第三章水环境化学-第四节水质模型介绍
环境化学复习总结全部(戴树桂)
第三章:水环境化学第一节:天然水的基本特征及污染物的存在形式1.水中八大离子:K+,Ca+,Na+,Mg+,HCO3-,NO3-,Cl-,SO4(2-)2.气体在水中的溶解度服从Henry定律:一种气体在液体中的溶解度正比于液体所接触的该种气体的分压。
溶解度【X(aq)】=K H×p G K H为气体一定温度下Henry定律常数,p G分压3.氧在水中的溶解度CO2的溶解度P150页4.:BOD(生化需氧量):在一定体积水中有机物降解所需消耗的氧的量。
BOD5=DO1-DO55.碳酸平衡P152-P157计算题重点区域★★★6.水中污染物的分布和存在形态:A.有机污染物:农药(有机氯、磷,氨基甲酸醇),多氯联苯PCBs,卤代脂肪烃,醚类,单环芳香族化合物,苯酚类和甲酚类,钛酸酯类,多环芳烃PAH,亚硝胺和其他化合物B.金属污染物:镉,汞,铅,砷,铬,铜,锌,铊等7.优先污染物:有毒物质品种繁多,在众多的污染物中筛选出潜在危险大的作为优先研究和控制对象。
8.水中的营养元素:N,P,C,O和微量元素9.水体富营养化:生物所需的N,P等营养物质大量进入湖泊,河口等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,鱼类及其他生物大量死亡的现象。
10.N/P>100,贫营养化;N/P<10,富营养化;第二节:水中无机污染物的迁移转化一,颗粒物与水之间的迁移:1水中颗粒物类别:矿物微粒和黏土矿物,金属水合氧化物,腐殖质,水体悬浮沉积物2.水环境中胶体颗粒物的吸附作用类别:表面吸附,离子交换吸附,专属吸附。
3.表面吸附:胶体具有巨大的比表面积和表面能,因此固液界面存在表面吸附作用,属于物理吸附。
4.离子交换吸附:环境中大部分胶体带负电荷,容易吸附阳离子,在吸附过程中,胶体每吸附一部分阳离子,同时也放出等量的其他阳离子。
5.专属吸附:除了化学键的作用外,尚有加强的憎水键和范德华力或氢键在起作用。
第三章水质模型
水质模型
1.1 水质模型的主要问题和分类
一、 问题 (1)为了避免一条河流产生厌氧而使水质保持 在给定的条件,应当在何处建立污水处理厂? 多大规模、什么样的处理效率才能保证溶解 氧浓度不低于水质标准? (2)为了合理地利用某一区域的水资源,该区 域应当发展何种工业以及多大规模的工业才 能使该地区的水资源得以充分利用并保证水 资源不至于受污染。
C0 1 k1x
Q
u
2019/11/25
25
例题2:河流的零维模型
• 有一条比较浅而窄的河流,有一段长1km的河段,稳 定排放含酚废水1.0m3/s;含酚浓度为200mg/L,上游 河水流量为9m3/s,河水含酚浓度为0,河流的平均流 速为40km/d,酚的衰减速率常数k=2 1/d,求河段出 口处的河水含酚浓度为多少?
• 水质模型的分类:
1、按水域类型:河流、河口、河网、湖泊 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、
多重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型
水质模型按 空间维数分类
零维水质模型 一维水质模型 二维水质模型 三维水质模型
2019/11/25
0
水质模型
(4)按水质组分是否作为随机变量,可分为随 机模型和确定性模型。
水质模型还可以按模型的其他特征分类。如 按水质组分的迁移特性,可分为对流模型, 扩散模型和对流-扩散模型。按水质组分的 转化特性可分为纯迁移模型,纯反应模型和 迁移-反应模型等。
0
水质模型
1.2 水质模型的发展及建立步骤
一、水质模型的发展过程 第一阶段(1925-1965年):开发了比较简单的 生物化学需氧量(BOD)和溶解氧(DO)的双线 性系统模型,对河流和河口的水质问题采用 了一维计算方法进行模拟。 第二阶段(1965-1970年):研究发展BOD—DO 模型的多维参数估值,将水质模型扩展为六 个线性系统模型。发展河流、河口、湖泊及 海湾的水质模拟,方法从一维发展到二维。
河流水质模型
D0-河流起始点的氧亏值
Dc-临界点的氧亏值
复氧曲线 耗氧曲线
tc—由起始点到临界点的流经时间
tc
时间t
溶解氧氧垂曲线
临界点氧亏值: Kd L0
dD 0 dt
Dc=
A
Kd tc Ka
B
C
#2022
S-P模型的修正型
一、多河段水质模型的概化
水质模型的解析解是在均匀和稳定的水流条件 下取得的,划分断面的原则:
V-水的体积
欧康奈尔 ( D.O’·Conner )和多宾斯(W·Dobbins)在
1958年提出根据河流的流速、水深计算大气复氧速度常数
的方法:
KL = C
uxn Hm
饱和溶解氧浓度Cs是温度、盐度和大气压力的函数。在 760mmHg压力下,淡水中的饱和溶解氧浓度为
T为0c
468 Cs = 31.6 + T
x ux
)〕
5. 含氮有机物排入河流后,同样发生生物化学氧化过程:
LN =LN〔0 exp(-KN
x )〕
ux
三、大气复氧
水中溶解氧的主要来源是大气。氧气由大气进入水 中的质量பைடு நூலகம்递速度:
dC dt
=
KLA V
(Cs - C)
C-河流水中溶解氧的浓度
Cs-河流水中饱和溶解氧的浓度 KL-质量传递系数 A-气体扩散的表面积
CK HERE TO ADD A TITLE
三章 河流水质模型
单击此处添加文本具体内容 演讲人姓名
添加标题 河流中的基本水质问题
添加标题 多河段水质模型
添加标题 河口水质模型
添加标题 单一河段水质模型
添加标题 其它河流水质模型
第三章 第四节_水质模型
3--176
cT cS cP cW 3--110
cW
cT K pcp
1
RT
KT cT KPcP 1
ln 2
t1
2
KT
(cP KP 1)
这一关系说明,吸着的净效应是降低有机毒物从水中消失的总速率,另外还可以
看到颗粒物的吸着将增加半衰期。
20
3. 稳态时的浓度(动态平衡)
假设: 有机毒物输入水体的速率为 RI, 有机毒物在水环境中消失的速率为 RL
化合物迁移转化过程:
负载过程(输入过程):人为排放,大气沉降,陆地 径流
形态过程 :酸碱平衡、吸着作用 迁移过程:沉淀-溶解作用、对流作用 、挥发作用 、
沉积作用 转化过程:生物降解 、光解作用、水解作用、氧化还
原 生物积累过程:生物浓缩 、生物放大
18
1. 有机物的消失速率
有机物因转化和挥发从水环境中消失速率(RT)是各 消失速率(Ri)的总和:
S-P模式的适用条件: ①河流充分混合段;
②污染物为耗氧性有机污染物;
③需要预测河流溶解氧状态;
④河流恒定流动;
⑤连续稳定排放。
6
(1)零维水质模型(完全混合模型)
零维是一种理想状态,把所研究的水体如一条河或一 个水库看成一个完整的体系,当污染物进入这个体系 后,立即完全均匀地分散到这个体系中,污染物的浓 度不会随时间的变化而变化。
7
零维水质模型(河流完全混合模型)
废水排入河流后与河水迅速完全混合,则混合后的污染物浓度为
8
河流完全混合模式的适用条件
①河流充分混合段; ②持久性污染物; ③河流恒速流动; ④废水连续稳定排放。
9
(2)一维水质模型
第三章 水环境化学(&4)
饱和溶解氧浓度ρs
氧垂曲线
极限溶解氧: K1 L0 K1 xc ρc = ρs − exp(− ) K2 u K1 L0 K1 xc Dc = exp(− ) K2 u
DO
复氧曲线
耗氧曲线
xc 溶解氧氧垂曲线
距离x
2.Thomas模型(忽略离散作用)
第三章 水环境化学
第三节 水质模型
水质模型原理是根据质量守恒原理,污染物在水环 境中的物理、化学和生物过程的各种模型,大体经 历了三个发展阶段:简单的氧平衡模型阶段、形态 模型阶段和多介质环境结合生态模型阶段。
一、氧平衡模型
1.Streeter—Phelps模型(S—P模型) RL = RT + RD + Ro
有机物的稳态浓度为:
CT = ( RI − Ro − RD )( K p C p + 1) / KT
P262-263 习题
28、29、31、32、33
在S—P模型的基础上,增加固悬浮物的沉淀 和上浮引起的BOD的变化速率(K3L0),则:
二、湖泊富营养化模型
目前常采用的有多元相关模型、输入输出模型、富 营养化预测模型和扩散模型。 前三种模型实际上只能预测未来湖泊水质的平均发 展趋势,而扩散模型可反映湖泊水质的空间变化, 预测污水人湖口附近局部水域可能出现的严重污染 程度。 实际应用时可根据湖泊的污染特征和基础资料等情 况选用相应模型。
有机物的消失速率
有机物由于各种转化过程和挥发过程消失的总 速率(RT)是各消失速率( Ri )的总和。
RT = ∑ Ri = c ∑( K i • Εi )
Ki—第i过程的速率常数; Ei —对于第i过程在动力学上起重要作用的环境参数(例 如,水体pH,光强,细菌总数等)
《水环境化学》水质模型
水质模型的基本原理: 污染物在水环境中的物理化学和生物过程遵守质 量守恒定律,模型发展大体经历了简单的氧平衡 模型阶段、形态模型阶段和多介质环境结合生态 模型阶段。
第四节 水质模型
氧平衡模型
1。 Streeter-Phelps 模型
水体有机污染物(浓度用BOD表示)消耗速率为
L t
便可得出有机毒物在系统内的浓度和半衰期。
K1L
u
L x
K1L
Fick第二定律,河流的离散导致的BOD的变化为
u
L x
Ex
2L x 2
则BOD变化速率为:
L
2L
u x Ex x2 K1L
3.菲克第二定律:解决溶质浓度随时间变化的情况
两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、
流出两平面间的扩散通量,扩散中浓度变化为 c,则单元体
1
Z (q /V )
2. OECD公式
1
1
7
0.5
Z
V qv
0.6
1
第四节 水质模型
三、有毒污染物的归趋模型 摒弃经验参数,在模型中只出现表征化合物固有性 质的参数(实验室测定,与时间地点无关)和表征 环境特征所测量的参数。 主要考察动力学过程 酸碱平衡,水解,生物降解,光解作用,挥发,沉 淀-溶解作用,吸附解吸作用,生物浓缩,沉积作用 以及污水排放等uxEx2
x 2
K2(s
) K1L
第四节 水质模型
1。 Streeter-Phelps 模型
若忽略河流离散作用
u
L x
K1L
u
x
K2(s
) K1L
t时刻BOD和溶解氧的值分别为
水质模型
湖泊富营养化
湖泊的富营养化是由磷、氮的化合物过多排放引起的 污染。主要表现为水体中藻类的大量繁殖,严重影响 了水质。
24
湖泊水质污染预测模型对于预测湖泊水质 发展趋势及提出相应的防治对策有着重要 的意义。 目前常采用的有多元相关模型、输入输出 模型、富营养化预测模型和扩散模型。前 三种模型实际上只能预测未来湖泊水质的 平均发展趋势,而扩散模型可以反映湖泊 水质的空间变化,预测污水入湖口附近局 部水域可能出现的严重污染程度。实际应 用时可根据湖泊的污染特征和基础资料等 情况选用相应模型。
26
为了求得在均匀混合条件下,V稳定时上述方 程的解,Vollenweider,Dillon,合田健和经济 合作与发展组织(OECD)还分别求得以下湖 水总磷质量浓度的计算公式。
1.Vollenweider公式 ρ=ρ1(1+√ Z/Q)-1 式中:ρ——湖水按容积加权的年平均总磷质量浓度,mg/L; ρ1——流入湖泊水量按流量加权的年平均总磷质量浓 度(包括入湖河道,湖区径流和湖面降水的总 量),mg/L; Z——湖泊的平均水深,可用湖泊容积(V)除以湖泊 相应的表面积求得,m; Q——湖泊单位面积上的水量负荷,可用湖泊的年流 入水量(qm)除以湖泊的表面积(A)来求得, t/(m2· a)。
17
S-P模型基本方程及其解
dL k1 L dt dD k1 L k 2 D dt
式中: L—河水中的BOD值,mg/L; D—河水中的亏氧值,mg/L,是饱和溶解氧浓度 Cs(mg/L)与河水中的实际溶解氧浓度C( mg/L)的差值; k1—河水中BOD衰减(耗氧)速度常数,1/d; k2—河水中的复氧速度常数,1/d; t—河水中的流行时间, d;
3.合田健公式 L ρ= ——————-----Z(qV/V+α)
第三章水环境化学
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO42-
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
CO2、CO32-、HCO3-、H2CO3
第三章 水环境化学
(Water Environmental Chemistry)
本章重点
1、无机污染物在水体中进行沉淀-溶解、氧化-还原、 配合作用、吸附-解吸、絮凝-沉淀的基本原理;
2、计算水体中金属存在形态;
3、pE计算;
4、有机污染物在水体中的迁移转化过程和分配系数、 挥发速率、水解速率、光解速率和生物降解速率的 计算方法。
农药
有机氯 有机磷
多氯联苯 (PCBS) 卤代脂肪烃 醚
单环芳香族化合物 苯酚类和甲酚类 酞酸酯类 多环芳烃(PAH) 亚硝胺和其他化合物
2、金属污染物 (Metal Pollutant)
Cd、 Hg、 Pb、 As、 Cr、 Cu、 Zn、 Tl、 Ni、 Be
第二节 水中无机污染物的迁移转化
强酸 弱酸 强酸弱碱盐
总酸度= [H+]+ [ HCO3-] +2[H2CO3*] - [ OH-] CO2酸度= [H+]+ [H2CO3*] - [CO32-] - [ OH-] 无机酸度= [H+]- [ HCO3-]-2 [CO32-] - [ OH-]
二、水中污染物的分布及存在形态
1、有机污染物 (Organic Pollutant)
第三章水环境化学-第四节水质模型介绍
有机污染物迁移转化的动力学机理 表征化合物固有性质:可由实验室测得。 模型中的水 质参数:
(溶解度,蒸汽 压,辛醇-水分配系数等)
表征环境特征:取决于实际水环境。
(水流量,流速,pH,水温,风速,细菌数,光强等)
化合物迁移转化过程:
负载过程(输入过程)
来源:污水人为排放, 大气沉降,陆地径流 等将有机毒物引入水 体。
2.吸着过程对有机物消失的影响 有机物在颗粒物上的吸着会降低有机物在水中的浓度, 吸着也会发生转化(如微生物转化代谢),但在这里 不考虑转化过程或转化很慢(比溶液中慢),并且吸 着过程具有可逆性。 当有机物含量很低时,它在水和颗粒物之间的分配往 往可以用分配系数(KP)来表示:
CS KP CW
转化过程 生物降解:微生物代谢将改变污染物和它们的毒性。 光解作用:破坏有毒有机物分子的结构。 水解作用:使污染物分子变成简单分子,低毒或无毒化 合物。 氧化还原:微生物催化氧化,光催化氧化,均将改变有机 分子的结构。
生物积累过程 生物浓缩:通过可能的生物浓缩手段(如鱼腮吸附), 摄取有机物进入生物体。 生物放大:高营养级生物以低营养级生物为食物,使生 物体中有机毒物的浓度随营养级的提高而逐步增大。
CT CS CP CW
Cs、Cw分别为有机毒物在颗粒物和水中的平衡浓度; CT、CP分别为单位体积水溶液有机毒物和颗粒物总浓度。
将上式代入
RT Ki [C] KT [C]
KT CT RT K P CP 1
ln 2 t1 (CP K P 1) KT 2
则
3.稳态时的浓度(动态平衡) 假设: 有机毒物输入水体的速率 RI,有机毒物在水环 境中消失的速率 RL 当 RI = RL 时,有机毒物就达到稳态浓度
《水质模型》课件
确保数据质量
实际监测的水质数据质量直接影 响验证与评估的结果,因此要确 保数据的准确性和可靠性。
多种方法综合评估
单一的验证与评估方法可能存在 局限性,应采用多种方法进行综 合评估。
误差的可接受范围
应根据实际情况确定误差的可接 受范围,判断模型是否满足实际 应用的需求。
PART 06
水质模型的应用案例
总结词
预测不同水文条件下的水质变化
详细描述
通过建立水质模型,可以预测在不同水文条件下的水质变 化,为水资源管理和调度提供决策依据,确保供水安全。
水质模型在湖泊中的应用案例
总结词
模拟湖泊中污染物的分布、迁移和归宿
详细描述
水质模型在湖泊中的应用主要集中在模拟湖泊中污染物的 分布、迁移和归宿,探究不同污染物在湖泊中的扩散、转 化和归宿规律,为湖泊污染治理提供科学依据。
总结词
模拟地下水与地表水的相互关系
详细描述
地下水与地表水之间存在密切的相互关系,水质模型可以 模拟地下水与地表水的相互关系,探究不同因素之间的相 互作用和影响机制,为水资源管理和保护提供决策支持。
建立水质模型的常用软件和工具
MATLAB
01
一款功能强大的数学计算软件,可用于水质模型的建立、模拟
和数据分析。
MIKE
02
一款专业的水质模拟软件,具有强大的三维模拟功能和可视化
界面。
HYDSIM
03
一款针对河流、湖泊等水体的水质模拟软件,适用于一维和二
维模型的建立。
PART 04
水质模型的参数估计
水质模型在地下水中的应用案例
总结词
预测地下水中污染物的扩散和迁移
详细描述
地下水是重要的水资源之一,水质模型在地下水中的应用 主要集中在预测地下水中污染物的扩散和迁移,评估地下 水水质状况和变化趋势,为地下水保护提供科学依据。
(完整版)第三章水环境化学
分布分数:α0 、α1、α2分别表示化合物在总量中的比 例则:
α0=[H2CO3*]/{[H2CO3*]+[HCO3]+[CO32-] } α1 =[HCO3-]/{[H2CO3*]+[HCO]+[CO32-] } α2=[CO32-]/{[H2CO3*]+[HCO3-]+[CO32-] }
2003年我国万元GDP用水量为465m3,是世界平均水平的4 倍;农业灌溉用水有效利用系数为0.4~0.5,是发达国家 的1/2;水的重复利用率为50%,发达国家已达到了85%; 全国城市供水管网漏损率达20%左右。
水危机的出现
根据水利部《21世纪中国水供求》分析,2010年 我国工业、农业、生活及生态环境总需水量在中 等干旱年为6988亿立方米,供水总量6670亿立方 米,缺水318亿立方米。这表明,2010年后我国 将开始进入严重的缺水期。
CT=[H2CO3*]+[HCO3- ]+[CO32- ]
试计算封闭体系和开放体系中各碳酸形态的表示式? (1)封闭体系
总碳酸量不变 (2)开放体系
[H2CO3*]保持不变
封闭体系:
0
H]
k1k2 [H ]2
)1
1
HCO3 CT
(1
[H k1
]
k2 [H
)1 ]
溶解于水中气体的量可能高于亨利定律表示的量。
氧在25℃ ,1.013X105Pa下溶解度计算:
由亨利定律[G(aq)]=KH*pG
不同温度下,气体在水中溶解度的计算:
CO2在25℃ ,1.013X105Pa下溶解度计算
(4)水体富营养化(eutrophication) 由于水体中氮磷营养物质的富集,引起
第三章 第四节_水质模型
V- 湖泊容积 m3
λP —磷的沉降速率常数 d-1
t —河水入湖时间 d于一种有机物,仅仅看它的毒性是不够的,还必须考察它进入环境分解为无害 物的速度快慢如何。因此研究水环境中各种有机毒物的预测模型十分重要。
这种模型主要研究化合物的各种迁移转化过程的机理,并且特别着重动力学的研 究。如图所示,可以把图中这些迁移转化过程归纳为如下几个过程:
描述环境污染物在水中的运动和迁移转化规律,为水 资源保护服务。它可用于实现水质模拟和评价,进行水质 预报和预测,制订污染物排放标准和水质规划以及进行水 域的水质管理等,是实现水污染控制的有力工具。
2
水质模型的类型
1、从空间维数上分 零维、一维、二维和三维模型
2、是否含有时间变量(上游来水和排污随时间的变化情况) 可分为动态和稳态模型
水质模型的应用:
过程模拟、水环境质量评价、环境行为预测、水生 生物污染分析、水资源科学管理规划、水环境保护
4
水质模型的发展阶段
1925-1960,S—P模型,BOD—DO耦合模型
(简单的氧平衡模型阶段)
1960—1965,新发展,引进空间变量,动力学系数、
温度
(形态模型阶段)
1965—1970,光合作用、藻类的呼吸作用,沉降,悬 浮,计算机的应用
S-P模式的适用条件: ①河流充分混合段;
②污染物为耗氧性有机污染物;
③需要预测河流溶解氧状态;
④河流恒定流动;
⑤连续稳定排放。
6
(1)零维水质模型(完全混合模型)
零维是一种理想状态,把所研究的水体如一条河或一 个水库看成一个完整的体系,当污染物进入这个体系 后,立即完全均匀地分散到这个体系中,污染物的浓 度不会随时间的变化而变化。
水质模型简介
对流扩散方程。BOD和DO是2个重要的水质指标, 它们具有耦合关系, 大多数水质
模型以描述 BOD 和 DO 为中心。 水质模型通常涉及到解基本方程的技术, 而其结果的可靠性不会超过所使
水质模型常用软件[3]
1.一维模拟软件 WASP(Water Quatity Analysis Simulation program)是美国国家环保局开发的水质 模型软件,从20世纪80年代起不断改进,目前最新版本为WASP7.0 2.二维模拟软件 FEWMS(the Finite Element Surface Water Modeling System) 最初是为美 国联 邦高速公路管理开发的平面二维水动力模型 , 适用 于稳态和动态 的河流 、 河口 、 海港。 3.三维模拟软件 EFDC(Environmental Fluid Dynamics Code)和HEM3D(Hydrodynamic—— Eutrophication—Model —3D) 是用于模拟河流 、湖 泊 、水库 、湿地 、河 口 和 近岸海域的三维水动力 及水质模型 。
水质模型的发展趋势[3]
1.模型不确定性的分型 2.基于人工神经网络的水质模型
3.,刘雷,蔡哲. 水质数学模型的发展概况[J]. 江西化工,2005,01:42-44+74. [2]李金. 水质模型发展概述[J]. 环境科学与管理,2012,S1:57-60. [3]万金保,李媛媛. 湖泊水质模型研究进展[J]. 长江流域资源与环境,2007,06:805-809. [4]曹晓静,张航. 地表水质模型研究综述[J]. 水利与建筑工程学报,2006,04:18-21+52.
水质模型
• 水质模型是一个用于描述物质在水中混合、迁移等变 水质模型是一个用于描述物质在水中混合、 是一个用于描述物质在水中混合 化过程的数学方程,即描述水体中污染物与时间、 化过程的数学方程,即描述水体中污染物与时间、空 间的定量关系。 间的定量关系。 • 水质模型的分类: 水质模型的分类:
1、按水域类型:河流、河口、湖泊(水库)以及地下水水质 、按水域类型 河流 河口、湖泊(水库) 河流、 模型 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、多 、按水质组分:单一组分、耦合组分( 模型)、 模型)、多 重组分(比较复杂,如综合水生态模型) 重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型 、按水力学和排放条件:稳态模型、 4、根据研究水质维度:零维、一维、二维、三维水质模型。 、根据研究水质维度:零维、一维、二维、三维水质模型。
河流的混合稀释模型
在最早出现的水质完全混合断面, 在最早出现的水质完全混合断面,有:
C hQh + C P Q P C = QE + QP
式中: 河水流量, /s; 式中:Qh-河水流量, m3/s; 河水背景断的污染物浓度, mg/L; Ch-河水背景断的污染物浓度, mg/L; 废水中污染物的浓度, mg/L; CP-废水中污染物的浓度, mg/L; 废水的流量, /s; QP-废水的流量, m3/s; 完全混合的水质浓度, mg/L。 C-完全混合的水质浓度, mg/L。
x + D0 exp − K 2 86400u
( 6 ) C s = 4 6 8 /(3 1 .6 + T ) (7 ) D = C s − C (O ) (8 ) D c = C s − C c ( 9 ) D 0 = C s − C 0 (O ) (10)Co = (11)Do = C pQ p + C hQ h Q p + Qh D pQ p + D hQ h Q p + Qh
第四节 水质模型PPT课件
16
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
温度 1965—1970,光和作用、藻类的呼吸作用,沉降,悬
浮,计算机的应用 1970 —1975,线性化体系,生态水质模型,有限元模
型,有限差分技术 最近30年,改善模型的可靠性和评价能力
4
水质模型的发展趋势
模型不确定性的分型 基于人工神经网络的水质模型 基于地理信息系统的水质模型的研究
6
零维水质模型(完全混合模型)
零维是一种理想状态,把所研究的水体如一条河或一 个水库看成一个完整的体系,当污染物进入这个体系 后,立即完全均匀地分散到这个体系中,污染物的浓 度不会随时间的变化而变化。
7
零维水质模型(完全混合模型)
废水排入河流后与河水迅速完全混合,则混合后模式的适用条件
水质模型(water quality model)
水质模型(water quality model) 根据物质守恒原理用 数学的语言和方法描述参加水循环的水体中水质组分所发 生的物理、化学、生物化学和生态学诸方面的变化、内在 规律和相互关系的数学模型。
描述环境污染物在水中的运动和迁移转化规律,为水资源 保护服务。它可用于实现水质模拟和评价,进行水质预报 和预测,制订污染物排放标准和水质规划以及进行水域的 水质管理等,是实现水污染控制的有力工具。
5
水质数学模型简介与发展概况
水质数学模型简介与发展概况水质数学模型是描述污染物在水体中随时间和空间迁移转化规律及影响因素相互关系的数学方程。
随着经济的发展和人们环境意识的提高,水环境污染问题越来越被人们重视。
研究水质模型目的主要是描述污染物在水体中的迁移转化规律,模拟或预报水质在时间与空间上的变化,从而为水环境质量预测、水质污染控制规划、工程环境影响评价以及水资源的规划、管理和控制提供服务。
1 水质模型的发展从1925年出现的Streeter-Phelps模型算起,到现在的80余年中,其发展历程可以分以下几个阶段。
第一阶段是20世纪20年代到70年代初。
这一阶段模型研究对象仅是水体水质本身,被称为“自由体”阶段。
在这一阶段模型的内部规律只包括水体自身的各水质组分的相互作用,其他如污染源、底泥、边界等的作用和影响都是外部输入。
该阶段是简单的氧平衡模型,主要集中在对氧平衡关系的研究,是一种稳态模型。
第二阶段是20世纪70年代初期到80年代中期。
这一阶段模型有如下的发展:(1)在状态变量(水质组分)数量上的增长;(2)在多维模型系统中纳入了水动力模型;(3)将底泥等作用纳入了模型内部;(4)与流域模型进行连接以使面污染源能被连入初始输入。
第三阶段是80年代中期90年代中期。
是水质模型研究的深化、完善与广泛应用阶段,科学家的注意力主要集中在改善模型的可靠性和评价能力的研究。
该阶段模型的主要特点是考虑水质模型与面源模型的对接,并采用多种新技术方法,如:随机数学、模糊数学、人工神经网络等。
第四阶段是1995年至今。
随着发达国家对面污染源控制的增强,面源污染减少了。
而大气中污染物质沉降的输入,如有机化合物、金属(如汞)和氮化合物等对河流水质的影响日显重要。
虽然营养物和有毒化学物由于沉降直接进入水体表面已经被包含在模型框架内,但是,大气的沉降负荷不仅直接落在水体表面,也落在流域内,再通过流域转移到水体,这已成为日益重要的污染负荷要素。
从管理的发展要求看,增加这个过程需要建立大气污染模型,即对一个给定的大气流域(控制区),能将动态或静态的大气沉降连接到一个给定的水流域。
第三章 水质模型
2021/7/18
一般用于持久性污染物
23
稳态条件下的河流的零维模型
C C0
C0
1kt 1k( x )
86400u
式中:C-流出河段的污染物浓度,mg/L; C0-完全混合模型计算出的浓度值, mg/L; x-河段长度,m。 k-污染物的衰减速率常数 1/d; u-河水的流速,m/s; t-两个断面之间的流动时间。
36
例题3:河流的一维模型
• 一个改扩工程拟向河流排放废水,废水量为0.15m3/s, 苯酚浓度为30mg/L,河流流量为5.5m3/s,流速为0.3 m/s,苯酚背景浓度为0.5mg/L,苯酚的降解系数k= 0.2/d,纵向弥散系数D为10m2/s。求排放点下游10km处 的苯酚浓度。
2021/7/18
答案:731mg/L,超标0.46倍
20
稳态条件下基本模型的解析解
• 什么是稳态? 在环境介质处于稳定流动状态和污染源连
续稳定排放的条件下,环境中的污染物分布状 况也是稳定的。这时,污染物在某一空间位置 的浓度不随时间变化,这种不随时间变化的状 态称为稳定。
2021/7/18
21
河流的一维模型 [考虑弥散的一维稳态模型]
CC0exp[2uD(1m)x]
m 1 4k1D 86400u2
2021/7/18
• 式中:C-下游某一点的污染物浓度, mg/L ; C0-完全混合断面的污染物浓度, mg/L; u-河水的流速,m/s; D-x方向上的扩散系数, m2/s ; k1-污染物降解的速率常数(1/d); x-下游某一点到排放点的距离,m。
水质模型
水质模型
是一个用于描述物质在水环境中的混合、输 运过程的数学方程,描述水体中污染物与时 间、空间的定量关系;它通常涉及到解基本 方程的技术,而其结果的可靠性不会超过所 使用的方程的可靠性。在一个综合的河流水 质模型中,有许多影响河流水质的因素,如 物理的、化学的、水力学的、生物学以及气 象学的因素。
水质模型简介
对流扩散方程。BOD和DO是2个重要的水质指标, 它们具有耦合关系, 大多数水质
模型以描述 BOD 和 DO 为中心。 水质模型通常涉及到解基本方程的技术, 而其结果的可靠性不会超过所使
对一维静态河流,在S—P模型的基础上考虑沉淀、絮凝、冲 刷和再悬浮过程对BOD去除的影响,引入了BOD沉浮系数k3,
u u
dL (k1 k 3 )L dx dD k1L k 2D dx
QUAL-Ⅱ水质模型
由于排入河流中的污染物质,特别是营养物质,对于水生生物的生存有密切的联系和影
水质模型常用软件[3]
1.一维模拟软件 WASP(Water Quatity Analysis Simulation program)是美国国家环保局开发的水质 模型软件,从20世纪80年代起不断改进,目前最新版本为WASP7.0 2.二维模拟软件 FEWMS(the Finite Element Surface Water Modeling System) 最初是为美 国联 邦高速公路管理开发的平面二维水动力模型 , 适用 于稳态和动态 的河流 、 河口 、 海港。 3.三维模拟软件 EFDC(Environmental Fluid Dynamics Code)和HEM3D(Hydrodynamic—— Eutrophication—Model —3D) 是用于模拟河流 、湖 泊 、水库 、湿地 、河 口 和 近岸海域的三维水动力 及水质模型 。
式中: L—河水中的BOD值,mg/L; D—河水中的亏氧值,mg/L,是饱和溶解氧浓度 Cs(mg/L)与河水中的实际溶解氧浓度C(mg/L)的差值; k1—河水中BOD衰减(耗氧)速度常数,1/d; k2—河水中的复氧速度常数,1/d; t—河水中的流行时间, d;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水质模型,是一个用于描述物质在水环境中的混合、 迁移、扩散和转化过程(包括物理、化学、生物作用过 程)的数学方程(或方程组) .
水质模型的基本原理是质量守恒原理;建立水质模 型的目的是用来描述污染物数量与水环境影响因素之间 的定量关系,从而为水质分析、预测和水环境管理提供 基础的量化依据。
本节讨论的水质模型主要是:氧平衡模型、湖泊富 营养化模型和有毒有机污染物归趋模型。
一、氧平衡模型
1. Streeter-Phelps(S-P)模型(河流水质自净模型)
S-P模型的建立基于两项假设: (1)只考虑好氧微生物参加的有机物降解反应,并 认为该反应为一级反应。 (2)河流中的耗氧只是有机物降解反应引起的。有 机物的降解反应速率与河水中溶解氧(DO)的减少速 率相同,大气中的氧进入水体的复氧速率与河水中 的亏氧量 D 成正比。
极限距离:
极限溶解氧:
(DC为极限氧亏)
2.托马斯(Thomas)模型
对于一维静态河流,在S—P模型的基础上考虑沉淀、絮 凝、冲刷和再悬浮过程对BOD变化的影响,引入了BOD沉 浮系数k3 dL
u -(k1 k3 ) L dx u dD k L - k D 1 2 dx
湖泊水质模型的类型:
湖泊水质模型可划分为:多元相关模型;输入输出 模型;富营养化预测模型和扩散模型,这里仅讨论富 营养化预测模型。
2. 富营养化预测模型 对于停留时间很长、水质基本处于稳定状态的中小 型湖泊和水库,可视为一个均匀混合的水体。 沃兰伟德假定,湖泊中某种营养物的浓度随时间的 变化率,是输入、输出和在湖泊内沉积的该种营养物量 的函数,用质量平衡方程表示就是:
湖泊富营 养物质的 变化
=
单位时间输 入湖泊营养 物质的量
—
单位时间输 出湖泊营养 物质的量
—
单位时间 营养物质 沉积的量
即:
简化可得:
dc V ( ) I P - qc - P V c dt
dc I P - (P W P ) c dt V
式中:c - 湖水平均总磷浓度 mg/L, IP- 输入湖泊磷的浓度 g/d PW - 水力冲刷系数 PW = q / V (d-1) q - 出湖河道流量 m3/d, V- 湖泊容积 m3 λ P - 磷的沉降速率常数 d-1 t - 河水入湖时间 d
水中营养物质的来源 雨水: 雨水中硝酸盐的含量在 0.16 -1.06 mg/L 间,氨 氮含量在 0.04 - 1.70 mg/L 间,大面积湖泊和水库从雨 水受纳氮数量相当可观。 农业排水: 土壤中的氮、磷通过地表水径流被引入到湖 泊、水库。 城市污水:包括:排泄物、食品污物,含磷洗涤剂。污水厂 通过厌氧处理污泥的方法可去除20-50%的氮和大部分的磷 ,但在污水处理中也使用到多种含氮、磷的化学试剂,如氯 胺、有机絮凝剂、无机助絮凝剂、多聚磷酸钠等。 其他来源:包括工业废水等。
形态过程 酸碱平衡:PH 值、有机酸碱分数 (离子、分子),挥发 作用等。 吸着-解吸平衡:有机物滞留在悬浮颗粒物或沉积物上 的过程最终将影响其归趋。
迁移过程 沉淀-溶解作用:有机或无机物溶解度对其迁移转化可 利用性的影响,将改变迁移的速率。 对流作用:水流作用使污染物进入(排出)特定水生 生态系统。 挥发作用:大气、水中浓度分布。 沉积作用:底部沉积物的吸附-解吸。
有机污染物迁移转化的动力学机理 表征化合物固有性质:可由实验室测得。 模型中的水 质参数:
(溶解度,蒸汽 压,辛醇-水分配系数等)
表征环境特征:取决于实际水环境。
(水流量,流速,pH,水温,风速,细菌数,光强等)
化合物迁移转化过程:
负载过程(输入过程)
来源:污水人为排放, 大气沉降,陆地径流 等将有机毒物引入水 体。
S-P模型的基本方程为:
式中:L—河水中的BOD值,mg/L; D—河水亏氧值,mg/L,是饱和溶解氧浓度Cs (mg/L) 与实际溶解氧浓度C(mg/L)的差值D=CS-C; k1—河水耗氧速度常数,1/d; k2—河水复氧速度常数,1/d; u—河水平均流速km/d; x-顺河水流动方向的纵向距离km。
转化过程 生物降解:微生物代谢将改变污染物和它们的毒性。 光解作用:破坏有毒有机物分子的结构。 水解作用:使污染物分子变成简单分子,低毒或无毒化 合物。 氧化还原:微生物催化氧化,光催化氧化,均将改变有机 分子的结构。
令边界条件: t = 0, C = C0 对上式积分可得:
;
t=t, C = C
当时间足够长,利用上面的积分解可求取湖泊、 水库中污染物(营养物)的平衡浓度.
在水质分析和水质预测中,利用该式可求出湖泊、 水库中污染物达到一指定浓度CT所需时间t0。
三、有毒有机物的归趋模型
通过研究水环境中各种有机毒物的动力学模型,可 以预测污染物在环境中浓度的时空分布,以及通过各种 迁移转化过程后的最终归趋,这对合理使用有机有毒物 质意义重大。
当边界条件
L L0 , x 0 C C0 , x 0
S-P模型基本方程的解析解为:
S-P 模型的临界点和临界点氧浓度
以S-P解析解中溶解氧C对距离作图可得一条下垂曲线, 称为氧垂曲线。 氧垂曲线最低点所对应的溶解氧,称为极限溶解氧Cc,出 现Cc的距离称为极限距离xc; 在极限距离处xc,溶解氧变化率为零,由S-P方程可得:
当边界条件
L L0 , x 0 C C0 , x 0
求取解析解可得:
二、水体富营养化预测模型
湖泊(水库)的水质特征: 水的停留时间较长(可达数月至数年),属于缓流水域, 其中的化学和生物学过程保持一个比较稳定的状态。 进入湖泊和水库中的营养物质在其中容易积累,致使水 质发生富营养化。 在水深较大的湖、库中,水温和水质是竖向分层的。 1.水体的富营养化问题 指在人类活动的影响下,氮、磷等生物所需营养物质大 量进入湖泊、水库、海湾等缓流水体,引起藻类及其他浮 游生物迅速繁殖,水体溶解氧量下降,水质恶化,引起鱼 类及其他生物大量死亡的现象。