第三章 功和能习题解答

合集下载

高考物理最新力学知识点之功和能真题汇编及答案(3)

高考物理最新力学知识点之功和能真题汇编及答案(3)

高考物理最新力学知识点之功和能真题汇编及答案(3)一、选择题1.一滑块在水平地面上沿直线滑行,t =0时其速度为1 m/s .从此刻开始滑块运动方向上再施加一水平面作用F ,力F 和滑块的速度v 随时间的变化规律分别如图a 和图b 所示.设在第1秒内、第2秒内、第3秒内力F 对滑块做的功分别为123W W W 、、,则以下关系正确的是( )A .123W W W ==B .123W W W <<C .132W W W <<D .123W W W =<2.如图所示,小车A 放在一个倾角为30°的足够长的固定的光滑斜面上,A 、B 两物体由绕过轻质定滑轮的细线相连,已知重力加速度为g ,滑轮质量及细线与滑轮之间的摩擦不计,小车A 的质量为3m ,小球B 的质量为m ,小车从静止释放后,在小球B 竖直上升h 的过程中,小车受绳的拉力大小F T 和小车获得的动能E k 分别为( )A .F T =mg ,E k =3mgh/8B .F T =mg ,E k =3mgh/2C .F T =9mg/8,E k =3mgh/2D .F T =9mg/8,E k =3mgh/83.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A 加速变轨进入圆轨道Ⅱ。

已知轨道Ⅰ的近地点B 到地心的距离近似等于地球半径R ,远地点A 到地心的距离为3R ,则下列说法正确的是( )A .卫星在B 点的加速度是在A 点加速度的3倍B .卫星在轨道Ⅱ上A 点的机械能大于在轨道Ⅰ上B 点的机械能C .卫星在轨道Ⅰ上A 点的机械能大于B 点的机械能D .卫星在轨道Ⅱ上A 点的动能大于在轨道Ⅰ上B 点的动能4.我国的传统文化和科技是中华民族的宝贵精神财富,四大发明促进了科学的发展和技术的进步,对现代仍具有重大影响,下列说法正确的是( ) A .春节有放鞭炮的习俗,鞭炮炸响的瞬间,动量守恒但能量不守恒B.火箭是我国的重大发明,现代火箭发射时,火箭对喷出气体的作用力大于气体对火箭的作用力C.装在炮弹中的火药燃烧爆炸时,化学能全部转化为弹片的动能D.指南针的发明促进了航海和航空,静止时指南针的N极指向北方5.从空中某一高度同时以大小相等的速度竖直上抛和水平抛出两个质量均为m的小球,忽略空气阻力.在小球从抛出到落至水平地面的过程中A.动能变化量不同,动量变化量相同B.动能变化量和动量变化量均相同C.动能变化量相同,动量变化量不同D.动能变化量和动量变化量均不同6.如图所示,三个固定的斜面底边长度都相等,斜面倾角分别为 30°、45°、60°,斜面的表面情况都一样.完全相同的物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部的过程中A.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多7.如图是一汽车在平直路面上启动的速度-时间图象,t1时刻起汽车的功率保持不变.由图象可知()A.0-t1时间内,汽车的牵引力增大,加速度增大,功率不变B.0-t1时间内,汽车的牵引力不变,加速度不变,功率不变C.t1-t2时间内,汽车的牵引力减小,加速度减小D.t1-t2时间内,汽车的牵引力不变,加速度不变8.小明和小强在操场上一起踢足球,若足球质量为m,小明将足球以速度v从地面上的A 点踢起。

第三章能量转化的量度(做功与能量)练习浙教版九年级上册科学

第三章能量转化的量度(做功与能量)练习浙教版九年级上册科学

1.常见的能量形式1、人类使用的常规能源,如煤、石油、天然气等,归根究底,它们来自能。

2、日常生活中常说“消耗能量”、“利用能量”或者“获得能量”实质上就是能量的相互转化或转移的过程3、能量转化是一个普遍的现象,自然界中物质运动形式的变化总伴随着能量的相互转化。

雪崩时的能量转化: 转化为人造卫星:转化为青蛙跃起扑食的过程: 转化为和胶片感光成像: 转化为特技跳伞: 转化为和森林火灾: 转化为植物生长: 转化为水电站(工作时): 转化为分类动能势能物体由于而具有的能重力势能:物体由于被举高而具有的能弹性势能:物体由于发生弹性形变而具有的能影响因素物体的质量和速度质量相同,速度越大物体具有的动能越大速度相同,质量越大的物体具有的动能越大物体的质量和高度质量相同时,高度越大重力势能越大高度相同时,质量越大的物体重力势能越大同一物体的弹性形变越大,其弹性势能越大动能和势能的相互转化动能→重力势能物体的速度不断减小,高度不断增加重力势能→动能高度减小,速度增加动能→弹性势能速度减少,弹性形变变大弹性势能→动能弹性形变减少,速度增大机械能守恒a.物体通常既具有动能,又具有势能b.当物体只受重力和弹性力时(不受阻力时),机械能总量保持不变。

即动能减小了多少,势能就增加多少;势能减小了多少,动能就增加多少。

4.机械能:和统称为机械能。

常见例题1.环法自行车赛是世界知名的自行车赛事,有些路段还设有专门的爬坡赛。

如图,当运动员骑车加速上坡时()A.动能增大,势能增大,机械能增大B.动能增大,势能减小,机械能不变C.动能减小,势能减小,机械能减小D.动能减小,势能增大,机械能变大2.如甲图所示,小球从竖直放置的弹簧上方一定高度处由静止开始下落,从a处开始接触弹簧,压缩至c处时弹簧最短。

从a至c处的过程中,小球在b处速度最大。

小球的速度v和弹簧被压缩的长度△L之间的关系如乙图所示,不计空气阻力,则从a至c处的过程中,下列说法正确的是()A.小球减少的机械能转化为弹簧的弹性势能B.小球的重力势能先减小后增大C.小球的动能一直减小D.小球所受重力始终大于弹簧的弹力3.人造卫星沿椭圆轨道绕地球运行时,在它从近地点向远地点运动过程中,下列说法中正确的是()A.动能增大,势能减小,机械能不变B.动能减小,势能增大,机械能不变C.动能不变,势能增大,机械能变大D.动能减小,势能不变,机械能变小4.小朱课外模拟蛙蛙跳工作情景,用手将一重为G的铁球缓慢放在一自然伸长的弹簧上,放手后,铁球从A位置开始向下运动,到达B位置速度达到最大,到达C位置小球的速度变为零。

大学物理第三章课后习题答案

大学物理第三章课后习题答案

r3
, k 为常量。试求两粒子相距为 r 时的势能,设力为零的
r = a cos ωt i + b sin ωt j , r 式中 a , b , ω 是正值常数,且 a ≻ b 。
(1)说明这质点沿一椭圆运动,方程为

x2 y 2 + = 1; a2 b2
(2)求质点在 A 点 (a ,0) 时和 B 点 (0, b ) 时的动能; (3)当质点从 A 点到 B 点,求力 F 所做的功,并求 F 的分力 Fx i 和 Fy j 所做的 功; (4) F 力是不是保守力? 12 . 如果物体从髙为 h 处静止下落,试求(1)时间为自变量; 12. (2)高度为自变量, 画出它的动能和势能图线,并证明两曲线中动能和势能之和相等。 . 一质量为 m 的地球卫星,沿半径为 3R e 的轨道运动, R e 为地球的半径,已知 13 13. 地球的质量为 M e ,求(1)卫星的动能; (2)卫星的引力势能; (3)卫星的机械 能。 . 如图所示, 14 14. 小球在外力作用下, 由静止开始从 A 点出发做匀加速运动,到达 B 点时撤消外力,小球 无摩擦的冲上竖直的半径为 R 的半圆环, 到达最高 点 C 时,恰能维持在圆环上做圆周运动,并以此速 度抛出而刚好落回到原来的出发点 A 处, 如图试求 小球在 AB 段运动的加速度为多大? . 如图所示,有一自动卸货矿车,满载时的质量 15 15. 为 M ,从与水平倾角 α = 30° 斜面上的点 A 由静 止下滑。设斜面对车的阻力为车重的 0.25 倍, 矿 车下滑距离 l 时,矿车与缓冲弹簧一道沿斜面运 动。当矿车使弹簧产生最大压缩形变时,矿车自 动卸货, 然后矿车借助弹簧的弹性力作用, 使之返回原位置 A 在装货。试问要完成这 一过程,空载时车的质量与满载时车的质 量之比应为多大? . 半径为 R 的光滑半球状圆塔的顶点 A 16 16. 上,有一木块 m ,今使木块获得水平速度

功和能、动能、动能定理及机械能守恒练习题及答案

功和能、动能、动能定理及机械能守恒练习题及答案

要点归纳功 单位:J力学: ①W = Fs cos θ (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度动能: E K =m2p mv 2122= 重力势能E p = mgh (凡是势能与零势能面的选择有关) ③动能定理:外力对物体所做的总功等于物体动能的变化(增量)公式: W 合= W 合=W 1+ W 2+…+W n = ∆E k = E k2 一E k1 =12122212mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功) ⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用: ⑶既为物体所受合外力的功。

④功是能量转化的量度(最易忽视)主要形式有:“功是能量转化的量度”这一基本概念含义理解。

⑴重力的功------量度------重力势能的变化物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。

与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关.除重力和弹簧弹力做功外,其它力做功改变机械能; 这就是机械能定理。

只有重力做功时系统的机械能守恒。

功能关系:功是能量转化的量度。

有两层含义:(1)做功的过程就是能量转化的过程, (2)做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻一、选择题(每小题中至少有一个选项是正确的)1.关于功和能的下列说法正确的是()A.功就是能B.做功的过程就是能量转化的过程C.功有正功、负功,所以功是矢量D.功是能量转化的量度2.一个运动物体它的速度是v时,其动能为E。

那么当这个物体的速度增加到3v时,其动能应该是:()A.E B.3E C.6E D.9E3.一个质量为m的物体,分别做下列运动,其动能在运动过程中一定发生变化的是:()A.匀速直线运动B.匀变速直线运动C.平抛运动D.匀速圆周运动4.对于动能定理表达式W=E K2-E K1的理解,正确的是:()A.物体具有动能是由于力对物体做了功B.力对物体做功是由于该物体具有动能C.力做功是由于物体的动能发生变化D.物体的动能发生变化是由于力对物体做了功5.某物体做变速直线运动,在t1时刻速率为v,在t2时刻速率为nv,则在t2时刻的动能是t1时刻的()A、n倍B、n/2倍C、n2倍D、n2/4倍6.打桩机的重锤质量是250kg,把它提升到离地面15m高处,然后让它自由下落,当重锤刚要接触地面时其动能为(取g=10m/s2):()A.1.25×104J B.2.5×104J C.3.75×104J D.4.0×104J7.质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了()A.28J B.64J C.32J D.36J8.下列关于运动物体所受的合外力、外力做功和动能变化的关系中正确的是:()A.如果物体受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下做变速运动,动能一定变化D.物体的动能不变,所受的合外力一定为零*9.一物体在水平方向的两个水平恒力作用下沿水平面做匀速直线运动。

大学物理习题答案解答第三章功和能

大学物理习题答案解答第三章功和能
考察第一次击钉的过程,在此过程中,设质量为 的铁钉从锤子获得的速度为 ,钉子从木板表面( )进入到深度为 的位置,对铁钉应用动能定理,有

(3-7)
再应用在第二次击打的过程,有

(3-8)
联立(3-7)和(3-8),可解
所求第二次击打,能将铁钉击入
4、机车受到四个力的作用,分别为牵引力 ,重力 ,路轨对它的支持力 和摩擦力 ,由动能定理,有
第三章功和能
一、填空题
1、考察货物自静止开始随汽车匀加速运动4秒内的过程,显然,初速率 ,而4秒末的速率为
在该过程中,货物受到3个力的作用,即:重力 ,车厢底板对它的支持力 和静摩擦力 ,对货物使用动能定理,合外力 做功为
所以摩擦力做功为
2、考察物体以 的恒定加速度下落一段距离 的过程。设初速率为 ,末速率 满足
设水的密度为则这薄层水的质量为将其抽出池塘抽水机至少需做功所以把池塘的水全部抽完抽水机至少做功2设所求时间为因抽水机的电功率以效率转化为抽水功率故所求时间3取铁钉进入木板的方向为x轴依题设当铁钉进入木板的深度为时受到木板对铁钉的阻力考察第一次击钉的过程在此过程中设质量为的铁钉从锤子获得的速度为钉子从木板表面进入到深度为的位置对铁钉应用动能定理有即37再应用在第二次击打的过程有即38联立37和38可解所求第二次击打能将铁钉击入4机车受到四个力的作用分别为牵引力重力路轨对它的支持力和摩擦力由动能定理有机车的牵引力做功所以机车的平均功率5对斜面上的物体进行受力分析如图35所示有所以斜面对物体的摩擦力对于高长的斜面有1考察物体自斜面顶端滑至斜面底端的过程对物体使用动能定理有图35而和所以物体滑到斜面底端的速率为2考察物体自斜面底端沿水平面滑行至静止的过程由动能定理有而所以所求物体在水平面上滑行的最大距离为6一般地设炮弹以仰角和初速发射则依据运动叠加原理可将炮弹的运动视为水平方向作的匀速直线运动与竖直方向作初速为的上抛运动的合成

高考物理新力学知识点之功和能专项训练解析附答案(3)

高考物理新力学知识点之功和能专项训练解析附答案(3)

高考物理新力学知识点之功和能专项训练解析附答案(3)一、选择题1.一滑块在水平地面上沿直线滑行,t =0时其速度为1 m/s .从此刻开始滑块运动方向上再施加一水平面作用F ,力F 和滑块的速度v 随时间的变化规律分别如图a 和图b 所示.设在第1秒内、第2秒内、第3秒内力F 对滑块做的功分别为123W W W 、、,则以下关系正确的是( )A .123W W W ==B .123W W W <<C .132W W W <<D .123W W W =<2.如图所示,小车A 放在一个倾角为30°的足够长的固定的光滑斜面上,A 、B 两物体由绕过轻质定滑轮的细线相连,已知重力加速度为g ,滑轮质量及细线与滑轮之间的摩擦不计,小车A 的质量为3m ,小球B 的质量为m ,小车从静止释放后,在小球B 竖直上升h 的过程中,小车受绳的拉力大小F T 和小车获得的动能E k 分别为( )A .F T =mg ,E k =3mgh/8B .F T =mg ,E k =3mgh/2C .F T =9mg/8,E k =3mgh/2D .F T =9mg/8,E k =3mgh/83.如图所示,质量分别为m 和3m 的两个小球a 和b 用一长为2L 的轻杆连接,杆可绕中点O 在竖直平面内无摩擦转动.现将杆处于水平位置后无初速度释放,重力加速度为g ,则下列说法正确的是A .在转动过程中,a 球的机械能守恒B .b 球转动到最低点时处于失重状态C .a gLD .运动过程中,b 球的高度可能大于a 球的高度4.我国的传统文化和科技是中华民族的宝贵精神财富,四大发明促进了科学的发展和技术的进步,对现代仍具有重大影响,下列说法正确的是()A.春节有放鞭炮的习俗,鞭炮炸响的瞬间,动量守恒但能量不守恒B.火箭是我国的重大发明,现代火箭发射时,火箭对喷出气体的作用力大于气体对火箭的作用力C.装在炮弹中的火药燃烧爆炸时,化学能全部转化为弹片的动能D.指南针的发明促进了航海和航空,静止时指南针的N极指向北方5.如图,倾角为θ的光滑斜面与光滑的半径为R的半圆形轨道相切于B点,固定在水平面上,整个轨道处在竖直平面内。

高考物理专题力学知识点之功和能全集汇编附答案

高考物理专题力学知识点之功和能全集汇编附答案

高考物理专题力学知识点之功和能全集汇编附答案一、选择题1.汽车在平直公路上以速度v0匀速行驶,发动机功率为P.快进入闹市区时,司机减小了油门,使汽车的功率立即减小一半并保持该功率继续行驶.图四个图象中,哪个图象正确表示了从司机减小油门开始,汽车的速度与时间的关系()A.B.C.D.2.我国的传统文化和科技是中华民族的宝贵精神财富,四大发明促进了科学的发展和技术的进步,对现代仍具有重大影响,下列说法正确的是()A.春节有放鞭炮的习俗,鞭炮炸响的瞬间,动量守恒但能量不守恒B.火箭是我国的重大发明,现代火箭发射时,火箭对喷出气体的作用力大于气体对火箭的作用力C.装在炮弹中的火药燃烧爆炸时,化学能全部转化为弹片的动能D.指南针的发明促进了航海和航空,静止时指南针的N极指向北方3.某同学把质量是5kg 的铅球推出,估计铅球出手时距地面的高度大约为2m,上升的最高点距地面的高度约为3m,最高点到落地点的水平距离约为6m。

由此可估算出该同学推铅球的过程中对铅球做的功约为A.50J B.150J C.200J D.250J4.一质量为m的木块静止在光滑的水平面上,从0t=开始,将一个大小为F的水平恒力作用在该木块上,作用时间为1t,在10~t内力F的平均功率是()A.212Fmt⋅B.2212Fmt⋅C.21Fmt⋅D.221Fmt⋅5.如图所示,人站在电动扶梯的水平台阶上,假定人与扶梯一起沿斜面加速上升,在这个过程中,人脚所受的静摩擦力()A.等于零,对人不做功B.水平向左,对人做负功C.水平向右,对人做正功D.沿斜面向上,对人做正功6.如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变7.如图所示,质量分别为m和3m的两个小球a和b用一长为2L的轻杆连接,杆可绕中点O在竖直平面内无摩擦转动.现将杆处于水平位置后无初速度释放,重力加速度为g,则下列说法正确的是A.在转动过程中,a球的机械能守恒B.b球转动到最低点时处于失重状态C.a球到达最高点时速度大小为gLD.运动过程中,b球的高度可能大于a球的高度8.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其他轨迹最高点,机械能的增量为A.2mgRB.4mgRC.5mgRD.6mgR9.关于重力势能,下列说法中正确的是()A.重力势能的大小只由物体本身决定B.重力势能恒大于零C.在地面上的物体,它具有的重力势能一定等于零D.重力势能是物体和地球所共有的10.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OC水平、OB竖直,一个质量为m的小球自C的正上方A点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力。

高一物理功和能练习题及答案

高一物理功和能练习题及答案

功和能练习题一、选择题1. 关于摩擦力做功,下列说法中正确的是( )A. 静摩擦力一定不做功B. 滑动摩擦力一定做负功C. 静摩擦力和滑动摩擦力都可做正功D. 相互作用的一对静摩擦力做功的代数和可能不为02.一人自高出地面h 处开始,水平抛出一个质量为m 的物体.物体落地时的速率为v ,不计空气阻力,则人对物体所做的功为( )A .mghB .mgh /2C .21mv 2D .21mv 2-mgh 3、在平直的公路上,汽车由静止开始做匀加速运动,当速度达到V m ,立即关闭发动机而滑行直到停止,v-t 图线如图,汽车的牵引力大小为F ,摩擦力大小为f ,全过程中,牵引力做功为W 1,克服摩擦力做功为W 2,则( )A 、F :f =1:3B 、F :f = 4:1C 、W 1:W 2 =1:1D 、W 1:W 2 =1:34.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地( )①运行的时间相等 ②加速度相同③落地时的速度相同 ④落地时的动能相等以上说法正确的是A .①③B .②③C .①④D .②④5.水平面上甲、乙两物体,在某时刻动能相同,它们仅在摩擦力作用下停下来.图中的a 、b 分别表示甲、乙两物体的动能E 和位移s 的图象,则( )①若甲、乙两物体与水平面动摩擦因数相同,则甲的质量较大②若甲、乙两物体与水平面动摩擦因数相同,则乙的质量较大③若甲、乙质量相同,则甲与地面间的动摩擦因数较大④若甲、乙质量相同,则乙与地面间的动摩擦因数较大以上说法正确的是( )A .①③B .②③C .①④D .②④6.当重力对物体做正功时,物体的( )A .重力势能一定增加,动能一定减小B .重力势能一定增加,动能一定增加C .重力势能一定减小,动能不一定增加D .重力势能不一定减小,动能一定增加7、一质量为m 的物体被人用手由静止竖直向上以加速度a 匀加速提升h ,关于此过程下列说法中正确的是:( )A 、提升过程中物体动能增加mahB 、提升过程中物体重力势能增加mghC 、提升过程中物体机械能增加m(a+g)hD 、 提升过程中手对物体做功m(a+g)h8.自由下落的小球,从接触竖直放置的轻弹簧开始,到压缩弹簧有最大形变的过程中,以下说法中正确的是( )A .小球的动能逐渐减少B .小球的重力势能逐渐减少C .小球的机械能守恒D .小球的加速度逐渐增大9.一个质量为m 的物体以a =2g 的加速度竖直向下运动,则在此物体下降h 高度的过程中,物体的( )①重力势能减少了2mgh ②动能增加了2mgh③机械能保持不变 ④机械能增加了mgh以上说法正确的是( )A .①③B .①④C .②③D .②④ 10、质量为m 的物体从地面上方H 高处无初速释放,落在地面后出现一个深度为h 的坑,如图所示,在此过程中:( )A 、重力对物体做功为mgHB 、物体的重力势能减少了mg (H +h )C 、所有外力对物体做的总功为零D 、地面对物体的平均阻力大小为mg (H +h )/ h11、质量为 m 的小车在水平恒力F 推动下,从山坡底部A 处由静止起运动至高为h 的坡顶B ,获得速度为v ,AB 的水平距离为S 。

(完整版)高三物理专题---功和能,含答案解析

(完整版)高三物理专题---功和能,含答案解析

高三物理“功和能的关系”知识定位在高中物理学习过程中,既要学习到普遍适用的守恒定律——能量守恒定律,又要学习到条件限制下的守恒定律——机械能守恒定律。

学生掌握守恒定律的困难在于:对于能量守恒定律,分析不清楚哪些能量发生了相互转化,即哪几种能量之和守恒;而对于机械能守恒定律,又不能正确的分析何时守恒,何时不守恒。

在整个高中物理学习过程中,很多同学一直错误的认为功与能是一回事,甚至可以互相代换,其实功是功,能是能,功和能是两个不同的概念,对二者的关系应把握为:功是能量转化的量度。

知识梳理1、做功的过程是能量转化的过程,功是能的转化的量度。

2、能量守恒和转化定律是自然界最基本的定律之一。

而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。

本章的主要定理、定律都是由这个基本原理出发而得到的。

需要强调的是:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它个一个时刻相对应。

两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。

3、复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。

突出:“功是能量转化的量度”这一基本概念。

⑴物体动能的增量由外力做的总功来量度:W外=ΔE k,这就是动能定理。

⑵物体重力势能的增量由重力做的功来量度:W G= -ΔE P,这就是势能定理。

⑶物体机械能的增量由重力以外的其他力做的功来量度:W其=ΔE机,(W其表示除重力以外的其它力做的功),这就是机械能定理。

⑷当W其=0时,说明只有重力做功,所以系统的机械能守恒。

⑸一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。

f d=Q(d为这两个物体间相对移动的路程)。

例题精讲1【题目】如图所示,一根轻弹簧下端固定,竖立在水平面上。

其正上方A位置有一只小球。

小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零。

高中物理《功和能》练习题(附答案解析)

高中物理《功和能》练习题(附答案解析)

高中物理《功和能》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.一个质量为2kg 的物体从某高处自由下落,重力加速度取10m/s 2,下落2s 时(未落地)重力的功率是( )A .300WB .400WC .500WD .600W 2.“嫦娥五号”是我国月球软着陆无人登月探测器,如图,当它接近月球表面时,可打开反冲发动机使探测器减速下降。

探测器减速下降过程中,它在月球上的重力势能、动能和机械能的变化情况是( )A .动能增加、重力势能减小B .动能减小、重力势能增加C .动能减小、机械能减小D .重力势能增加、机械能增加3.如图所示,电梯质量为M ,在它的水平地板上放置一质量为m 的物体。

电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v 1增加到v 2时,上升高度为H ,重力加速度为g ,则在这个过程中,下列说法或表达式正确的是( )A .对物体,动能定理的表达式为W N =12m 22v ,其中W N 为支持力做的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力做的功C .对物体,动能定理的表达式为22N 211122W mgH mv mv -=- D .对电梯,其所受合力做功为22211122Mv Mv mgH -- 4.甲、乙两个可视为质点的物体的位置如图所示,甲在桌面上,乙在地面上,质量关系为m 甲<m 乙,若取桌面为零势能面,甲、乙的重力势能分别为Ep 1、Ep 2,则( )A .Ep 1>Ep 2B .Ep 1<Ep 2C .Ep 1=Ep 2D .无法判断5.物体在水平力F 作用下,沿水平地面由静止开始运动,1s 后撤去F ,再经过2s 物体停止运动,其v t -图像如图。

若整个过程拉力F 做功为1W ,平均功率为1P ;物体克服摩擦阻力f 做功为2W ,平均功率为2P ,加速过程加速度大小为1a ,减速过程中加速度的大小为2a ,则( )A .122W W =B .123a a =C .123P P =D .2F f =6.如图所示,在大小和方向都相同的力F 1和F 2的作用下,物体m 1和m 2沿水平方向移动了相同的距离。

第三、四章 功、能、动量参考答案1

第三、四章 功、能、动量参考答案1

第三、四章 功、能、动量班级______________学号____________姓名________________一、选择题1、质量相等的两个物体甲和乙,并排静止在光滑水平面上(如图所示).现用一水平恒力F 作用在物体甲上,同时给物体乙一个与F 同方向的瞬时冲量量I ,使两物体沿同一方向运动,则两物体再次达到并排的位置所经过的时间为:[C ](A) I / F . (B) 2I / F . (C) 2 F/ I . (D) F/ I ./2、一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力为N .则质点自A 滑到B 的过程中,摩擦力对其作的功为[B ] (A) )3(21mg N R -. (B) )3(21N mg R -. (C) )(21mg N R -. (D) )2(21mg N R -. 3、一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为[D ](A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s .4、一质量为m 的滑块,由静止开始沿着1/4圆弧形光滑的木槽滑下.设木槽的质量也是m .槽的圆半径为R ,放在光滑水平地面上,如图所示.则滑块离开槽时的速度是[C ](A) Rg 2. (B) Rg 2. (C) Rg . (D) Rg 21.>5、两质量分别为m 1、m 2的小球,用一劲度系数为k 的轻弹簧相连,放在水平光滑桌面上,如图所示.今以等值反向的力分别作用于两小球,则两小球和弹簧这系统的[A ](A) 动量守恒,机械能守恒. (B) 动量守恒,机械能不守恒. (C) 动量不守恒,机械能守恒. (D) 动量不守恒,机械能不守恒.6、一质量为M 的弹簧振子,水平放置且静止在平衡位置,如图所示.一质量为m 的子弹以水平速度v 射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为[B ](A) 221v m . (B) )(222m M m +v .,(C) 2222)(v M m m M +. (D) 222v M m .7、作匀速圆周运动的物体运动一周后回到原处,这一周期内物体: [ C ](A) 动量守恒,合外力为零. (B) 动量守恒,合外力不为零. 俯视图F I A B(C) 动量变化为零,合外力不为零, 合外力的冲量为零.(D) 动量变化为零,合外力为零.8、以下说法正确的是:[A ](A) 功是标量,能也是标量,不涉及方向问题;(B) 某方向的合力为零,功在该方向的投影必为零;(C) 某方向合外力做的功为零,该方向的机械能守恒;(D) 物体的速度大,合外力做的功多,物体所具有的功也多./9、 以下说法错误的是:[ A ](A) 势能的增量大,相关的保守力做的正功多;(B) 势能是属于物体系的,其量值与势能零点的选取有关;(C) 功是能量转换的量度;(D) 物体速率的增量大,合外力做的正功多 10、悬挂在天花板上的弹簧下端挂一重物M ,如图所示.开始物体在平衡位置O 以上一点A . (1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2 ,则:[B ](A) A 1 > A 2. (B) A 1 < A 2. (C) A 1 = A 2. (D) 无法确定.11、一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是: [ C ](A) 汽车的加速度是不变的;(B) 汽车的加速度与它的速度成正比;(C) 汽车的加速度随时间减小;(D) 汽车的动能与它通过的路程成正比《二、填空题1、一个力F 作用在质量为 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为3243t t t x +-= (SI).在0到 4 s 的时间间隔内,力F 的冲量大小I =___19NS ______.2、一个力F 作用在质量为 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为3243t t t x +-= (SI).在0到4 s 的时间间隔内, 力F 对质点所作的功W = .3、质量为m 1和m 2的两个物体,具有相同的动量.欲使它们停下来,外力对它们做的功之比W 1∶W 2 =_m 2:m 1________.4、质量m 的小球,以水平速度v 0与光滑桌面上质量为M 的静止斜劈作完全弹性碰撞后竖直弹起,则碰后斜劈的运动速度值v =_mv 0/M______.5、质量为m 的子弹,以水平速度v 0射入置于光滑水平面上的质量为M 的静止砂箱,子弹在砂箱中前进距离l 后停在砂箱中,同时砂箱向前运动的距离为S ,此后子弹与砂箱一起以共同速度匀速运动,则子弹受到的平均阻力F =()220221m M m M l s Mmv +++,砂箱与子弹系统损失的机械能△E=m M Mmv +2021。

功和能课后习题答案

功和能课后习题答案


1 2
λ( l1 +
l2 ) v2
根据动能定理 :

1 2
λ( l1

l2 ) v2

λ( l2 + x ) gd x - μλ( l1 - x ) gd x
依题意知 :x = 0 时 ,v = 0 积分上式
∫ ∫ v d 0
1 2
λ( l1

l2 ) v2


[λ( l2 + x ) gd x - μλ( l1 - x ) gd x ]
统 ,各种形式的能量可以互相转换 ,但它们的总和是一个常数 .
二 、典型例题
3唱1 一弹簧的质量为 m ,原长为 l0 ,劲度系数为 k .其一端固定 ,另一端系一
质量为 M 的小球 ,置于光滑的水平桌面上 ,
弹簧的伸长是均匀的 .如图 3唱1所示 ,现将小
球拉至 A 点 ,然后无初速地突然释放小球 ,
x l2


μ
l1 l1
- +
x l2

dx
= l1
g +
l2
[(1

μ)xd x +
( l2

μl1 )d x ]
当 x = 0 时 ,链条速度 v = 0 积分上式
∫ ∫ v vdv 0

g l1 + l2

[(1 +

μ)xd x +
( l2

μl1 )d x ]

v=
l1
g +
l2 [(1
三 、习题详解
3畅1 选择题 (1)把一质量为 m ,各边长均为 2 a 的均质货箱 ,由位置(I)翻转到位置(II) ,则 人力所作的功为(D) .

高中物理 选修三(2019)第三章 热力学定律 第1节 功、热和内能的改变练习(含答案)

高中物理 选修三(2019)第三章 热力学定律 第1节 功、热和内能的改变练习(含答案)

功、热和内能的改变练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.金属筒内装有与外界温度相同的压缩空气,打开筒的开关,筒内高压空气迅速向外逸出,待筒内外压强相等时,立即关闭开关。

在外界保持恒温的条件下,经过一段较长时间后,再次打开开关,这时出现的现象是()A.筒外空气流向筒内B.筒内空气流向筒外C.筒内外有空气变换,处于动态平衡,筒内空气质量不变D.筒内外无空气交换2.两个温度不同的物体相互接触,达到热平衡后,它们具有相同的物理量是() A.质量B.密度C.温度D.重力3.关于内能,以下说法正确的是()A.做功和热传递在改变物体内能的效果上是等效的B.只要物体的温度不变,它的内能就不变C.每个分子的内能等于这个分子的势能和动能的总和D.焦耳通过大量实验提出了热和能的当量关系4.关于物体的内能,下列说法正确的是()A.做功可以改变物体的内能B.只有通过热传递才能改变物体的内能C.对同一物体的不同物态,固态比液态的内能大D.在物体内相邻的分子与分子之间距离越大,物体的内能越大5.热传递的实质是()A.内能多的物体把热量传递给内能少的物体B.热量多的物体把热量传递给热量少的物体C.高温物体把热量传递给低温物体D.质量大的物体把热量传递给质量小的物体6.如图所示,一定质量的理想气体密封在绝热(即与外界不发生热交换)容器中,容器内装有一可以活动的绝热活塞.今对活塞施以一竖直向下的压力F,使活塞缓慢向下移动一段距离后,气体的体积减小.若忽略活塞与容器壁间的摩擦力,则被密封的气体( )图13-2-4A.温度升高,压强增大,内能减少B.温度降低,压强增大,内能减少C.温度升高,压强增大,内能增加D.温度降低,压强减小,内能增加7.绝热过程中,外界压缩气体做功20J,下列说法中正确的是()A.气体内能一定增加20J B.气体内能增加必定小于20JC.气体内能增加可能小于20J D.气体内能可能不变8.下列说法正确的是()A.只有通过做功,才能改变物体的内能B.气体被压缩时,外界对气体做功,气体内能减少C.物体的温度越高,分子热运动的平均动能越大D.物体分子热运动的动能的总和,就是物体的内能9.关于温度和内能的理解,下列说法中正确的是( ).A.温度是分子平均动能的标志,物体温度升高,则物体每一个分子的动能都增大B.不计分子之间的分子势能,质量和温度相同的氢气和氧气具有相同的内能C.1g100℃水的内能小于1g100℃水蒸气的内能D.做功和热传递对改变物体内能是等效的,也就是说做功和热传递的实质是相同的10.关于内能,下列说法正确的是A.物体的内能包括物体运动的动能B.0℃C的水结冰过程中温度不变,内能减小C.提起重物,因为提力做正功,所以物体内能增大D.摩擦冰块使其融化是采用热传递的方式改变物体的内能二、多选题11.下列说法正确的是()A.将一块品体敲碎后,得到的小颗粒是非晶体B.晶体的分子(或原子、离子)排列是有规则的C.单晶体和多晶体有固定的熔点,非晶体没有固定的熔点D.在完全失重的状态下,一定质量的理想气体压强为零E.热量总是自发地从分子平均动能大的物体传递到分子平均动能小的物体12.对内能的理解,下列说法正确的是( )A.系统的内能是由物质的质量,种类及状态参量温度体积决定的B.做功可以改变系统的内能,但是单纯地对系统传热不能改变系统的内能C.若不计分子之间的分子势能,质量和温度相同的氢气和氧气具有相同的内能D.1g的100℃水的内能小于1g的100℃水蒸气的内能13.下列说法正确的是A.温度由摄氏温度t升至2t,对应的热力学温度便由T升至2TB.相同温度下液体中悬浮的花粉小颗粒越小,布朗运动越剧烈C.做功和热传递是改变物体内能的两种方式D.分子间距离越大,分子势能越大,分子间距离越小,分子势能也越小E.晶体具有固定的熔点,物理性质可表现为各向同性14.下列说法中正确的是()A.做功和传热是改变物体内能的两种本质不同的物理过程,做功是其他形式的能和内能之间的转化,传热是物体内能的转移B.外界对物体做功,物体的内能一定增大C.物体向外界放热,物体的内能一定增大D.物体内能发生了改变,可能是做功引起的,也可能是传热引起的,还可能是两者共同引起的15.关于热量、功和内能的下列说法中正确的是()A.热量、功、内能三者的物理意义等同B.热量、功都可以作为物体内能的量度C.热量、功都可以作为物体内能变化的量度D.热量、功、内能的单位相同16.下列说法正确的是A.布朗运动是液体分子的运动,它说明分子永不停息地做无规则热运动B.理想气体的温度升高时,分子的平均动能一定增大C.同一种化学元素构成的固体可能会于原子的列方式不同而成为不同的晶体D.晶体在熔化时需要吸热,说明品体在熔化过程中分子动能增加E.做功利热传递的本质在于做功是能量的转化,热传递是内能的转移17.在下述现象中没有做功而使物体内能改变的是()A.电流通过电炉而使温度升高B.在阳光照射下,水的温度升高C.铁锤打铁块,使铁块温度升高D.夏天在室内放几块冰,室内温度会降低18.我们用手不断反复弯折铅丝,铅丝被折断的同时温度也升高了,这一事实说明()A.铅丝不吸收热量,温度也能升高B.对物体做功,能使物体内能增加C.做功和热传递对物体内能的改变是等效的D.机械功可以转化成热量,铅丝吸收了热量,温度升高参考答案1.B【详解】因高压空气急剧外逸时,气体没有时间充分与外界发生热交换,可近似看成绝热膨胀过程。

高考物理力学知识点之功和能全集汇编含答案解析(3)

高考物理力学知识点之功和能全集汇编含答案解析(3)

高考物理力学知识点之功和能全集汇编含答案解析(3)一、选择题1.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做功为( )A .12μmgR B .12mgR C .mgRD .()1mgR μ-2.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A 加速变轨进入圆轨道Ⅱ。

已知轨道Ⅰ的近地点B 到地心的距离近似等于地球半径R ,远地点A 到地心的距离为3R ,则下列说法正确的是( )A .卫星在B 点的加速度是在A 点加速度的3倍B .卫星在轨道Ⅱ上A 点的机械能大于在轨道Ⅰ上B 点的机械能C .卫星在轨道Ⅰ上A 点的机械能大于B 点的机械能D .卫星在轨道Ⅱ上A 点的动能大于在轨道Ⅰ上B 点的动能3.如图,半径为R 、质量为m 的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A 点正上方h 高处由静止释放,小球自由落体后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h ,则A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12R C .小球离开小车后做斜上抛运动D.小球第二次能上升的最大高度12h<h<34h4.如图所示,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始自由下滑,则()A.小球到达弧形槽底部时速度小于2ghB.小球到达弧形槽底部时速度等于2ghC.小球在下滑过程中,小球和槽组成的系统总动量守恒D.小球自由下滑过程中机械能守恒5.我国的传统文化和科技是中华民族的宝贵精神财富,四大发明促进了科学的发展和技术的进步,对现代仍具有重大影响,下列说法正确的是()A.春节有放鞭炮的习俗,鞭炮炸响的瞬间,动量守恒但能量不守恒B.火箭是我国的重大发明,现代火箭发射时,火箭对喷出气体的作用力大于气体对火箭的作用力C.装在炮弹中的火药燃烧爆炸时,化学能全部转化为弹片的动能D.指南针的发明促进了航海和航空,静止时指南针的N极指向北方6.如图,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动.已知小球在最低点时对轨道的压力大小为N1,在高点时对轨道的压力大小为N2.重力加速度大小为g,则N1–N2的值为A.3mg B.4mg C.5mg D.6mg7.如图所示,长为l的轻杆一端固定一质量为m的小球,另一端有固定转轴O,杆可在竖直平面内绕轴O无摩擦转动.已知小球通过最低点Q时,速度大小为,则小球的运动情况为()A.小球不可能到达圆周轨道的最高点PB.小球能到达圆周轨道的最高点P,但在P点不受轻杆对它的作用力C.小球能到达圆周轨道的最高点P,且在P点受到轻杆对它向上的弹力D.小球能到达圆周轨道的最高点P,且在P点受到轻杆对它向下的弹力8.如图所示,三个固定的斜面底边长度都相等,斜面倾角分别为 30°、45°、60°,斜面的表面情况都一样.完全相同的物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部的过程中A.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多9.2019年2月16日,世界游泳锦标赛跳水项目选拔赛(第一站)在京举行,重庆选手施延懋在女子3米跳板决赛中,以386.60分的成绩获得第一名,当运动员压板使跳板弯曲到最低点时,如图所示,下列说法正确的是()A.跳板发生形变是因为运动员的重力大于板对她支持力B.弯曲的跳板受到的压力,是跳板发生形变而产生的C.在最低点时运动员处于超重状态D.跳板由最低点向上恢复的过程中,运动员的机械能守恒10.如图所示,质量为60kg的某运动员在做俯卧撑运动,运动过程中可将她的身体视为一根直棒,已知重心在C点,其垂线与脚,两手连线中点间的距离Oa、ob分别为0.9m和0.6m,若她在1min内做了30个俯卧撑,每次肩部上升的距离均为0.4m,则克服重力做功和相应的功率为()A.430J,7WB.4300J,70WC.720J,12WD.7200J,120W11.质量为m的滑块沿高为h,长为L的粗糙斜面匀速下滑,在滑块从斜面顶端滑至底端的过程中A.滑块的机械能保持不变B.滑块克服摩擦所做的功为mgLC.重力对滑块所做的功为mgh D.滑块的机械能增加了mgh12.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其他轨迹最高点,机械能的增量为A.2mgRB.4mgRC.5mgRD.6mgR13.关于重力势能,下列说法中正确的是()A.重力势能的大小只由物体本身决定B.重力势能恒大于零C.在地面上的物体,它具有的重力势能一定等于零D.重力势能是物体和地球所共有的14.恒力F作用于原来静止的物体上,使其分别沿粗糙水平面和光滑水平面移动一段相同距离s,则水平恒力F做的功和功率W1、P l和W2、P2相比较,正确的是( )A.W l>W2,P1>P2B.W l=W2,P I<P2C.W l=W2,P l>P2D.W l>W2,P I<P215.研究“蹦极”运动时,在运动员身上装好传感器,用于测量运动员在不同时刻下落的高度及速度。

《物理学基本教程》课后答案 第三章 功和能

《物理学基本教程》课后答案 第三章  功和能

第三章 功和能3-1 汽车在平直路面上行驶,若车与地面间的摩擦力恒定,而空气阻力与速度的平方成正比.设对于一辆质量为1500kg 的汽车总的阻力281300v .+=F (其中F 以N 为单位,v 以m/s 为单位),求当车速为60 km/h ,加速度为1.0m/s 2时,汽车引擎所损耗的瞬时功率.分析 作用力的瞬时功率等于该力与物体获得的速度的乘积.解 当汽车的加速度为a 时,引擎牵引力为F 1,应用牛顿第二定律,运动方程为ma F F =-1则 2181300v .++=-=ma F ma F根据瞬时功率的定义,汽车引擎所损耗的瞬时功率为W 103.83 W 3600100060360010006081300011500 813004221⨯=⨯⨯⨯⨯++⨯=++==])(..().(v v v ma F P 3-2 如习题1-7所述,若海岸高h = 10 m ,而猛烈的大风使船受到与绳的牵引方向相反的恒定的作用力F = 5000 N ,如图3-2所示.当岸上的水手将缆绳由50 m 收到30 m 后,求缆绳中张力的改变量,以及在此过程中水手所作的功.分析 水手拉缆绳的过程中,是通过缆绳将力作用在船上实现船体运动作的功.由于缆绳中的张力是变力,直接计算它的功比较困难.根据动能定理,合外力的功等于物体动能的增量,船在此过程中开始前和结束后图3-2都保持静止,船只在水平方向发生位移,水平方向只受缆绳张力水平分量和恒定阻力F 作用,则水手通过缆绳张力所作的功的量值应等于恒力F 所作的负功.解 缆绳长度由l 1=50 m 收到l 2=30 m 的过程中,位移为s ,水手作的功为J101.035J 103010505000 52222222221⨯=---⨯=---==()(h l h l F Fs W 设此过程中开始前缆绳张力为F T1、结束后为F T2,它们的水平方向分量都应与恒力F 等大而反向,因此有F l h l F =-1221T1 F l h l F =-2222T2则N 200N 1050501030305000 222222112222T1T2=⎪⎪⎭⎫ ⎝⎛---⨯=⎪⎪⎭⎫ ⎝⎛---=-h l l h l l F F F 3-3 质点沿x 轴运动,由x 1 = 0处移动到x 2 = 4 m 的过程中,受到力)1(00-=x x F F 的作用,其中x 0 = 2 m ,F 0 = 8 N ,作出F -x 曲线,求在此期间力F 对质点所作的功. 分析 当质点沿x 轴作直线运动时,如果外力是质点位置坐标x 的函数)(x F F =,质点从位置x 1运动到x 2的过程中,根据功的定义,该力所作的功为⎰=21d x x x x F W )(,即为F -x 图像中x 1到x 2区间曲线)(x F 与x 轴线包围面积的代数和.图3-3解 根据题意,F -x 曲线如图3-3所示.按照功的定义,有0J 42248 2d 1d 220220002121=-⨯⨯=-=-==⎰⎰)()()()(x x x F x x x F x x F W x x x x由图3-3可见,x 1到x 2区间曲线)(x F 与x 轴线包围面积的代数和为零,与上面的计算结果一致.3-4 在x 轴线上运动的物体速度为v = 4 t 2 + 6(其中v 以m/s 为单位,t 以s 为单位),作用力3-=t F (其中F 以N 为单位,t 以s 为单位)沿x 轴正向.试求在t 1 = 1 s 和t 2 = 5 s 期间,力F 对物体所作的功.分析 当质点沿x 轴作直线运动时,如果外力是时间t 的函数)(t F F =,根据功的定义⎰=21d x x x x F W )(,无法直接积分计算,通常可利用微分关系式t t tx x d d d d d v ==,将积分变量转换为时间t 进行计算.积分变量代换后,积分的上下限也要作相应的代换.解 根据功的定义[]J 921834d 186124 d 643d d 2121212121234232=-+-=-+-=+-===⎰⎰⎰⎰t t t t t t t t x x t t t t t t t t t t t t t F x t F W )())(()()(v3-5 在光滑的水平桌面上固定有如图3-5(a)所示的半圆形屏障,质量为m 的滑块以初速v 0沿屏障一端的切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,(1)证明当滑块从屏障另一端滑出时,摩擦力对它所作的功为)(1e 2120-=-μπv m W ;(2)说明上述结果为什么与圆弧半径无关.分析 当外力无法表示成位移的函数时,功就不能直接由定义式积分进行计算.如果能确定物体初末状态的速度,可以应用动能定理,求出物体动能的增量就等于合外力对物体所作的功. 证 (1)首先应计算出滑块从屏障另一端滑出时的速度.设滑块在屏障中位于如图3-5(b)所示的位置,在竖直方向无运动,在水平面内受到屏障压力F N 和摩擦力F f 作用,此时速度为v ,设屏障半径为R ,应用牛顿第二定律所得运动方程为法向: R v 2m F =N 切向: tm F d d f v =- 由于F f =μF N ,得 Rt 2d d v v μ-= 利用关系式θθθd d d d d d d d v v v v R t t ==,上式可写为 v v μθ-=d d (1) 由初末条件:当0=θ时,0v v =;当πθ=时,v v =,将上式分离变量并积分:⎰⎰-=πθμ0d d 0vv v v (2) 得滑块从屏障另一端滑出时的速度为μπ-=e 0v v (3)则摩擦力在此期间所作的功为F f(a ) (b )图3-5)(1e 212121220202-=-=-μπv v v m m m W (2)由(1)和(2)式可以看出,当滑块发生角位移θd 时,速度的变化只与角位移θd 有关,与半径无关,因此(3)式给出的末速度也只与半圆的张角有关,这就导致最终结果与圆弧半径无关了.3-6 一个质点在指向中心的平方反比力2r k F /=的作用下,作半径为r 的圆周运动,求质点运动的速率和总机械能.(提示:选取距力心无穷远点的势能为零.)分析 与物体间距离平方成反比的力是自然界中普遍存在的一种力,例如万有引力和电荷间的库仑力.如果该力指向中心,计算势能时,从空间任意一点到势能零点(无穷远点)积分的路径方向与力的作用方向相反,积分表达式的矢量乘积变为标量乘积后要取负号.解 质点只在指向中心的力2r k F /=的作用下作圆周运动,当速率为v 时,法向加速度为r /2v ,则质点的法向运动方程为rm r k 22v = 得 mr k =v 选取距力心无穷远为势能零点,则势能为rk r r k E r r -=-=⋅=⎰⎰∞∞d d 2p r F 总机械能为rk r k r k r k m E E E 22212p k -=-=-=+=v 3-7 在力)(j i F y x k +=的作用下,质点在xy 平面内运动,(1)分别计算质点由原点O 经路径OBA 和路径OA 移动到达A 点该力所作的功,其中AB 是以O 为圆心R 为半径的一段圆弧,如图3-7(a )所示;(2)计算沿任意路径由位置P (x 1 , y 1)到Q (x 2 , y 2)该力所作的功,并由此证明该力是保守力.分析解 (1)根据功的定义,经路径OBA 该力所作的功为⎰⎰⎰⋅+⋅=⋅=BAOB OBA W s F s F s F d d d 1 由于力r j i F k y x k =+=)(,即沿原点指向质点所在位置的方向,所以有r F s F d d ⋅=⋅.从图3-7(a )可以看出,在路径OB 上,力的方向与位移方向相同x kx d d =⋅r F ;在路径BA 上,力的方向与位移方向垂直,0d d =⋅=⋅r F s F ,因此可得20121d d d d kR x kx x kx W R OB BA OB ===⋅+⋅=⎰⎰⎰⎰s F s F 同理,经路径OA 该力所作的功为20121d d d d kR r kr k W R OA OA OA ==⋅=⋅=⋅=⎰⎰⎰⎰r r r F s F (2)P 点的径矢大小为r 1,Q 点的径矢大小为r 2,则212121y x r +=,222222y x r +=.取任意路径L 如图3-7(b )所示,则)]()[()(2122212221222121 d d d 21y y x x k r r k r kr W r r L L -+-=-==⋅=⋅=⎰⎰⎰r F s Fθ r 2O OB x x(a ) (b )图3-7结果表明,沿任意路径力F 所作的功与路径无关,只与P 点和Q 点的位置有关,表明力F 为保守力.3-8 沿x 轴运动的某粒子的势能是其位置x 的函数x B x A x U -=2)( 据此所作的势能曲线如图3-8所示.(1)试求粒子势能最小值所对应的运动的平衡位置;(2)当粒子的总能量AB E 82-=时,粒子将被约束在一定范围内振动,求粒子往返运动的转折位置.分析 n m xB x A x U -=)(是粒子物理、固体物理和材料科学中描述粒子间相互作用经常出现的势能函数,对它的研究和讨论有十分重要的实际意义.这里仅就最简单的情况,即12==n m ,进行分析,获得粒子运动状态的初步印象.当粒子的能量比较小时,将在平衡位置附近作简谐振动,因此平衡位置和往返运动的转折位置就有重要意义. 解 (1)由0d d =x x U )(可得势能函数最小值的位置,即 02d d 23=+-=x B x A x x U )( 解得 B A x 2= (2)在往返运动的转折点处,粒子的速度为零,即动能为零,总能量应等于粒子的势能,即AB x B x A x U 822-=-=)( 可得 088222=+-A ABx x B解得 B A x 1711.= BA x 8362.=图3-83-9 马拉雪橇上坡,从坡底到坡顶是一段半径为R 弧长为6π的圆弧形山坡.假设马的拉力始终沿圆弧的切线方向,雪橇的质量为m ,雪橇与雪地间的滑动摩擦系数为μ,求在这段路程中马所作的功. 分析 在物体运动过程中,有摩擦力等非保守力存在时,应用功能原理计算外力的功比较便捷,外力和非保守内力的功等于物体系机械能的增量. 解 以雪橇为研究对象,受力情况如图3-9所示,如果始末时刻雪橇为静止状态,在上坡过程中,马的拉力的功和摩擦阻力的负功之和等于雪橇重力势能的增量.由于此过程雪橇高度的增加为)cos (61π-R ,因此重力势能的增量为)cos (61π-mgR .当雪橇所在位置的法线方向与竖直方向夹角为θ时,摩擦力θμμcos mg F F ==N f ,位移θd d R s =,应用功能原理,马的拉力的功为)cos sin ()cos (cos 661 61d d 06f ππμπθθμπ-+=-+=⋅=⎰⎰mgR mgR mgR W s F3-10 用m /s 200=v 的初速度将一质量为kg 50.=m 的物体竖直上抛,所达到的高度是m 16=h ,求空气对它的平均阻力.分析 物体所受到的空气阻力是外力,重力是物体和地球组成的系统的内力,根据功能原理,空气阻力所作的功应等于系统机械能的增量.应在选取了势能零点后,确定系统的初末状态的机械能,计算出系统机械能的增量.解 取物体抛出点为重力势能零点,则物体初始机械能为20121v m E =,达最高点时机械能为mgh E =2,设空气对它的平均阻力为F ,应用功能原理得F fR图3-92021v m mgh Fh -=- 则 N 1.35N 8916220502220=-⨯⨯=-=).(.)(g h m F v 3-11 质量分别为m 1、m 2的二物体与劲度系数为k 的弹簧连接成如图3-11(a )所示的系统,物体m 1放置在光滑桌面上,忽略绳与滑轮的质量及摩擦.当物体达到平衡后,将m 2往下拉h 距离后放手,求物体m 1、m 2运动的最大速率.分析 应用机械能守恒定律解力学问题时,系统的选取十分重要.选定系统后,要区分内力和外力、保守力和非保守力以及作功的力和不作功的力.仅当外力和非保守内力所作的功均为零时,才能应用机械能守恒定律.本题中m 1、m 2二物体连接在一起,位移大小、速率和加速度的大小都相同.忽略绳与滑轮的质量及摩擦的情况下,张力F T 和F ’T 为一对内力,大小相等,方向分别与物体运动方向相同和相反,因此系统运动过程中二力的功之和为零.解 以弹簧与二物体组成的弹性系统以及物体与地球组成的重力系统为研究对象,二物体受力情况如图3-11(b )所示.在系统运动过程中,因张力F T 和F ’T 所作功之和为零,只有作用在m 2上的重力及作用在m 1上的弹簧弹性力作功,系统机械能守恒.取竖直向下为x 轴正向,系统平衡时m 2的位置为坐标原点,设此时弹簧的伸长量为l 0,根据胡克定律,弹簧的弹性力大小为0kl F =.由于系统处于平衡’Tm 2 m 1gm 2g x(a ) (b )图3-11状态,应有0T 2='-F g m ,0T =-F F ,且因T TF F =',则 002=-kl g m (1)取m 2的平衡位置为重力势能零点,初始时,m 2向下位移h ,重力势能为gh m 2-,弹簧伸长量为)(h l +0,弹性势能为2021)(h l k +,则系统机械能为 gh m h l k E 220121-+=)( (2) 当m 2处于x 位置时,设速率为v ,则系统总动能为22121v )(m m +,重力势能为gx m 2-,弹簧伸长量为)(x l +0,弹性势能为2021)(x l k +,则系统机械能为 2212202121v )()(m m gx m x l k E ++-+= (3) 应用机械能守恒定律,1E E =,由(1)、(2)和(3)式得)(22212x h m m k -+=v 显然0=x 时有最大值 212max m m kh +=v 3-12 用弹簧将质量分别为m 1和m 2的两块木板连接起来,必须加多大的力F 压到上面的板m 1上,以便当突然撤去F 时,上面的板跳起来能使下面的板也刚好被提离地面.分析 对于弹簧连接的两块木板组成的系统,初始时有外力作用,运动过程中m 2还受到地面的压力,弹簧的弹性力是变力,两块木板之间有相对运动,应用牛顿定律解这样的问题显得相当复杂.考虑到撤去外力F 后,作用于系统的力除作为保守力的重力和弹簧的弹性力外,只有地面的压力.根据题意,下面的板刚好被提离地面,表明其处于与地面接触的临界状态,实际并没有离开地面,也就是说没有发生位移,那么地面的压力就没有作功.于是,撤去外力F 后,只有重力和弹簧的弹性力作功,系统机械能守恒.解 以如图3-12(a )所示的弹簧连接的两块木板组成的弹性系统、以及和地球组成的重力系统为研究对象,两块木板的处于始末状态和受力情况分别如图3-12(b )和(c )所示.初刻,弹簧压缩形变量为x 1,弹性势能为2121kx ,设此时系统重力势能为零,系统机械能为21121kx E =下面的板刚好被提离地面时,弹簧伸长形变量为x 2,弹性势能为2221kx ,重力势能为)(211x x g m +,系统机械能为22211221kx x x g m E ++=)( 机械能守恒21E E =,得22211212121kx x x g m kx ++=)( 即 )()(211222121x x g m x x k +=- 两边同除以21x x +,得 g m x x k 12121=-)( (1) 初始时,由图3-12(b )可见,m 1处于平衡状态,因11kx F =,则有011=-+kx g m F (2)F 2 m 2 m 1g 2m 2g(a ) (b ) (c )图3-12m 2刚好被提离地面时,由图3-12(c )可见,地面压力为零,m 2处于平衡状态,因222kx F F ='=,则有022=-kx g m (3)(2)式减去(3)式得 )(2112x x k g m g m F -+-=将(1)式代入上式,得g m m F )(21+=3-13 质量m 的小球从光滑的轨道下滑,然后进入半径为R 的圆形轨道,开始下滑时,小球的高度R H 2=,如图3-13(a )所示.求:(1)小球在什么位置脱离圆轨道;(2)小球脱离圆轨道之后,能达到的最大高度;(3)经过高度为R 的A 点时,小球对轨道的压力.分析 当物体在光滑表面上运动时,支承面对物体的压力不作功,系统机械能守恒.在曲线形轨道上运动时,轨道的压力和重力的法向分量使物体产生法向加速度.物体脱离轨道的瞬间,轨道的压力为零,只有重力的法向分量使物体产生法向加速度.解 (1)小球在轨道上某点C 受力情况如图3-13(b )所示,此时速度为A(a ) (b )图3-13C v ,则法向运动方程为R m mg F 2N Cv =+θsin (1)如果就在C 点脱离圆轨道,0N =F ,由上式得θsin gR =2C v (2)小球运动过程中轨道压力方向始终与运动方向垂直,不作功,只有重力作功,机械能守恒.取轨道最低点为重力势能零点,初始时小球势能为R mg 2,到达C点时高度为)sin (θ+=1R h ,势能为mgh ,动能为2C 21v m ,由机械能守恒定律得 2C 212v m mgh mgR += (3) 由(2)和(3)式,且)sin (θ+=1R h ,解得R h 35=(4) (2)小球离开轨道后作抛体运动,水平方向速度不变,等于C 点速度的水平分量θsin C v .最高点高度为max h ,重力势能为max mgh ,动能为θ22C 21sin v m ,应用机械能守恒定律,得θ22C max 212sin v m mgh mgR += (5) 由(2)、(3)、(4)和(5)式,解得R R h 8512750max .==(3)位于A 点时,0=θ,由(1)式得Rm F 2A N v = 应用机械能守恒定律,得2A 212v m mgR mgR += 从以上两式得 mg F 2N =3-14 劲度系数为N/m 10013⨯.的弹簧,水平放置,其一端固定在墙上,另一端被质量为8 kg 的物体压缩,当弹簧形变量为15 cm 时,将物体释放,在弹簧的作用下,物体水平射出,物体和平面间摩擦力为5 N ,(1)求弹簧恢复原长时,物体的速度;(2)若弹簧恢复原长后,物体和弹簧就脱离接触,求物体此后能跑多远.分析 根据受力和各作用力作功的不同情况,将运动过程分阶段讨论,可以分别应用动能定理和功能原理求解.解 (1)取物体与弹簧组成的弹性系统为研究对象,在弹簧恢复原长的过程中,重力和平面支承力不作功,摩擦力f F 作负功,弹簧的弹性力是保守力,根据功能原理,摩擦力所作的功应等于系统机械能的增量.初始时,弹簧被压缩量m 150.=x ,弹性势能为221kx ;弹簧恢复原长时,速度为v ,动能为221v m ,则有 22f 2121kx m x F -=-v 得m/s 1.62m/s 15052150100181 2123f 2=⨯⨯-⨯⨯⨯=-=)...((x F kx m v(2)物体和弹簧脱离后,在摩擦力作用下作减速运动,设此后位移为s ,应用动能定理,摩擦力所作的功应等于物体动能的增量,则2f 210v m s F -=- 得 m 12m 52621822f 2..=⨯⨯==F m s v3-15 如图3-15所示,自动卸料车重量为G 2,连同料重为G 1,它从静止开始沿着与水平方向成︒30角的斜面下滑,滑到底端时与一呈自然长度的轻弹簧相碰,当弹簧压缩量达最大时,卸料车自动翻斗卸料,然后因弹簧的弹性力作用,料车反弹沿斜面回到原有高度.设车与斜面间的摩擦力为车重的0.25倍,求21G 的值. 分析 由于卸料车下滑与返回过程的受力情况不同,应分两阶段分析讨论.因为整个过程中除摩擦力外,没有其他的非保守力和外力作功,所以可以应用功能原理求解.解 以卸料车与弹簧和地球组成的弹性和重力系统为研究对象.在下滑阶段,料车载重,设料车行程的高差为h ,弹簧最大压缩量为l ∆,取斜面顶端为重力势能零点,则重力势能增量为h G 1-,弹簧弹性势能增量为221)(l k ∆,摩擦力1f 250G F .=作功为︒-302501sin .h G ,应用功能原理,得 2112130250)(sin .l k h G h G ∆+-=︒- 在料车返回过程中,重力势能增量为h G 2,弹簧弹性势能增量为221)(l k ∆-,摩擦力2f 250G F .=作功为︒-302501sin .h G ,应用功能原理,得 2222130250)(sin .l k h G h G ∆-=︒- 由以上两式可得3250302503021=-︒+︒=.sin .sin G G 3-16 如图3-16所示,滑块置于一竖直轻弹簧上,弹簧原长为R ,用力使弹簧压缩到R/2时释放,则滑块恰好能通过上方光滑的1/4圆弧形轨道,并由︒30图3-15A 点抛出.(1)求弹簧的劲度系数;(2)求滑块落到地面时的水平位置.分析 在滑块离开轨道之前,由于轨道光滑,除重力和弹簧的弹性力外无其他力作功,可以应用机械能守恒定律.滑块离开轨道后,作平抛运动,运用运动学中的公式求解.在竖直光滑圆形轨道上运动的物体,只受重力和轨道压力作用,当物体刚好能通过圆形轨道顶端,表明在顶点时轨道压力为零,物体圆周运动的法向加速度只由重力产生.解 (1)取地面为重力势能零点,当弹簧被压缩时,弹性势能为2221⎪⎭⎫ ⎝⎛R k ,重力势能为mgR 21,到达A 点时,重力势能为mgR 2,速度为v ,动能为221v m ,应用机械能守恒定律得2221221221v m mgR mgR R k +=+⎪⎭⎫ ⎝⎛ (1) 根据题意,在A 点的运动方程为 R m mg 2v = (2)由以上两式得 R mg k 16= (2)滑块脱离A 点后作平抛运动,竖直方向下落距离为2R ,水平运动距离为s ,则有R gt 2212= t s v = 再利用(2)式,得 R s 2=3-17 劲度系数为k 原长为R 的弹簧一端固定在竖立的半径为R 的大圆环的顶点A ,弹簧另一端连接一环形重物由位置B 释放,在重力的作用下重物A图3-16向下滑移,如图所示,到达最低点C 时的速度刚好为零,如果忽略重物与大圆环之间的摩擦,求重物的质量以及运动中角加速度为零的位置.分析 通常所讨论问题中的弹簧的长度方向与物体运动方向相同.如果弹簧的长度方向以及伸长或压缩方向与物体运动方向不同,只要弹簧的弹性形变量为x ,根据胡克定律,它作用于物体的弹性力大小就为kx ,系统的弹性势能就等于221kx . 解 由于不计摩擦,只有重力和弹簧的弹性力作功,系统机械能守恒. 初始时,设重力势能为零,弹性势能为221221R k )(-,达最低点C 时,重力势能为mgR -,弹性势能为221kR ,应用机械能守恒定律得 222211221kR mgR R k +-=-)( 则重物质量为 )(12-=gkR m (1) (2)由图3-17可见,当弹簧与竖直方向夹角为θ时,重力在圆环切线方向的分量为)sin(θ2mg ;弹簧伸长量为)cos (R R -θ2,弹性力为)cos (R R k -θ2,在圆环切线方向的分量为θθsin )cos (R R k -2,则重物的切向运动方程为R m R R k mg αθθθ=--sin )cos ()sin(22令角加速度0=α,得θθθθsin )cos (cos sin R R k mg -=22利用(1)式,得 2241-=θcosC m g图3-1742312241'︒=-=arccos θ 3-18 在倾角为︒30的光滑斜面上,质量为1.8 kg 的物体由静止开始下滑,到达底部时将一个沿斜面放置的劲度系数N/m 2000=k 的弹簧压缩了0.2 m 后,达瞬时静止,求:(1)物体达瞬时静止前在斜面上滑过的路程;(2)它与弹簧开始接触时的速率. 分析 只有重力和弹簧的弹性力作功,将物体和弹簧以及地球共同组成一个保守系统机械能守恒.由于实际问题所涉及的都是物体不同位置之间势能的差值,因此势能零点的选取不影响结果,只需考虑如何选取可以使表达式最简单.解 (1)设物体在斜面上滑过的路程为s ,物体达到的最低点为重力势能零点,弹簧压缩量为0x ,弹性势能为2021kx .开始下滑时重力势能为︒30sin mgs ,应用机械能守恒定律,得202130kx mgs =︒sin m 544m 3089812202000302220.sin ...sin =︒⨯⨯⨯⨯=︒=mg kx s (2)设物体与弹簧刚接触时,速度为v ,距最低点距离为0x ,此时重力势能为︒300sin mgx ,应用机械能守恒定律,得20213030v m mgx mgs +︒=︒sin sin m/s 6.52m/s 3020544892 3020=︒⨯-⨯⨯=︒=sin )..(.sin )(s-x g v3-19 在气垫导轨上质量为m 的滑块被劲度系数分别为k 1、k 2的两弹簧连接到气轨的两端点A 、B 上.起初气轨水平放置,两弹簧均处于无形变状态,滑︒30图3-18块位于O 点,如图3-19(a )所示.现迅速将气轨的B 端抬高,使其与水平面的夹角为α,如图3-19(b )所示,求滑块运动可能达到的最低点与O 点间的距离及滑块可能达到的最大速率.分析 当重力势能和弹簧的弹性势能同时存在,应用机械能守恒定律时,应该注意势能零点的选取问题.可以按表达式最简单的原则选取重力势能零点,而弹性势能零点则通常应选取在弹簧无形变位置.解 取气轨倾斜后O 点为重力势能和弹性势能零点,设最低点与O 点间的距离为1x ,在最低点时,重力势能为αsin 1mgx -,弹性势能为212121x k k )(+,应用机械能守恒定律,得02121211=++-x k k mgx )(sin α 2112k k mg x +=αsin 气轨倾斜后,在重力和弹性力作用下,O 点不再是平衡位置.设平衡位置为O ',与O 点距离为0x ,应用牛顿定律可得0021=+-x k k mg )(sin α (1)重力势能为αsin 0mgx -,弹性势能为202121x k k )(+,物体通过O '点时速率最大,设为m v ,动能为2m 21mv ,应用机械能守恒定律,得 021212m 20210=+++-v m x k k mgx )(sin α (2)O A k 1 m k 2 B(a ) (b )图3-19由(1)和(2)式得210m k k m g gx +=-=ααsin sin v 3-20 在一根光滑的半径很小的水平轴上,挂着一段均匀绳,长为l ,质量为m ,如图3-20(a )所示,绳开始滑动时,d BC =.求当l BC 32=时的加速度,并证明此时速度为)(22922d ld l l g -+-=v 分析 挂在光滑细轴上的软绳,左右两段相互作用的张力大小相等,为内力,以整条软绳为研究对象,作用在左右两段上的重力相对于运动方向分别为同向和反向.轴的支承力始终垂直于绳的运动方向,不产生加速度,也不作功.与其他连接体问题类似,沿运动方向应用牛顿定律建立方程最为简捷.解 当l BC 32=时,设软绳加速度为a ,沿运动方向应用牛顿定律得ma mg mg =-3132 g a 31= 取B 点为重力势能零点,竖直向下为x 轴正向,位于坐标x 的绳上小段d x 的势能为x lmgx d -,则 初始时,d BC =,势能为 2021d d lmg x l mgx d -=-⎰ d l BA -=,势能为 2021d )(d l l mg x l mgx d l --=-⎰- BA Cxd l -32(a ) (b ) 图3-20l d BC 32==时,势能为 23221⎪⎭⎫ ⎝⎛-l l mg l BA 31=,势能为 23121⎪⎭⎫ ⎝⎛-l l mg 此时绳的速率为v ,动能为221v m ,应用机械能守恒定律,得 2222231213221212121⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=---l l mg l l mg m d l l mg d l mg v )( 解得 )(22922d ld l l g -+-=v 3-21 假设地球可以看成是质量为m '、半径为R 的球体,试由(3-20)式推求以地面为重力势能零点时质量为m 的物体在距地面高度为h 处(R h <<)的重力势能的表达式,并将所得结果与(3-15)式作比较.分析 物体与地球之间的作用力是万有引力,是物体质心间距离平方成反比的力,往往取无限远处为这类力的势能零点.但在地球表面附近,通常取地球表面为重力势能零点.由于计算势能时,一般都是计算两位置的势能差,因此选取不同的零点,所得最终结果都相同.解 由(3-20)式得物体从高度为h 处移动到地面万有引力作的功为)(h R R h m m G h R R m m G r r m m G W Rh R +'=⎪⎭⎫ ⎝⎛+-'='-=⎰+0020 11d 根据势能定义,此功就等于重力势能.注意到在地球表面附近h R >>,则20p R h mm G W E '≈= 与(3-15)式作比较,得 20R m G g '=。

《物理学基本教程》课后答案_第三章__功和能[1]

《物理学基本教程》课后答案_第三章__功和能[1]

第三章 功和能3-1 汽车在平直路面上行驶,若车与地面间的摩擦力恒定,而空气阻力与速度的平方成正比.设对于一辆质量为1500kg 的汽车总的阻力281300v .+=F (其中F 以N 为单位,v 以m/s 为单位),求当车速为60 km/h ,加速度为1.0m/s 2时,汽车引擎所损耗的瞬时功率.分析 作用力的瞬时功率等于该力与物体获得的速度的乘积.解 当汽车的加速度为a 时,引擎牵引力为F 1,应用牛顿第二定律,运动方程为ma F F =-1则 2181300v .++=-=ma F ma F根据瞬时功率的定义,汽车引擎所损耗的瞬时功率为W 103.83 W 3600100060360010006081300011500 813004221⨯=⨯⨯⨯⨯++⨯=++==])(..().(v v v ma F P 3-2 如习题1-7所述,若海岸高h = 10 m ,而猛烈的大风使船受到与绳的牵引方向相反的恒定的作用力F = 5000 N ,如图3-2所示.当岸上的水手将缆绳由50 m 收到30 m 后,求缆绳中张力的改变量,以及在此过程中水手所作的功.分析 水手拉缆绳的过程中,是通过缆绳将力作用在船上实现船体运动作的功.由于缆绳中的张力是变力,直接计算它的功比较困难.根据动能定理,合外力的功等于物体动能的增量,船在此过程中开始前和结束后图3-2都保持静止,船只在水平方向发生位移,水平方向只受缆绳张力水平分量和恒定阻力F 作用,则水手通过缆绳张力所作的功的量值应等于恒力F 所作的负功.解 缆绳长度由l 1=50 m 收到l 2=30 m 的过程中,位移为s ,水手作的功为J101.035J 103010505000 52222222221⨯=---⨯=---==()(h l h l F Fs W 设此过程中开始前缆绳张力为F T1、结束后为F T2,它们的水平方向分量都应与恒力F 等大而反向,因此有F l h l F =-1221T1 F l h l F =-2222T2则N 200N 1050501030305000 222222112222T1T2=⎪⎪⎭⎫ ⎝⎛---⨯=⎪⎪⎭⎫ ⎝⎛---=-h l l h l l F F F 3-3 质点沿x 轴运动,由x 1 = 0处移动到x 2 = 4 m 的过程中,受到力)1(00-=x x F F 的作用,其中x 0 = 2 m ,F 0 = 8 N ,作出F -x 曲线,求在此期间力F 对质点所作的功. 分析 当质点沿x 轴作直线运动时,如果外力是质点位置坐标x 的函数)(x F F =,质点从位置x 1运动到x 2的过程中,根据功的定义,该力所作的功为⎰=21d x x x x F W )(,即为F -x 图像中x 1到x 2区间曲线)(x F 与x 轴线包围面积的代数和.图3-3解 根据题意,F -x 曲线如图3-3所示.按照功的定义,有0J 42248 2d 1d 220220002121=-⨯⨯=-=-==⎰⎰)()()()(x x x F x x x F x x F W x x x x由图3-3可见,x 1到x 2区间曲线)(x F 与x 轴线包围面积的代数和为零,与上面的计算结果一致.3-4 在x 轴线上运动的物体速度为v = 4 t 2 + 6(其中v 以m/s 为单位,t 以s 为单位),作用力3-=t F (其中F 以N 为单位,t 以s 为单位)沿x 轴正向.试求在t 1 = 1 s 和t 2 = 5 s 期间,力F 对物体所作的功.分析 当质点沿x 轴作直线运动时,如果外力是时间t 的函数)(t F F =,根据功的定义⎰=21d x x x x F W )(,无法直接积分计算,通常可利用微分关系式t t tx x d d d d d v ==,将积分变量转换为时间t 进行计算.积分变量代换后,积分的上下限也要作相应的代换.解 根据功的定义[]J 921834d 186124 d 643d d 2121212121234232=-+-=-+-=+-===⎰⎰⎰⎰t t t t t t t t x x t t t t t t t t t t t t t F x t F W )())(()()(v3-5 在光滑的水平桌面上固定有如图3-5(a)所示的半圆形屏障,质量为m 的滑块以初速v 0沿屏障一端的切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,(1)证明当滑块从屏障另一端滑出时,摩擦力对它所作的功为)(1e 2120-=-μπv m W ;(2)说明上述结果为什么与圆弧半径无关.分析 当外力无法表示成位移的函数时,功就不能直接由定义式积分进行计算.如果能确定物体初末状态的速度,可以应用动能定理,求出物体动能的增量就等于合外力对物体所作的功. 证 (1)首先应计算出滑块从屏障另一端滑出时的速度.设滑块在屏障中位于如图3-5(b)所示的位置,在竖直方向无运动,在水平面内受到屏障压力F N 和摩擦力F f 作用,此时速度为v ,设屏障半径为R ,应用牛顿第二定律所得运动方程为法向: R v 2m F =N 切向: tm F d d f v =- 由于F f =μF N ,得 Rt 2d d v v μ-= 利用关系式θθθd d d d d d d d v v v v R t t ==,上式可写为 v v μθ-=d d (1) 由初末条件:当0=θ时,0v v =;当πθ=时,v v =,将上式分离变量并积分:⎰⎰-=πθμ0d d 0vv v v (2) 得滑块从屏障另一端滑出时的速度为μπ-=e 0v v (3)则摩擦力在此期间所作的功为F f(a ) (b )图3-5)(1e 212121220202-=-=-μπv v v m m m W (2)由(1)和(2)式可以看出,当滑块发生角位移θd 时,速度的变化只与角位移θd 有关,与半径无关,因此(3)式给出的末速度也只与半圆的张角有关,这就导致最终结果与圆弧半径无关了.3-6 一个质点在指向中心的平方反比力2r k F /=的作用下,作半径为r 的圆周运动,求质点运动的速率和总机械能.(提示:选取距力心无穷远点的势能为零.)分析 与物体间距离平方成反比的力是自然界中普遍存在的一种力,例如万有引力和电荷间的库仑力.如果该力指向中心,计算势能时,从空间任意一点到势能零点(无穷远点)积分的路径方向与力的作用方向相反,积分表达式的矢量乘积变为标量乘积后要取负号.解 质点只在指向中心的力2r k F /=的作用下作圆周运动,当速率为v 时,法向加速度为r /2v ,则质点的法向运动方程为rm r k 22v = 得 mr k =v 选取距力心无穷远为势能零点,则势能为rk r r k E r r -=-=⋅=⎰⎰∞∞d d 2p r F 总机械能为rk r k r k r k m E E E 22212p k -=-=-=+=v 3-7 在力)(j i F y x k +=的作用下,质点在xy 平面内运动,(1)分别计算质点由原点O 经路径OBA 和路径OA 移动到达A 点该力所作的功,其中AB 是以O 为圆心R 为半径的一段圆弧,如图3-7(a )所示;(2)计算沿任意路径由位置P (x 1 , y 1)到Q (x 2 , y 2)该力所作的功,并由此证明该力是保守力.分析解 (1)根据功的定义,经路径OBA 该力所作的功为⎰⎰⎰⋅+⋅=⋅=BAOB OBA W s F s F s F d d d 1 由于力r j i F k y x k =+=)(,即沿原点指向质点所在位置的方向,所以有r F s F d d ⋅=⋅.从图3-7(a )可以看出,在路径OB 上,力的方向与位移方向相同x kx d d =⋅r F ;在路径BA 上,力的方向与位移方向垂直,0d d =⋅=⋅r F s F ,因此可得20121d d d d kR x kx x kx W R OB BA OB ===⋅+⋅=⎰⎰⎰⎰s F s F 同理,经路径OA 该力所作的功为20121d d d d kR r kr k W R OA OA OA ==⋅=⋅=⋅=⎰⎰⎰⎰r r r F s F (2)P 点的径矢大小为r 1,Q 点的径矢大小为r 2,则212121y x r +=,222222y x r +=.取任意路径L 如图3-7(b )所示,则)]()[()(2122212221222121 d d d 21y y x x k r r k r kr W r r L L -+-=-==⋅=⋅=⎰⎰⎰r F s Fθ r 2O OB x x(a ) (b )图3-7结果表明,沿任意路径力F 所作的功与路径无关,只与P 点和Q 点的位置有关,表明力F 为保守力.3-8 沿x 轴运动的某粒子的势能是其位置x 的函数x B x A x U -=2)( 据此所作的势能曲线如图3-8所示.(1)试求粒子势能最小值所对应的运动的平衡位置;(2)当粒子的总能量AB E 82-=时,粒子将被约束在一定范围内振动,求粒子往返运动的转折位置.分析 n m xB x A x U -=)(是粒子物理、固体物理和材料科学中描述粒子间相互作用经常出现的势能函数,对它的研究和讨论有十分重要的实际意义.这里仅就最简单的情况,即12==n m ,进行分析,获得粒子运动状态的初步印象.当粒子的能量比较小时,将在平衡位置附近作简谐振动,因此平衡位置和往返运动的转折位置就有重要意义. 解 (1)由0d d =x x U )(可得势能函数最小值的位置,即 02d d 23=+-=x B x A x x U )( 解得 B A x 2= (2)在往返运动的转折点处,粒子的速度为零,即动能为零,总能量应等于粒子的势能,即AB x B x A x U 822-=-=)( 可得 088222=+-A ABx x B解得 B A x 1711.= BA x 8362.=图3-83-9 马拉雪橇上坡,从坡底到坡顶是一段半径为R 弧长为6π的圆弧形山坡.假设马的拉力始终沿圆弧的切线方向,雪橇的质量为m ,雪橇与雪地间的滑动摩擦系数为μ,求在这段路程中马所作的功. 分析 在物体运动过程中,有摩擦力等非保守力存在时,应用功能原理计算外力的功比较便捷,外力和非保守内力的功等于物体系机械能的增量. 解 以雪橇为研究对象,受力情况如图3-9所示,如果始末时刻雪橇为静止状态,在上坡过程中,马的拉力的功和摩擦阻力的负功之和等于雪橇重力势能的增量.由于此过程雪橇高度的增加为)cos (61π-R ,因此重力势能的增量为)cos (61π-mgR .当雪橇所在位置的法线方向与竖直方向夹角为θ时,摩擦力θμμcos mg F F ==N f ,位移θd d R s =,应用功能原理,马的拉力的功为)cos sin ()cos (cos 661 61d d 06f ππμπθθμπ-+=-+=⋅=⎰⎰mgR mgR mgR W s F3-10 用m /s 200=v 的初速度将一质量为kg 50.=m 的物体竖直上抛,所达到的高度是m 16=h ,求空气对它的平均阻力.分析 物体所受到的空气阻力是外力,重力是物体和地球组成的系统的内力,根据功能原理,空气阻力所作的功应等于系统机械能的增量.应在选取了势能零点后,确定系统的初末状态的机械能,计算出系统机械能的增量.解 取物体抛出点为重力势能零点,则物体初始机械能为20121v m E =,达最高点时机械能为mgh E =2,设空气对它的平均阻力为F ,应用功能原理得F fR图3-92021v m mgh Fh -=- 则 N 1.35N 8916220502220=-⨯⨯=-=).(.)(g h m F v 3-11 质量分别为m 1、m 2的二物体与劲度系数为k 的弹簧连接成如图3-11(a )所示的系统,物体m 1放置在光滑桌面上,忽略绳与滑轮的质量及摩擦.当物体达到平衡后,将m 2往下拉h 距离后放手,求物体m 1、m 2运动的最大速率.分析 应用机械能守恒定律解力学问题时,系统的选取十分重要.选定系统后,要区分内力和外力、保守力和非保守力以及作功的力和不作功的力.仅当外力和非保守内力所作的功均为零时,才能应用机械能守恒定律.本题中m 1、m 2二物体连接在一起,位移大小、速率和加速度的大小都相同.忽略绳与滑轮的质量及摩擦的情况下,张力F T 和F ’T 为一对内力,大小相等,方向分别与物体运动方向相同和相反,因此系统运动过程中二力的功之和为零.解 以弹簧与二物体组成的弹性系统以及物体与地球组成的重力系统为研究对象,二物体受力情况如图3-11(b )所示.在系统运动过程中,因张力F T 和F ’T 所作功之和为零,只有作用在m 2上的重力及作用在m 1上的弹簧弹性力作功,系统机械能守恒.取竖直向下为x 轴正向,系统平衡时m 2的位置为坐标原点,设此时弹簧的伸长量为l 0,根据胡克定律,弹簧的弹性力大小为0kl F =.由于系统处于平衡’Tm 2 m 1gm 2g x(a ) (b )图3-11状态,应有0T 2='-F g m ,0T =-F F ,且因T TF F =',则 002=-kl g m (1)取m 2的平衡位置为重力势能零点,初始时,m 2向下位移h ,重力势能为gh m 2-,弹簧伸长量为)(h l +0,弹性势能为2021)(h l k +,则系统机械能为 gh m h l k E 220121-+=)( (2) 当m 2处于x 位置时,设速率为v ,则系统总动能为22121v )(m m +,重力势能为gx m 2-,弹簧伸长量为)(x l +0,弹性势能为2021)(x l k +,则系统机械能为 2212202121v )()(m m gx m x l k E ++-+= (3) 应用机械能守恒定律,1E E =,由(1)、(2)和(3)式得)(22212x h m m k -+=v 显然0=x 时有最大值 212max m m kh +=v 3-12 用弹簧将质量分别为m 1和m 2的两块木板连接起来,必须加多大的力F 压到上面的板m 1上,以便当突然撤去F 时,上面的板跳起来能使下面的板也刚好被提离地面.分析 对于弹簧连接的两块木板组成的系统,初始时有外力作用,运动过程中m 2还受到地面的压力,弹簧的弹性力是变力,两块木板之间有相对运动,应用牛顿定律解这样的问题显得相当复杂.考虑到撤去外力F 后,作用于系统的力除作为保守力的重力和弹簧的弹性力外,只有地面的压力.根据题意,下面的板刚好被提离地面,表明其处于与地面接触的临界状态,实际并没有离开地面,也就是说没有发生位移,那么地面的压力就没有作功.于是,撤去外力F 后,只有重力和弹簧的弹性力作功,系统机械能守恒.解 以如图3-12(a )所示的弹簧连接的两块木板组成的弹性系统、以及和地球组成的重力系统为研究对象,两块木板的处于始末状态和受力情况分别如图3-12(b )和(c )所示.初刻,弹簧压缩形变量为x 1,弹性势能为2121kx ,设此时系统重力势能为零,系统机械能为21121kx E =下面的板刚好被提离地面时,弹簧伸长形变量为x 2,弹性势能为2221kx ,重力势能为)(211x x g m +,系统机械能为22211221kx x x g m E ++=)( 机械能守恒21E E =,得22211212121kx x x g m kx ++=)( 即 )()(211222121x x g m x x k +=- 两边同除以21x x +,得 g m x x k 12121=-)( (1) 初始时,由图3-12(b )可见,m 1处于平衡状态,因11kx F =,则有011=-+kx g m F (2)F 2 m 2 m 1g 2m 2g(a ) (b ) (c )图3-12m 2刚好被提离地面时,由图3-12(c )可见,地面压力为零,m 2处于平衡状态,因222kx F F ='=,则有022=-kx g m (3)(2)式减去(3)式得 )(2112x x k g m g m F -+-=将(1)式代入上式,得g m m F )(21+=3-13 质量m 的小球从光滑的轨道下滑,然后进入半径为R 的圆形轨道,开始下滑时,小球的高度R H 2=,如图3-13(a )所示.求:(1)小球在什么位置脱离圆轨道;(2)小球脱离圆轨道之后,能达到的最大高度;(3)经过高度为R 的A 点时,小球对轨道的压力.分析 当物体在光滑表面上运动时,支承面对物体的压力不作功,系统机械能守恒.在曲线形轨道上运动时,轨道的压力和重力的法向分量使物体产生法向加速度.物体脱离轨道的瞬间,轨道的压力为零,只有重力的法向分量使物体产生法向加速度.解 (1)小球在轨道上某点C 受力情况如图3-13(b )所示,此时速度为A(a ) (b )图3-13C v ,则法向运动方程为R m mg F 2N Cv =+θsin (1)如果就在C 点脱离圆轨道,0N =F ,由上式得θsin gR =2C v (2)小球运动过程中轨道压力方向始终与运动方向垂直,不作功,只有重力作功,机械能守恒.取轨道最低点为重力势能零点,初始时小球势能为R mg 2,到达C点时高度为)sin (θ+=1R h ,势能为mgh ,动能为2C 21v m ,由机械能守恒定律得 2C 212v m mgh mgR += (3) 由(2)和(3)式,且)sin (θ+=1R h ,解得R h 35=(4) (2)小球离开轨道后作抛体运动,水平方向速度不变,等于C 点速度的水平分量θsin C v .最高点高度为max h ,重力势能为max mgh ,动能为θ22C 21sin v m ,应用机械能守恒定律,得θ22C max 212sin v m mgh mgR += (5) 由(2)、(3)、(4)和(5)式,解得R R h 8512750max .==(3)位于A 点时,0=θ,由(1)式得Rm F 2A N v = 应用机械能守恒定律,得2A 212v m mgR mgR += 从以上两式得 mg F 2N =3-14 劲度系数为N/m 10013⨯.的弹簧,水平放置,其一端固定在墙上,另一端被质量为8 kg 的物体压缩,当弹簧形变量为15 cm 时,将物体释放,在弹簧的作用下,物体水平射出,物体和平面间摩擦力为5 N ,(1)求弹簧恢复原长时,物体的速度;(2)若弹簧恢复原长后,物体和弹簧就脱离接触,求物体此后能跑多远.分析 根据受力和各作用力作功的不同情况,将运动过程分阶段讨论,可以分别应用动能定理和功能原理求解.解 (1)取物体与弹簧组成的弹性系统为研究对象,在弹簧恢复原长的过程中,重力和平面支承力不作功,摩擦力f F 作负功,弹簧的弹性力是保守力,根据功能原理,摩擦力所作的功应等于系统机械能的增量.初始时,弹簧被压缩量m 150.=x ,弹性势能为221kx ;弹簧恢复原长时,速度为v ,动能为221v m ,则有 22f 2121kx m x F -=-v 得m/s 1.62m/s 15052150100181 2123f 2=⨯⨯-⨯⨯⨯=-=)...((x F kx m v(2)物体和弹簧脱离后,在摩擦力作用下作减速运动,设此后位移为s ,应用动能定理,摩擦力所作的功应等于物体动能的增量,则2f 210v m s F -=- 得 m 12m 52621822f 2..=⨯⨯==F m s v3-15 如图3-15所示,自动卸料车重量为G 2,连同料重为G 1,它从静止开始沿着与水平方向成︒30角的斜面下滑,滑到底端时与一呈自然长度的轻弹簧相碰,当弹簧压缩量达最大时,卸料车自动翻斗卸料,然后因弹簧的弹性力作用,料车反弹沿斜面回到原有高度.设车与斜面间的摩擦力为车重的0.25倍,求21G 的值. 分析 由于卸料车下滑与返回过程的受力情况不同,应分两阶段分析讨论.因为整个过程中除摩擦力外,没有其他的非保守力和外力作功,所以可以应用功能原理求解.解 以卸料车与弹簧和地球组成的弹性和重力系统为研究对象.在下滑阶段,料车载重,设料车行程的高差为h ,弹簧最大压缩量为l ∆,取斜面顶端为重力势能零点,则重力势能增量为h G 1-,弹簧弹性势能增量为221)(l k ∆,摩擦力1f 250G F .=作功为︒-302501sin .h G ,应用功能原理,得 2112130250)(sin .l k h G h G ∆+-=︒- 在料车返回过程中,重力势能增量为h G 2,弹簧弹性势能增量为221)(l k ∆-,摩擦力2f 250G F .=作功为︒-302501sin .h G ,应用功能原理,得 2222130250)(sin .l k h G h G ∆-=︒- 由以上两式可得3250302503021=-︒+︒=.sin .sin G G 3-16 如图3-16所示,滑块置于一竖直轻弹簧上,弹簧原长为R ,用力使弹簧压缩到R/2时释放,则滑块恰好能通过上方光滑的1/4圆弧形轨道,并由︒30图3-15A 点抛出.(1)求弹簧的劲度系数;(2)求滑块落到地面时的水平位置.分析 在滑块离开轨道之前,由于轨道光滑,除重力和弹簧的弹性力外无其他力作功,可以应用机械能守恒定律.滑块离开轨道后,作平抛运动,运用运动学中的公式求解.在竖直光滑圆形轨道上运动的物体,只受重力和轨道压力作用,当物体刚好能通过圆形轨道顶端,表明在顶点时轨道压力为零,物体圆周运动的法向加速度只由重力产生.解 (1)取地面为重力势能零点,当弹簧被压缩时,弹性势能为2221⎪⎭⎫ ⎝⎛R k ,重力势能为mgR 21,到达A 点时,重力势能为mgR 2,速度为v ,动能为221v m ,应用机械能守恒定律得2221221221v m mgR mgR R k +=+⎪⎭⎫ ⎝⎛ (1) 根据题意,在A 点的运动方程为 R m mg 2v = (2)由以上两式得 R mg k 16= (2)滑块脱离A 点后作平抛运动,竖直方向下落距离为2R ,水平运动距离为s ,则有R gt 2212= t s v = 再利用(2)式,得 R s 2=3-17 劲度系数为k 原长为R 的弹簧一端固定在竖立的半径为R 的大圆环的顶点A ,弹簧另一端连接一环形重物由位置B 释放,在重力的作用下重物A图3-16向下滑移,如图所示,到达最低点C 时的速度刚好为零,如果忽略重物与大圆环之间的摩擦,求重物的质量以及运动中角加速度为零的位置.分析 通常所讨论问题中的弹簧的长度方向与物体运动方向相同.如果弹簧的长度方向以及伸长或压缩方向与物体运动方向不同,只要弹簧的弹性形变量为x ,根据胡克定律,它作用于物体的弹性力大小就为kx ,系统的弹性势能就等于221kx . 解 由于不计摩擦,只有重力和弹簧的弹性力作功,系统机械能守恒. 初始时,设重力势能为零,弹性势能为221221R k )(-,达最低点C 时,重力势能为mgR -,弹性势能为221kR ,应用机械能守恒定律得 222211221kR mgR R k +-=-)( 则重物质量为 )(12-=gkR m (1) (2)由图3-17可见,当弹簧与竖直方向夹角为θ时,重力在圆环切线方向的分量为)sin(θ2mg ;弹簧伸长量为)cos (R R -θ2,弹性力为)cos (R R k -θ2,在圆环切线方向的分量为θθsin )cos (R R k -2,则重物的切向运动方程为R m R R k mg αθθθ=--sin )cos ()sin(22令角加速度0=α,得θθθθsin )cos (cos sin R R k mg -=22利用(1)式,得 2241-=θcosC m g图3-1742312241'︒=-=arccos θ 3-18 在倾角为︒30的光滑斜面上,质量为1.8 kg 的物体由静止开始下滑,到达底部时将一个沿斜面放置的劲度系数N/m 2000=k 的弹簧压缩了0.2 m 后,达瞬时静止,求:(1)物体达瞬时静止前在斜面上滑过的路程;(2)它与弹簧开始接触时的速率. 分析 只有重力和弹簧的弹性力作功,将物体和弹簧以及地球共同组成一个保守系统机械能守恒.由于实际问题所涉及的都是物体不同位置之间势能的差值,因此势能零点的选取不影响结果,只需考虑如何选取可以使表达式最简单.解 (1)设物体在斜面上滑过的路程为s ,物体达到的最低点为重力势能零点,弹簧压缩量为0x ,弹性势能为2021kx .开始下滑时重力势能为︒30sin mgs ,应用机械能守恒定律,得202130kx mgs =︒sin m 544m 3089812202000302220.sin ...sin =︒⨯⨯⨯⨯=︒=mg kx s (2)设物体与弹簧刚接触时,速度为v ,距最低点距离为0x ,此时重力势能为︒300sin mgx ,应用机械能守恒定律,得20213030v m mgx mgs +︒=︒sin sin m/s 6.52m/s 3020544892 3020=︒⨯-⨯⨯=︒=sin )..(.sin )(s-x g v3-19 在气垫导轨上质量为m 的滑块被劲度系数分别为k 1、k 2的两弹簧连接到气轨的两端点A 、B 上.起初气轨水平放置,两弹簧均处于无形变状态,滑︒30图3-18块位于O 点,如图3-19(a )所示.现迅速将气轨的B 端抬高,使其与水平面的夹角为α,如图3-19(b )所示,求滑块运动可能达到的最低点与O 点间的距离及滑块可能达到的最大速率.分析 当重力势能和弹簧的弹性势能同时存在,应用机械能守恒定律时,应该注意势能零点的选取问题.可以按表达式最简单的原则选取重力势能零点,而弹性势能零点则通常应选取在弹簧无形变位置.解 取气轨倾斜后O 点为重力势能和弹性势能零点,设最低点与O 点间的距离为1x ,在最低点时,重力势能为αsin 1mgx -,弹性势能为212121x k k )(+,应用机械能守恒定律,得02121211=++-x k k mgx )(sin α 2112k k mg x +=αsin 气轨倾斜后,在重力和弹性力作用下,O 点不再是平衡位置.设平衡位置为O ',与O 点距离为0x ,应用牛顿定律可得0021=+-x k k mg )(sin α (1)重力势能为αsin 0mgx -,弹性势能为202121x k k )(+,物体通过O '点时速率最大,设为m v ,动能为2m 21mv ,应用机械能守恒定律,得 021212m 20210=+++-v m x k k mgx )(sin α (2)O A k 1 m k 2 B(a ) (b )图3-19由(1)和(2)式得210m k k m g gx +=-=ααsin sin v 3-20 在一根光滑的半径很小的水平轴上,挂着一段均匀绳,长为l ,质量为m ,如图3-20(a )所示,绳开始滑动时,d BC =.求当l BC 32=时的加速度,并证明此时速度为)(22922d ld l l g -+-=v 分析 挂在光滑细轴上的软绳,左右两段相互作用的张力大小相等,为内力,以整条软绳为研究对象,作用在左右两段上的重力相对于运动方向分别为同向和反向.轴的支承力始终垂直于绳的运动方向,不产生加速度,也不作功.与其他连接体问题类似,沿运动方向应用牛顿定律建立方程最为简捷.解 当l BC 32=时,设软绳加速度为a ,沿运动方向应用牛顿定律得ma mg mg =-3132 g a 31= 取B 点为重力势能零点,竖直向下为x 轴正向,位于坐标x 的绳上小段d x 的势能为x lmgx d -,则 初始时,d BC =,势能为 2021d d lmg x l mgx d -=-⎰ d l BA -=,势能为 2021d )(d l l mg x l mgx d l --=-⎰- BA Cxd l -32(a ) (b ) 图3-20l d BC 32==时,势能为 23221⎪⎭⎫ ⎝⎛-l l mg l BA 31=,势能为 23121⎪⎭⎫ ⎝⎛-l l mg 此时绳的速率为v ,动能为221v m ,应用机械能守恒定律,得 2222231213221212121⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=---l l mg l l mg m d l l mg d l mg v )( 解得 )(22922d ld l l g -+-=v 3-21 假设地球可以看成是质量为m '、半径为R 的球体,试由(3-20)式推求以地面为重力势能零点时质量为m 的物体在距地面高度为h 处(R h <<)的重力势能的表达式,并将所得结果与(3-15)式作比较.分析 物体与地球之间的作用力是万有引力,是物体质心间距离平方成反比的力,往往取无限远处为这类力的势能零点.但在地球表面附近,通常取地球表面为重力势能零点.由于计算势能时,一般都是计算两位置的势能差,因此选取不同的零点,所得最终结果都相同.解 由(3-20)式得物体从高度为h 处移动到地面万有引力作的功为)(h R R h m m G h R R m m G r r m m G W Rh R +'=⎪⎭⎫ ⎝⎛+-'='-=⎰+0020 11d 根据势能定义,此功就等于重力势能.注意到在地球表面附近h R >>,则20p R h mm G W E '≈= 与(3-15)式作比较,得 20R m G g '=。

高考物理最新力学知识点之功和能图文答案(3)

高考物理最新力学知识点之功和能图文答案(3)

高考物理最新力学知识点之功和能图文答案(3)一、选择题1.如图所示,小明将质量为m 的足球以速度v 从地面上的A 点踢起,当足球到达B 点时离地面的高度为h .不计空气阻力,取地面为零势能面,则足球在B 点时的机械能为(足球视为质点)A .212mv B .mgh C .212mv +mgh D .212mv -mgh 2.如图所示,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑,则( )A .小球到达弧形槽底部时速度小于2ghB .小球到达弧形槽底部时速度等于2ghC .小球在下滑过程中,小球和槽组成的系统总动量守恒D .小球自由下滑过程中机械能守恒3.如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F 随时间t 变化的图像如图(乙)所示,则A .1t 时刻小球动能最大B .2t 时刻小球动能最大C .2t ~3t 这段时间内,小球的动能先增加后减少D .2t ~3t 这段时间内,小球增加的动能等于弹簧减少的弹性势能4.小明和小强在操场上一起踢足球,若足球质量为m ,小明将足球以速度v 从地面上的A 点踢起。

当足球到达离地面高度为h 的B 点位置时,如图所示,不计空气阻力,取B 处为零势能参考面,则下列说法中正确的是( )A.小明对足球做的功等于mghB.足球在A点处的机械能为2 2 mvC.小明对足球做的功等于22mv+mghD.足球在B点处的动能为22mv-mgh5.把一物体竖直向上抛出去,该物体上升的最大高度为h,若物体的质量为m,所受空气阻力大小恒为f,重力加速度为g.则在从物体抛出到落回抛出点的全过程中,下列说法正确的是:()A.重力做的功为m g h B.重力做的功为2m g hC.空气阻力做的功为零D.空气阻力做的功为-2fh6.如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变7.质量为m的滑块沿高为h,长为L的粗糙斜面匀速下滑,在滑块从斜面顶端滑至底端的过程中A.滑块的机械能保持不变B.滑块克服摩擦所做的功为mgLC.重力对滑块所做的功为mgh D.滑块的机械能增加了mgh8.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A加速变轨进入圆轨道Ⅱ。

高中物理(新人教版)选择性必修三课后习题:功、热和内能的改变(课后习题)【含答案及解析】

高中物理(新人教版)选择性必修三课后习题:功、热和内能的改变(课后习题)【含答案及解析】

第三章热力学定律功、热和内能的改变课后篇素养形成必备知识基础练1.下列哪个实例说明做功改变了系统的内能()A.热水袋取暖B.用双手摩擦给手取暖C.把手放在火炉旁取暖D.用嘴对手呵气给手取暖,使手的内能增加,感到暖和;A、C、D都是通过传热来改变系统的内能,选项B正确。

2.如图所示,活塞将一定质量的气体封闭在直立圆筒形导热的汽缸中,活塞上堆放细沙,活塞处于静止,现逐渐取走细沙,使活塞缓慢上升,直到细沙全部取走。

若活塞与汽缸之间的摩擦可忽略,则在此过程中()A.气体对外做功,气体温度一定降低B.气体对外做功,内能一定减少C.气体压强减小,内能可能不变D.气体从外界吸热,内能一定增加,则可与外界进行热交换,细沙减少时,气体膨胀对外做功,可能由于与外界进行热交换吸热使内能不变。

故只有选项C正确。

3.如图所示,A、B是两个完全相同的球,分别浸没在水和水银的同一深度内,A、B两球用同一种材料制成,当温度稍微升高时,球的体积会明显变大,如果开始水和水银的温度相同,且两液体温度同时缓慢升高同一值,两球膨胀后,体积相等,则()A.A球吸收的热量较多B.B球吸收的热量较多C.两球吸收的热量一样多D.无法确定,初、末态体积也相同,所以内能增量相同,但水银中的B球膨胀时对外做功多,所以吸热较多,故选B。

4.如图是压力保温瓶的结构简图,活塞a与液面之间密闭了一定质量的气体。

假设封闭气体为理想气体且与外界没有热交换,则向下压a的过程中,瓶内气体()A.内能增大B.体积增大C.压强不变D.温度不变a的过程中,外界对气体做功,瓶内气体内能增大,选项A正确;向下压a的过程中,瓶内气体体积减小,压强增大,温度升高,选项B、C、D错误。

5.(多选)早些年小孩子常用旧圆珠笔芯做一种玩具,铁丝的一端缠绕棉花,用水打湿后从一端塞入笔芯内,将笔芯的另一端用力在马铃薯上触一下拔出来,然后用力快速推铁丝,马铃薯小块高速飞出,能打出十几米远。

下列说法正确的是()A.在推铁丝而马铃薯小块未飞出的过程中,笔芯内密封的气体的温度升高B.在推铁丝而马铃薯小块未飞出的过程中,气体对外做功C.马铃薯小块高速飞出的动能来自气体内能D.马铃薯小块高速飞出时,外界对笔芯内气体做功,笔芯内密封的气体经历绝热压缩的过程,外界对气体做功,内能增加,故笔芯内密封的气体的温度升高,故A正确;在推铁丝而马铃薯小块未飞出的过程中,气体被压缩,是外界对气体做功,故B错误;封闭气体经历绝热膨胀过程,推出马铃薯,对外做功,马铃薯小块高速飞出的动能来自气体内能的转化,故C正确,D错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:(1) 机械能不守恒,因为并没有说忽略空气阻力的作用,而空气阻力为非保守力;
(2)物体匀速上升,一定有合外力克服重力做功,所以机械能不守恒;
(3)机械能不守恒,子弹射入木块时,受到的摩擦力为非保守力;
(4)机械能守恒.
3-2质量为 的物体沿 轴做直线运动,所受合外力 。如果在 处时的速度 ,试求该物体运动到 处时速度的大小。
解:设枪筒长为L,在子弹运动出枪筒的过程中只有合力F做功。由动能定理可知:
3-10 一质量为 与另一质量为 的质点间有万有引力作用。试求使两质点间的距离由 增加到 时所需要做的功。
解:万有引力使两物体相互吸引,若两物体之间距离增加,则万有引力做负功,外力做正功。
3-11 设两粒子之间的相互作用力为排斥力,其变化规律为 , 为常数.若取无穷远处为零势能参考位置,试求两粒子相距为 时的势能。
或者根据动能定理可知,对于滑块而言只有摩擦力做功,屏障对其支持力N不做功,则
即该题就是要求解 和 。
因为运动轨迹为半圆,考虑用自然坐标系及角量。
摩擦力方向始终与速度方向相反,为
其中 为滑块在运动过程中的角位移。支持力N为 ,所以
滑块刚进入屏障时角位移为0,从另一端滑出屏障时的角位移为 ,则计算可知
在整个过程中,只有摩擦力做功,则
解:排斥力只与两粒子之间的相对位置有关,所以为保守力。

(本题书后答案错误)
3-12 双原子中两原子间相互作用的势能函数可近似写成 ,式中 、 为常数, 为原子间距,两原子的势能曲线如附图所示.
(1) 为何值时 为何值时 为极小值
(2)试确定两原子间的作用力.
解:(1) ,解得
为极小值时,
解得 或
(2)设两原子之间的作用力为
分析:求解摩擦力做功的定理只有动能定理和功能原理,即
对运动过程进行受力分析可知,滑块受重力、桌面对其的支持力,这两个力在运动中不做功。滑块还受屏障对其支持力N(方向始终指向屏障的圆心)以及与屏障之间的摩擦力(摩擦力方向始终与速度 方向相反)。
根据功能原理,在滑块和固定的屏障(相当于地球)构成系统中,该系统不受外力,而两者之间的摩擦力为非保守内力,所以
3-5设 。1)当一质点从原点运动到 时,求F所做的功。(2)如果质点到 处时需,试求平均功率。(3)如果质点的质量为1kg,试求动能的变化。
解:
(2)
(3)
3-6 (1)试计算月球和地球对质量为m的物体的引力相抵消的一点P,距月球表面的距离是多少地球质量× kg,地球中心到月球中心的距离× m,月球质量× kg,月球半径× m。
解:根据动能定理可得
初始条件为 , ,代入求解得
3-3倔强系数为 、原长为 的弹簧,一端固定在圆周上的A点,圆周的半径 ,弹簧的另一端从距A点 的B点沿圆周移动 周长到C点,如附图所示。求弹性力在此过程中所做的功。
解:弹簧的弹性力为保守力,整个过程中,只有弹性力做功,所以机械能守恒。
3-4 在光滑的水平桌面上,平放有如附图所示的固定半圆形屏障。质量为 的滑块以初速度 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为 。证明当滑块从屏障另一端滑出时,摩擦力所做的功为 。
3-13 一个质子在一个大原子核附近的势能曲线如附图所示. 若在 处释放质子,问:
(1)在离大原子核很远的地方,质子的速率为多大
(2)如果在 处释放 质子呢
解:(1)由图可见,当 时, ,当 时, 。将质子和原子核看作一个系统(忽略二者的重力)。在原子核的引力场中,系统的能量守恒。即
(2):
(2)如果一个1kg的物体在距地球和月球均为无限远处的是能为零,那么它在P点的势能为多得
(2)
(本题书后答案少一个负号)
3-7一物体在介质中按规律 做直线运动, 为一常量.设介质对物体的阻力正比于速度的平方。试求物体由 运动到 时,阻力所做的功(已知阻力系数为 )。
大物上册第三章习题答案
习题
3-1在下列几种情况中,机械能守恒的系统是:
(1)当物体在空气中下落时,以物体和地球为系统。
(2)当地球表面物体匀速上升时,以物体和地球为系统(不计空气阻力)。
(3)子弹水平射入放在光滑水平桌面上的木块内,以子弹和木块为系统。
(4)当一球沿光滑的固定斜面向下滑动时,以小球和地球为系统。
解: ;
3-8以质量为 的地球卫星,沿半径为 的圆轨道运动, 为地球的半径。
已知地球的质量为 。求:
(1)卫星的动能;
(2)卫星的引力势能;
(3)卫星的机械能。
解:卫星与地球之间的万有引力提供卫星做圆周运动,则
(1)
(2)取卫星与地球相距无限远时为0势能点,则卫星的引力势能为
(3)卫星的机械能为
3-9 质量为 kg的弹丸,其出口速率为300m/s,设弹丸在枪筒中前进所受到的合力 。开枪时,子弹在 处,试求枪筒的长度。
相关文档
最新文档