a 12=b 13,下列五个关系式:①0<b<a<1;①-1<a<b<0;①1<a<b ;①-1<b<a<0;①a =b.其中可能成立的式子有________.(填上所有可能成立式子的序号) 16.函数3223125y x x x =--+在[0,3]上的最大值等于__________.17.定义{}()max ,()a ab a b b a b ≥⎧=⎨<⎩,则{}2max 1,2x x x +--的最小值为_________.参考答案:1.C【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0【详解】对选项A,则有:0x≠对选项B,则有:0x>对选项C,定义域为:R对选项D,则有:0x≥故答案选:C2.C【解析】本题可根据幂函数的图像与性质并结合题目中的图像即可得出结果.【详解】由幂函数的图像与性质可知:在第一象限内,在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,故曲线1C、2C、3C、4C对应的n的值依次为:2、12、12-、2-,故选:C.【点睛】本题考查幂函数的图像与性质,在第一象限内,幂函数在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,考查数形结合思想,是简单题.3.D【解析】由幂函数12y x=为增函数,且增加的速度比较缓慢作答.【详解】幂函数12y x=为增函数,且增加的速度比较缓慢,只有①符合.故选:D.【点睛】本题考查幂函数的图象与性质,属于基础题.4.C【分析】由函数的值域首先排除ABD,对C进行检验可得.【详解】选项A,B中函数值不能为负,值域不能R,故AB错误,选项D值域为[]0,1,故D也错误,那么选项C为偶函数,当3(,)22xππ∈时,tan tany x x==,值域是R,因此在定义域内函数值域为R,故选:C5.B【分析】在图象中,作出直线1x m =>,根据直线x m =和曲线交点的纵坐标的大小,可得曲线1C ,2C ,3C ,4C 相应的α应是从大到小排列.【详解】在图象中,作出直线1x m =>,直线x m =和曲线的交点依次为,,,A B C D , 所以A B C D y y y y >>>,所以C A B D m m m m αααα>>>, 所以A B C D αααα>>>,所以可得曲线1C ,2C ,3C ,4C 相应的α依次为 2,12,-12,-2 故选:B【点睛】本题主要考查幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 6.A【解析】设幂函数()f x x α=,代入点求出3α=,即可求解.【详解】设()f x x α=,因为幂函数()f x 经过点,所以f α==, 解得3α=,所以()38f a a ==,解得2a =, 故选:A 7.C【分析】按照x y a =和a y x =的图像特征依次判断4个选项即可.【详解】()0a y x x =≥必过(0,0),()0xy a x =≥必过(0,1),D 错误;A 选项:由x y a =图像知1a >,由a y x =图像可知01a <<,A 错误;B 选项:由x y a =图像知01a <<,由a y x =图像可知1a >,B 错误;C 选项:由x y a =图像知01a <<,由a y x =图像可知01a <<,C 正确. 故选:C. 8.A【分析】利用根式与分数指数幂互化和指数幂运算求解.【详解】231322333⎛⎫=-÷ ⎪⎝⎭, 21131326223333--=-=-,故选:A 9.A【分析】由()}2maxf x x -=2x -的较大者,在同一平面直角坐标系中作出两个函数的图象,取图象较高者即可得()f x 的图象.【详解】y =2y x 都是偶函数,当0x >时,12y x =在()0,∞+上单调递增,2yx 在()0,∞+上单调递减,当1x =2x -=在同一平面直角坐标系中作出y =和2yx 的图象,如图:()}2maxf x x -=2x -的较大者,所以()f x 图象是两个图象较高的,故选:A.10.(1)(][),01,-∞⋃+∞;(2)()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩【解析】(1)由题可得11t +≤或1t ≥,解出即可;(2)讨论对称轴在区间[],1t t +的位置,根据单调性即可求出. 【详解】(1)()f x 的对称轴为1x =,要使()y f x =在区间[],1t t +上是单调函数, 则11t +≤或1t ≥,解得0t ≤或1t ≥, 即t 的取值范围为(][),01,-∞⋃+∞;(2)()f x 的对称轴为1x =,开口向上,则当1t ≥时,()f x 在[],1t t +单调递增,()()2min 22f x f t t t ∴==-+,当11t t <<+,即01t <<时,()()min 11f x f ==,当11t +≤,即0t ≤时,()f x 在[],1t t +单调递减,()()2min 11f x f t t ∴=+=+,综上,()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩. 11.1m = ;草图见祥解【分析】根据幂函数的性质,可得到2230m m --<,再有图像关于y 对称,即可求得m 的值. 【详解】因为幂函数223()m m y x m Z --=∈的图像与坐标轴无交点,所以2230m m --<,解得13m -<<,又因为m Z ∈,所以0,1,2m =,因为图像关于y 对称,所以幂函数为偶函数, 当0m =时,则3y x -=为奇函数,不满足题意; 当1m =时,则4y x -= 为偶函数,满足题意; 当2m =时,则3y x -=为奇函数,不满足题意; 综上所述:1m = 草图(如下)【点睛】本题考查幂函数的性质和图像,需熟练掌握幂函数的性质和图像. 12.(1)2()f x x = (2)(),1-∞-【分析】(1)根据幂函数的定义和()f x 的单调性,求出m 得值; (2)结合第一问求出的2()f x x =,利用函数的单调性,解决恒成立问题. (1)()f x 是幂函数,则251m m +-=,2m ∴=或-3,()f x 在(0,)+∞上单调递增,则2m =所以2()f x x =; (2)()31f x x k >+-即2310x x k -+->,要使此不等式在[1,1]-上恒成立,只需使函数()231g x x x k =-+-在[1,1]-上的最小值大于0即可.①()231g x x x k =-+-在[1,1]-上单调递减,①()()11min g x g k ==--, 由10k -->,得1k <-.因此满足条件的实数k 的取值范围是(),1-∞-. 13.(1)0a =,0b = (2)1,4⎛⎤-∞ ⎥⎝⎦【分析】(1)根据定义在R 上的奇函数的性质以及定义即可解出;(2)由(1)可知,()21x f x x =+,根据分离参数法可得()()22112m x x ≤+-,再求出()()22112x x +-的最大值,即得解. (1)因为函数()f x 是定义在R 上的奇函数,所以()00f a ==,()()1111022f f b b-+-=+=+-,解得0b =,检验可知函数()21xf x x =+为奇函数,故0a =,0b =. (2)由(1)可知,()21x f x x =+,而x ∈⎤⎦,所以 ()()22f x mx x ≥-可化为()()22112m x x ≤+-,设[]23,4t x =∈,则()()()()[]222219121224,1024x x t t t t t ⎛⎫+-=+-=--=--∈ ⎪⎝⎭,而不等式()()22f x mx x ≥-有解等价于()()22max11412m x x ⎡⎤⎢⎥≤=+-⎢⎥⎣⎦,故实数m 的取值范围为1,4⎛⎤-∞ ⎥⎝⎦.14.9【分析】设出幂函数的解析式,代入P 点坐标求得这个解析式,然后令3x =求得0y 的值.【详解】设幂函数为()f x x α=,将()2,4P 代入得24,2αα==,所以()2f x x =,令3x =,求得2039y ==.【点睛】本小题主要考查幂函数解析式的求法,考查幂函数上点的坐标,属于基础题. 15.①①①【分析】在同一坐标系中画出函数121y x =,132y x =的图象,结合函数图象,进行动态分析可得,当01b a <<<时,当1a b <<时,当1a b ==时,1132a b =可能成立,10b a -<<<、10a b -<<<时,12a 没意义,进而即可得到结论【详解】10b a -<<<、10a b -<<<时,12a 没意义,①①不可能成立;’画出121y x =与132y x =的图象(如图), 已知1132x x m ==,作直线y m =, 若0m =或1,则a b =,①能成立; 若01m <<,则01b a <<<,①能成立;若1m ,则1a b <<,①能成立,所以可能成立的式子有①①①,故答案为①①①.【点睛】本题主要考查幂函数的图象与性质,意在考查灵活应用所学知识解答问题的能力,以及数形结合思想的应用,属于中档题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.16.5【分析】对3223125y x x x =--+求导,根据单调性求最大值.【详解】3223125y x x x =--+,则266126(2)(1)y x x x x '=--=-+当2x >时,0y '>,此时函数3223125y x x x =--+单调递增;当12x -<<时,0y '<,此时函数3223125y x x x =--+单调递减;当1x <-时,0y '>,此时函数3223125y x x x =--+单调递增.则函数3223125y x x x =--+在区间[0,2]内单调递减,在区间[2,3]内单调递增当0x =时,5y =,当3x =时,4y =-所以函数3223125y x x x =--+在0x =处取到最大值5所以函数3223125y x x x =--+在区间[0,3]上的最大值是5.故答案为:5.17.1【分析】根据题干中max 函数的定义,可以得到所求函数为分段函数,求出每一段的最小值,取其中的最小值即可 【详解】令212x x x +-=-得:3x =-或1x =,由题意可得:{}2221,3max 1,22,311,1x x x x x x x x x x x ⎧+-≤-⎪+--=--<<⎨⎪+-≥⎩,画出函数对应的图像如下:由图可得:当1x =时,{}2max 1,2x x x +--最小,代入解析式可得:最小值为1故答案为:1。

高中数学幂函数测试题(含答案)

高中数学幂函数测试题(含答案)

第 1 1 页页高中数学幂函数测试题(含答案)一、选择题1、等于A.A.--B. B.--C.D.2、已知函数f (x )= = 则则f (2+log232+log23)的)的值为A. B. C. D.3、在f1f1((x )=x =x ,,f2f2((x )=x2=x2,,f3f3((x )=2x =2x,,f4f4((x )=log x 四个函数中,四个函数中,x1x1x1>>x2x2>>1时,能使[f (x1x1))+f +f((x2x2))]<f ()成立的函数是A .f1.f1((x )=x B.f2B.f2((x )=x2C.f3=x2C.f3((x )=2x D.f4D.f4((x )=log x4、若函数y (2-log2x)(2-log2x)的值域是的值域是的值域是(-,0),(-,0),(-,0),那么它的定义域是那么它的定义域是那么它的定义域是( () A.(0,2)B.(2,4)C.(0,4)D.(0,1)5、下列函数中,值域为R+R+的是()的是()(A )y=5 y=5 ((B )y=( )1y=( )1--x (C )y= y= ((D )y=6、下列关系中正确的是()(A )()()()(B )()()()(C )()()()(D )()()()7、设f:xy=2x 是AB 的映射,已知集合B={0,1,2,3,4},B={0,1,2,3,4},则则A 满足()A.A={1A.A={1,,2,4,8,16}B.A={016} B.A={0,,1,2,log23}C.A {0,1,2,log23}D.C.A {0,1,2,log23} D.不存在满足条件的集合不存在满足条件的集合8、已知命题p :函数的值域为R ,命题q :函数是减函数。

若p 或q 为真命题,为真命题,p p 且q 为假命题,则实数a 的取值范围是A .a1B a1 B..a2C a2 C..12D 12 D..a1或a29、已知函数f(x)=x2+lg(x+ ),f(x)=x2+lg(x+ ),若若f(a)=M,f(a)=M,则则f(-a)=() A2a2-MBM-2a2C2M-a2Da2-2M1010、若函数、若函数 的图象与x 轴有公共点,则m 的取值范围是()A .m -1B 1 B.-.-.-10C 10 C 10 C..m1D m1 D..011111、方程、方程 的根的情况是 ()A .仅有一根.仅有一根B B B.有两个正根.有两个正根C .有一正根和一个负根.有一正根和一个负根D D D.有两个负根.有两个负根1212、若方程、若方程 有解,则a 的取值范围是 ()A .a0或a -8B 8 B..a0C .D D..二、填空题: 1313、已知、已知f (x )的定义域为[)的定义域为[00,1],则函数y=f y=f[[log log ((3-x )]的定义域是]的定义域是__________. __________.1414、若函数、若函数f(x)=lg(x2+ax f(x)=lg(x2+ax--a -1)1)在区间[在区间[在区间[2,+2,+2,+]上单调递]上单调递增,则实数a 的取值范围是的取值范围是_________. _________.1515、已知、已知1616、设函数、设函数 的x 取值范围取值范围..范围是。

高中数学-幂函数测试题及答案详解

高中数学-幂函数测试题及答案详解
A.a<-1 B.|a|≤1
C.|a|<1 D.a≥1
二.填空题
7.已知幂函数 ,若则 ,则 的取值范围是
8.函数 是偶函数,且在 是减函数,整数 取值的集合为
9.函数 的定义域是.
三.解答题
10.函数 为偶函数且在区间 上是单调减函数.
(1)求函数 ;
(2)讨论 的奇偶性.
答案:
1.答案D
解析对于幂函数,当0<x<1时,幂指数大的函数值小.故f(x)<g(x)<h(x).
AБайду номын сангаас{x|0<x≤ } B.{x|0≤x≤4}
C.{x|- ≤x≤ } D.{x|-4≤x≤4}
3.(2014·四川文)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()
A.d=ac B.a=cd
C.c=ad D.d=a+c
4.函数f(x)=|x| (n∈N*,n>9)的图像可能是()
∴函数为偶函数,图像关于y轴对称,故排除A,B.
令n=18,则f(x)=|x| ,当x≥0时,f(x)=x ,由其在第一象限的图像知选C.
5.答案C
解析因为log a=-log2a,且f(x)是偶函数,所以f(log2a)+f(log a)=2f(log2a)=2f(|log2a|)≤2f(1),即f(|log2a|)≤f(1).又函数在[0,+∞)上单调递增,所以0≤|log2a|≤1,即-1≤log2a≤1,解得 ≤a≤2.
2.答案D
解析由f( )= ⇒α= ,故f(|x|)≤2⇔|x| ≤2⇔|x|≤4,故其解集为{x|-4≤x≤4}.
3.答案B
解析由已知得5a=b,10c=b,∴5a=10c,5d=10,∴5dc=10c,则5dc=5a,∴dc=a,故选B.

高一数学幂函数试题及答案

高一数学幂函数试题及答案

高一数学幂函数试题及答案一、选择题(每题4分,共40分)1. 函数y=x^3的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D2. 函数y=x^2的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D3. 函数y=x^(-1)的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D4. 函数y=x^2+1的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D5. 函数y=x^3-3x+2的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D6. 函数y=x^2+2x+1的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D7. 函数y=x^(-2)+3的图象是()A. 一条直线C. 一个曲面D. 一个曲线答案:D8. 函数y=x^3-6x^2+11x-6的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D9. 函数y=x^4-4x^2+4的图象是()A. 一条直线B. 一个平面C. 一个曲面答案:D10. 函数y=x^5-5x^3+10x的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D二、填空题(每题4分,共20分)11. 函数y=x^2的图象关于____对称。

答案:y轴12. 函数y=x^3的图象关于____对称。

答案:原点13. 函数y=x^(-1)的图象在第一象限和第三象限。

答案:正确14. 函数y=x^2+1的图象与x轴无交点。

答案:正确15. 函数y=x^3-3x+2的图象有一个拐点。

答案:正确三、解答题(每题10分,共40分)16. 求函数y=x^2-4x+4的最小值。

解:函数y=x^2-4x+4=(x-2)^2,当x=2时,函数取得最小值0。

答案:017. 求函数y=x^3-3x+2的零点。

解:令y=0,得到x^3-3x+2=0,解得x=1或x=-2。

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)

苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(满分150分,时间120分钟)班级姓名评价一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )2(3x +1)的定义域为()A.-13,+∞B.-∞,C.-13D.-13,12.设a =log 42.4,b =log 32.9,c =log 32.4,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.c >b >aD.a >c >b3.已知0<m <n <1,则指数函数①y =m x 和②y =n x 的图象为()A.B. C. D.4.已知函数f (x )=log 3(x -1),若f (a )=2,则实数a 的值为()A.3B.8C.9D.105.函数y 2+2的增区间为()A.(-∞,0)B.(-∞,-1]C.[-1,+∞)D.[-2,+∞)6.不论a 为何值,函数y =(a -1)2x-2恒过一定点,则这个定点为()A.1,B.1C.-1,D.-17.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致是()A. B. C. D.8.春末夏初,南京玄武湖公园荷花池中的荷花枝繁叶茂,已知每天新长出的荷叶覆盖水面的面积是前一天的两倍,若荷叶20天可以完全长满荷花池水面,则当荷叶刚好覆盖水面面积18时,荷叶已生长了()A.4天B.15天C.17天D.18天二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列函数中定义域和值域相同的是()A.y = 23B.y = 15C.y =-xD.y =3x10.已知函数f (x )=log 3( -2), >2,3 -1, ≤2,则下列各式正确的是()A.f (5)=1B.f (f (5))=1C.f (3)=9D.f (f (3))=1311.设函数f (x )=(3-2 ) -1, ≤1,, >1,其中a >0且a ≠1,下列关于函数f (x )的说法正确的是()A.若a =2,则f (log 23)=3B.若f (x )在R 上是增函数,则1<a <32C.若f (0)=-1,则a =32D.函数f (x )为R 上的奇函数12.已知函数f (x )=lo g 12x ,下列四个命题正确的是()A.函数f (|x |)为偶函数B.若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C.函数f (-x 2+2x )在(1,3)上为增函数D.若0<a <1,则|f (1+a )|<|f (1-a )|三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分,第二个空3分.13.若幂函数y =f (x 2,则f .14.设函数f (x )=lg x ,若f (2x )<f (2),则实数x 的取值范围是.15.函数f (x )=a 2-x-1(a >0,a ≠1)恒过定点,当0<a <1时,f (x 2)的增区间为.16.已知函数f (x )=x 2+log 2|x |,则不等式f (x -1)-f (1)<0的解集为.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)比较下列各组数的大小:(1)1.8,2.2;(2)0.70.8,0.80.7.18.(12分)已知关于x 的方程5x=15- 有负根,求实数a 的取值范围.19.(12分)已知函数f (x )=log a (-x 2+2x +3)(其中a >0且a ≠1)的值域为[-2,+∞).(1)求实数a 的值;(2)求函数f (x )的单调区间.20.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数.(1)求实数a 的值;(2)求函数g (x )=f (x )+1-2 ( )在0.21.(12分)设函数f (x )=lg (ax )·lg2.(1)当a =0.1时,求f (1000)的值;(2)若f (10)=10,求实数a 的值;(3)若对一切正实数x 恒有f (x )≤98,求实数a 的取值范围.22.(12分)为了预防流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y (单位:mg )与t 时间(单位:h )成正比,药物释放完毕后,y 与t之间的函数关系式为y 2+0.9 +(a 为常数),其图象如图所示,根据图中提供的信息回答下列问题:(1)从药物释放开始,求每立方米空气中的含药量y 与时间t 之间的函数关系式.(2)据测定,当空气中每立方米的含药量降低到116mg 以下时,学生方可进入教室,那么从药物释放开始至少需要经过多少小时,学生才可以回到教室?(第22题)参考答案1.D2.A3.C4.D5.B6.C7.A8.C9.BC 10.ABD 11.AB 12.ABD 13.-214.(0,1)15.(2,0)[0,+∞)16.(0,1)∪(1,2)17.(1)1.82.2(2)0.70.8<0.80.718.方程5x=15- 有负根,即0<15-<1,解得a <4,即a ∈(-∞,4)19.(1)a =12(2)函数f (x )的减区间为(-1,1],增区间为[1,3)20.(1)a =0(2)g (x )=x +1-2 ,x ∈0t =1-2 ,t ∈[0,1],则g (t )=t +1- 22=-12(t -1)2+1,所以12≤g (t )≤121.(1)f (1000)=-14(2)f (10)=lg (10a )·lg 100=(1+lg a )(lg a -2)=(lg a )2-lg a -2=10,即(lg a )2-lg a -12=0,解得lg a =4或-3,即a =104或10-3(3)因为对一切正实数x 恒有f (x )≤98,所以lg (ax )·lg 2≤98在(0,+∞)上恒成立,即(lg a +lg x )(lg a -2lg x )≤98,即2(lg x )2+lg a ·lg x -(lg a )2+98≥0在(0,+∞)上恒成立.因为x >0,所以lg x ∈R .由二次函数的性质可知,Δ=(lg a )2-8-(lg )2+,所以(lg a )2≤1,则-1≤lg a ≤1,所以110≤a ≤1022.(1)当0≤t ≤1时,设y =kt ,将点(0.1,1)代入得k =10,所以y =10t ,再将点(0.1,1)代入y 2+0.9 +,得a =-0.1,所以y 0≤ ≤1,2+0.9 -0.1, >1(2)2+0.9 -0.1≤116,所以( 2+0.9 -0.1),所以5(t 2+0.9t -0.1)≥4,所以10t 2+9t -9≥0,所以t ≥35或t ≤-32(舍去),所以学生要在0.6h 后才可以进入教室。

必修一 幂函数 练习题附答案

必修一 幂函数 练习题附答案

必修一 幂函数 练习题附答案一、选择题1.下列函数不是幂函数的是( ) A .y =2x B .y =x -1 C .y =x D .y =x 2[答案] A[解析] y =2x 是指数函数,不是幂函数. 2.下列函数定义域为(0,+∞)的是( ) A .y =x -2B .y =x12 C .y =x -13D .y =x-12[答案] D3.若幂函数y =x n ,对于给定的有理数n ,其定义域与值域相同,则此幂函数( )A .一定是奇函数B .一定是偶函数C .一定不是奇函数D .一定不是偶函数[答案] D[解析] 由y =x12知其定义域与值域相同,但是非奇非偶函数,故能排除A 、B ;又y =x 3的定义域与值域相同,是奇函数,故排除C.4.如果幂函数y =(m 2-3m +3)x m 2-m -2的图象不过原点,那么( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1[答案] B[解析] 幂函数y =(m 2-3m +3)x m 2-m -2中,系数m 2-3m +3=1,∴m =2,1.又∵y =(m 2-3m +3)xm 2-m -2的图象不过原点,故m 2-m -2≤0,即-1≤m ≤2,故m =2或1.5.函数y =x a ,y =x b ,y =x c 的图象如图所示,则实数a 、b 、c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b[答案] A6.函数y =x α与y =αx (α∈{-1,12,2,3})的图象只可能是下面中的哪一个( )[答案] C[解析] 直线对应函数y =x ,曲线对应函数为y =x -1,1≠-1.故A错;直线对应函数为y =2x ,曲线对应函数为y =x12 ,2≠12.故B 错;直线对应函数为y =2x ,曲线对应函数为y =x 2,2=2.故C 对;直线对应函数为y =-x ,曲线对应函数为y =x 3,-1≠3.故D 错.7.(2010·安徽文,7)设a =(35)25 ,b =(25) 35 ,c =(25)25,则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .c >a >bD .b >c >a[答案] A[解析] 对b 和c ,∵指数函数y =(25)x 单调递减.故(25)35 <(25)25 ,即b <c .对a 和c ,∵幂函数.y =x25在(0,+∞)上单调递增,∴(35)25 >(25)25,即a >c ,∴a >c >b ,故选A.8.(2012~2013山东省临沂市临球县实验中学高一教学阶段性测试题)幂函数的图象过点(2,4),则它的单调增区间为( )A .(-∞,1)B .(-∞,0)C .(0,+∞) ) D.(-∞,+∞)[答案] C[解析] 设f (x )=x α,代入(2,4)得x =2,f (x )=x 2, ∴f (x )=x 2在(0,+∞)为增函数,故选C. 二、填空题9.(2012~2013湖南益阳模拟)已知幂函数y =f (x )过点(3,127),则f (14)=________.[答案] 8[解析] 设幂函数为y =x α,将点(3,127)代入,得127=3α,则α=-32,所以f (14)=(14)- 32=8.10.若函数y =(m 2-m -1)x m 2-2m -1是幂函数 ,且是偶函数,则m =________.[答案] -1[解析] 由题意,知m 2-m -1=1, 解得m =2,或m =-1.当m =2时,m 2-2m -1=-1,函数为y =x -1,不是偶函数;当m =-1时,m 2-2m -1=2,函数为y =x 2,是偶函数,满足题意.11.设f (x )=(m -1)xm 2-2,如果f (x )是正比例函数,那么m =________;如果f (x )是反比例函数,那么m =________;如果f (x )是幂函数,那么m =________.[答案] ±3 -1 2[解析] 若f (x )是正比例函数,则⎩⎪⎨⎪⎧m 2-2=1,m -1≠0,即m =±3;若f (x )是反比例函数,则⎩⎪⎨⎪⎧m 2-2=-1,m -1≠0,即m =-1;若f (x )是幂函数,则m -1=1,即m =2.12.(2012~2013海南中学高一测试)下列函数中,在(0,1)上单调递减,且为偶函数的是________.①y =x12 ;②y =x 4;③y =x -2;④y =-x13 .[答案] ③[解析] ①中函数y =x12不具有奇偶性;②中函数y =x 4是偶函数,但在[0,+∞)上为增函数;③中函数y =x -2是偶函数,且在(0,+∞)上为减函数;④中函数y =-x13是奇函数.故填③.三、解答题13.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时. (1)f (x )是正比例函数; (2)f (x )是反比例函数; (3)f (x )是二次函数;(4)f (x )是幂函数.[解析] (1)若f (x )是正比例函数,则-5m -3=1,解得m =-45,此时m 2-m -1≠0,故m =-45.(2)若f (x )是反比例函数,则-5m -3=-1,解得m =-25,即m 2-m -1≠0,故m =-25.(3)若f (x )是二次函数,则-5m -3=2,即m =-1,此时m 2-m -1≠0,故m =-1.(4)∵f (x )是幂函数,故m 2-m -1=1,即时m 2-m -2=0,解得m =2或m =-1.14.已知函数y =xn 2-2n -3(n ∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,求n 的值,并画出函数的图象.[解析] 因为图象与y 轴无公共点,所以n 2-2n -3≤0,又图象关于y 轴对称,则n 2-2n -3为偶数,由n 2-2n -3≤0得,-1≤n ≤3,又n ∈Z .∴n =0,±1,2,3当n =0或n =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意.当n =-1或n =3时,有y =x 0,其图象如图A.当n=1时,y=x-4,其图象如图B. ∴n的取值集合为{-1,1,3}.15.已知f(x)=x -n2+2n+3(n=2k,k∈Z)的图象在[0,+∞)上单调递增,解不等式f(x2-x)>f(x+3).[解析]依题意,得-n2+2n+3>0,解得-1<n<3.又∵n=2k,k∈Z,∴n=0或2.当n=0或2时,f(x)=x3,∴f(x)在R上单调递增,∴f(x2-x)>f(x+3)可转化为x2-x>x+3.解得x<-1或x>3,∴原不等式的解集为(-∞,-1)∪(3,+∞).16.(2012~2013温州联考)已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.[解析](1)∵f(x)在区间(0,+∞)上是单调增函数,∴-m2+2m+3>0,即m2-2m-3<0,作出函数y=m2-2m-3的图象(图略)观察图象知-1<m<3.又m∈Z,∴m=0,1,2,而m=0,2时,f(x)=x3不是偶函数,m=1时,f(x)=x4是偶函数.∴f(x)=x4.(2)由(1)知f(x)=x4,则g(x)=x2+2x+c=(x+1)2+(c-1).∵g(x)>2对任意的x∈R恒成立,∴g(x)min>2,且x∈R,则c-1>2,解得c>3.故实数c的取值范围是(3,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2。

3幂函数
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号
填在题后的括号内(每小题5分,共50分). 1.下列函数中既是偶函数又是 ( ) A . B . C . D . 2.函数2
-=x y
在区间]2,2
1
[上的最大值是
( )
A .
4
1 B .1-
C .4
D .4- 3.下列所给出的函数中,是幂函数的是
( )
A .3
x y -=
B .3
-=x
y
C .3
2x y = D .13
-=x y 4.函数3
4x y =的图象是
( )
A .
B .
C .
D .
5.下列命题中正确的是
( )
A .当0=α时函数α
x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点
C .若幂函数αx y =是奇函数,则α
x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限
6.函数3
x y =和3
1x y =图象满足
( )
A .关于原点对称
B .关于x 轴对称
C .关于y 轴对称
D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足
( )
A .是奇函数又是减函数
B .是偶函数又是增函数
C .是奇函数又是增函数
D .是偶函数又是减函数 8.函数2422
-+=
x x y 的单调递减区间是( )
A .]6,(--∞
B .),6[+∞-
C .]1,(--∞
D .),1[+∞-
9. 如图1—9所示,幂函数α
x y =在第一象限的图象,




比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα C .134210αααα<<<<< D .142310αααα<<<<<
10. 对于幂函数5
4)(x x f =,若210x x <<,则
)2(
21x x f +,
2)
()(21x f x f +大小关系是( ) A .)2(21x x f +>2)
()(21x f x f + B . )2(
21x x f +<2
)
()(21x f x f + C . )2(
21x x f +=2
)
()(21x f x f +
D . 无法确定
二、填空题:请把答案填在题中横线上(每小题6分,共24分)。

11.函数的定义域是 。

12.的解析式是 。

13.9
42
--=a a
x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .
14.幂函数),*,,,()1(互质n m N k n m x y m
n
k
∈=-图象在一、二象限,不过原点,则n m k ,,的
奇偶性为 .
三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) 。

15.(12分)比较下列各组中两个值大小
(1)
16.(12分)已知幂函数 轴对称,试确定的解析式。

17.(12分)求证:函数3
x y =在R 上为奇函数且为增函数。

18.(12分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系.
.
6543212
1
323
23
12
3
---======x y x y x y x y x y x y );();()(;);();()(
(A ) (B ) (C) (D ) (E) (F )
19.(14分)由于对某种商品开始收税,使其定价比原定价上涨x 成(即上涨率为10x
),涨
价后,商品卖出个数减少bx 成,税率是新定价的a 成,这里a,b 均为正常数,且a <10,设
售货款扣除税款后,剩余y 元,要使y 最大,求x 的值.
20.(14分)利用幂函数图象,画出下列函数的图象(写清步骤)。

(1).
参考答案(8)
一、CCBAD DCADA 二、11. ; 12.
)0()(3
4≥=x x x f ; 13.5; 14.k m ,为奇数,n 是偶数;
三、15. 解:(1)+∞<<<+∞=7.06.00),0(11
6
上是增函数且在函数x y
11
611
67.06
.0<∴ (2)函数),0(3
5+∞=在x y 上增函数且89.088.00<<
.)89.0()88.0(,89.088.089
.088.03
53535353
53
5-<-∴->-∴<∴即
16. 解:由.3,1,1320
3222⎪⎩
⎪⎨
⎧∈-=--≤--Z m m m m m m 得是偶数
.)(1,)(3140-===-=x x f m x x f m 时解析式为时解析式为和
17.解: 显然)()()(33x f x x x f -=-=-=-,奇函数;
令21
x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-,
其中,显然021
<-x x ,
2
2
212
1x x x x ++=2
22214
3)21(x x x ++
,由于0)21(221≥+x x ,04322≥x ,
且不能同时为0,否则021
==x x ,故04
3)2
1(22221>++x x x 。

从而0)()(21<-x f x f . 所以该函数为增函数. 18.解:六个幂函数的定义域,奇偶性,单调性如下:
(1)
3
2
3
x x y =
=定义域[0,,既不是奇函数也不是偶函数,在[0,是增函数;
.)
,0(1
6),0(1
5),0(1
4),0[3),0[221332
23232
33
1上减函数函数,在既不是奇函数也不是偶定义域为)(是减函数;
是奇函数,在定义域)(是减函数;是偶函数,在定义域)(是增函数;
,是偶函数,在定义域为)(是增函数;,是奇函数,在定义域为)(+∞==+∞==+∞=
=+∞==+∞==+--+--+-R x
x y UR R x x y UR R x x y R x x y R x x y
通过上面分析,可以得出(1)
(A ),(2)
(F ),(3)
(E),(4)
(C ),(5)
(D),(6)
(B ).
19.解:设原定价A 元,卖出B 个,则现在定价为A(1+
10
x
), 现在卖出个数为B (1-
10bx
),现在售货金额为A(1+10x ) B (1-10
bx )=AB(1+10x )(1-10bx ),
应交税款为AB(1+
10
x )(1-10bx
)·10a ,
剩余款为y = AB (1+
10x
)(1-10
bx ))101(a -= AB )1101100)(101(2+-+--x b x b a , 所以b
b x )1(5-=时y 最大 要使y 最大,x 的值为b
b x )1(5-=.
20.解:(1)1)
1(1
11211
2222
22
2
++=+++=
++++=x x x x x x x y 把函数2
1
,x y =
的图象向左平移1个单位,
再向上平移1个单位可以得到函数1
22
222++++=x x x x y 的图象。

(2)1)
2(3
5--=-x y 的图象可以由3
5-
=x y 图象向右平移2个单位,再向下平移
1个单位而得到.图象略。

相关文档
最新文档