开关电源仿真
开关电源P-SPICE仿真
![开关电源P-SPICE仿真](https://img.taocdn.com/s3/m/004cd6e96f1aff00bed51e95.png)
天津职业技术师范大学Tianjin University of Technology and Education毕业设计专业:电子科学与技术班级学号: 26学生姓名:二○一一年六月天津职业技术师范大学本科生毕业设计开关电源P-SPICE仿真Switch-Mode Power Supplies SPICESimulations专业班级:电科0703班2011年6月摘要变压器的使用在升压和降压电源中很常见,开关电源根据不同的输出要求采用不同的变压器拓扑电路,同样的电源也采用不同的变压器拓扑实现。
在所有拓扑中反激式变压器构成的升压式开关电源具有电路简单、元器件最少的优点,在小功率开关电源中经常采用。
而变压器的设计需要技术人员根据一些经验参数来进行变压器的设计和绕制。
会出现经验设计多于准确的参数设计,而且在高频条件下变压器的设计和制作不同于普通的变压器,更加需要实际经验和理论设计两者相互结合。
本文将针对反激式开关电源变压器漏感较大,易击穿开关器件的特点,通过Pspice仿真来检验在电路中增加RL模或RCD模块的方式对漏感能量的耗散效果,从而达到保护开关器件、稳定电路的目的。
关键词:开关电源;Pspice仿真;反激式变换器;吸收电路ABSTRACTConverter is widely used in boost and buck power. Switch-Mode Power will take different circuits of converter topology depends on different conditions in outputs. And sometimes the same power will choose different converter topologies to achieve the same result.In all kinds of topologies, boost switching power supplier based on the fly-back converter characterized as simple circuit, less components that is the reason to explain why it is commonly used in low power switching power supply. In the process of designing converter , technical staffs usually make the converter with some self-verified parameters .The phenomenon will lead to such a result ,the amount of experience design are more than accurate parameter design. However ,in the area of high-frequency converters ,the design and production of them are different from general converter, we need to combine more practical experiences with theoretical design.For the larger leakage and easy breakdown in switching device of fly-backSwitch-Mode Power Supplies converters, this article will use SPICE Simulations to test the effectiveness of RL and RCD module circuit in dissipating the energy of leakage,so as to meet the purpose of protecting Switching devices and stabling the circuit.Key Words:Switch-Mode Power; SPICE Simulations; Fly-back Converter;Snubber circuit;目录第1章引言 (1)第2章PSPICE软件仿真概述2.1仿真软件的选择 (2)2.2 PSPICE的发展历程和现状 (3)2.3 PSPICE的组成 (3)2.4 PSPICE的特点和模拟功能 (4)第3章开关电源的概述3.1开关电源的分类 (6)3.2开关电源的选用 (7)3.3开关电源的发展动向 (8)第4章五种经典开关电源的拓扑结构4.1开关电源拓扑综述 (9)4.2开关电源的5种拓扑结构 (9)4.2.1非隔离式拓扑结构 (10)4.2.2隔离式拓扑结构 (20)第5章反激式变换器电路5.1 反激式变换器的基本原理 (27)5.2无寄生元件条件下的反激式变换器的电路仿真与分析 (28)结论 (35)参考文献 (36)致谢 (37)天津职业技术师范大学2011届本科生毕业设计第一章引言随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
基于PSpice的开关电源设计与仿真_
![基于PSpice的开关电源设计与仿真_](https://img.taocdn.com/s3/m/a29d333077c66137ee06eff9aef8941ea76e4bfc.png)
基于PSpice的开关电源设计与仿真_开关电源是一种高效率的电源系统,能将输入电压转换为稳定的输出电压。
它由不同的电子元件和模块组成,如开关管、反馈控制电路、滤波电容等。
为了确保开关电源的性能,设计和仿真是非常重要的步骤。
在本文中,我们将介绍如何使用PSpice进行开关电源的设计和仿真。
首先,我们需要了解开关电源的基本原理和要求。
开关电源通常由一个开关管和一个输出滤波电容组成。
通过周期性地开关开关管,可以实现输入电压的转换。
为了达到稳定的输出电压,需要反馈控制电路来监测输出电压,并根据需要调节开关管的开关频率和占空比。
在设计开关电源之前,需要确定以下参数:1.输入电压范围:开关电源能够接受的输入电压范围。
2.输出电压:需要得到的稳定输出电压。
3.输出电流:需要保持的输出电流水平。
4.开关频率:开关管的开关频率。
5.开关管和输出滤波电容的评估:选择适合的开关管和输出滤波电容。
6.反馈控制电路:确定适当的反馈控制电路。
接下来,我们将使用PSpice进行开关电源的设计和仿真。
2.设计反馈控制电路并将其与开关电源原理图连接。
可以选择使用比较器、反馈电阻等。
3.设置合适的仿真参数,例如输入电压范围、输出电压、输出电流等。
4.运行仿真,观察开关电源的性能。
可以检查输出电压是否稳定,开关管和滤波电容的工作状态等。
在仿真过程中,您可以通过修改参数和测试不同的设计选择,以获得最佳的开关电源性能。
还可以进行波形分析和参数优化,以确保开关电源在各种工作条件下都能正常工作。
总结起来,基于PSpice的开关电源设计和仿真是一项重要任务。
通过使用PSpice软件,我们可以在设计和测试阶段进行快速和准确的电路仿真。
这有助于我们更好地理解和优化开关电源的性能,并确保其在实际应用中能够稳定工作。
开关电源仿真设计软件选择
![开关电源仿真设计软件选择](https://img.taocdn.com/s3/m/c38792204b7302768e9951e79b89680203d86bcc.png)
开关电源仿真设计软件选择开关电源仿真设计软件当前国内用于开关电源仿真设计的软件主要有,beknowned和大家一起探讨使用,主要交流网站当属21dianyuan的BBS,好多大牛在此呢,beknowned 得到不少的帮助。
Matlab中SimPowerSystem电力电子工具箱可以对开关电源结构简单仿真,beknowned一直在用的,很多强大的功能要慢慢体会和挖掘。
我试想总有一天,所有软件都具备与MATLAB的接口,使其成为数据分析的行业标准。
pspice属于元件级仿真,模型采用spice通用语言编写,移植性强,常用的信息电子电路,是它最适合的场合,缺点是收敛性有时不易做到收敛,但可以创建元件模型库用于自己设计。
每种软件都号称自己在某方面最强,做的最好。
在此beknowned 向大家推荐《开关电源仿真 PSpice和SPICE3应用》一书,非常详细介绍如何用 pspice 进行开关电源设计。
saber可以进行元件级仿真,也可以进行系统级仿真,模型采用mast语言编写,器件模型的电压电流范围宽,因此适合于功率电路。
另外,仿真器采用五种算法,可极大提高收敛性,对于脉冲式电路,可以极大缩短仿真时间,节省系统资源,因此很适合用于开关电源的仿真,21dianyuan论坛里讨论的也比较多~saber仿真开关电源比较方便,里面有好多PWM集成IC 如uc3842 、tl6561。
事实上,Saber最早是针对电源设计领域开发的。
它具有大量的电源专用器件和功率电子器件模型,并提供高精度的电路仿真模型单元库。
欢迎各位网友和beknowned 一起探讨saber软件的使用。
PI Expert支持HiperPFS?的升压拓扑结构设计支持HiperTFS?的双开关正激拓扑结构设计现在提供采用EMI屏蔽技术的LinkSwitch-II器件的变压器构造支持LinkSwitch-PH和LinkSwitch-PL的反激式拓扑结构设。
开关电源的电路仿真分析(建模)方法
![开关电源的电路仿真分析(建模)方法](https://img.taocdn.com/s3/m/e4274a40a21614791711286e.png)
开关电源的电路仿真分析(建模)方法电路仿真分析方法主要有:状态变量法、节点分析法、改进的节点分析法、状态空间平均法等。
1)以状态变量法为基础的仿真技术状态变量法可以很容易地得到电路的瞬态性能,并评价电路的稳定性。
状态变量法是以电路中某些支路的电压和电流当做状态变量建立电路的状态方程。
一般是取电容上的电压和电感中的电流作为未知的状态变量,然后再用图论的方法列出方程,来决定每一电路的固有树(Proper Tree)。
电路各变量并不直接包含在状态变量中,而是利用一组显式代数方程求出。
对于开关转换器这样的离散电路,应首先列出电路的分段线性状态方程,而后求状态转移规律,并由此导出描写电路的非线性差分方程,此法称为离散时域法。
美国VIRginia 电力电子中心开发的面向系统的开关转换器仿真软件COSMIR 就属于这一类型。
它将开关器件理想化,转换器的每一个运行模式都由一组线性时不变状态方程描述,在考虑开关条件以后,用直接数字积分法或解析法求解,可以快速地得到稳态响应或大信号瞬态响应。
也有的以网孔法或节点法为基础而建立的离散时域法仿真程序。
以状态变量法为基础的仿真技术的缺点是:不能与SPICE 等通用电路仿真程序兼容;由于开关器件理想化,不能分析器件开通或关断瞬间开关器件上的电应力变化。
2)以节J 点分析法为基础的仿真技术以节点分析法为基础的仿真技术可以应用于电力系统等大系统的仿真,有EMTP、ATP、PECAN 等程序。
EMTP 是电力系统瞬态分析的工具, ̄{\TP 则是功率转换器和电力传动的仿真工具。
PECAN 是专用于仿真电力电子闭环系统的分析程序。
以节点分析法为基础仿真电力电子电路,其主要的缺点是:处理电源不充分,不能包含与电源有关的元件;不便得到支路电流;难以实现有效的数字积分;分析线性电路的零、极`点要用特殊技术;难以快速分析电力电子电路的稳态等。
3)以改进的节J 点分析法为基础的仿真技术对节点分析法进行改进,引入适当的支路电流,并包括电压源及各种与电流有关的元件,相应的支路关系成为附加电路方程,部分地改善了上述节点分析法的一些缺点。
开关电源Boost(升压型斩波器)仿真电路
![开关电源Boost(升压型斩波器)仿真电路](https://img.taocdn.com/s3/m/2b040fc158f5f61fb73666f1.png)
升压型斩波电路(boost)仿真模型电控学院电气0903班姓名:徐强学号:0906060328基于Matlab/Simulink的BOOST电路仿真1.Boost电路的介绍:Boost电路又称为升压型斩波器,是一种直流- 直流变换电路,用于将直流电源电压变换为高于其值的直流电压,实现能量从低压侧电源向高压侧负载的传递。
此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。
对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。
采用simulink仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。
其电路结构如图所示。
2.Simulink仿真分析:Simulink 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。
本文应用基于Matlab/Simulink软件对BOO ST 电路仿真, 仿真图如图 3 所示, 其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真开关S的通断过程。
BOOST 电路的仿真模型3.电路工作原理:在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。
调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。
负载侧输出电压的平均值为:(3-1)式(3-1)中T为开关周期, 为导通时间,为关断时间。
开关电源的设计与仿真
![开关电源的设计与仿真](https://img.taocdn.com/s3/m/23e0345eff4733687e21af45b307e87100f6f840.png)
开关电源的设计与仿真第⼀章绪论1.1 开关电源的基本概念开关电源⼴泛⽤于⽣活、⽣产、科研、军事等各个领域。
彩⾊电视机、VCD 播放机等家⽤电器、医⽤X光机、CT机,各种计算机设备,⼯业⽤的电解、电镀、充电、焊接、激光等装置,以及飞机、卫星、导弹、舰船中,都⼤量采⽤了开关电源。
开关电源是利⽤现代电⼒电⼦技术,控制开关管开通和关断的时间⽐率,维持稳定输出电压的⼀种电源,开关电源⼀般由脉冲宽度调制(PWM)控制IC 和MOSFET构成。
开关电源和线性电源相⽐,⼆者的成本都随着输出功率的增加⽽增长,但⼆者增长速率各异。
线性电源成本在某⼀输出功率点上,反⽽⾼于开关电源,这⼀点称为成本反转点。
随着电⼒电⼦技术的发展和创新,使得开关电源技术也在不断地创新,这⼀成本反转点⽇益向低输出电⼒端移动,这为开关电源提供了⼴阔的发展空间。
开关电源⾼频化是其发展的⽅向,⾼频化使开关电源⼩型化,并使开关电源进⼊更⼴泛的应⽤领域,特别是在⾼新技术领域的应⽤,推动了⾼新技术产品的⼩型化、轻便化。
另外开关电源的发展与应⽤在节约能源、节约资源及保护环境⽅⾯都具有重要的意义。
顾名思义,开关电源的核⼼为电⼒电⼦开关电路,根据负载对电源提出的输出稳压或稳流特性的要求,利⽤反馈控制电路,采⽤占空⽐控制⽅法,对开关电路进⾏控制。
开关电源的这⼀技术特点使其同其他形式的电源,如采⽤调整管的线性电源和采⽤晶闸管的相控电源相⽐具有明显的优点。
1.2 开关电源的发展及⽅向开关电源的发展经历了从线性电源、相控电源到开关电源的发展历程,由于开关电源具有功率转换效率⾼、稳压范围宽、功率密度⽐⼤、重量轻等优点,从⽽取代了相控电源,成为通信电源的主体,并向着⾼频⼩型化、⾼效率、⾼可靠性的⽅向发展。
计算机控制、计算机通信和计算机⽹络技术的快速发展,为通信电源监控系统的发展和完善提供了外部条件,使其发展逐步实现少⼈值守,直⾄⽆⼈值守。
1.3 开关电源的分类开关电源有多种分类。
开关电源的设计与仿真
![开关电源的设计与仿真](https://img.taocdn.com/s3/m/1c5332ae0875f46527d3240c844769eae109a358.png)
开关电源的设计与仿真开关电源是一种常用的电源设计方案,它能够将输入电压转换成稳定的输出电压,并具有高效率、小体积和轻负载能力强等特点。
下面将介绍开关电源的设计原理和仿真方法。
首先,选择合适的拓扑结构对于开关电源的设计至关重要。
常见的拓扑结构有:Boost、Buck、Buck-Boost、Cuk等。
不同的拓扑结构适用于不同的输入输出电压范围和应用场景。
例如,Buck拓扑适用于输出电压小于输入电压的场合,Boost拓扑适用于输出电压大于输入电压的场合,Buck-Boost拓扑适用于输出电压可大可小的场合。
其次,控制策略对于开关电源的性能也起到了至关重要的作用。
常见的控制策略有:固定频率PWM(脉宽调制)控制、变频PWM控制和电流模式控制等。
不同的控制策略对于输出电压的稳定性、负载能力和效率等方面的影响不同。
因此,在设计开关电源时需要根据具体的要求选择合适的控制策略。
电路仿真是对开关电源的基本电路进行模拟和分析。
在电路仿真中,可以使用专业的电路仿真软件如SPICE进行建模和仿真。
通过调整参数和信号输入,可以模拟不同负载、不同工况下开关电源的工作情况,并获取电路的输出特性、电压波形等信息。
这样可以及时发现设计缺陷和改进方向。
系统仿真是对整个开关电源系统进行建模和仿真。
开关电源系统包括开关电源核心电路、控制电路以及反馈电路等。
系统仿真能够模拟复杂的工作环境和系统交互,并综合考虑开关电源的输入输出特性、稳定性和效率等。
通过系统仿真,可以评估和优化整个开关电源系统的性能。
综上所述,开关电源的设计与仿真是一个相互依赖、相辅相成的过程。
设计者需要根据实际需求选择合适的拓扑结构和控制策略,并进行电路仿真和系统仿真来验证设计方案的正确性和性能指标。
通过不断的调整和优化,最终可以得到稳定高效的开关电源设计方案。
小功率开关电源的设计及仿真剖析
![小功率开关电源的设计及仿真剖析](https://img.taocdn.com/s3/m/3cdc7222571252d380eb6294dd88d0d233d43c2f.png)
小功率开关电源的设计及仿真剖析
首先,我们来看设计方面。
小功率开关电源的设计需要考虑输出电流
和电压的要求,以及对线路噪声和稳定性的要求。
设计的第一步是选择合
适的开关管和变压器。
开关管需要能够承受电流和电压的要求,并且具有
低导通压降和开关速度快的特点。
变压器的选择需要根据输入电压和输出
电压的比例来确定,并需要结合输出电流的要求来确定主、从绕组的匝数
比例。
设计完成后,还需要添加滤波电容和电感来降低输出噪声。
其次,我们来看仿真方面。
仿真是开关电源设计中非常重要的一步,
可以帮助验证设计的正确性并进行性能优化。
常用的仿真软件有PSPICE
和SIMULINK等。
仿真的第一步是建立电路图,在仿真软件中将开关管、
变压器、滤波电容和电感等元件进行连接。
然后,根据设计要求设置输入
电压、输出电流和电压等参数。
接下来进行仿真运行,观察输出波形和电
流波形,分析电源调整时间、稳压性能和线路噪声等指标。
如果存在问题,可以通过改变电路参数或者添加补偿电路来进行优化。
综上所述,小功率开关电源的设计和仿真是一个相互关联且相对复杂
的过程。
设计需要考虑输出要求,并选择合适的元件,仿真则是验证设计
和优化性能的关键步骤。
通过科学合理的设计和精确的仿真,可以得到性
能稳定、噪声低且符合要求的小功率开关电源。
开关电源电路设计方案及仿真
![开关电源电路设计方案及仿真](https://img.taocdn.com/s3/m/1766bddab8f67c1cfad6b8c5.png)
开关电源电路的设计及仿真1基本理论开关电源的输出电压Vo是由一个控制电压Vc来控制的,即由Vc与锯齿波信号比较,产生PWM波形。
根据锯齿波产生的方式不同,开关电源的控制方式可分为电压型控制和电流型控制。
电压型的锯齿波是由芯片内部产生的,如LM5025,电流型的锯齿波是输出电感的电流转化成电压波形得到的,如UC3843。
对于反激电路,变压器原边绕组的电流就是产生锯齿波的依据。
输出电压Vo与控制电压Vc的比值称为未补偿的开环传递函数Tu,Tu=Vo/Vc。
一般按频率的变化来反映Tu的变化,即Bode图。
电压型控制的电源其Tu是双极点,以非隔离的BUCK为例,形式为:电流型控制的电源其Tu是单极点,以非隔离的BUCK为例,形式为:各种电路的未补偿的开环传递函数Tu可以从资料中找到。
本讲座的目的是提供一种直观的环路设计手段。
2 计算机仿真开关电源未补偿的开环传递函数Tu2.1 开关平均模型开关电源的各个量经平均处理后,去掉高频开关分量,得到低频(包括直流)的分量。
开关电源的建模、静态工作点、反馈设计、动态分析等都是基于平均模型基础之上的。
若要得到实际的工作波形,应按实际电路进行时域仿真(Time Transient Analysis)。
将开关电路中的开关器件经平均化处理后,就得到开关平均模型,用开关平均模型可以搭建各种电路。
以下是几个开关电源的平均模型仿真例子,从电路波形中看不到开关量,只是平均量,比如电感中流过的电流是实际电感中的电流平均值,电容两端的电压是实际电容两端电压的平均值等等。
2.1.1 CCM BUCK(连续模式BUCK)先直流扫描Vc,得到所需的输出电压,即得到了电路的静态工作点。
然后交流扫描,得到Tu的Bode图。
Tu为双极点。
此处Vc等同于占空比d。
2.1.2 DCM BUCK(断续模式BUCK)按以上方法得到Tu,在DCM下,Tu变成单极点函数。
模型CCM-DCM即可用于连续模式,也可用于断续模式。
介绍一个开关电源仿真的实例
![介绍一个开关电源仿真的实例](https://img.taocdn.com/s3/m/669e10f9d5bbfd0a79567396.png)
介绍一个开关电源仿真的实例
为大家介绍一个开关电源仿真的实例。
由于开关电源具有很强的非线性,并且经常是双环乃至多环反馈,因此无论用哪种仿真工具,对其进行仿真分析都是一件很困难的事情,相信用Saber进行开关电源分析的网友,也有过类似的经验。
这个仿真实例中使用了TI的UC3844做为控制器,实现一个反激电路。
验证电路源于TI公司的UC3844 数据手册(data sheet) 第七页所提供的反激变换器设计电路,如下图所示:
在SaberSketch根据对该原理图进行适当修改,具体修改情况如下:
1.输出由双路±12V/0.3A 的负载改为24V/0.6A负载.
2.输出滤波电容C12/C13 由2200u 改为141u. C11 由4700u 改为3000u
3.去掉负载绕组供电的复杂滤波网络, 改为RC充电模式, 其中R=10, C=C2=100u.
4.将输出部分的滤波器由π型改为电容直接滤波.
5.去掉MOSFET (UFN833)的缓冲电路( SNUBBER).。
开关电源的模拟仿真
![开关电源的模拟仿真](https://img.taocdn.com/s3/m/ec007806581b6bd97f19eaff.png)
本章节主要论述如何对实际电路建立模 型,并使用电脑模拟仿真软件来对实 际电路进行仿真分析,研究电路特性 和进行电脑模拟实验以达到对新开发 电路的性能的评估及潜在风险的分析 理解. 本章以正激变换器为例,介绍包含有A C输入整流,基本正激变换部分,输 出部分电路的模拟仿真以及获得有关 工作波形的过程以便让学生得到一个 关于模拟仿真的感性认识,在以后实 际工作中能结合PSPICE的操作 说明进行简单单元电路的仿真分析.
输入整流电路的模拟仿真
• 仿真模拟输出电压
仿真模拟输入电流
5
输入整流电路的模拟仿真
• 改变负载电阻阻值(50—1K)仿真结果
ห้องสมุดไป่ตู้
不同的负载时的输入 电流也有所不同
基本变换器部分的模拟仿真
• 开环的模拟仿真 • 正激变换器开环等效电路
方波发生器 20KHz,30%,15V 输入电压,以直流形式
6
基本变换器部分的模拟仿真
开关电源的模拟仿真
• • • • • • • • • • • • • 1.几种电路仿真器的介绍 1.SPICE简介 2.MultiSIM简介 3.Matlab简介 2.输入整流滤波电路的仿真 1.输入整流滤波电路模型 2.仿真结果 3.仿真波形解说 3.基本变换器部分的模拟仿真 1.未施加反馈的模拟仿真 2.施加反馈的模拟仿真 3.仿真结果和波形解说 4.仿真器问题归纳和总结
基本变换器部分的模拟仿真
• 1mS内的仿真结果波形:
驱动电压和电流波形
7
基本变换器部分的模拟仿真
• 1mS内的仿真结果波形 MOSFET漏极电压,电流波形
基本变换器部分的模拟仿真
• 1mS内的仿真结果波形 漏极电压波形放大图 漏极电流波形放大图
开关电源电路的分析和仿真研究
![开关电源电路的分析和仿真研究](https://img.taocdn.com/s3/m/519440aab9f67c1cfad6195f312b3169a451ea93.png)
开关电源电路的分析和仿真研究开关电源是一种将输入电压变换为特定输出电压的电子电路。
它由开关器件、能量存储元件和控制电路组成。
开关电源具有高效率、小体积、适应性强等特点,已广泛应用于各种电子设备和系统中。
对于开关电源的分析和仿真研究,主要可以从以下几个方面展开:1.电路拓扑结构的选择:开关电源有多种拓扑结构,例如单端、双端和反激式等。
选择合适的拓扑结构将对电路的性能和可靠性产生重要影响。
在分析和仿真研究中,可以比较不同拓扑结构的优缺点,选择最适合特定应用需求的拓扑结构。
2.开关器件的选型与参数设计:开关器件是开关电源的核心元件,常见的有晶体管、MOSFET和IGBT 等。
在分析和仿真研究中,可以通过比较不同开关器件的特性和参数,选取性能优良、适用于设计要求的开关器件,并进行关键参数的设计与优化。
3.能量存储元件的选择与设计:能量存储元件主要包括电感和电容,用于存储和传输能量。
在分析和仿真研究中,可以通过合理选择和设计能量存储元件,实现输出电压的稳定性、纹波和转换效率的优化。
4.控制电路的设计与仿真:开关电源的控制电路主要包括开关驱动、反馈控制和保护电路等。
在分析和仿真研究中,可以通过合理设计控制电路,实现开关器件的合理驱动和输出电压的精确控制,并保证电路的安全可靠性。
对于开关电源的分析和仿真研究,可以使用专业的电路仿真软件,如Matlab/Simulink、PSPICE等进行建模和仿真。
通过调整电路参数、拓扑结构和控制策略等,可以对开关电源的性能进行全面评估和优化,并提出具体的改进方案。
总之,开关电源的分析和仿真研究是设计和优化开关电源的重要步骤,可以通过合理的电路设计和仿真分析,实现开关电源的性能优化和应用需求的满足。
《开关电源仿真设计》课件
![《开关电源仿真设计》课件](https://img.taocdn.com/s3/m/45d6dd8a0d22590102020740be1e650e53eacf71.png)
由MathWorks公司开发,适用于多种领域的系统仿真,包括电 力电子、控制系统等。
专门针对电力电子系统的仿真软,具有强大的元件库和模型 库。
由Mentor Graphics公司开发,适用于电子系统的仿真,具有 广泛的元件库和模型库。
由National Instruments公司开发,适用于电子电路的仿真, 具有直观的用户界面和丰富的元件库。
05
开关电源仿真设计常见问题与解决方
案
仿真结果不准确的原因与解决方法
01
仿真模型建立不准 确
确保电路模型参数准确,元件参 数和实际电路一致,考虑寄生参 数和耦合效应。
02
仿真算法选择不当
根据电路特性和精度要求选择合 适的仿真算法,如时域仿真、频 域仿真等。
03
初始条件设置不合 理
为电路元件设置合理的初始条件 ,以避免仿真结果出现不稳定或 错误。
提高仿真效率的方法与技巧
使用合适的仿真算法
选择高效、精确的仿真算法,如快速傅里叶 变换、有限元法等。
优化电路模型
简化电路模型,去除不必要的元件和连接, 减少仿真计算量。
合理设置仿真参数
调整仿真时间步长、收敛精度等参数,以提 高仿真速度和准确性。
常见电路模型建立问题与解决方法
1 2
元件模型不准确
查找元件的准确模型,或根据实际测试数据建立 元件模型。
重复仿真
在优化设计后,重复仿真过程,直至达到满 意的设计效果。
记录和整理
将每次仿真的结果进行记录和整理,以便后 续的总结和归纳。
04
开关电源仿真设计案例分析
案例一:Boost电路仿真设计
总结词
Boost电路是一种常用的开关电源拓扑结 构,通过改变开关管的占空比来调节输 出电压。
开关电源的仿真分析
![开关电源的仿真分析](https://img.taocdn.com/s3/m/f77995b81eb91a37f0115c0a.png)
开关电源的仿真分析建立了开关电源的Pspice仿真电路模型,着重仿真了开关电路及输出电路的电压、电流,较直观地揭示了开关电源中电磁干扰产生及存在的本质,提出了解决其电磁干扰问题的措施。
标签:开关电源;仿真;电磁干扰在开关电源中,开关管的电压接近方波,含有丰富的高次谐波,同时,由于开关变压器的漏电感及分布电容以及开关器件的工作状态非理想,在高频开或关时,常常会产生高频、高压的尖峰高次谐波振荡,该谐波通过开关管的散热器对地之间的分布电容传送到输入端;也可以通过变压器初次级间的耦合电容及变压器的对地电容通过输出回路传送到输入端。
因此,开关电源中存在着较严重的电磁干扰。
本文以12V、0.85A的反激式开关电源为例,见图1,应用仿真软件Pspice 进行研究,仿真分析了开关电源中的电流和电压的特点,探究了电源的EMC问题的解决策略。
图1 12V,0.85A的反激式开关电源图2 反激式开关电源的Pspice仿真电路1 开关电路的电流、电压下图3依次是开关管漏源电压、漏极电流、高频变压器原边电流、RCD吸收电路的电流、漏极对地电容的电流:图3由图3可以总结出此反激式开关电源波形的几个特点:(1)波形均為脉冲波形,频率为40KHz;(2)开关管的导通时间极短,此电路参数下为6uS左右。
(3)除开关管的电流,都叠加着振荡波形,即文献资料中所说的“振铃”。
2 由漏电感引起的开关管的电压尖峰及高频振荡图4是无RCD钳位电路时开关管漏源电压的波形。
图中,开关管截止瞬间的电压尖峰和高频振荡由高频变压器的漏感引起,产生了659.055V的瞬间电压,这同有RCD钳位电路(图3)相比(最高电压为500V左右),高出了159V。
此开关管的额定电压为600V,且工作在高频状态,如果不采取措施,开关管很容易损坏,造成整个电源不能正常工作,作为设备的驱动装置,这是不允许的。
3 开关管漏极电压突变引起的干扰电流由于开关管的漏源电压极高,且导通和截止的时间极短,使开关管漏极对地等效电容Cp产生了较大的干扰电流。
开关电源Pspice仿真技巧及收敛性问题
![开关电源Pspice仿真技巧及收敛性问题](https://img.taocdn.com/s3/m/ea5ce0e8b8f67c1cfad6b8bd.png)
开关电源Pspice仿真技巧及收敛性问题摘要:本文主要讲述了开关电源的Pspice仿真中,速度与精度的权衡,收敛性问题的常规解决方法。
收敛性问题快速解决办法在做开关电源仿真时,经常会遇到收敛性的问题。
我也在其中遇到各种各样的收敛性问题,根据我的经验和前辈的传授,下面我对这个问题进行一个说明。
如果在仿真时遇到收敛性问题,快速解决办法如下:设置.OPTION设置里的一些选项。
_ ABSTOL = 0.01μ (Default=1p)_ VNTOL = 10μ (Default=1μ)_ GMIN = 0.1n (Default=1p)_ RELTOL = 0.05 (Default=0.001)_ ITL4 = 500 (Default=10)这些设置可以解决大多收敛性问题,当然如果电路中的错误,它是解决不了的。
如果模型不够精确,上面的设置需要实时调整才能得到想要的结果。
开关仿真中速度与精度的权衡开关仿真就是仿真时有很多重复的周期性的上升下降信号的仿真,比如开关电源的仿真。
在这种仿真中,需要丢弃一些仿真时间点,不然仿真将会非常慢。
而尽管如此,开关电源的仿真还是非常慢。
这种仿真中,pspice的时间步长会在一个很大的步长范围内波动。
这个波动范围主要由一些设置限定,比如RELTOL,ABSTOL,VNTOL等。
因为它是线性迭代算法,为了在信号的上升沿和下降沿得到限定精度范围内的值,在沿处理时,它需要提高步长细度,否则难以得到限定的仿真精度。
因为一般可信的仿真精度是不可能有太大的误差的。
为解决这种问题,通常可以通过设置TRTOL=25(DEFAULT 7),和TMAX,将时间步长限定在开关周期的1/10到1/100之间。
这样做基本可以提高一倍的仿真速度。
当然精度应该在可接受范围内。
收敛性问题在进行DC和瞬态仿真时,SPICE会先给每一个节点假定一个初始值,然后通过误差范围内的数次迭代,最终得到一个误差范围内的结果,这个迭代次数也是有限定的,通过ITL来限定。
开关电源典型电路的分析和仿真研究
![开关电源典型电路的分析和仿真研究](https://img.taocdn.com/s3/m/d3db9638376baf1ffc4fad12.png)
开关电源典型电路的分析和仿真研究摘要开关电源已经应用到各个领域,但是开关电源的设计和参数优化比较复杂,用实验法设计往往使成本增高,为了降低开关电源的设计成本,经常采用计算机仿真法。
Simplorer 是Ansoft公司的新型电力电子仿真软件,应用它可以简便、快速、准确地完成机电系统从元部件设计到系统设计、仿真、优化的整个过程,实现传统设计流程的现代化,提高设计水平和精度,最大限度地减少制作样机的次数,缩短开发周期,降低开发成本,有利于在激烈竞争中脱颖而出。
本文首先分析了降压斩波电路(Buck)的工作原理,然后应用这种软件对Buck的典型电路进行了仿真,得到的结果与理论计算结果相符。
随后对此电路进行了实际电路搭接,并用示波器进行了验证,所得到的结果与软件所得结果完全一致,达到了预期目的。
其次,应用软件对DC-DC 开关电源Boost功率校正电路进行了分析和仿真,在分析Boost 功率校正电路时,考虑到功率校正问题,采用了电流滞环控制和PI调节,取得好的效果。
最后,分析了软开关电路的基本工作原理,对软开关的一个实例电路DC-AC有源箝位谐振直流环逆变器(ACRLI)电路进行了分析和仿真。
对ACRLI 逆变电路的工作过程进行了详细地分析,深入地研究了其工作原理,对谐振直流环的控制采用了SIMPLORER所具有的状态图控制,仿真结果显示达到了预期的效果。
关键词开关电源;电力电子仿真;功率校正;有源箝位谐振直流环逆变器;状态图控制Analysis and simulation research of typical circuit for switching power supplyAbstractThe switching power supply already applied each domain, but the design of switching power supply and the optimize for parameter quite complex, often makes it costly with the experimental method , in order to reduce the cost of design for the switching power supply, uses the computer simulation frequently。
hk-008c开关电源仿真
![hk-008c开关电源仿真](https://img.taocdn.com/s3/m/75356f3bae45b307e87101f69e3143323968f526.png)
hk-008c开关电源仿真
开关电源系统的仿真步骤:
建立系统的仿真模型,从而获得描述系统的方程式;构造求解系统方程的算法。
当系统比较简单或者系统的阶数较低时,通常可以得到系统的解析解;但当系统较复杂或系统的阶数较高时,一般只有借助于计算机仿真方法,才能够对系统设计进行仿真。
开关电源电路的建模方法:
1、状态变量法:以电路中的某些支路电压和电流作为状态变量,建立开关电源电路的状态方程。
2、节点分析法:EMTP、ATP、PECAN等程序。
3、非线性代数微分方程转换为一组非线性差分方程,应用牛顿拉夫逊法迭代求解方程组,利用稀疏LU分解技术连续求解线性代数方程组。
4、状态空间平均法:利用一周期内平均状态变量,将一个非线性、时变、开关电路转变为一个等效的非线性、时不变的连续电路,因而可对开关转换器作大信号瞬态分析,并可决定其小信号传递函数及零、极点配置,建立一个状态空间平均电路模型。
,SPICE和IsSPICE 仿真程序 SPICE是一种通用集成电路计算机分析程序,可用其对电路进行非线性直流分析、非线性瞬态时域分析和交流小信号时域和频域分析等。
SPICE应用了一组电路模型方程,基本分析工具是牛顿拉夫逊迭代法。
SPICE的仿真结果以数据文件形式表示,可以将它
输入其他软件如MATLAB等,以便进一步对电路性能进行评估和寻优。
MATLAB语言在开关电源仿真中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源中变压器的Saber仿真辅助设计一:反激一、Saber在变压器辅助设计中的优势:1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。
主要功率级指标是相当接近真实的,细节也可以被充分体现。
2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。
3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。
从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。
4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。
附件下载磁芯手册.XLS二、Saber 中的变压器我们用得上的Saber 中的变压器是这些:(实际上是我只会用这些)分别是:xfrl 线性变压器模型,2~6绕组xfrnl 非线性变压器模型,2~6绕组单绕组的就是电感模型:也分线性和非线性2种线性变压器参数设置(以2绕组为例):其中:lp 初级电感量ls 次级电感量np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆)k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。
需要注意的是,k 为0。
99 时,漏感并不等于lp 或者ls 的1/100。
漏感究竟是多少,后述。
其他设置项我没有用过,不懂的可以保持默认值。
非线性变压器参数设置(以2绕组为例):其中:np、ns 初级、次级匝数rp、rs 初级、次级绕组直流电阻值area 磁芯截面积,即Ae,单位平方米,84.8u 即84.8 微平方米,也就是84.8 平方毫米。
len_fe 磁路长度,单位米,这里的69.7m 是EE3528磁芯的数据len_air 气隙长度,单位米,这里的1.8m 是最后获得的设计参数之一。
matl 磁芯材质,下一讲了其他参数我也不会用,特别是没有找到表达漏感的设置。
有了Saber 中这两类变压器模型,基本上足以应付针对变压器的仿真了。
他们的特点是,xfrl 模型速度快,不会饱和,而且有漏感表达,xfrnl 模型真实,最后得出设计数据主要靠它了。
应用这两个模型有几个小技巧需要掌握:1、已知lp、ls 求匝比,或者已知lp、匝比求ls2、已知线径、股数、匝数、温度,计算绕组电阻值3、已知磁芯型号,查磁芯手册获得area、len_fe 参数三、 Saber中的磁性材料总共在Saber(2007)中找到9种材质的磁心,参数如下:Saber的磁心采用的是飞利浦的材质系列,但是不知道什么原因除了表中黄色部分的4种材质外,查不到其他材质的文档。
因此采用了类比法用仿真求出了其他材质的主要参数。
类比法用的仿真电路实际上是个电桥,如图:电路左右对称分流,左边是一线性(理想)电感做参照,右边是需要检测的非线性电感或者变压器。
当信号源很小时,比如1mV,特定已知的材质(比如“3D3”)磁芯电感通过较大阻值的电阻分压后可得到一基准端电压,不同材质可得到一系列相对端电压,并与其初始导磁率成比例关系,从而获得表中系列材质的测试初始导磁率数据。
当信号源较大时,加大电流到适当的程度,被测试电感会出现临界饱和迹象(如图中右窗口波形刚开始变形),类比可得到各系列材质的测试B值。
这个类比电桥也是以后要用到的线性变压器和非线性变压器的参数转换电路,附后,需要的可以下载。
遗憾的是,可选择的材质实在太少,尽管Saber有专门针对磁性材料的建模工具,但是工程上常用的TDK系列,美芯、美磁等标准磁心都没有开发对应的Saber磁芯材质模型,这个重要的工作有待有心人或者厂家跟进(我觉得起码厂家应该花钱完善自己的磁材模型)。
所幸的是,我们做开关电源中的变压器使用得最多的锰锌铁氧体功率磁芯PC40材质,可以用“3C8”材质完全代替,很多实例反复证明,用“3C8”代替PC40材质仿真变压器或者PFC 电感是非常准确的,仿真获得的各种参数误差已经小于PC40材料本身参数的离散性(几个百分点)。
附1:几个已知的飞利浦的材质文档附2:类比电桥压缩文件四、辅助设计的一般方法和步骤1、开环联合仿真首先需要搭建在变压器所在拓扑的电路,在最不利设计工况下进行开环仿真。
为保证仿真成功,一般先省略次要电路结构,比如控制、保护环路以及输入输出滤波环节,尽量保持简洁的主电路结构。
器件可以使用参数模型(_sl后缀)甚至理想模型。
变压器、电感一般先采用线性模型。
此阶段仿真主要调整并获得变压器初、次级最合适电感量,或者电感量允许范围。
需要反复调整,逐渐加上滤波和物理器件模型,最后获得如下参数:变压器初级最佳电感量 lp变压器次级电感量及大致的匝比变压器初级绕组上的电流波形,主要是峰值电流 Im电路中其他电感的 lp、Im 值。
2、变压器仿真将上述仿真获得的(参照)变压器复制到4楼所述的类比仿真电桥中的一测,另一侧用一个对应的非线性(目标)变压器。
注意:所有变压器各绕组都要接地,一次仿真只能针对一个对应的绕组,且绕组电阻 rx 不能为0。
对称调整电路电流,使参照变压器初级上的峰值电流 = Im,这里波形和频率不重要,可以直接用工频正弦。
对目标变压器设置和调整不同的参数,包括:磁芯型号参数、匝数、气隙开度,一般用“3C8”材质。
调整目标是使电桥平衡,即类比电桥两边获得同样幅度的不失真波形。
调整中有个优化参数的问题,由于 Im 是确定的,在这个偏置电流下,首先是要找到一款最小的磁芯,适当的匝数和气隙开度,能够使其达到参照电感量。
换句话说,如果选用再小一号的磁芯则不能达到此目的(要饱和)。
其中,匝数和气隙开度有微妙之关系,一般方法应该首先求得(调试得)该磁芯在Im 条件下可能获得的最大电感量的气隙开度,保持该气隙开度不变,再减少匝数直到需要的参照的电感量。
这样的好处是:可以获得最大的抗饱和安全余量、最少的匝数(最小的绕组电阻和窗口占用)。
其中:抗饱和安全系数= 临界饱和电流/ Im 。
3、再度联合仿真把类比得到的非线性(目标)变压器代替第一步骤联合仿真电路中的线性变压器,再行仿真。
其中,由于匝数已经求得,可通过简单计算可求得绕组电阻,应修改模型中这个参数。
现在的仿真更接近真实的仿真,可以进一步观察变压器在电路中的表现,或许进一步调整优化之。
采用同样的手段,其他电感也应该逐个非线性化,饱和电感、等效漏感等也应纳入联合仿真。
其中:变压器损耗 = 变压器输入功率 - 变压器输出功率电感损耗功率 = (电感端电压波形 x 电感电流波形)平均值电感、变压器绕组铜损 = ((电感、变压器绕组端电压波形)有效值 / 绕组欧姆电阻 rx)平均值磁损 = 总损耗 - 铜损,或者,磁损 = 绕组电阻为0的变压器损耗。
我先抛砖引玉一下,正激有如下4种复位方式:采用辅助绕组复位电路采用RCD箝位复位电路采用有源箝位复位电路LCD复位即无损吸收电路其中方案1要求辅助绕组与初级绕组必须紧耦合,实际上因漏感的存在电路中仍需外加有损吸收网络,以释放其储能;方案2是一种有损复位箝位方式,因其损耗的大小正比于电路的开关频率,(和方案1中外加有损吸收网络一样)这不仅降低了电源本身的效率,也限制了电源设计频率的提高;方案3中需要附加一复位开关管与相关控制电路,增加了电路复杂性的同时,也带来了附加电路损耗与总成本的上升。
本文介绍一种新型无损箝位电路,无须额外附加辅助开关管,电路简单,可有效降低功率管的电压应力,箝位效果优异,且有利于电源工作效率的提高。
如图所示先把原理介绍一下:在一个开关周期中,电路工作状况如下。
1、模式0[t0,t1]在t0 时刻之前,开关管 S上的电压为输入电压 Vin,箝位电容电压为 VCc。
在 t0 时刻S开通,其结电容上的能量全部消耗在内部。
S 开通后,变压器原边电压为输入电压 Vin,其励磁电流 im 从Im(-)开始线性上升。
变压器原边流过的电流为折算到原边的负载电流和励磁电流之和。
同时,箝位二极管 D12开通,箝位电感 Lc 上的电流 iLc 线性增大。
此模式期间,负载电流 Io流经整流管 D21。
2、模式 2[t1,t2]t1时刻,S 关断,折算到原边的负载电流 Io/n、励磁电流 im 和箝位电感电流 iLc 之和给开关管结电容 Cs充电,vcs 电压上升。
变压器原边电压依然为正,因此励磁电流依然增大,整流管 D21继续导通。
t2 时刻,Cs的电压上升到 Vin,模式 2 结束。
由于结电容 Cs 的作用,S为零电压关断。
3、模式3[t2,t3]从t2 时刻开始,变压器原边电压开始反向,因此励磁电流减小,整流管 D21 关断,负载电流通过 D22续流。
开关管结电容 Cs的充电电流为励磁电流和箝位电感电流之和,不再包括负载电流。
t3 时刻,vcs上升到 Vin+VCc,模式3结束。
4、模式 4[t3,t4]t3时刻,Cs 的电压上升到 Vin+VCc,二极管 D11 开始导通。
变压器原边励磁电感和电容(Cs+Cc)谐振,励磁电流减小。
箝位电容两端电压被箝位在输入电压Vin,电流 iLc 线性减小。
t4 时刻,箝位电感电流较小为零,二极管 D12自然关断,模式 4结束。
5、模式5[t4,t5]此工作模式中,变压器原边励磁电感和电容(Cs+Cc)继续谐振,直到 t5时刻励磁电流减小为零,二极管 D11 自然关断,模式 5 结束。
6、模式6[t5,t6]t5时刻,励磁电流为零,但因变压器原边励磁电感承受负压VCc,励磁电感 Lm 和开关管 S 的结电容 Cs 开始谐振,结电容 Cs 开始放电,励磁电流开始反向增大,直至 t6时刻 Cs 两端电压减小为 Vin,励磁电流达到负向最大值,模式 6 结束。
7、模式7[t6,t7]t6时刻,整流二极管 D21导通,励磁电流折算到副边使 D21,D22 同时提供负载电流,流过D21 的电流为nIm(-),流过 D22 的电流为 Io-nIm(-)。
在 t7 时刻,开通开关管 S,开始下一个开关周期。
五、设计举例一:反激变压器1、开环联合仿真以100W24V全电压反激变换器为例,最简洁的开环仿真电路如图(仿真压缩文件FB1附后):注:这里采用无损吸收方式,以便更仔细的观察吸收的细节和效果。