导数压轴小题汇编(学生版)

合集下载

导数压轴小题汇编

导数压轴小题汇编

导数压轴小题(01)12【图像法】设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( D )A .3[,1)2e -B .33[,)24e -C .33[,)24eD .3[,1)2e图像法】已知函数()m +-=mx xe x f x,若()0<x f 的解集为(a,b ),其中b<0;不等式在(a,b )中有(03)16【切线应用】若函数),()(23R b a bx ax x x f ∈++=的图象与x 轴相切于一点)0)(0,(≠m m A ,且)(x f 的极大值为21,则m 的值为 .答案: 32{f ′(m )=0f (m )=0(04)12【导数的切线法】设函数与有公共点,且在公共点处的切线方程相同,则实数b 的最大值为( A ) 【此题也是多变量转化+等与不等转化】 f′(x )=g′(x) ⇒ x =aA .B .C .D . 构造F(b)=−12a 2−a 2lna (05)11【导数的切线法】若对于函数()()2ln 1f x x x =++图象上任意一点处的切线1l ,在函数()sin cos g xa x x x =-的图象上总存在一条切线2l ,使得12l l⊥,则实数a 的取值范围为(D ) −2+2√2≤∃k l 2<0 A .⎤⎥⎣⎦B .1⎡-⎢⎣⎦C.21⎛⎡⎤--∞+∞ ⎢⎥⎝⎦⎣⎦,D .(][),11,-∞-+∞(06)12【导数的切线法】已知实数满足,实数满足,则的最小值为( A ) 【距离模型+转化法】A .1B .2C .3D .4 (07)12【导数的切线法】若直线kx −y −k +1=0 (k ∈R)和曲线E :y =ax 3+bx 2+53(ab ≠0)的图像交于A( x 1 y 1 ) B ( x 2 y 2 ) C ( x 3 y 3 ) (x 1<x 2<x 3)三点时,曲线E 在点A ,点C 处的切线总是平行,则过点(b, a )可作曲线E 的( B )条切线 (咋读题目一头雾水,无思路!) A. 0 B. 1 C. 2 D. 3(08)16【导数的直接应用】若f(x)是定义在R 上的可导函数,且满足(x −1)f′(x)≥0,则必有( D ) A .f(0)+ f (2)<2f(1) B .f(0)+ f (2)>2f(1)C .f(0)+ f (2)≤2f(1)D .f(0)+ f (2)≥2f(1) 【易选B 】 (09)12 【导数的直接应用】若函数f (x )=e x (sinx +acosx )在(π4,π2)上单调递增,则实数的取值范围是( A )(A) (B) (C) (D)()()02232>-=a axx x f ()b x a x g +=ln 2221e 221e e 1223-e ,a b ln(1)30b a b ++-=,c d 20d c -+=22()()a c b d -+-a (],1-∞(),1-∞[)1,+∞()1,+∞(10)12【利用对称中心破题】已知函数, 则的值为( B ) (A ) (B ) (C ) (D )(11)12【利用对称中心破题】已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫⎪⎝⎭∑的值为( B ) (A )2016 (B )1008 (C )504 (D )0 (12)12【利用对称中心破题】已知函数()())221ln3cos 1x x x f x x ++=+,且()20172016f =,则()2017f -=( A )A .2014-B .2015-C .2016-D .2017-(13)12【利用对称中心破题】已知函数()2ln f x x x =-与()()()()21222g x x m m R x =-+-∈-的图象上存在关于()1,0对称的点,则实数m 的取值范围是( D ) 注意题干中是存在而不是任意 f (x )=−g (2−x ) A.(),1ln 2-∞- B.(],1ln 2-∞- C. ()1ln 2,-+∞ D.[)1ln 2,-+∞(14)16【通过构造函数破题】已知函数(为自然对数的底数),若对任意的正数,当时,都有成立,则实数m 的取值范围为 .答案:[0,+∞)(15)12【通过构造函数破题】已知函数2)1ln()(x x a x f -+=,在区间(0,1)内任取两个实数p ,q ,且q p <,若不等式1)1()1(>-+-+qp q f p f 恒成立,则实数a 的取值范围是( B ) A .(15,)+∞ B .[15,)+∞ C .(-∞,6) D .(-∞,6] (16)11【直接法】已知直线与函数的图象交于两点AB ,若中点为点,则的大小为( B ) A.B. C. 1 D. 2 (17)12【函数性质+K 法】已知函数f(x)=x +sinx (x ∈R),且f (y 2−2y +3)+f(x 2−4x +1)≤0,则当y ≥1时,y x+1的取值范围是( A ) A .B .C .D .(18)12【考查函数性质】已知函数22()(8)12(0)f x x a x a a a =++++-<,且2(4)(28)f a f a -=-,则*()4()f n an N -∈的最小值为( A ) 提示: a 2−4+2a −8=0()32331248f x x x x =-++201612017k k f =⎛⎫⎪⎝⎭∑050410082016()ln xf x e m x =+,m R e ∈12,x x 12x x >()()1212f x f x x x ->-l ())()ln ln 1f x x =--AB 1,2P m ⎛⎫⎪⎝⎭m 1312A.374B.358C.328D.274(19)12.【分离参数法+隐含零点】已知函数f (x )=x +xlnx ,若k ∈Z ,并且k(x −1)<f(x)对任意的x >1恒成立,则k 的最大值为(B ) 提示:隐含零点必然用到导函数的零点的等量代换A. 2B. 3C.4D.5(20)8【考查函数的零点+嵌套函数】已知函数⎩⎨⎧≥+--<-=1,2)2(1,)1(log )(25x x x x x f ,则方程a x x f =-+)21(的实根个数不可能为(B) 考查作图能力+双勾函数,特别要注意双勾函数的二个拐点,本题当a=0 有3个,a=1时有7个,一共有2.3.4.6.7.8六种情况B. A .8个 B .7个 C .6个D .5个(21)12【考查函数的零点】定义在R 上的偶函数()f x 满足(2)()f x f x -=,且当[]1,2x ∈时,()ln 1f x x x =-+, 若函数()()g x f x mx =+有7个零点,则实数m 的取值范围为( A ) 函数的性质-对称中心要掌握哦!画出图像A. 1ln 21ln 2ln 21ln 21(,)(,)8668----⋃B. ln 21ln 21(,)68--C. 1ln 21ln 2(,)86-- D. 1ln 2ln 21(,)86-- (22)10【考查函数的零点】设函数()21cos ,12,01x x f x x x π⎧+>⎪=⎨⎪<≤⎩,函数()()10g x x a x x =++>,若存在唯一的0x ,使得()()(){}min ,h x f x g x =的最小值为()0h x ,则实数a 的取值范围是( A ) 好好琢磨一下本题!A. 2a <-B. 2a ≤-C. 1a <-D. 1a ≤- 画出图像(23)12【考查函数的零点】已知函数()xe f x kx x=-(e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是( B ) 分参后求导画出图像(画图像注意x<0部分) A .(0,2)B .2(0,)4eC .(0,)eD .(0,)+∞ 【分离参数法】(24)16【转化法+零点】已知函数()2ln (6)f x a x x a x =++-在(0,3)上不是单调函数,则实数a 的取值范围是 (0,2) 本题还需注意是相交,相切不行!求导后,分离a,转化为双勾函数!(25)11【图像法+转化法+零点】函数()())ln 00x x f x x x ⎧>⎪=⎨-≤⎪⎩与()()112g x x a =++的图象上存在关于y 轴对称的点,则实数a 的取值范围是( B ) 画出f(x)图像,再画出y =12|x |+1图像 实际转化为ln(−x)=12(−x −a +1)有解 A .(],32ln 2-∞- B .[)32ln 2,-+∞ C.),e ⎡+∞⎣D .(,e -∞(26)12【考查函数的零点】定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x ∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x ∈(1,2]时,f(x)=2﹣x ;记函数g(x)= f(x)﹣k (x ﹣1),若函数g (x )恰有两个零点,则实数k 的取值范围是( C ) A .[1,2)B .4[,2]3C .4[,2)3D .4(,2)3f(x)图像容易画错(27)12【多变量转化+等与不等转化】已知函数n x m x g x x f ++==)32()(,ln )(,若对任意的),0(+∞∈x ,总有)()(x g x f ≤恒成立,记n m )32(+的最小值为),(n m f ,则),(n m f 最大值为( C )A. 1B. e 1C.21e D. e1 (28)12【多变量转化+等与不等转化】已知不等式(2)2xe a x b -+≥- 恒成立,则52b a -+的最大值为( A ) A . ln 3- B .ln 2- C .1ln3-- D .1ln2--失败:直接求导f ′(x )=e x−(a +2)(x ∈R);一般要对原函数作一下处理!分a +2>< =0三种情况讨论(29)12【多变量转化+等与不等转化】对于任意0b >,a R ∈,不等式[][]222(2)ln (1)b a b a m m --+--≥-恒成立,则实数m 的最大值为( B ) 本质是平行线间距离A ..2 C. e D .3(30)11【嵌套函数+零点图像法】函数f (x )={|log 2|4x −1|| x ≠14 ,0 x =14若方程af 2(x )+bf (x )+c =0有8个不同的实根,则此8个实根之和是( D ) 适合高一学生做A. 52 B. 4 C.114D. 2(31)10【嵌套函数法】已知函数()132,1,1x e x f x x x x -⎧<=⎨+≥⎩,则()()2f f x <的解集为( B ) 适合高一学生做A .(1−ln2 ,+∞)B .(−∞ ,1−ln2 ) C. (1−ln2 ,1) D .(1 ,1+ln2)(32)12【导数+嵌套函数法+分离参数】函数22()3,()2xf x x x ag x x =-++=-,若[()]0f g x ≥对[0,1]x ∈恒成立,则实数a 的取值范围是( C )A.[,)e -+∞B.[ln 2,)-+∞C.[2,)-+∞D.1(,0]2-(33)11【导数+嵌套函数法+定义域与值域的关系】已知函数2)(+⋅+=-xxe a e xf (R a ∈,e 为自然对数的底数),若)(x f g =与))((x f f y =的值域相同,则a 的取值范围是( A )A .0<aB .1-≤aC . 40≤<aD .0<a 或40≤<a (34)12【导数+嵌套函数法+分离参数】已知函数)0()1(21)(2>++-+⋅=a a x a x a e e x f x ,其中e 为自然对数的底数.若函数)(x f y =与)]([x f f y =有相同的值域,则实数a 的最大值为( B )A .eB .2 C. 1 D .2e (35)12【导数+嵌套函数法+导函数零点】已知函数()3213f x x ax bx c =-+++有两个极值点12,x x ,若()112x f x x <<,则关于x 方程()()()220f x af x b --=的实根个数不可能为( D ). 多研究研究 A .2 B .3 C .4 D .5 (36)12【导数+嵌套函数法+导函数零点】已知函数()3213f x x ax bx c =-+++有两个极值点12,x x ,若x 1=f(x 1),则关于x 方程()()()220f x af x b --=的实根个数为( B ). 多研究研究 A .2 B .3 C .4 D .5(37)12【嵌套函数法+零点】已知偶函数f(x)满足f (x +4)=f(4−x),且当x ∈(0,4]时,()()ln 2x f x x=,关于x 的不等式f 2(x )+af (x )>0在[−200 ,200]则实数a 的取值范围是( D )A. 1(ln2,ln6)3--B. 1(ln2,ln6]3--C. 13ln2(ln6,)34--D.13ln2(ln6,]34--(38)12【导数极值点常规处理手段-转化法】已知函数()ln x f x x x ae =-(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( A )A .10,e ⎛⎫ ⎪⎝⎭B .()0,e C.1,e e ⎛⎫⎪⎝⎭D .(),e -∞f ′(x )=1+lnx −ae x =0有2解⇔g (x )=a =1+lnx e x有2解 g’(x )=1x−1−lnx e x且g’(1)=0lim g (x )n →+∞=0(39)12【5点法+向量法】将函数34y x π⎛⎫=⎪⎝⎭的图象向左平移3个单位,得函数()34y x πϕϕπ⎛⎫=+< ⎪⎝⎭的图象(如图) ,点,M N 分别是函数()f x 图象上y 轴两侧相邻的最高点和最低点,设MON θ∠=,则()tan ϕθ-的值为( A )A .23-.23-13.13(40)12【分析法】已知函数f (x )=e x −ax −1,g (x )=lnx −ax +a ,若存在x 0∈(1,2),使得f (x 0)g (x 0)<0,则实数a 的取值范围为( )A 、(ln2,e 2―12) B 、(ln2,e ―1) C 、[1,e ―1) D 、[1,e 2―12)(41)12【导函数构造法】设定义在R 上的可导函数f′(x)的导函,若f(3)=1,且 3 f(x)+x f′(x)>ln(x +1),则不等式(x −2017)3 f(x −2017)﹣27>0的解集( D )A .(2014,+∞)B .(0,2014)C .(0,2020)D .(2020,+∞)(42)12【导函数2次构造法】已知()f x 是定义在R 上的可导函数,且满足(2)()'()0x f x xf x ++>,则( A )A.()0f x > B .()0f x < C .()f x 为减函数 D .()f x 为增函数(43)12【导函数2次构造法】定义在R 上的函数)(x f 满足:xe x xf x f •=-')()(,且21)0(=f ,则)()(x f x f '的最大值为( D )A .0B .21C .1 D.2 (44)12【导函数构造法】已知偶函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x <时有22()()f x xf x x '+>,则不等式2(2014)(2014)4(2)0x f x f ++--<的解集为( B )A .(),2012-∞-B .()2016,2012--C .(),2016-∞-D .()20160-,(45)12【导函数构造法】设函数()f x 满足()()232'xx f x x f x e +=,()228e f =,则[)2,x ∈+∞时,()f x 的最小值为( D )A.22eB.232eC.24eD.28e 【导函数构造法,特殊1题】 (46)12【导函数构造法】已知函数()f x 是定义在R 上的奇函数,其导函数为'()f x ,若对任意的正实数x ,都有'()2()0xf x f x +>恒成立,且1f =,则使2()2x f x <成立的实数x 的集合为( C )A .(,(2,)-∞+∞ B .( C .(-∞ D .)+∞(47)10【导函数构造法】已知函数()f x 为R 上的可导函数,其导函数为'()f x ,且满足()'()1f x f x +<恒成立,(0)2018f =,则不等式()20171x f x e -<+的解集为( A )A .(0,)+∞B .(,0)-∞ C.(,)e +∞ D .(,)e -∞(48)12【导函数构造法】已知定义在R 上的可导函数()f x 的导函数为'()f x ,对任意实数x 均有(1)()'()0x f x xf x -+>成立,且(1)y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是( D )A .(,)e -∞B .(,)e +∞ C. (,1)-∞ D .(1,)+∞(49)12【导函数构造法】已知定义域为R的函数f(x)的导函数为f′(x) ,并且满足f ′(x )>f (x )+1,则下列正确的是( A ) 构造为:g (x )=f(x)e x+e −xA . f (2018)−ef(2017)>e-1 B. f (2018)−ef(2017)<e-1 C. f (2018)−ef(2017)>e+1 D. f (2018)−ef(2017)<e+1(50)16【导函数类极值零点最值】.关于的方程有两个不等实根,则实数的取x ()22174ln 0k x x k x-+-+=k值范围是 .(51)12【导函数类极值零点最值】已知函数()(ln )f x x x ax =-有极值,则实数a 的取值范围是( A )A .1(,)2-∞B .1(0,)2C .1(,]2-∞ D .1(0,]2 【转化法】(52)12【导函数类极值零点最值】已知函数()221x f x e ax bx =-+-,其中,,a b R e ∈为自然对数的底数.若()()10,f f x '=是()f x 的导函数,函数()f x '在区间()0,1内有两个零点,则a 的取值范围是( A )A .()223,1e e -+ B .()23,e -+∞C. ()2,22e-∞+ D .()2226,22ee -+ 觉得有问题(53)12【导函数类极值零点最值】已知a R ∈,若1()()x f x a e x=+在区间(0,1)上有且只有一个极值点,则a 的取值范围是( B )A .0a <B .0a >C .1a ≤D .0a ≥ 【导数应用】 (54)12【分析结构+换元法】若存在正实数m ,使得关于x 的方程()()224ln ln 0x a x m ex x m x ++-+-=⎡⎤⎣⎦有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是( D ) A .(),0-∞ B .),(e 210 C. ),21()0,(+∞-∞e D .),21(+∞e(55)16【函数性质+单调性】定义在x R ∈上的函数()f x 在(),2-∞-上单调递增,且()2f x -是偶函数,若对一切实数x ,不等式()()2sin 2sin 1f x f x m ->--恒成立,则实数m 的取值范围为____________. 答案:2m <-或4m >(56)11【函数性质法-单调性+奇偶性】已知函数,若,则实数的取值范围是( D ) A . B . C. D .(57)10【函数性质法】已知函数()f x 是偶函数,(1)f x +是奇函数,且对于任意1x ,2[0,1]x ∈,且12x x ≠,都有1212()[()()]0x x f x f x --<,设82()11a f =,50()9b f =-,24()7c f =,则下列结论正确的是( B ) A .a b c >> B .b a c >> C.b c a >> D .c a b >> (58)10【函数性质-周期函数法】设函数(0)()sin f x x =,定义(1)(0)()'()f x f f x ⎡⎤=⎣⎦,(2)(1)()'()f x f f x ⎡⎤=⎣⎦,…,()(1)()'()n n f x f f x -⎡⎤=⎣⎦,则(1)(2)(3)(2017)(15)(15)(15)(15)f f f f ︒+︒+︒++︒…的值是( A )A.4 B.4C .0D .1(59)12【函数性质-周期函数法】若函数)(x f y =,M x ∈对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有)()(T x f x af +=恒成立,此时T 为)(x f 的假周期,函数)(x f y =是M 上的a 级假()4,7()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩()()()21f a f a f -+≤a (][),11,-∞-+∞[]1,0-[]0,1[]1,1-周期函数,若函数)(x f y =是定义在区间[)∞+,0内的3级假周期且2=T ,当,)2,0[∈x ⎪⎩⎪⎨⎧<<-≤≤-=)21)(2()10(221)(f 2x x f x x x 函数m x x x x g +++-=221ln 2)(,若[]8,61∈∃x ,)0(2∞+∈∃,x 使0)()(12≤-x f x g 成立,则实数m 的取值范围是( C )A .]213,(-∞ B .]12,(-∞ C .]39,(-∞ D .),12[+∞ (60)12【函数解析式】(文)若,则等于( C )A .-2B .-4C .2D .0 (61)11【函数解析式】已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠ ⎪⎝⎭,则()2f -=( C ) A. 72-B. 92C. 72D.92-(62)11【函数解析式】已知函数满足,若在上为偶函数,且其解析式为,则的值为( B )A .-1B .0 C.D . (63)11【函数性质法】已知单调函数()f x ,对任意的x R ∈都有[()2]6f f x x -=.则(2)f =( C )A . 2B . 4C . 6D . 8(64)12【三角函数】在锐角三角形ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .若2sin a b C =,则tan A+ tan B+tan C的最小值是( C ) 【三角函数难题】A. 4B.(65)12【不等式法】记},,min{c b a 为c b a ,,中的最小值,若y x ,为任意正实数,则}1,1,2min{xy y x M +=的最大值是( D )A .21+B .2C . 22+D .3(66)16【图像+分析法】已知函数f (x )=sinx −acosx 图像的一条对称轴为x=34π,记函数f (x )的两个极值点分别为x 1,x 2;则⌈x 1+x 2⌉的最小值为_____π2 _______ (67)10【分析法】已知函数()1cos 626f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,若存在123,,,,n x x x x 满足12306n x x x x π≤<<<<≤且()()()()1223f x f x f x f x -+-+()()()1122,n n f x f x n n N *-+-=≥∈,则n 的最小值为( C )A. 6B. 10C. 8D. 12 (68)11【线性规划法+平行线】若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|34||349|x y a x y -++--的()y g x =(2)()g x g x +=-()y f x =(2,0)(2,0)--2log ,02()(),20x x f x g x x <<⎧=⎨-<<⎩(2017)g -1212-取值与,x y 无关,则实数a 的取值范围是( D ) A. 4a ≤- B. 46a -≤≤ C. 4a ≤-或6a ≥ D. 6a ≥ (69)10【泰勒四鬼法】(理)若,则下列不等式恒成立的是( C )A .B .C .D .(70)12【图像法+零点】已知(),01,0x x e ax x f x ax x e⎧+>⎪=⎨-<⎪⎩,若函数()f x 有四个零点,则实数a 的取值范围是( B )A. 1,e ⎛⎫-∞- ⎪⎝⎭ B. (),e -∞- C. (),e +∞ D. 1,e ⎛⎫+∞ ⎪⎝⎭(71)12【图像法+零点】定义在R 上的函数f(x),满足,01[,210[,2)(22⎪⎩⎪⎨⎧-∈-∈+=),),x x x x x f 且f(x+1)=f(x-1),若g(x)=3-x 2log ,则函数F(x )=f(x )-g(x )在()∞+,0内的零点个数有( B )A.3个B.2个C.1个D.0个(72)12【图像法+零点】已知函数⎪⎩⎪⎨⎧<++≥+=)0(12)0(1)(2x x x x exx f x ,若函数1))((--=a x f f y 有三个零点,则实数a 的取值范围是( B )A .]3,2()11,1(⋃+eB. }13{]3,2()11,1(ee +⋃⋃+C. }13{)3,2[)11,1(ee +⋃⋃+ D. ]3,2()21,1(⋃+e(73)12【图像法+零点】已知函数34)(,||)(2+-=+--=x x x g a a x x f ,若方程|)(|)(x g x f =恰有2个不同的实数根,则实数a 的取值范围是( A ) A .1313(,)(,+228∞)B .113513(,)+282⎛⎫+∞ ⎪ ⎪⎝⎭C .]813,23[]2135,21( - D .)813,23[]2135,21( -(74)12【图像法+零点】定义在)1,1(-上的函数)(x f 满足1)1(1)(+-=x f x f ,当]0,1(-∈x 时, 111)(-+=x x f ,若函数m mx x f x g ---=21)()(在)1,1(-内恰有3个零点,则实数m 的取值范围是( C ) A .)169,41( B . )169,41[ C .11[,)42 D .11(,)42(75)16【图像法+零点】已知函数()222,0,4,0.3x x f x x x ⎧-≥⎪=⎨-<⎪⎩,函数()()()24g x f x f x ax a =+-+有三个零点,则实数a 的取值范围为 .答案:44,913⎡⎫--⎪⎢⎣⎭(76)12【图像法+零点】设函数1222,2()1130,2x x f x x x x +⎧-⎪=⎨-+>⎪⎩≤,若互不相等的实数,,,a b c d 满足()()()f a f b f c ===()f d ,则2222a b c d +++的取值范围是( B )A.2,146) B .(98,146) C.2,266)D .(98,266)(77)12【图像法+零点】设函数21,2()5,2xx f x x x ⎧-⎪=⎨-+>⎪⎩≤,若互不相等的实数,,a b c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( B ) 【图像法+均值不等式】 A .(16,32) B .(18,34)C .(17,35)D .(6,7)(78)12【图像法+零点】已知函数2,0()e ,xx x f x x >⎧=⎨⎩≤0,()e x g x =(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为( D )A .1(1ln 2)2- B .1ln 22+ C .1ln2-D . 1(1ln 2)2+(79)12【图像法+零点】已知函数2,0()e ,xx x f x x >⎧=⎨⎩≤0,()e x g x =(e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为 ( D )A .1(1ln 2)2- B .1ln 22+ C .1ln2- D .1(1ln 2)2+(80)12【图像法+零点】已知f (x )为偶函数,对任意x ∈R , f (x )=f (2−x )恒成立,且当0≤x ≤1时,f (x )=2−2x 2;设函数g (x )= f (x )−log 3x 则g (x )的零点的个数为( C )A. 6B. 7C. 8D. 9(81)11【零点】已知函数h (x )=xlnx 与函数g (x )=kx −1的图像在区间[1e ,e]上有两个不同的交点,则实数k 的取值范围是( B )A. [1+1e,e −1] B. (1, 1+12] C. (1, e-1) D. (1, +∞)(82)12【导数+零点】若函数2()ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( A )A.1(1,)1e e e -- B.1[1,]1e e e -- C. 1(,1)1e e e --- D. 1[,1]1e e e --- (83)11【零点】已知函数2||33()()(3)(3)3x x f x g x b f x x x -≤⎧⎪==--⎨-->⎪⎩,,函数,,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围是( ) A. 11(,)4-+∞ B. 11(3,)4--C. 11(,)4-∞- D. (3,0)- (84)12【零点】已知关于的方程,,若对任意的,该方程总存在唯一的实数解,则实数a 的取值范围是( B ) A.B.C.D.(85)12【零点】已知当x ∈(1,+∞)时;关于x 的方程xlnx+(2−k)xk=−1有唯一实数解,则k 值所在的范围( A )A.( 3,4 )B.( 4, 5 )C. ( 5 , 6 )D. ( 6, 7 )(86)10【零点】已知函数f (x )={2018x x ≥0 –x x <0 则关于x 的方程f [f(x)]=t 给出下列五个命题: ① 存在实数t 使得方程没有实数根 ② 存在实数t 使得方程恰有1个实数根③ 存在实数t 使得方程恰有2个不同实数根 ④ 存在实数t 使得方程恰有3个不同实数根 ⑤ 存在实数t 使得方程恰有4个不同实数根 其中正确命题个数是( B )A. 4B. 3C. 2D. 1(87)12【考查二次函数值域】已知函数()()33f x x a x a =--+(0)a >在[]1,b -上的值域为[]22,0a --,则b 的取值范围是( A )A .[]0,3B .[]0,2C .[]2,3D .(]1,3-(88)16【外接球与内切球】.如图,圆形纸片的圆心为O ,半径为 6 cm ,该纸片上的正方形ABCD 的中心为O .,,,E F G H 为圆O 上的点,,,,ABE BCF CDG ADH △△△△分别是以,,,AB BC CD DA 为底边的等腰三角形,沿虚线剪开后,分别以,,,AB BC CD DA 为折痕折起,,,ABE BCF CDG ADH △△△△,使得,,,E F G H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为 .16.答案:27解析:如下图,连结OE 交AB 于点I ,设,,,E F G H 重合于点P .正方形的边长为(0)x x >,则2x OI =,62x IE =-.因为该四棱锥的侧面积是底面积的2倍,所以6222x x-=⋅,解得4x =.设该四棱锥的外接球的球心为Q ,外接球半径为R ,则OC OP ===,222)R R =+,解得R =,外接球的体积34327V π==.(89)12 【导数法】设函数,则关于函数说法错误的是( C ) A .在区间,内均有零点 B .与的图象有两个交点 C. ,使得在,处的切线互相垂直 D .恒成立(90)12【极值点偏移】已知函数()xf x e ax =-有两个零点12,x x ,12x x <,则下面说法正确的是( D )A .122x x +<B .a e <C .121x x >D .有极小值点0x ,且1202x x x +<(91)12【均值不等式】.若0,0,1x y x y >>+=,则2222x y x y +++的最小值为( A ) A.14B. 2C. 4D.12(92)12【恒成立-分离参数法】已知函数f (x )=ax +xlnx (a ∈R)的图像在点x =1e处的切线斜率为 1.当k ∈Z 时, 不等式 f (x )−kx +k >0在x ∈(1,+∞)上恒成立,则k 的最大值是( C )A. 1B. 2C. 3D. 4(93)12【等和线】在平行四边形ABCD 中,AB=1 AD=2 ∠BAD =π3,动点P 在以点C 为圆心并且与BD 相切的圆上,若AP ⃗⃗⃗⃗⃗ =λAB⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ 则λ+μ 的最大值为 ( D ) A. 1 B. √5 C. 2√2 D. 3 (94)(12)已知函数()f x ax =,()ln g x x =,存在(]0,t e ∈,使得()()f t g t -的最小值为3,则函数()ln g x x =图象上一点P 到函数()f x ax =图象上一点Q 的最短距离为( D )()3xf x e x =-()y f x =(0,1)(1,)+∞ln y x =1x R ∀∈2x R ∃∈()y f x =1x x =2x x =()1f x ≥-F ABD CPOQA .1eB .41e +41e + D .41e +(95)12【函数综合】定义在实数集R 上的奇函数()f x 满足(+2)=-()f x f x ,且当[1,1]x ∈-时,()f x x =,则下列四个命题:① (2018)0f =; ②函数f(x)的最小正周期为2; ② 当x ∈[−2018 , 2018]时,方程1()2f x =有2018个根; ④方程5()log ||f x x =有5个根. 其中真命题的个数为( C )A . 1B . 2 C. 3 D .4(96)10【函数性质与数列】已知定义在R 上的函数)(x f 是奇函数,且满足)()23(x f x f =-,2)2(-=-f ,数列{}n a 满足11-=a ,且12+=na n S nn({}n a S n 为的前项和n ),则=)(5a f ( D ) A .3- B .2- C .3 D .2(97)12【存在与任意】设函数()2ln 2f x x x x =-+,若存在区间[]1,,2a b ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],a b 上的值域为()()2,2k a k b ++⎡⎤⎣⎦,则k 的取值范围是( C )A .92ln 21,4+⎛⎫ ⎪⎝⎭B .92ln 21,4+⎡⎤⎢⎥⎣⎦C. 92ln 21,10+⎛⎤ ⎥⎝⎦D .92ln 21,10+⎡⎤⎢⎥⎣⎦(98)15【存在与任意】已知函数()sin f x x x =-,若2(2)()f a f a -+≥0,则实数a 的取值范围是 .54+(99)15【存在与任意】若函数3()f x x x =+,若2(2)()f a f a -+≥0,则实数a 的取值范围是 54(100)16【存在与任意】已知函数xxx f ln )(=,-=)(x g e ax x +2(e 是自然对数的底数),对任意的∈1x R ,存在]2,31[2∈x ,有)()(21x g x f ≤,则a 的取值范围为 . ),2[+∞(101)12【导数综合】已知函数x x x x f cos sin )(-=,现有下列结论: ①当],0[π∈x 时,0)(≥x f ;②当πβα<<<0时,αββαsin sin ⋅>⋅;③若m x x n <<sin 对)2,0(π∈∀x 恒成立,则n m -的最小值等于π21-; ④已知]1,0[∈k ,当)2,0(π∈i x 时,满足k x x ii =|sin |的i x 的个数记为n ,则n 的所有可能取 值构成的集合为}.3,2,1,0{ 其中正确的个数为( C )A.1B.2C.3D.4 (102)12对于满足0<b <3a 的任意实数a,b ;函数f (x )=ax 2+bx +c 总有两个不同的零点,则a+b−c a的取值范围()A. (1 , 74] B. (1 ,2] C. [1 ,+∞) D. (2 ,+∞)(103)15.记{}⎩⎨⎧<≥=ba b b a a b a ,,,max ,设{}82,4max 22+-+-=x y y x M ,,若对一切实数y x ,, m m M 22-≥ 恒成立,则实数m 的取值范围是 ▲ .(104)12.记{}min ,,a b c 为,,a b c 中的最小值,若,x y 为任意正实数,则11min 2,,M x y y x ⎧⎫=+⎨⎬⎩⎭的最大值为( D )A. 1+2(105)12【导数+隐含零点】已知函数f (x )=xlnx +12x 2, x 0是函数f(x)的极值点。

导数压轴小题汇编(学生版)

导数压轴小题汇编(学生版)

导数压轴小题练习1. 【图像法】设函数f(a)=e²(2x-1)-ax+a,其中a<1,若存在唯一的整数ag使得f(x₀)<0,则a的取值范围是( )A.1)B.C.D.2. 【图像法】已知函数f(x)=xe²-mx+m,若f(a)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是( )A B. C. D.3. 【切线应用】若函数f(x)=w³+ax²+bx(a,b∈R)的图象与α轴相切于一点A(m,0)(m≠0),且f(a)的极大值为 ,则m 的值为34. 【导数的切线法】设函数f(x)= 2 x²-2ax(a>0)与g(a)=a²lnz+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为( )A. B. C. D.5. 【导数的切线法】若对于函数f(x)=ln(x+1)+a²图象上任意一点处的切线l,在函数g(x)=asinxcosx-a的图象上总存在一条切线L2,使得l工L,则实数a的取值范围为( )A. C.B.D.(-w,- 1)U[1,+w)6. 【导数的切线法】已知实数a,b满足ln(b+1)+a-3b=0,实数c,d满足2d-c- √5=0,则(a-c)2+(b-d)²的最小值为( )A.1B.2C.3D.±7. 【导数的切线法】若直线kx-y-k+1=0(x∈R)和曲线E: 的图像交于A(aj,y),B(xz,yz),C(xg,y3)(x₁<a₂<a3)三点时,曲线E在点A,点C处的切线总是平行,则过点(b, a)可作曲线E的( )条切线.A.0B.1C.2D.38. 【导数的直接应用】若是定义在R上的可导函数,且满足(x-1)f'(a)≥0,则必有( )A.f(0)+f(2)<2f(1)B.f(0)+f(2)>2f(1)C.f(0)+f(2)≤2f(1)D.f(0)+f(2)≥2f(1)9. 【导数的直接应用】若函)上单调递增,则实数a的取值范围是()A.(-c1)B.(- 1)C.(1,+o)D.(1+c)10. 【利用对称中心破题】已知函则)的值为( )A.0B.504C.1008D.201611. 【利用对称中心破题】已知函则的值为( )A.2016B.1008C.504D.012. 【利用对称中心破题】已知函,且f(2017)= 2016,则f(-2017)=( )A.-2014B.-2015C.-2016D.-201713. 【利用对称中心破题】已知函)的图象上存在关于(1,0)对称的点,则实数m的取值范围是( )A.(-o,1-ln2)B.(-w,1-ln2)C.(1-ln2,+o)D.(1-ln2,+c)14. 【通过构造函数破题】已知函数f(a)=e²+mlnx(m∈R,e为自然对数的底数),若对任意的正数ai,αz2,当ai>a2时,都有f(a₁)-f(a₂)>x-az恒成立,则实数m的取值范围为.15. 【通过构造函数破题】已知函数f(a)=aln(a+1) -q²,在区间(0,1)内任取两个实数p,g,且p<q,若不等式恒成立,则实数a的取值范围是( B )A. 15,+α)B.(15,+c)C.(-w,6)D.(-o,6)16. 【直接法】已知直线l与函数f(a)=ln( √e x)-ln(1-x)的图象交于A,B两点,若AB中点为则m的大小为( )A. B. C.1 D.217. 【函数性质+K法】已知函数f(a)=x+sinx(x ∈R),且f(y² - 2y+3)+f(x² - ±w+1)≤0,则当y≥1时,的取值范围是( )A. B.[0, C.. D.18. 【考查函数性质】已知函数f(a)=x²+(a+8)x+a²+a- 12(a<0),且f(a²-4)=f(2a-8),则的最小值为( )A. B. C. D.19【分离参数法+隐含零点】已知函数f(a)=x+alna,若k∈Z,并且h(x-1)<f(a)对任意的x>1恒成立,则k的最大值为( )A.2B.3C.4D.520. 【考查函数的零点+嵌套函数】已知函数,则方程,的实根个数不可能为( )A . 8个B . 7个C . 6个D . 5个21【考查函数的零点】定义在R上的偶函数f(a)满足f(2-a)=f(x),且当a∈[1,2]时,f(a) =lnx-a+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()B.D.22. 【考查函数的零点】设函 ),若存在唯二的αo.. 使得h(n)=min{f(x),g(x)}的最小值为h(xo). 则实数a的取值范围是( )A.a<-2B.a≤-2C.a<- 1D.a≤- 123. 【考查函数的零点】已知函数(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是( )A.(0,2)B.(0,C.(0,e)D.(0,+c)24. 【转化法+零点】已知函数f(a)=alnx+a²+(a-6)a在(0,3)上不是单调函数,则实数a的取值范围是25. 【图像法+转化法+零点】函的图象上存在关于y轴对称的点,则实数a的取值范围是( )A.(-w,3-2ln2)B.[3-2ln2,+c)C.(√e,+o)D.(-w,-Ve)26. 【多变量转化+等与不等转化】已知函数f(a)=lna,g(x)=(2m+3)x+n,若对任意的x∈(0,+o),总有f(a)≤g(x)恒成立,记(2m+3)n的最小值为f(m,n),则f(m,n)最大值为( )A.1B.C.D.27. 【多变量转化+等与不等转化】已知不等式e²- (a+2)x≥b-2恒成立,则的最大值为( )A.-ln3B.-ln2C.- 1-ln3D.- 1-ln228.【多变量转化+等与不等转化】对于任意b>0,a∈R,不等式[b-(a-2)]²+[Inb- (a- 1)]²≥m²-m恒成立,则实数m的最大值为()A.√eB.2C.eD.329.嵌套函数+零点图像法】函.若方程af²(a)+bf(a)+c=0有8个不同的实根,则此8个实根之和是( )A. B.4 C. D.230. 【嵌套函数法】已知函,则f(f(w))<2的解集为( )A.(1-ln2,+o)B.(+o,1-ln2)C.(1-ln2,1)D.(1,1+ln2)31. 【导数+嵌套函数法+分离参数】函数f(x)=-a²+3w+a,g(a)=2³-w²,若flg(w)]≥0对a∈[0,1]恒成立,则实数a的取值范围是( )A.(-e,+c)B.(-ln2,+o)C.(-2,+o)D.32. 【导数+嵌套函数法+定义域与值域的关系】已知函数f(x)=e²+a-e- ²+2(a∈R,e为自然对数的底数),若y=f(x)与y=f(f(x))的值域相同,则a的取值范围是()A.a<0 B . a≤- 1 C.O<a≤4 D . a < 0或O < a ≤ 433. 【导数+嵌套函数法+分离参数】已知函),其中e为自然对数的底数.若函数y=f(a)与y=flf(x)]有相同的值域,则实数a的最大值为( )A.. eB.. 2C.1D..34. 【导数+嵌套函数法+导函数零点】已知函有两个极值点ai,αz,若αi<f(x₁)<z2,则关于n方程(f(a))²-2af(a)-b=0的实根个数不可能为( )A.2B.3C.4D.535. 【导数+嵌套函数法+导函数零点】已知函数,有两个极值点ai,x2,若,则关于a方程(f(x))²-2af(a)-b=0的实根个数为( )A.. 2B.. 3C.4D.536. 【嵌套函数法+零点】已知偶函数f(a)满足f(x+4)=f(±-x),且当x∈(0,4)时,关于a的不等式f(a)+af(a)>0在[-200,200]上有且只有300个整数解,则实数a的取值范围是( )C. D.37. 【导数极值点常规处理手段-转化法】已知函数f(a)=xlnx-ae²(e为自然对数的底数)有两个极值点,则实数a的取值范围是( )A. B.(0,e) C. D.(-c,e)38. 【分析法】已知函数f(x)=e²-ax- 1,g(x)=lnx-ax-a,若存在ap ∈(1,2),使得f(x₀)g(x₀)<0,则实数a的取值范围为( )A.(ln2,B.(ln2,e- 1)C.(1,e- 1)D.[1,39. 【导函数构造法】设f(x)定义在R上的可导函数,若f(3)=1,且3f(a)+af(n)>ln(x+1),则不等式(x-2017)f(α-2017)-27>0的解集为( )A.(2014,+o)B.(0,2014)C.(0,2020)D.(2020,+c)40. 【导函数2次构造法】已知f(x)是定义在R上的可导函数,且满足(x+2)f(a)+af'(a)>0,则( )A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(a)为增函数41. 【导函数2次构造法】定义在R上的函数f(x)满足:f"(a) -f(a)=w ·e²,且, 则的最大值为( )A.0B.C.1D.242. 【导函数构造法】设函数f(a)满足2x²f(x)+x³f'(x)=e²,,则w∈(2,+o)时,f(a)的最小值为( )A. B. C. D.43. 【导函数构造法】已知函数f(x)是定义在R上的奇函数,其导函数为f(x),若对任意的正实数z,都有af"(x)+2f(a)>0恒成立,且f( √②)=1,则使a²f(x)<2成立的实数α的集合为( )A.(-w,-√2)U(√2,+c)B.(-√2,√2)C.(-w,√2)D.(√2,+α)44.已知函数f(a)为R上的可导函数,其导函数为f(x),且满足f(x)+f(a)<1恒成立,f(0)=2018,则不等式f(x)<2017e-3+1的解集为( )A.f(a)=x-sinzB.f(a-2)+f(a²)≥0D.f(x)=x³+a45. 【导函数构造法】已知定义在f(x)=x³+a上的可导函数f(a-2)+f(a²)≥0的导函数为f'(a),对任意实数z均有(1-x)f(a)+af'(x)>0成立,且y=f(x+1)-e是奇函数,则不等式af(x)-e³>0的解集是( )A.(-w,e)B.(e,+c)C.(-α,1)D.(1,+o)46. 【导函数构造法】已知定义域为R的函数的导函数为f'(x),并且满足f"(a)>f(a)+1,则下列正确的是()A.f(2018)-ef(2017)>e- 1B.f(2018)-ef(2017)<e- 1C.f(2018)-ef(2017)>e+1D.f(2018)-ef(2017)<e+147.(50)16【导函数类极值零点最值】 .关于a的方有两个不等实根,则实数k的取值范围是48. 【导函数类极值零点最值】已知函数f(a)=x(lnx-ax)有极值,则实数a的取值范围是( )B. D.49. 【导函数类极值零点最值】已知函数f(x)=e²>-ax²+bw-1,其中a,b∈R,e为自然对数的底数.若f(1)=0.f'(a)是f(x)的导函数,函数f(a)在区间(0,1)内有两个零点,则a的取值范围是( )A.(e²-3,e²+1)B.(e²-3,+o)C.(-w,2e²+2)D.(2e²-6,2e²+2)50. 【导函数类极值零点最值】已知a∈R,若区间(0,1)上有且只有一个极值点,则a的取值范围是( )A.a<0B.a>0C.a≤1D.a≥051. 【分析结构+换元法】若存在正实数m,使得关于α的方程α+a(2x+2m-tex)[ln(x+m)-lna]=0有两个不同的根,其中e为自然对数的底数,则实数a的取值范围是( D )A.(-α,0)B.(0,D. 152. 【函数性质+单调性】定义在w∈R上的函数f(x)在(-w,-2)上单调递增,且f(α-2)是偶函数,若对一切实数α,不等式f(2sinx-2)>f(sinx-1-m)恒成立,则实数m的取值范围为53. 【函数性质法-单调性+奇偶性】已知函,若f( - a)+f(a)≤2f(w),则实数的取值范围是( )A.(-w1)U[1,+o)B.[- 1,0]C.[0,1]D.[- 1,1]54. 【函数性质法】已知函数f(x)是偶函数,f(x)是奇函数,且对于任意αi,Xz∈[0,1],且ai≠α2,都有(x₁-x2)[f(a₁)-f'(x2)]<0, 则下列结论正确的是( )A.a>b>CB.b>a>cC.b>c>aD.c>a>b55. 【函数性质-周期函数法】设函数fo(n)=sing,定义fa(m)=f[fo(n)],fo(n)=f[fa(z)], …, fn(a)=f[fn-y(a)],则fa(15°)+fg(15°)+fo(15°)+…+foom(15°)的值是()B. C.0 D.156. 【函数性质-周期函数法】若函数y=f(x),A∈M对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数α,都有af(a)=f(x+T)恒成立,此时T为f(a)的假周期,函数f(a)是M上的a 级假周期函数.若函数f(w)是定义在区间(0,+o)内的3级假周期且T=2,当a∈(0,2),有:,若3αi∈[6,8],3αz∈(0,+w)使g(a2)-f(a₁)≤0成立,则实数m的取值范围是( )A. B.(-c,12) C.(-c,39) D.(12,+c)57. 【图像法十零点】已 ,若函数f(a)有四个零点,则实数a 的取值范围是( )A. B . (一w, - e) C.(e,+c) D.58. 【图像法+零点】已知函,若函数y=f(f(a)-a)- 1有三个零点,则实数 a 的取值范围是( B ).. 59. 【导数十零点】若函岁有三个不同的零点,则实数a 的取值范围是( ) A.(1 B. C. D.60. 【零点】已知关于的方程x²e²+t -a=0,m∈[-1,1],若对任意的t∈[1,3],该方程总存在唯一的实数解,则实数a 的取值范围是( )B. C. D. 1,e]61. 【零点】已知当a∈(1,+α)时,关于a 的方程有唯一实数解,则k 的范围为 ( )A.3,4)B.(4,5)C.(5,6)D.(6,7)62. 【考查三次函数值域】已知函数f(x)=(w-a)³ -3m+a(a>0)在[- 1,b]上的值域为[-2-2a,0],则b的取值范围是( )A..[0,3]B.[0,2]C.[2,3]D.(- 1,3)63. (【外接球与内切球】 .如图,圆形纸片的圆心为○,半径为6cm,该纸片上的正方形ABCD 的中心为O . E,F,G,H 为圆O 上的点,△ABE, △BCF, △CDG,△ADH 分别是以AB,BC,CD,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB,BC,CD,DA 为折痕折起△ABE, △BCF, △CDG, △ADH,使得E ,F ,G ,H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为64. 【导数法】设函数f(a)=e² -3w,则关于函数y=f(x)说法错误的是( )A. 在区间(0,1),(1,+o)内均有零点B. 与y=lng 的图象有两个交点C . Vx ₁ ∈R,3x ₂ ∈R 使得f(a)在x=xi,x=az 处的切线互相垂直D . f(a)≥ - 1恒成立65. 【极值点偏移】已知函数y=e² -ax 有两个零点ai,Zz ,α₁<x2,则下面说法正确的是( )A.Qi+α₂<2B.a<eC.αjα₂>1D.有极小值点xg,且aj+x ₂<2o66. 【恒成立-分离参数法】已知函数f(a)=ax+alnx (a∈R)的图像在点处的切线斜率为1,当k∈Z 时,不等式f(x)-kx+k 在x∈(1,+o)上恒成立,则k 的最大值是( C )A.1B. 2C.3D.4 D C67.已知函数f(a)=ax,g(x)=lnz,存在t∈(0,e),使得f(t)-g(t)最小值为3,则函数g(a)=lnx图象上一点P到函数发f(a)=ax图象上一点Q的最短距离为( )A. B..√5 C.2√2 D.368. 【存在与任意】设函数f(a)=a²-wlnx+2,若存在区间,使f(a)在[a,b]上的值域为[k(a+2),k(b+2)],则k的取值范围是( )A. B. C. D.69.【存在与任意】已知函,g(a)=-ex²+aa(e是自然对数的底数),对任意的x∈R,存在],有f(x₁)≤g(x2),则a的取值范围为70. 【导数综合】已知函数f(x)=sinα-xcosx,现有下列结论:①当x ∈[0,π]时,f(x)≥0;②当0<a<β<π时,a-sinB>β ·s ina;③若对)恒成立,则m-n的最小值等于④已知k∈[0,1],当x;∈(0,2π)时,满足的个数记为n,则n的所有可能取值构成的集合为{0,1,2,3}.其中正确的个数为( )A.1B.2C.3D.471.(105)12【导数+隐含零点】已知函2,ag是函数f(a)的极值点。

A050导数压轴大题归类 (学生版)

A050导数压轴大题归类 (学生版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【技法指引】恒成立基本思维:①若k≥f(x)在[a,b]上恒成立,则k≥f(x)max;②若k≤f(x)在[a,b]上恒成立,则k≤f(x)min;③若k≥f(x)在[a,b]上有解,则k≥f(x)min;④若k≤f(x)在[a,b]上有解,则k≤f(x)max;【变式演练】1.已知函数f(x)=1+xe x,g(x)=1-ax2.(1)若函数f(x)和g(x)的图象在x=1处的切线平行,求a的值;(2)当x∈[0,1]时,不等式f(x)≤g(x)恒成立,求a的取值范围.题型二三角函数恒成立型求参【典例分析】1.已知函数f(x)=e x+cos x-2,f (x)为f(x)的导数.(1)当x≥0时,求f (x)的最小值;x+x cos x-ax2-2x≥0恒成立,求a的取值范围.(2)当x≥-π2时,xe【变式演练】1.已知函数f(x)=2x-sin x.(1)求f(x)的图象在点π2,fπ2处的切线方程;(2)对任意的x∈0,π2,f(x)≤ax,求实数a的取值范围.题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x,g x =ax2+1.(1)求函数f x 的最小值;(2)若不等式x+1恒成立,求m的取值范围;ln x-2x-1>m对任意的x∈1,+∞(3)若函数f x 的图象与g x 的图象有A x1,y1两个不同的交点,证明:x1x2>16.(参,B x2,y2考数据:ln2≈0.69,ln5≈1.61)【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;.(ii)证明:x22-x1<-a2+a+1a2题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x+axx,a∈R.(1)若a=0,求f x 的最大值;(2)若0<a<1,求证:f x 有且只有一个零点;(3)设0<m<n且m n=n m,求证:m+n>2e.【变式演练】1.已知函数f x =2ln x+x2+a-1x-a,(a∈R),当x≥1时,f(x)≥0恒成立.(1)求实数a的取值范围;(2)若正实数x1、x2(x1≠x2)满足f(x1)+f(x2)=0,证明:x1+x2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t =e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e -e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【变式演练】1.已知函数f x =e axx,g x =ln x+2x+1x,其中a∈R.(1)试讨论函数f x 的单调性;(2)若a=2,证明:xf(x)≥g(x).题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x+1x -1a∈R.(1)求函数f x 的单调区间;(2)当x∈0,1时,证明:x2+x-1x-1<e x ln x.【变式演练】1.已知函数f x =ae x-2-ln x+ln a.(1)若曲线y=f x 在点2,f2处的切线方程为y=32x-1,求a的值;(2)若a≥e,证明:f x ≥2.题型九放缩参数型消参证明不等式【典例分析】1.已知函数f x =12ax2+1-ax-ln x.(1)当a=-2时,求函数f x 的单调区间;(2)当a≥1时,证明:x>1时,当f x >1-ax+1x-1+12a恒成立.【变式演练】1.已知函数f x =ln ax-1+a ln x的图像在点1,f1处的切线方程为y=4x+b.(1)求a,b的值;(2)当k≥4时,证明:f x <k x-1对x∈1,+∞恒成立.题型十凸凹翻转型证明不等式【典例分析】1.已知函数f x =ax -ln x ,a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,e 时,求g x =e 2x -ln x 的最小值;(3)当x ∈0,e 时,证明:e 2x -ln x -ln x x>52.【变式演练】1.已知函数f (x )=ln x -x .(1)讨论函数g (x )=f (x )-a x(a ≠0,a ∈R )的单调性;(2)证明:f (x ) >ln x x +12.题型十一切线两边夹型证明不等式【典例分析】1.已知函数f(x)=6x-x6,x∈R.(1)求函数f(x)的极值;(2)设曲线y=f(x)与x轴正半轴的交点为P,求曲线在点P处的切线方程;(3)若方程f(x)=a(a为实数)有两个实数根x1,x2且x1<x2,求证:x2-x1≤615-a5.【变式演练】1.已知函数f(x)=x ln x-x.(1)设曲线y=f x 在x=e处的切线为y=g x ,求证:f(x)≥g x ;(2)若关于x的方程f(x)=a有两个实数根x1,x2,求证:x2-x1<2a+e+1 e .题型十二切线放缩型证明不等式【典例分析】1.已知函数f x =m x 22-k ln x +n e x +114e x +1-ax +a -1 ,其中e =2.718⋯是自然对数的底数,f x 是函数f x 的导数.(1)若m =1,n =0时 .(i )当k =1时,求曲线f x 在x =1处的切线方程.(ⅱ)当k >0时,判断函数f x 在区间1,e 零点的个数.(2)若m =0,n =1,当a =78时,求证:若x 1≠x 2,且x 1+x 2=-2,则f x 1 +f x 2 >2.【变式演练】1.已知函数f(x)=a(x-1)e x,a≠0.(1)讨论f(x)的单调性;(2)当a=1时,①求函数在x=1处的切线l,并证明0<x<1,函数f(x)图象恒在切线l上方;②若f(x)=m有两解x1,x2,且x1<x2,证明x2-x21<me-m.题型十三构造一元二次根与系数关系型证明不等式【典例分析】1.已知函数f x =x 2-x +k ln x ,k ∈R .(1)讨论函数f x 的单调性;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 -f x 2 <14-2k .【技法指引】利用一元二次型根与系数关系,可以构造:1.利用韦达定理代换:可以消去x1,x2留下参数2.一部分题依旧是极值点偏移【变式演练】1.已知函数f(x)=ln x+ax2-x.(1)若a=-1,求函数f(x)的极值;(2)设f′(x)为f(x)的导函数,若x1,x2是函数f′(x)的两个不相等的零点,求证:f(x1)+f(x2)<x1 +x2-5.题型十四【题型十四】两根差型证明不等式【典例分析】1.已知函数f x =e x-a ln aa>0,其中e=2.71828⋯是自然对数的底数.⋅x ln x(1)当a=e时,求函数f x 的导函数f x 的单调区间;(2)若函数f x 有两个不同极值点x1,x2且x1<x2;(i)求实数a的取值范围;(ii)证明:x2-x1≤e-a ln a.e-a ln a-4【变式演练】1.已知函数f x =ax2+1x.(1)当a=-4时,求f x 的极值点.(2)当a=2时,若f x 1≥ 3.,且x1x2<0,证明:x2-x1=f x2题型十五比值代换型证明不等式【典例分析】x(a为常数,a>0且a≠1).1.已知函数f x =x log a x-2+1ln a(1)求函数f x 的单调区间;(2)当a=e时,若g x =f x -12mx2+3x有两个极值点x1,x2,证明:ln x1+ln x2>0.【变式演练】1.已知函数f(x)=x2-1-a ln x恰有两个零点x1,x2x1>x2.(1)求实数a的取值范围;(2)证明:3x1+x2>6a.题型十六幂指对与三角函数型证明不等式【典例分析】1.已知函数f x =e x-ax-cos x,g x =f x -x,a∈R.(1)若f x 在0,+∞上单调递增,求a的最大值;(2)当a取(1)中所求的最大值时,讨论g x 在R上的零点个数,并证明g x >-2.【变式演练】1.已知函数f x =2sin x-x cos x-ax a∈R.(1)若曲线y=f x 在点0,f0处的切线与直线y=x+2平行.(i)求a的值;(ii)证明:函数f x 在区间0,π内有唯一极值点;(2)当a≤1时,证明:对任意x∈0,π,f x >0.题型十七不等式证明综合型【典例分析】1.已知函数f x =ae x-ln x+b,a,b∈R.(1)当a≥e,b=1时,证明f x >2;(2)当b=0时,令g x =f x -1①若g x 有两个零点,求a的取值范围;②已知1.098<ln3<1.099,e0.048<1.050,e-0.045<0.956,证明:1.14<lnπ<1.15.【变式演练】1.设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S 相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.(1)已知函数f(x)=x-2sin x.求证:y=x+2为曲线f(x)的“上夹线”;(2)观察下图:根据上图,试推测曲线S:y=mx-n sin x(n>0)的“上夹线”的方程,并给出证明.题型二好题演练好题演练1.(2023·江苏南通·高三校联考阶段练习)已知函数f(x)=e ax-1x-ln x x.(1)若a=0,关于x的不等式f(x)<m恰有两个整数解,求m的取值范围;(2)若f(x)的最小值为1,求a.2.(天一大联考皖豫名校联盟2023届高三第三次考试数学试题)已知函数f(x)=x(ln x-a)在区间x2-m,a,m∈R.[1,e]上的最小值为-1,函数g(x)=m2(1)求a的值;(2)设函数F(x)=f(x)-g(x),x 1,x2是F(x)的两个不同的极值点,且x1<x2,证明:2ln x1+3ln x2>5.3.(2023春·安徽马鞍山·高二马鞍山二中校考期中)已知函数f x =x3+ax+b,且满足f x 的导数y=f x 的最小值为-34.(1)求a值;(2)若函数y=f x 在区间-1,2上的最大值与最小值的和为7,求b值.4.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知函数f x =ax l-ln x和g x =b ln x x有相同的最大值,并且ab=e.(1)求a,b;(2)证明:存在直线y=k,其与两条曲线y=f x 和y=g x 共有三个不同的交点,且从左到右的三个交点的横坐标成等比数列.5.(2023春·四川广安·高二广安二中校考期中)已知m>0,e是自然对数的底数,函数f x =e x+m -m ln mx-m.-4x+2-f x 的极值;(1)若m=2,求函数F x =e x+x22(2)是否存在实数m,∀x>1,都有f x ≥0?若存在,求m的取值范围;若不存在,请说明理由.6.(2023·广西南宁·统考二模)已知函数f x =e x-ax2+2ax-1,其中a为常数,e为自然对数底数,e=2.71828⋯,若函数f x 有两个极值点x1,x2.(1)求实数a的取值范围;(2)证明:x1-1+x2-1>2.7.(2023·山西·统考二模)已知函数f(x)=(mx-1)e x+n m,n∈R在点(1,f(1))处的切线方程为y=ex+2-e,g x =e xx+1(1)求f(x)的值域;(2)若f(a)=f(b)=g(c)=g(d),且a<b,c<d,证明:①c+d>0;②b+c>0.8.(2023春·湖南·高三校联考阶段练习)已知函数f x =e x-ln x-a-1 (1)若1,e+1为曲线y=f x 上一点,求曲线y=f x 在该点处的切线方程;(2)若a>0,证明:f x ≥1-aln a.9.(2023春·湖北武汉·高二华中师大一附中校考期中)已知f x =x ln x-12ax2有两个极值点x1,x2且x1>x2.(1)若f x 的极大值大于e22,求a的范围;(2)若x1>2x2,证明:x1+x2>3aln2.。

专题16 导数及其应用小题综合(学生卷)-十年(2015-2024)高考真题数学分项汇编(全国通用)

专题16 导数及其应用小题综合(学生卷)-十年(2015-2024)高考真题数学分项汇编(全国通用)

专题16导数及其应用小题综合考点十年考情(2015-2024)命题趋势考点1导数的基本计算及其应用(10年4考)2020·全国卷、2018·天津卷2016·天津卷、2015·天津卷1.掌握基本函数的导数求解,会导数的基本计算,会求切线方程,会公切线的拓展,切线内容是新高考的命题热点,要熟练掌握2.会利用导数判断函数的单调性及会求极值最值,会根据极值点拓展求参数及其他内容,极值点也是新高考的命题热点,要熟练掌握3.会用导数研究函数的零点和方程的根,会拓展函数零点的应用,会导数与函数性质的结合,该内容也是新高考的命题热点,要熟练掌握4.会构建函数利用导数判断函数单调性比较函数值大小关系,该内容也是新高考的命题热点,要熟练掌握考点2求切线方程及其应用(10年10考)2024·全国甲卷、2023·全国甲卷、2022·全国新Ⅱ卷2022·全国新Ⅰ卷、2021·全国甲卷、2021·全国新Ⅱ卷2021·全国新Ⅰ卷、2020·全国卷、2020·全国卷2020·全国卷、2019·江苏卷、2019·全国卷2019·天津卷、2019·全国卷、2019·全国卷2018·全国卷、2018·全国卷、2018·全国卷2018·全国卷、2017·全国卷、2016·全国卷2016·全国卷、2015·全国卷、2015·陕西卷2015·陕西卷考点3公切线问题(10年3考)2024·全国新Ⅰ卷、2016·全国卷、2015·全国卷考点4利用导数判断函数单调性及其应用(10年6考)2024·全国新Ⅰ卷、2023·全国新Ⅱ卷、2023·全国乙卷2019·北京卷、2017·山东卷、2016·全国卷2015·陕西卷、2015·福建卷、2015·全国卷考点5求极值与最值及其应用(10年5考)2024·上海卷、2023·全国新Ⅱ卷、2022·全国乙卷2022·全国甲卷、2021·全国新Ⅰ卷、2018·全国卷2018·江苏卷考点6利用导数研究函数的极值点及其应用(10年5考)2022·全国新Ⅰ卷、2022·全国乙卷、2021·全国乙卷、2017·全国卷、2016·四川卷5.要会导数及其性质的综合应用,加强复习考点7导数与函数的基本性质结合问题(10年6考)2024·全国新Ⅰ卷、2023·全国新Ⅰ卷、2022·全国新Ⅰ卷2021·全国新Ⅱ卷、2017·山东卷、2015·四川卷考点8利用导数研究函数的零点及其应用(10年6考)2024·全国新Ⅱ卷、2023·全国乙卷、2021·北京卷、2018·江苏卷、2017·全国卷、2015·陕西卷考点9利用导数研究方程的根及其应用(10年3考)2024·全国甲卷、2021·北京卷、2015·安徽卷2015·全国卷、2015·安徽卷考点10构建函数利用导数判断函数单调性比较函数值大小关系(10年3考)2022·全国甲卷、2022·全国新Ⅰ卷、2021·全国乙卷考点01导数的基本计算及其应用1.(2020·全国·高考真题)设函数e ()xf x x a=+.若(1)4e f '=,则a =.2.(2018·天津·高考真题)已知函数f (x )=exlnx ,()'f x 为f (x )的导函数,则()'1f 的值为.3.(2016·天津·高考真题)已知函数()(2+1)e ,()x f x x f x '=为()f x 的导函数,则(0)f '的值为.4.(2015·天津·高考真题)已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为.考点02求切线方程及其应用1.(2024·全国甲卷·高考真题)设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在点()0,1处的切线与两坐标轴所围成的三角形的面积为()A .16B .13C .12D .232.(2023·全国甲卷·高考真题)曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A .e4y x =B .e 2y x =C .e e 44y x =+D .e 3e24y x =+3.(2022·全国新Ⅱ卷·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为,.4.(2022·全国新Ⅰ卷·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是.5.(2021·全国甲卷·高考真题)曲线2x 1y x 2-=+在点()1,3--处的切线方程为.6.(2021·全国新Ⅱ卷·高考真题)已知函数12()1,0,0x f x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是.7.(2021·全国新Ⅰ卷·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a <B .e a b <C .0e ba <<D .0e ab <<8.(2020·全国·高考真题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +129.(2020·全国·高考真题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A .21y x =--B .21y x =-+C .23y x =-D .21y x =+10.(2020·全国·高考真题)曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为.11.(2019·江苏·高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是.12.(2019·全国·高考真题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则A .,1a eb ==-B .,1a eb ==C .1,1a eb -==D .1,1a eb -==-13.(2019·天津·高考真题)曲线cos 2xy x =-在点()0,1处的切线方程为.14.(2019·全国·高考真题)曲线23()e x y x x =+在点(0,0)处的切线方程为.15.(2019·全国·高考真题)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=16.(2018·全国·高考真题)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为()A .2y x=-B .y x=-C .2y x=D .y x=17.(2018·全国·高考真题)曲线()1e xy ax =+在点()01,处的切线的斜率为2-,则=a .18.(2018·全国·高考真题)曲线2ln y x =在点()1,0处的切线方程为.19.(2018·全国·高考真题)曲线2ln(1)y x =+在点(0,0)处的切线方程为.20.(2017·全国·高考真题)曲线21y x x=+在点(1,2)处的切线方程为.21.(2016·全国·高考真题)已知()f x 为偶函数,当0x ≤时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线方程是.22.(2016·全国·高考真题)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是.23.(2015·全国·高考真题)已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则=a .24.(2015·陕西·高考真题)设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为.25.(2015·陕西·高考真题)函数x y xe =在其极值点处的切线方程为.考点03公切线问题1.(2024·全国新Ⅰ卷·高考真题)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .2.(2016·全国·高考真题)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b =.3.(2015·全国·高考真题)已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=.考点04利用导数判断函数单调性及其应用1.(2024·全国新Ⅰ卷·高考真题)(多选)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023·全国新Ⅱ卷·高考真题)已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A .2eB .eC .1e -D .2e -3.(2023·全国乙卷·高考真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是.4.(2019·北京·高考真题)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =;若f (x )是R 上的增函数,则a 的取值范围是.5.(2017·山东·高考真题)若函数()e xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A .()2xf x -=B .()2f x x=C .()-3xf x =D .()cos f x x=6.(2016·全国·高考真题)若函数()1sin 2sin 3f x x x a x =-+在R 上单调递增,则a 的取值范围是A .[]1,1-B .11,3⎡⎤-⎢⎥⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D .11,3⎡⎤--⎢⎣⎦7.(2015·陕西·高考真题)设()sin f x x x =-,则()f x =A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数8.(2015·福建·高考真题)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是()A .11f k k ⎛⎫<⎪⎝⎭B .111f k k ⎛⎫>⎪-⎝⎭C .1111f k k ⎛⎫<⎪--⎝⎭D .111k f k k ⎛⎫>⎪--⎝⎭9.(2015·全国·高考真题)设函数'()f x 是奇函数()f x (x R ∈)的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是A .(,1)(0,1)-∞-B .(1,0)(1,)-È+¥C .(,1)(1,0)-∞-- D .(0,1)(1,)⋃+∞考点05求极值与最值及其应用1.(2024·上海·高考真题)已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈-<R ,在使得[]1,1M =-的所有()f x 中,下列成立的是()A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x -处取到极小值2.(2023·全国新Ⅱ卷·高考真题)若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A .0bc >B .0ab >C .280b ac +>D .0ac <3.(2022·全国乙卷·高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为()A .ππ22-,B .3ππ22-,C .ππ222-+,D .3ππ222-+,4.(2022·全国甲卷·高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=()A .1-B .12-C .12D .15.(2021·全国新Ⅰ卷·高考真题)函数()212ln f x x x =--的最小值为.6.(2018·全国·高考真题)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是.7.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为.考点06利用导数研究函数的极值点及其应用1.(2022·全国新Ⅰ卷·高考真题)(多选)已知函数3()1f x x x =-+,则()A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线2.(2022·全国乙卷·高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是.3.(2021·全国乙卷·高考真题)设0a ≠,若a 为函数()()()2f x a x a x b =--的极大值点,则()A .a b<B .a b>C .2ab a <D .2ab a >4.(2017·全国·高考真题)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为.A .1-B .32e --C .35e -D .15.(2016·四川·高考真题)已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .2考点07导数与函数的基本性质结合问题1.(2024·全国新Ⅰ卷·高考真题)(多选)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023·全国新Ⅰ卷·高考真题)(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点3.(2022·全国新Ⅰ卷·高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=4.(2021·全国新Ⅱ卷·高考真题)写出一个同时具有下列性质①②③的函数():f x .①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.5.(2017·山东·高考真题)若函数()x y e f x = 2.71828...e =(是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中所有具有M 性质的函数的序号为①=2xf x -()②=3xf x -()③3=f x x ()④2=2f x x +()6.(2015·四川·高考真题)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ;④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n.其中真命题有(写出所有真命题的序号).考点08利用导数研究函数的零点及其应用1.(2024·全国新Ⅱ卷·高考真题)(多选)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2023·全国乙卷·高考真题)函数()32f x x ax =++存在3个零点,则a 的取值范围是()A .(),2-∞-B .(),3-∞-C .()4,1--D .()3,0-3.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.4.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为.5.(2017·全国·高考真题)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .16.(2015·陕西·高考真题)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上考点09利用导数研究方程的根及其应用1.(2024·全国甲卷·高考真题)曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为.2.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.3.(2015·安徽·高考真题)函数()32f x ax bx cx d =+++的图象如图所示,则下列结论成立的是()A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d <4.(2015·全国·高考真题)设函数()(21)x f xe x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是()A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭5.(2015·安徽·高考真题)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==.考点10构建函数利用导数判断函数单调性比较函数值大小关系1.(2022·全国甲卷·高考真题)已知3111,cos ,4sin 3244a b c ===,则()A .c b a>>B .b a c>>C .a b c >>D .a c b>>2.(2022·全国新Ⅰ卷·高考真题)设0.110.1e ,ln 0.99a b c ===-,则()A .a b c <<B .c b a <<C .c<a<bD .a c b<<3.(2021·全国乙卷·高考真题)设2ln1.01a =,ln1.02b =,1c =-.则()A .a b c<<B .b<c<aC .b a c<<D .c<a<b。

导数综合问题--2024届新高考满分突破压轴大题(学生版)

导数综合问题--2024届新高考满分突破压轴大题(学生版)

导数综合问题--2024届新高考满分突破压轴大题(学生版)压轴秘籍1.导函数与原函数的关系f (x)>0,k>0,f(x)单调递增,f (x)<0,k<0,f(x)单调递减2.极值(1)极值的定义f(x)在x=x0处先↗后↘,f(x)在x=x0处取得极大值f(x)在x=x0处先↘后↗,f(x)在x=x0处取得极小值3.两招破解不等式的恒成立问题(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.4.常用函数不等式:①e x≥x+1,其加强不等式e x≥12x2+x+1;②e x≥ex,其加强不等式e x≥ex+(x-1)2.③e x−1≥x,ln x≤x−1,ln(x+1)≤x放缩1−1x<12x−1x<x−1x<ln x<2(x−1)x+1<−12x2+2x−32<x−1(0<x<1)1−1x <−12x2+2x−32<2(x−1)x+1<ln x<x−1x<12x−1x<x−1(1<x<2)−1 2x2+2x−32<1−1x<2(x−1)x+1<ln x<x−1x<12x−1x<x−1(x>2)x+1<e x<11−x (x<1),11−x<x+1<e x(x>1)5.利用导数证明不等式问题:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)转化为证不等式h(x)>0(或h(x)<0),进而转化为证明h(x)min>0(h(x)max>0),因此只需在所给区间内判断h (x)的符号,从而得到函数h(x)的单调性,并求出函数h(x)的最小值即可.6.证明极值点偏移的相关问题,一般有以下几种方法:(1)证明x 1+x 2<2a (或x 1+x 2>2a ):①首先构造函数g x =f x -f 2a -x ,求导,确定函数y =f x 和函数y =g x 的单调性;②确定两个零点x 1<a <x 2,且f x 1 =f x 2 ,由函数值g x 1 与g a 的大小关系,得g x 1 =f x 1 -f 2a -x 1 =f x 2 -f 2a -x 1 与零进行大小比较;③再由函数y =f x 在区间a ,+∞ 上的单调性得到x 2与2a -x 1的大小,从而证明相应问题;(2)证明x 1x 2<a 2(或x 1x 2>a 2)(x 1、x 2都为正数):①首先构造函数g x =f x -f a 2x,求导,确定函数y =f x 和函数y =g x 的单调性;②确定两个零点x 1<a <x 2,且f x 1 =f x 2 ,由函数值g x 1 与g a 的大小关系,得g x 1 =f x 1 -f a 2x 1 =f x 2 -f a 2x 1与零进行大小比较;③再由函数y =f x 在区间a ,+∞ 上的单调性得到x 2与a 2x 1的大小,从而证明相应问题;(3)应用对数平均不等式x 1x 2<x 1-x 2ln x 1-ln x 2<x 1+x 22证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到x 1-x 2ln x 1-ln x 2;③利用对数平均不等式来证明相应的问题.题型训练一、问答题7(2023·吉林·统考一模)已知函数f x =-2x +ln x .(1)求曲线y =f x 在1,f 1 处的切线方程;(2)若对∀x ∈0,+∞ ,f x ≤ax 2-2x 恒成立.求实数a 的取值范围.8(2023·云南红河·统考一模)已知函数f(x)=mx-ln x-1(m∈R).(1)讨论函数f(x)的单调性;(2)若关于x的不等式e x-1+a ln x-(a+1)x+a≥0恒成立,求实数a的取值范围.9(2023·全国·模拟预测)已知函数f x =2e x-x.(1)求f x 的最值;(2)若方程f x =ae x-ae2x有两个不同的解,求实数a的取值范围.10(2023·浙江金华·校联考模拟预测)已知f(x)=ax2-ax-1x-ln x+e1-x(a>0).(1)若当x=1时函数f x 取到极值,求a的值;(2)讨论函数f x 在区间(1,+∞)上的零点个数.11(2022·江苏南通·模拟预测)已知函数f x =x-ae x-x2.(1)若a=1,x∈0,1,求函数f x 的最值;(2)若a∈Z,函数f x 在x∈0,+∞)上是增函数,求a的最大整数值.12(2023·江苏徐州·校考模拟预测)已知函数f(x)=-2x3+mx2,m∈R,且g(x)=|f(x)|在x∈(0, 2)上的极大值为1.(1)求实数m的值;(2)若b=f(a),c=f(b),a=f(c),求a,b,c的值.13(2023·安徽·校联考模拟预测)已知函数f x =ae x-e-x,(a∈R).(1)若f x 为偶函数,求此时f x 在点0,f0处的切线方程;(2)设函数g(x)=f(x)-(a+1)x,且存在x1,x2分别为g(x)的极大值点和极小值点.(ⅰ)求实数a的取值范围;(ⅱ)若a∈(0,1),且g x1+kg x2>0,求实数k的取值范围.14(2023上·广东深圳·高三深圳中学校考阶段练习)已知函数f x =x-mln x-n,其中m,n ∈R.(1)若m=n=1,求f x 在x=1处的切线方程;(2)已知不等式f x ≥x恒成立,当nm取最大值时,求m的值.15(2023·广东韶关·统考一模)已知函数f x =e x,g x =2x.(1)若f x 在x=0处的切线与g x 的图象切于点P,求P的坐标;(2)若函数F x =f axx2-a+2 a的极小值小于零,求实数a的取值范围.16(2023·湖北黄冈·统考模拟预测)已知函数f (x )=a ln x -2x +12x 2.(1)讨论函数f x 的极值点个数;(2)若不等式f (x )≤x e x +12x -a -2 -1恒成立,求实数a 的取值范围.17(2023·山东潍坊·统考模拟预测)已知函数f (x )=m x -1+ln (x +1),m ∈R .(1)若函数f x 图象上存在关于原点对称的两点,求m 的取值范围;(2)当s >t >1时,(2s -2t )k s +t -2+f (t -2)+m s -3<f (s -2)+m t -3恒成立,求正实数k 的最大值.18(2023·河北保定·统考二模)已知函数f x =x2e x+m,m∈R.(1)当m=-1时,求f x 在点A1,e-1处的切线方程.(2)若g x =f xx-ln x-1的图象恒在x轴上方,求实数m的取值范围.19(2023下·福建宁德·高三统考阶段练习)已知函数f(x)=e x+2ax-1,其中a为实数,e为自然对数底数,e=2.71828⋯.(1)已知函数x∈R,f(x)≥0,求实数a取值的集合;(2)已知函数F(x)=f(x)-ax2有两个不同极值点x1、x2,证明2a(x1+x2)>3x1x220(2023·广东·统考二模)已知a∈R,函数f x =x-1ln1-x-x-a cos x,f x 为f x 的导函数.(1)当a=0时,求函数f x 的单调区间;(2)讨论f x 在区间0,1上的零点个数;(3)比较110cos110与ln109的大小,并说明理由.二、证明题21(2023·福建·校联考模拟预测)设函数f x =2x-2x-a ln x(a∈R).(1)讨论f x 的单调性;(2)若f x 有两个极值点x1,x2,记过点A x1,f x1,B x2,f x2的直线的斜率为k,若x2∈1,e,证明:2-4e-1<k<0.22(2023·福建龙岩·统考二模)已知函数f(x)=ln x,g(x)=x-2 x.(1)若x0满足f x0=x0+1x0-1,证明:曲线y=f(x)在点A x0,ln x0处的切线也是曲线y=e x的切线;(2)若F(x)=f(x)-g(x),且F x1=F x2x1≠x2,证明:F x1+F x2<4ln2-7.23(2023·浙江·统考一模)已知函数f x =x cos x+a sin x.(1)若a=-1,证明:当0<x<1时,f x >-x33;(2)求所有的实数a,使得函数y=f x 在-π,π上单调.24(2023下·江苏南京·高三南京师范大学附属中学江宁分校校联考阶段练习)已知函数f x =ax e x和函数g x =ln x ax 有相同的最大值.(1)求a 的值;(2)设集合A =x f (x )=b ,B =x g (x )=b (b 为常数).①证明:存在实数b ,使得集合A ∪B 中有且仅有3个元素;②设A ∪B =x 1,x 2,x 3 ,x 1<x 2<x 3,求证:x 1+x 3>2x 2.25(2023·云南大理·统考一模)已知函数f x =2x -sin x .(1)判断函数f x 的单调性;(2)已知函数g x =f x -4x +2m ln x ,其中m >1,若存在g x 1 =g x 2 x 1≠x 2 ,证明:x 1+x 2>1+ln m .26(2023上·湖南·高三邵阳市第二中学校联考阶段练习)已知函数f x =2ln x-ax+1a∈R.(1)讨论函数f x 的零点个数;(2)已知函数g x =e ax-ex2a∈R,当0<a<2ee时,关于x的方程f x =g x 有两个实根x1,x2x1<x2,求证:x1-e<1x2-1e.(注:e=2.71828⋯是自然对数的底数)27(2023·吉林长春·东北师大附中校考一模)已知函数f x =ln x-kx+1.(1)讨论函数f x 的单调性;(2)若函数g x =e xax,求证:当a∈0,e2 2时,g x >f x +kx-1.28(2023·河北沧州·校考三模)已知函数f x =ln 1x+ax -2,a ∈R .(1)若f x ≥0恒成立,求实数a 的取值范围;(2)证明:对任意的k ∈N *,1+112+1 1+122+2 1+132+3 ⋯1+1k 2+k<e ,e 为自然对数的底数.29(2023·山西临汾·校考模拟预测)已知函数f x =a ln x +1 +12x -1 2a ∈R .(1)若a =2,求f x 的图像在x =0处的切线方程;(2)若f x 恰有两个极值点x 1,x 2,且x 1<x 2.①求a 的取值范围;②求证:2f x 2 >x 1+1.30(2023·湖南·湖南师大附中校联考一模)已知f x =e xx,g x =a sin x,直线l1是y=f x 在x=1处的切线,直线l2是y=g x 在x=0处的切线,若两直线l1、l2夹角的正切值为2,且当x>0时,直线l2恒在函数y=g x 图象的下方.(1)求a的值;(2)设F x =f x +g x ,若x0是F x 在-π,0上的一个极值点,求证:x0是函数F x 在-π,0上的唯一极大值点,且0<F x0<2.31(2023·湖北武汉·华中师大一附中校考模拟预测)已知函数f x =ae2x-1-x2ln x+1 2(1)若a=0,证明:f x ≥x22-x3;(2)设g x =xf x +x2e x ,若∀x>1,xgln xx-1<g x ln xx-1恒成立,求实数a的取值范围.32(2023上·北京·高三北京市八一中学校考阶段练习)已知函数f (x )=x cos x -ax +a ,x ∈0,π2,(a ≠0).(1)当a ≥1时,求f (x )的单调区间;(2)求证:f (x )有且仅有一个零点.33(2023·重庆·统考模拟预测)已知函数f x =x aex -1和g x =a +ln x x 在同一处取得相同的最大值.(1)求实数a ;(2)设直线y =b 与两条曲线y =f x 和y =g x 共有四个不同的交点,其横坐标分别为x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),证明:x 1x 4=x 2x 3.34(2023·辽宁抚顺·校考模拟预测)已知函数f x =ax2-x-ln x a∈R.(1)当a=12时,求函数f x 在[1,2]上的最大值.(2)若函数f x 在定义域内有两个不相等的零点x1,x2,证明:f x1+x2>2.+ln x1+x235(2023·山西·校考模拟预测)已知函数f x =ln x-a x+1,a∈R.(1)若f x ≤0,求a的取值范围;(2)若关于x的方程f x2=e ax-ex2有两个不同的正实根x1,x2,证明:x1+x2>2e.36(2023·湖南永州·统考一模)已知函数f x =ln x +1 ,g x =axe x -2ln a +3ln2+3.(1)当x ∈-1,0 ∪0,+∞ 时,求证:f x x >-12x +1;(2)若x ∈-1,+∞ 时,g x ≥f x ,求实数a 的取值范围.。

2024届新高考新试卷结构第19题新定义--导数压轴题分类汇编(学生版)

2024届新高考新试卷结构第19题新定义--导数压轴题分类汇编(学生版)

2024新高考新试卷结构19题新定义导数压轴题分类汇编【精选例题】1悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.通过适当建立坐标系,悬链线可为双曲余弦函数ch x =e x +e -x 2的图象,类比三角函数的三种性质:①平方关系:①sin 2x +cos 2x =1,②和角公式:cos x +y =cos x cos y -sin x sin y ,③导数:sin x =cos x ,cos x =-sin x , 定义双曲正弦函数sh x =e x -e -x 2.(1)直接写出sh x ,ch x 具有的类似①、②、③的三种性质(不需要证明);(2)若当x >0时,sh x >ax 恒成立,求实数a 的取值范围;(3)求f x =ch x -cos x -x 2的最小值.2已知a 为实数,f x =x +a ln x +1 .对于给定的一组有序实数k ,m ,若对任意x 1,x 2∈-1,+∞ ,都有kx 1-f x 1 +m kx 2-f x 2 +m ≥0,则称k ,m 为f x 的“正向数组”.(1)若a =-2,判断0,0 是否为f x 的“正向数组”,并说明理由;(2)证明:若k ,m 为f x 的“正向数组”,则对任意x >-1,都有kx -f x +m ≤0;(3)已知对任意x 0>-1,f x 0 ,f x 0 -x 0f x 0 都是f x 的“正向数组”,求a 的取值范围.3帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m ,n ,函数f (x )在x =0处的[m ,n ]阶帕德近似定义为:R (x )=a 0+a 1x +⋯+a m x m1+b 1x +⋯+b n xn ,且满足:f (0)=R (0),f (0)=R (0),f (0)=R (0)⋯,f (m +n )(0)=R (m +n )(0).已知f (x )=ln (x +1)在x =0处的[1,1]阶帕德近似为R(x )=ax 1+bx.注:f (x )=f (x ) ,f (x )=f (x ) ,f (4)(x )=f (x ) ,f (5)(x )=f (4)(x ) ,⋯(1)求实数a ,b 的值;(2)求证:(x +b )f 1x >1;(3)求不等式1+1x x <e <1+1x x +12的解集,其中e =2.71828⋯.4在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB ,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs =y 1+y 232(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y 1+y3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.5“让式子丢掉次数”:伯努利不等式伯努利不等式(Bernoulli'sInequality),又称贝努利不等式,是高等数学的分析不等式中最常见的一种不等式,由瑞士数学家雅各布·伯努利提出:对实数 x∈-1,+∞n,在 n∈1,+∞时,有不等式 1+x≥1+nx成立;在 n∈0,1n≤1+nx成立.时,有不等式 1+x(1)猜想伯努利不等式等号成立的条件;(2)当 n≥1时,对伯努利不等式进行证明;(3)考虑对多个变量的不等式问题.已知 a1,a2,⋯,a n n∈N*是大于-1的实数(全部同号),证明1+a1⋯1+a n≥1+a1+a2+⋯+a n1+a26梨曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数(x>0,s>1,s为常数)密切相关,请解决下列问题.f x =x s-1e x-1(1)当1<s≤2时,讨论f x 的单调性;(2)当s>2时;①证明f x 有唯一极值点;②记f x 的唯一极值点为g s ,讨论g s 的单调性,并证明你的结论.7定义函数f n x =1-x+x22-x33+⋯+-1nx nnn∈N*.(1)求曲线y=f n x 在x=-2处的切线斜率;(2)若f2x -2≥ke x对任意x∈R恒成立,求k的取值范围;(3)讨论函数f n x 的零点个数,并判断f n x 是否有最小值.若f n x 有最小值m﹐证明:m>1-ln2;若f n x 没有最小值,说明理由.(注:e=2.71828⋯是自然对数的底数)8如果函数F x 的导数F x =f x ,可记为F x =f x d x.若f x ≥0,则b a f x d x=F b -F a表示曲线y=f x ,直线x=a,x=b以及x轴围成的“曲边梯形”的面积.(1)若F x =1x d x,且F1 =1,求F x ;(2)已知0<α<π2,证明:αcosα<acos x d x<α,并解释其几何意义;(3)证明:1n1+cosπn+1+cos2πn+1+cos3πn+⋯+1+cos nπn<22π,n∈N*.9对于函数y =f x ,x ∈I ,若存在x 0∈I ,使得f x 0 =x 0,则称x 0为函数f x 的一阶不动点;若存在x 0∈I ,使得f f x 0 =x 0,则称x 0为函数f x 的二阶不动点;依此类推,可以定义函数f x 的n 阶不动点. 其中一阶不动点简称不动点,二阶不动点也称为稳定点.(1)已知f x =2x +2x -3,求f x 的不动点;(2)已知函数f x 在定义域内单调递增,求证: “x 0为函数f x 的不动点”是“x 0为函数f x 的稳定点”的充分必要条件;(3)已知a >-1,讨论函数f x =2e 2ln x +a +1 x -1x 的稳定点个数.【跟踪训练】10已知y =f x 与y =g x 都是定义在0,+∞ 上的函数,若对任意x 1,x 2∈0,+∞ ,当x 1<x 2时,都有g x 1 ≤f x 1 -f x 2 x 1-x 2≤g x 2 ,则称y =g x 是y =f x 的一个“控制函数”.(1)判断y =2x 是否为函数y =x 2x >0 的一个控制函数,并说明理由;(2)设f x =ln x 的导数为f x ,0<a <b ,求证:关于x 的方程f b -f a b -a=f x 在区间a ,b 上有实数解;(3)设f x =x ln x ,函数y =f x 是否存在控制函数?若存在,请求出y =f x 的所有控制函数;若不存在,请说明理由.11利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F (x )表示成F (x )=d (x -b )(x -c )(a -b )(a -c )+e (x -a )(x -c )(b -a )(b -c )+f (x -a )(x -b )(c -a )(c -b )的形式.(1)若a =1,b =2,c =3,d =4,e <f ,把F (x )的二次项系数表示成关于f 的函数G (f ),并求G (f )的值域(此处视e 为给定的常数,答案用e 表示);(2)若a <b <c ,d >0,e <0,f >0,求证:a +b <d b 2-c 2 +e c 2-a 2 +f a 2-b 2 d (b -c )+e (c -a )+f (a -b )<b +c .12多元导数在微积分学中有重要的应用.设y 是由a ,b ,c ⋯等多个自变量唯一确定的因变量,则当a 变化为a +Δa 时,y 变化为y +Δy ,记lim Δa →0Δy Δa 为y 对a 的导数,其符号为d y da .和一般导数一样,若在a 1,a 2 上,已知d y da >0,则y 随着a 的增大而增大;反之,已知d y da<0,则y 随着a 的增大而减小.多元导数除满足一般分式的运算性质外,还具有下列性质:①可加性:d y 1+y 2 da =d y 1da +d y 2da ;②乘法法则:d y 1y 2 da=y 2d y 1da +y 1d y 2da ;③除法法则:d y 1y 2 da =y 2d y 1da -y 1d y2da y 22;④复合法则:d y 2da =d y 2d y 1⋅d y 1da .记y =e x +1e x 2ln x -12e x 2-ex -a .(e =2.7182818⋯为自然对数的底数),(1)写出d y d x 和d y da的表达式;(2)已知方程y =0有两实根x 1,x 2,x 1<x 2.①求出a 的取值范围;②证明d x 1+x 2 da>0,并写出x 1+x 2随a 的变化趋势.13设函数f x =sin x-x cos x,g x =1+x2 2cos x.(1)①当x∈0,π时,证明:f x ≥0;②当x∈-π,π时,求g x 的值域;(2)若数列a n满足a1=1,a n+1=a n cos a n,a n>0,证明:3a1+a2+a3+⋅⋅⋅+a ncos a1cos a2cos a3⋅⋅⋅cos a n<2 (n∈N*).14给出下列两个定义:Ⅰ.对于函数y=f(x),定义域为D,且其在D上是可导的,其导函数定义域也为D,则称该函数是“同定义函数”.Ⅱ.对于一个“同定义函数”y=f(x),若有以下性质:①f x =g f x;②f(x)=h(f (x)),其中y=g(x),y=h(x)为两个新的函数,y=f x 是y=f(x)的导函数.我们将具有其中一个性质的函数y=f(x)称之为“单向导函数”,将两个性质都具有的函数y=f(x)称之为“双向导函数”,将y=g(x)称之为“自导函数”.(1)判断下列两个函数是“单向导函数”,或者“双向导函数”,说明理由.如果具有性质①,则写出其对应的“自导函数”.Ⅰ.f(x)=tan x;Ⅱ.f(x)=ln x.(2)给出两个命题p,q,判断命题p是q的什么条件,证明你的结论.p:y=f(x)是“双向导函数”且其“自导函数”为常值函数,q:f(x)=k⋅a x(k∈R,a>0,a≠1).(3)已知函数h(x)=(x a-b)e x.①若h(x)的“自导函数”是y=x,试求a的取值范围.②若a=b=1,且定义I(x)=e x h(x)-43kx3+kx,若对任意k∈[1,2],x∈[0,k],不等式I(x)≤c恒成立,求c的取值范围.15若函数f x 在定义域内存在两个不同的数x 1,x 2,同时满足f x 1 =f x 2 ,且f x 在点x 1,f x 1 ,x 2,f x 2 处的切线斜率相同,则称f x 为“切合函数”.(1)证明:f x =2x 3-6x 为“切合函数”;(2)若g x =x ln x -1ex 2+ax 为“切合函数”(其中e 为自然对数的底数),并设满足条件的两个数为x 1,x 2.(ⅰ)求证:x 1x 2<e 24;(ⅱ)求证:(a +1)2x 1x 2-x 1x 2<34.16设y =f x 、y =g x 是定义域为R 的函数,当g x 1 ≠g x 2 时,δx 1,x 2 =f x 1 -f x 2 g x 1 -g x 2.(1)已知y =g x 在区间I 上严格增,且对任意x 1,x 2∈I ,x 1≠x 2,有δx 1,x 2 >0,证明:函数y =f x 在区间I 上是严格增函数;(2)已知g x =13x 3+ax 2-3x ,且对任意x 1,x 2∈R ,当g x 1 ≠g x 2 时,有δx 1,x 2 >0,若当x =1时,函数y =f x 取得极值,求实数a 的值;(3)已知g x =sin x ,f π2 =1,f -π2=-1,且对任意x 1,x 2∈R ,当g x 1 ≠g x 2 时,有δx 1,x 2 ≤1,证明:f x =sin x .17给出下列两个定义:I.对于函数y=f x ,定义域为D,且其在D上是可导的,若其导函数定义域也为D,则称该函数是“同定义函数”.II.对于一个“同定义函数”y=f x ,若有以下性质:①f x =g f x;②f x =h f x,其中y=g x ,y=h x 为两个新的函数,y=f x 是y=f x 的导函数.我们将具有其中一个性质的函数y=f x 称之为“单向导函数”,将两个性质都具有的函数y=f x 称之为“双向导函数”,将y=g x 称之为“自导函数”.(1)判断函数y=tan x和y=ln x是“单向导函数”,或者“双向导函数”,说明理由.如果具有性质①,则写出其对应的“自导函数”;(2)已知命题p:y=f x 是“双向导函数”且其“自导函数”为常值函数,命题q:f x =k⋅a x(k∈R,a>0,a ≠1).判断命题p是q的什么条件,证明你的结论;(3)已知函数f x =x a-be x.①若f x 的“自导函数”是y=x,试求a的取值范围;②若a=b=1,且定义I x =e x f x -43kx3+kx,若对任意k∈1,2,x∈0,k,不等式I x ≤c恒成立,求c的取值范围.18我们把底数和指数同时含有自变量的函数称为幂指函数,其一般形式为y =u x v x u x >0,u x ≠1 ,幂指函数在求导时可以将函数“指数化"再求导.例如,对于幂指函数y =x x ,y =x x =e ln x x =ex ln x =e x ln x ln x +1 .(1)已知f x =x x -1x ,x >0,求曲线y =f x 在x =1处的切线方程;(2)若m >0且m ≠1,x >0.研究g x =1+m x 21x 的单调性;(3)已知a ,b ,s ,t 均大于0,且a ≠b ,讨论a s +b s 2 t 和a t +b t 2s 大小关系.19定义:设y =f x 和y =g x 均为定义在R 上的函数,它们的导函数分别为f x 和g x ,若不等式f x -g x f x -gx ≤0对任意实数x 恒成立,则称y =f x 和y =g x 为“相伴函数”.(1)给出两组函数,①f 1x =1ex 和g 1x =0②f 2x =e x 和g 2x =x ,分别判断这两组函数是否为“相伴函数”(只需直接给出结论,不需论证);(2)若y =f x 、y =g x 是定义在R 上的可导函数,y =f x 是偶函数,y =g x 是奇函数,f x +g x =ln e -x +1 +x ,证明:y =f x 和y =g x 为“相伴函数”;(3)f x =sin x +θ ,g x =cos x -θ ,写出“y =f x 和y =g x 为相伴函数”的充要条件,证明你的结论.20牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程f x =0的其中一个根r在x=x0的附近,如图所示,然后在点x0,f x0处作f x 的切线,切线与x轴交点的横坐标就是x1,用x1代替x0重复上面的过程得到x2;一直继续下去,得到x0,x1,x2,⋯⋯,x n.从图形上我们可以看到x1较x0接近r,x2较x1接近r,等等.显然,它们会越来越逼近r.于是,求r近似解的过程转化为求x n,若设精度为ε,则把首次满足x n-x n-1<ε的x n称为r的近似解.已知函数f x =x3+a-2x+a,a∈R.(1)当a=1时,试用牛顿迭代法求方程f x =0满足精度ε=0.5的近似解(取x0=-1,且结果保留小数点后第二位);(2)若f x -x3+x2ln x≥0,求a的取值范围.21对于函数y=f x 的导函数y =f x ,若在其定义域内存在实数x0,t,使得f x0+t成=t+1f x0立,则称y=f x 是“跃点”函数,并称x0是函数y=f x 的“t跃点”(1)若m为实数,函数y=sin x-m,x∈R是“π2跃点”函数,求m的取值范围;(2)若a为非零实数,函数y=x3-2x2+ax-12,x∈R是“2跃点”函数,且在定义域内存在两个不同的“2跃点”,求a的值:(3)若b为实数,函数y=e x+bx,x∈R是“1跃点”函数,且在定义域内恰存在一个“1跃点”,求b的取值范围.。

学霸专题:含三角函数的导数压轴题(学生版)

学霸专题:含三角函数的导数压轴题(学生版)

附: 1 0.367 , sin1 0.841, cos1 0.540 . e
19.已知函数 f x ln x ax sin x ,其中 x 0, ;
(l)判断函数 f x 是否存在极值,若存在,请判断是极大值还是极小值;若不存在,说明理由;
(2)讨论在
2
,
上函数
f
x
的零点个数.
(1)若曲线 y f x 在点 0, f 0 处的切线的斜率为 1.
(ⅰ)求 a 的值;
(ⅱ)证明:函数 f x 在区间 0, 内有唯一极值点; (2)当 a 1时,证明:对任意 x 0, , f x 0 .
11.已知函数
f
x
sinx e x 1

g
x 为
f
x
的导函数.
(1)证明:当
(2)若

a
1,不等式
f
x
bx cos
x
对任意
x
0,
2 3
恒成立,求满足条件的最大整数
b.
8.已知函数 f (x) x a sin x(a R) .
(1)当 a 0 时,证明: f x 0 ;
(2)若
a
1 4
,证明:
f
x

0,
π 2
有唯一的极值点
x0 ,且
f
x0
1 π 2x0
14.已知函数 f x eax1 cos x a 0 .(其中常数 e 2.71828,是自然对数的底数)
3
(1)若 a
3
,求
f
x

0,
2
上的极大值点;
(2)( i
)证明
f
x

函数导数压轴小题题(适用培优)

函数导数压轴小题题(适用培优)

. .函数导数压轴小题一、单选题1.已知数列中,,若对于任意的,不等式恒成立,则实数的取值围为()A .B.C.D .2.已知实数,满足,则的值为()A .B .C .D.3.定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”,则;③是在上的“追逐函数”;④当时,存在,使得是在上的“追逐函数”.其中正确命题的个数为()A.①③B.②④C.①④D.②③4.若,恒成立,则的最大值为()A.B.C.D.5.设,,若三个数,,能组成一个三角形的三条边长,则实数m的取值围是A. B. C. D.6.已知定义域为的函数的图象是连续不断的曲线,且,当时,,则下列判断正确的是()A. B. C. D.7.不等式对任意恒成立,则实数的取值围()A. B. C. D.8.若函数的图象与曲线C:存在公共切线,则实数的取值围为(). . .A. B. C. D.9.设函数(,e为自然对数的底数).定义在R上的函数满足,且当时,.若存在,且为函数的一个零点,则实数a的取值围为( )A. B. C. D.10.已知函数在上可导,其导函数为,若满足:当时,>0,,则下列判断一定正确的是 ( )A. B. C. D.11.已知函数有两个零点,则的取值围为()A. B. C. D.12.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,若函数有零点,则的取值围是()A. B. C. D.13.设函数的定义域为D,若满足条件:存在,使在上的值域为,则称为“倍缩函数”.若函数为“倍缩函数”,则实数t的取值围是( )A. B.C. D.14.设定义在R上的函数f(x)是最小正周期为2π的偶函数,f'(x)是f(x)的导函数,当x∈[0,π]时,0≤f(x)≤1;当x∈(0,π)且x≠时,,则函数y=f(x)-|sinx|在区间上的零点个数为( )A.4 B.6 C.7 D.815.已知函数是定义在上的可导函数,且对于,均有,则有()A.B.. .C .D .16.已知函数,若函数的图象上存在点,使得在点处的切线与的图象也相切,则的取值围是A. B . C. D.17.已知函数,对任意的实数,,,关于方程的的解集不可能是()A. B. C. D.18.设函数,其中,若仅存在两个正整数使得,则的取值围是A. B.C .D .19.己知函数,若关于的方程恰有3个不同的实数解,则实数的取值围是( )A. B. C. D.20.已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )A.45 B.15 C.10 D.021.设函数,函数,若对任意的,总存在,使得,则实数的取值围是()A. B.C. D.22.已知函数,若 x=2 是函数 f(x)的唯一的一个极值点,则实数 k的取值围为( )A.(-∞,e] B.[0,e] C.(-∞,e) D.[0,e)23.设在的导函数为,且当时,有(k为常数),若,则在区间. . .,方程的解的个数为( ) A .0 B .1 C .0或1 D .4 24.设函数,函数,若对任意的,总存在,使得,则实数的取值围是( ) A .B .C .D . 25.已知函数,,若成立,则的最小值是( )A .B .C .D .26.已知函数,则函数的零点的个数为( )A .B .C .D .27.已知函数函数有两个零点,则实数的取值围为( )A .B .C .D .28.已知当()1,x ∈+∞时,关于x 的方程()ln 21x x k xk+-=-有唯一实数解,则k 值所在的围是( )A .()3,4B .()4,5C .()5,6D .()6,7 29.已知函数满足,若对任意正数都有,则的取值围是 ( ) A .B .C .D .30.已知,若方程有一个零点,则实数的取值围是( )A .B .C .D .31.函数的定义域为D ,若对于任意的,,当时,都有,则称函数在D 上为非减函数设函数在上为非减函数,且满足以下三个条件:;;,则等于. .A .B .C .D.32.定义在上的偶函数,当时,,且在上恒成立,则关于的方程的根的个数叙述正确的是()A.有两个 B.有一个 C.没有 D.上述情况都有可能33.已知函数的定义域为,当时,,且对任意的实数,等式成立,若数列满足,且,则下列结论成立的是()A.B .C.D .34.函数的值域为()A. B . C . D .35.已知函数,对于任意且.均存在唯一实数,使得,且.若关于的方程有4个不相等的实数根,则的取值围是 ( )A. B . C . D .36.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)-log a|x|至少有6个零点,则a的取值围是( )A.∪(5,+∞) B.∪C.∪(5,7) D.∪[5,7)37.定义在上的函数满足,且当时,,对,,使得,则实数的取值围为()A. B.C. D.38.已知函数,若方程有四个不同的实数根,,,,则的取值围是(). . .A. B. C. D.39.定义在上的函数对任意都有,且函数的图象关于成中心对称,若满足不等式,则当时,的取值围是()A. B. C. D.40.已知函数是上的单调函数,且对任意实数,都有,则()A.1 B. C. D.041.已知,,,则,,的大小关系是()A.B.C.D.42.若函数恰有一个零点,则实数的值为A.B.2 C.D.43.已知函数,且函数恰有三个不同的零点,则实数的取值围是()A.B.C.D.44.设函数,若,则的取值围是()A.B.C.D.45.已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值围是()A.B.C.D.46.若函数有两个不同的零点,则实数的取值围是A.B.C.D.47.已知定义在R上的函数f(x)是奇函数,且满足f(3-x)=f(x),f(-1)=3,数列{a n}满足a1=1且a n=n(a n+1-a n)(n∈N*),则f(a36)+f(a37)=()A.B.C.2 D.348.设函数是上可导的偶函数,且,当,满足,则的解集为(). .A.B.C.D.49.已知函数,若存在互不相等的实数,,,,满足,则()A.0 B.1 C.2 D.450.已知直线为函数图象的切线,若与函数的图象相切于点,则实数必定满足()A.B.C.D .51.已知,则的最小值为()A.B.C.D .52.已知函数f(x)=,对任意的x1,x 2≠±1且x 1≠x2,给出下列说法:①若x1+x2=0,则f(x1)-f(x2)=0;②若x1•x2=1,则f(x1)+f(x2)=0;③若1<x2<x1,则f(x2)<f(x1)<0;④若()g (x )=f(),且0<x2<x1<1.则g(x1)+g(x2)=g(),其中说确的个数为()A.1 B.2 C.3 D.453.如果函数有两个极值点,则实数的取值围是()A.B.C.D.54.函数的零点个数为()A.10 B.8 C.6 D.455.下列命题为真命题的个数是;;;A.1 B.2 C.3 D.456.设是定义在R上的偶函数,对任意的,都有,且当时,,若关于的方程在区间恰有三个不同实根,则实数的取值围是(). . .A.B.C.D.57.若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则称为“柯西函数”,则下列函数:①;②;③;④.其中为“柯西函数”的个数为()A.1 B.2 C.3 D.458.已知函数,,若与的图象上存在关于直线对称的点,则实数m的取值围是A.B.C.D.59.已知函数,若方程有3个不同的实根,则实数的取值围为()A.B.C.D.60.设是函数的导函数,若,且,,则下列选项中不一定正确的一项是()A.B.C.D.61.已知函数f(x)=-x2+x+t(≤x≤3)与g(x)=3lnx的图象上存在两组关于x轴对称的点,则实数t 的取值围是()(参考数据:ln2≈0.7,ln3≈1.1)A.B.C.D.62.已知函数恰好有两个极值点,则的取值围是()A.B.C.D.63.已知函数在上的最大值为,若函数有4个零点,则实数的取值围为A.B.C.D.64.已知函数是定义在上的可导函数,对于任意的实数x,都有,当时,. .若,则实数a的取值围是()A.B.C.D.65.定义在R上的可导函数f (x)满足f'(x )+f (x)<0,则下列各式一定成立的是()A .B .C.D .66.在中,,,,点在边上,点关于直线的对称点分别为,则的面积的最大值为A .B .C .D.67.设函数,若曲线上存在点使得,则a 的取值围是()A.[ln3-6,0]B.[ln3-6,ln2-2]C.[2ln2-12,0]D .[2ln2-12,ln2-2]68.已知是自然对数的底数,不等于1的两正数,满足,若,则的最小值为()A.-1 B.C.D.69.设,已知函数,对于任意,都有,则实数的取值围为()A.B.C.D.70.已知,,且,,恒成立,则实数的取值围是()A.B.C.D.71.设函数.若不等式对一切恒成立,则的取值围为()A.B.C.D.72.设,,,则()A.B.C.D.. . .73.如果把一个平面区域两点间的距离的最大值称为此区域的直径,那么曲线围成的平面区域的直径为( )A.B.C.D.74.定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.75.已知的定义域为,为的导函数,且满足,则不等式的解集是()A.B.C.D.76.已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.77.已知函数,,若对,均有,则实数a的最小值为A.B.C.1 D.e78.若函数为自然对数的底数有两个极值点,则实数a的取值围是A.B.C.D.79.已知函数(为自然对数的底),若方程有且仅有四个不同的解,则实数的取值围是()A.B.C.D.80.棱长为4的正方体的顶点在平面,平面与平面所成的二面角为,则顶点到平面的距离的最大值()A.B.C.D.. .81.已知若方程有唯一解,则实数的取值围是()A .B .C.D .82.已知定义在上的奇函数满足:当及时,不等式恒成立.若对任意的,不等式恒成立,则的最大值是()A.B.C.D .83.已知函数,若对,,使成立,则的取值围是()A .B .C .D .84.已知函数,且在上单调递增,且函数与的图象恰有两个不同的交点,则实数的取值围是()A.B.C.D.85.定义域为的函数 ,若关于的方程有5个不同的实数解,,,,,则的值为()A.B.C.D.86.已知函数,若对,,使成立,则的取值围是()A.B.C.D.87.已知函数,若方程有且只有三个不相等的实数解,则实数的取值围是()A.B.C.D.88.已知定义在上的函数满足,且函数在上是减函数,若,则的大小关系为()A.B.C.D.89.已知,曲线与有公共点,且在公共点处的切线相同,则实数的. . .最小值为()A.0 B.C.D.90.若函数与函数的图象存在公切线,则实数的取值围是()A.B.C.D.91.已知函数存在极值点,且,其中,A.3 B.2 C.1 D.092.若函数恰有两个极值点,则实数的取值围为()A.B.C.D.93.已知,为动直线与和在区间上的左,右两个交点,,在轴上的投影分别为,.当矩形面积取得最大值时,点的横坐标为,则()A.B.C.D.94.已知,若,且,使得,则满足条件的的取值个数为()A.5 B.4 C.3 D.295.已知函数在上有两个极值点,且在上单调递增,则实数的取值围是()A.B.C.D.96.函数的图象上存在不同的两点关于原点对称,则正数的取值围为()A.B.C.D.97.设函数,,其中,若存在唯一的整数使得,则a 的取值围是A.B.C.D.98.已知表示不超过实数的最大整数(),如:,,.定义,给出如下命题:①使成立的的取值围是;. .②函数的定义域为,值域为;③.其中正确的命题有( )A.0个B.1个C.2个D.3个99.已知正数满足,则的最小值是( )A.B.C.D.100.已知,若存在,使,则称函数与互为“度零点函数”。

高中数学导数压轴30题(PDF)

高中数学导数压轴30题(PDF)

高中数学导数压轴30题(解答题)解答题(共30小题)1.设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.),其对称轴为其充要条件为,得设)在故2.己知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.,.)设切点为(﹣=x=,(<令则=.当)单调递增;当时,3.已知函数f(x)=lnx+x2.(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3ae x x∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.恒成立,即(Ⅱ)由(Ⅰ)知证得函数,,,当且仅当∴,可得,或∵若∴当)取得极小值,极小值为结合题意,有得所以得所以4.已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)若,解不等式f′(x)+h(x)<0;(3)是否存在实数m,使函数g(x)=f′(x)﹣mx在区间[m,m+2]上有最小值﹣5?若存在,请求出实数m的值;若不存在,请说明理由.∴,有=a是二次函数即,即a=,.∴,即即,即当时,解集为(,<时,解集为(,)b=,∴∴使函数5.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x.(a∈R,e为自然对数的底数)(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若函数f(x)在上无零点,求a的最小值;(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得f(x i)=g(x0)成立,求a的取值范围.,,﹣,故要使函数只要对任意的恒成立,即对令,则再令则)在在所以故要使)在6.已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.(Ⅱ)∴∴所以有:∴7.已知函数f(x)=plnx+(p﹣1)x2+1.(1)讨论函数f(x)的单调性;(2)当P=1时,f(x)≤kx恒成立,求实数k的取值范围;(3)证明:1n(n+1)<1+…+(n∈N+).,利用导数求函数=,则得到,x x,)上单调递增,在≥,,则=08.已知函数f(x)=x2+ax﹣lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;(3)当x∈(0,e]时,证明:.,再令),有得得,=,(舍当)在上单调递减,在∴当,(舍令,∴∴,即>(9.已知函数g(x)=,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(3)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.进行讨论:和,分别求出由===a==∴当∴,得,故的最小值为时,,则时,有当则,故,10.已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.=,a|==时,=,11.已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R).(Ⅰ)若a=1,求函数f(x)的极值;(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;(Ⅲ)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.,(Ⅱ)即函数12.已知函数f(x)=ax3+bx2﹣3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间[﹣2,2]上任意两个自变量的值x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.根据题意,得即解得3=13.已知函数f(x)=ax﹣1﹣lnx(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx﹣2恒成立,求实数b的取值范围;(3)当x>y>e﹣1时,求证:.Ⅰ),,令)上单调递增,由此能够证明得,得)在上递减,在)在∴令∴,即.(Ⅲ)证明:令14.已知函数f(x)=(a+)e n,a,b为常数,a≠0.(Ⅰ)若a=2,b=1,求函数f(x)在(0,+∞)上的单调区间;(Ⅱ)若a>0,b>0,求函数f(x)在区间[1,2]的最小值;(Ⅲ)若a=1,b=﹣2时,不等式f(x)≤lnx•e n恒成立,判断代数式[(n+1)!]2与(n+1)e n﹣2(n∈N*)的大小.a+e))=)或因为,(,)单调递增区间为(﹣又因为﹣﹣恒成立,15.已知函数f(x)=(a+1)lnx+ax2+,a∈R.(1)当a=﹣时,求f(x)的最大值;(2)讨论函数f(x)的单调性;(3)如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|恒成立,求实数a的取值范围.﹣lnx﹣x+﹣时,求=﹣,定义域为(=,…=+2ax=x=,(,)上单调递增;在(4=≥16.已知函数f(x)=x3+x2+ax+b(a,b为常数),其图象是曲线C.(1)当a=﹣2时,求函数f(x)的单调减区间;(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.x<,)则+xx﹣或﹣,x,),﹣)﹣时,﹣;﹣﹣,﹣)∪(﹣+x)17.(2014•惠州模拟)已知函数f(x)=ln(x+)+,g(x)=lnx(1)求函数f(x)的单调区间;(2)如果关于x的方程g(x)=x+m有实数根,求实数m的取值集合;(3)是否存在正数k,使得关于x的方程f(x)=kg(x)有两个不相等的实数根?如果存在,求k满足的条件;如果不存在,说明理由.=﹣,令﹣﹣x+﹣x+(>﹣,且=﹣=﹣(﹣,)的单调递增区间是(﹣,﹣=lnx=﹣﹣x﹣,18.设函数f(x)=x﹣ae x﹣1.(Ⅰ)求函数f(x)单调区间;(Ⅱ)若f(x)≤0对x∈R恒成立,求a的取值范围;(Ⅲ)对任意n的个正整数a1,a2,…a n记A=(1)求证:(i=1,2,3…n)(2)求证:A.恒成立,故∴)知:,,≤故19.已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R(1)当a=1时,判断f(x)的单调性;(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.﹣,+=﹣,==,﹣﹣﹣=a+﹣=>=∵≤(>.﹣﹣﹣)﹣,令,20.已知函数f(x)=+lnx﹣2,g(x)=lnx+2x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.,=∴∴令∴(21.f(x)=|x﹣a|﹣lnx(a>0).(1)若a=1,求f(x)的单调区间及f(x)的最小值;(2)若a>0,求f(x)的单调区间;(3)试比较++…+与的大小.(n∈N*且n≥2),并证明你的结论.﹣=﹣﹣﹣﹣﹣22.已知函数(1)试判断函数f(x)的单调性;(2)设m>0,求f(x)在[m,2m]上的最大值;(3)试证明:对∀n∈N*,不等式.。

高中数学《导数》压轴小题精练100(含答案)

高中数学《导数》压轴小题精练100(含答案)

A. 22-1 , 1
C.
-
∞,
1-2 2

2-1 2

+

B.
-1

1-2 2
D. - ∞ , -1 ∪ 1, + ∞


答案 D
-1 -2 + 22
≤∃
kl2
<
0
试题6.12 【 导 数 的 切 线 法 】 已 知 实 数 ,则
满足
,实数
的 最 小 值 为(
满足 )
A. 1
B. 2
C. 3
试题25.11 【图像法 + 转化法 + 零点】函数 f x
= l-nx- xx>x0≤ 0
与 gx
=
1 2
x
+
a
+1
的图象
上存在关于 y 轴对称的点,则实数 a 的取值范围是
A. - ∞ , 3 - 2ln2 B. 3 - 2ln2, + ∞ C. e , + ∞
D. - ∞ , -e


B
画出
D. 0
B
试题12.12 【利用对称中心破题】已知函数 f x
=
x+12+ln1+9x2 -3xcosx x2+ 1
,且
f
2017
=
2016,则 f -2017 =
(2015
C. -2016
D. -2017
A
试题13.12 【利用对称中心破题】已知函数 f x
= lnx - x2与 gx
D. 4
A 【距离模型 + 转化法】

导数压轴小题11种题型(1)(解析版)

 导数压轴小题11种题型(1)(解析版)

第8讲 导数和函数压轴小题11类【题型一】 整数解【典例分析】在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .291,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .2294,4e 3e ⎡⎫⎪⎢⎣⎭【答案】D【分析】将不等式转化为()()22e 21e x x a x ->-,分别研究两个函数的性质,确定a 的取值范围,构造函数,利用放缩法进一步缩小a 的取值范围,列出不等式组,求出结果.【详解】由()2222e e 4e e 4e 0x x x a x a -+++>,化简得:()()22e 21e x x a x ->-,设()()22e 2f x x =-,()()1e xg x a x =-,则原不等式即为()()f x g x >.若0a ≤,则当2x >时,()0f x >,()0g x <,∴原不等式的解集中有无数个大于2的整数,∴0a >.∴()20f =,()22e 0g a =>,∴()()22f g <.当()()33f g ≤,即12e a ≥时,设()()()()4h x f x g x x =-≥,则()()()22e 2e 2e 2e 22e x x x h x x ax x '=--≤--. 设()()()2e 2e 242e x x x x x ϕ=--≥,则()()21e 2e 2exx x ϕ+'=-在[)3,+∞单调递减,所以()()()21e 2e302ex x x ϕϕ+''=-≤=,所以()()2e 2e 22ex x x x ϕ=--在[)4,+∞单调递减,∴()()()242e 2e 0x ϕϕ≤=-<,∴当4x ≥时,()0h x '<,∴()h x 在[]4,+∞上为减函数,即()()2423e 44e 3e e 402h x h a ⎛⎫≤=-≤-< ⎪⎝⎭,∴当4x ≥时,不等式()()f x g x <恒成立,∴原不等式的解集中没有大于2的整数.∴要使原不等式的解集中有且仅有两个大于2的整数,则{f (3)>g (3)f (4)>g (4)f (5)≤g (5),即{e 2>2a e 34e 2>3a e 49e 2≤4a e 5,解得22944e 3ea ≤<.则实数a 的取值范围为2294,4e 3e ⎡⎫⎪⎢⎣⎭.故选:D【变式演练】1.已知函数()()1xf x a x e x =+-,若存在唯一的正整数0x ,使得()00f x <,则实数a 的取值范围是( )A .313,24e e ⎡⎫-⎪⎢⎣⎭B .2332,43e e ⎡⎫⎪⎢⎣⎭C .221,32e e ⎡⎫⎪⎢⎣⎭D .11,22e ⎡⎫⎪⎢⎣⎭【答案】C 【分析】题意等价于存在唯一的正整数0x 使得不等式()1xx a x e +<成立,求出函数()x xg x e =的单调区间,直线()1y a x =+过定点()1,0-,作出函数()xxg x e =和直线()1y a x =+图像,结合图形列出不等式组化简即可. 解:函数()()1xf x a x e x =+-,若存在唯一的正整数0x ,使得()00f x <。

导数压轴小题(含答案49页)

导数压轴小题(含答案49页)

导数压轴小题1. 已知函数f(x)=xe x−m2x2−mx,则函数f(x)在[1,2]上的最小值不可能为( )A. e−32m B. −12mln2m C. 2e2−4m D. e2−2m2. 已知函数f(x)=sinxx ,若π3<a<b<2π3,则下列结论正确的是( )A. f(a)<f(√ab)<f(a+b2) B. f(√ab)<f(a+b2)<f(b)C. f(√ab)<f(a+b2)<f(a) D. f(b)<f(a+b2)<f(√ab)3. 已知e为自然对数的底数,对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,则实数a的取值范围是( )A. [1,e]B. (1,e]C. (1+1e ,e] D. [1+1e,e]4. 若存在正实数x,y,z满足z2≤x≤ez且zln yz=x,则ln yx的取值范围为( )A. [1,+∞)B. [1,e−1]C. (−∞,e−1]D. [1,12+ln2]5. 已知方程ln∣x∣−ax2+32=0有4个不同的实数根,则实数a的取值范围是( )A. (0,e 22) B. (0,e22] C. (0,e23) D. (0,e23]6. 设函数f(x)=e x(sinx−cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为( )A. −e 2π(1−e2016π)1−e2πB. −e2π(1−e1008π)1−eπC. −e 2π(1−e1008π)1−e2πD. −e2π(1−e2014π)1−e2π7. 若函数f(x)满足f(x)=x(fʹ(x)−lnx),且f(1e )=1e,则ef(e x)<fʹ(1e)+1的解集为( )A. (−∞,−1)B. (−1,+∞)C. (0,1e)D. (1e,+∞)8. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,且 a ≠1);② g (x )≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若f (1)g (1)+f (−1)g (−1)=52,则 a 等于 ( )A. 12B. 2C. 54D. 2 或 129. 已知函数 f (x )=1+lnx x,若关于 x 的不等式 f 2(x )+af (x )>0 有两个整数解,则实数 a 的取值范围是 ( ) A. (−1+ln22,−1+ln33) B. (1+ln33,1+ln22) C. (−1+ln22,−1+ln33] D. (−1,−1+ln33]10. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 f (x )−m (x −1)>0 对任意的 x >1 恒成立,则 m 的最大值为 ( ) A. 2B. 3C. 4D. 511. 已知函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0,若 f (−a )+f (a )≤2f (1),则实数 a 的取值范围是 ( ) A. (−∞,−1]∪[1,+∞) B. [−1,0] C. [0,1]D. [−1,1]12. 已知 fʹ(x ) 是定义在 (0,+∞) 上的函数 f (x ) 的导函数,若方程 fʹ(x )=0 无解,且 ∀x ∈(0,+∞),f [f (x )−log 2016x ]=2017,设 a =f (20.5),b =f (log π3),c =f (log 43),则 a ,b ,c 的大小关系是 ( )A. b >c >aB. a >c >bC. c >b >aD. a >b >c13. 已知函数 f (x )={lnx,x ≥11−x 2,x <1,若 F (x )=f [f (x )+1]+m 有两个零点 x 1,x 2,则 x 1⋅x 2 的取值范围是 ( ) A. [4−2ln2,+∞) B. (√e,+∞) C. (−∞,4−2ln2]D. (−∞,√e)14. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=(x +1)e x , 则对任意的 m ∈R ,函数 F (x )=f(f (x ))−m 的零点个数至多有 ( ) A. 3 个B. 4 个C. 6 个D. 9 个15. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( ) A. (0,1e)B. (ln33,e) C. (0,ln33] D. [ln33,1e)16. 已知 f (x ) 是定义在 R 上的偶函数,其导函数为 fʹ(x ),若 fʹ(x )<f (x ),且 f (x +1)=f (3−x ),f (2015)=2,则不等式 f (x )<2e x−1 的解集为 ( ) A. (1,+∞)B. (e,+∞)C. (−∞,0)D. (−∞,1e)17. 设函数 f (x ) 的导函数为 fʹ(x ),对任意 x ∈R 都有 fʹ(x )>f (x ) 成立,则 ( )A. 3f (ln2)>2f (ln3)B. 3f (ln2)=2f (ln3)C. 3f (ln2)<2f (ln3)D. 3f (ln2) 与 2f (ln3) 的大小不确定18. 已知函数 f (x )=x 33+12ax 2+2bx +c ,方程 fʹ(x )=0 两个根分别在区间 (0,1) 与 (1,2) 内,则 b−2a−1的取值范围为 ( )A. (14,1)B. (−∞,14)∪(1,∞)C. (−1,−14)D. (14,2)19. 已知 f (x )=∣xe x ∣,又 g (x )=f 2(x )−tf (x )(t ∈R ),若满足 g (x )=−1 的 x 有四个,则 t 的取值范围是 ( )A. (−∞,−e 2+1e) B. (e 2+1e,+∞)C. (−e 2+1e,−2) D. (2,e 2+1e)20. 已知 f (x ) 是定义在 (0,+∞) 上的单调函数,且对任意的 x ∈(0,+∞),都有 f [f (x )−log 2x ]=3,则方程 f (x )−fʹ(x )=2 的解所在的区间是 ( )A. (0,12)B. (12,1)C. (1,2)D. (2,3)21. 已知函数 f (x )={√1+9x 2,x ≤01+xe x−1,x >0,点 A ,B 是函数 f (x ) 图象上不同两点,则 ∠AOB (O 为坐标原点)的取值范围是 ( ) A. (0,π4)B. (0,π4]C. (0,π3)D. (0,π3]22. 定义:如果函数 f (x ) 在 [a,b ] 上存在 x 1,x 2 (0<x 1<x 2<a) 满足fʹ(x 1)=f (b )−f (a )b−a,fʹ(x 2)=f (b )−f (a )b−a ,则称函数 f (x ) 是 [a,b ] 上的“双中值函数”.已知函数 f (x )=x 3−x 2+a 是 [0,a ] 上的“双中值函数”,则实数 a 的取值范围是 ( ) A. (13,12)B. (32,3)C. (12,1)D. (13,1)23. 已知函数 f (x )=2mx 2−2(4−m )x +1,g (x )=mx ,若对于任意实数 x ,函数 f (x ) 与 g (x ) 的值至少有一个为正值,则实数 m 的取值范围是 ( )A. (2,8)B. (0,2)C. (0,8)D. (−∞,0)24. 已知 a,b ∈R ,且 e x+1≥ax +b 对 x ∈R 恒成立,则 ab 的最大值是( )A. 12e 3B. √22e 3 C.√32e 3 D. e 325. 函数 f (x ) 是定义在区间 (0,+∞) 上的可导函数 , 其导函数为 fʹ(x ),且满足 xfʹ(x )+2f (x )>0,则不等式 (x+2016)f (x+2016)5<5f (5)x+2016的解集为 ( ) A. {x >−2011} B. {x ∣x <−2011} C. {x ∣−2011<x <0}D. {x∣∣−2016<x <−2011}26. 设 D =√(x −a )2+(lnx −a 24)2+a 24+1(a ∈R ),则 D 的最小值为( ) A. √22B. 1C. √2D. 227. 已知定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,且当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),若 a =0.76f (0.76),b =log 1076f (log 1076),c =60.6f (60.6),则 a ,b ,c 的大小关系是 ( )A. a >b >cB. b >a >cC. c >a >bD. a >c >b28. 对任意的正数 x ,都存在两个不同的正数 y ,使 x 2(lny −lnx )−ay 2=0 成立,则实数 a 的取值范围为 ( ) A. (0,12e)B. (−∞,12e)C. (12e,+∞)D. (12e,1)29. 已知函数 f (x )=x 3−6x 2+9x ,g (x )=13x 3−a+12x 2+ax −13(a >1)若对任意的 x 1∈[0,4],总存在 x 2∈[0,4],使得 f (x 1)=g (x 2),则实数 a 的取值范围为 ( )A. (1,94]B. [9,+∞)C. (1,94]∪[9,+∞)D. [32,94]∪[9,+∞)30. 定义在 R 上的偶函数 f (x ) 满足 f (2−x )=f (x ),且当 x ∈[1,2] 时,f (x )=lnx −x +1,若函数g (x )=f (x )+mx 有 7 个零点,则实数 m 的取值范围为 ( )A. (1−ln28,1−ln26)∪(ln2−16,ln2−18)B. (ln2−16,ln2−18) C. (1−ln28,1−ln26) D. (1−ln28,ln2−16)31. 已知函数 f (x )={e x ,x ≥0ax,x <0,若方程 f (−x )=f (x ) 有五个不同的根,则实数 a 的取值范围为 ( ) A. (−∞,−e )B. (−∞,−1)C. (1,+∞)D. (e,+∞)32. 已知 fʹ(x ) 是奇函数 f (x ) 的导函数,f (−1)=0,当 x >0 时,xfʹ(x )−f (x )>0,则使得 f (x )>0 成立的 x 的取值范围是 ( ) A. (−∞,−1)∪(0,1) B. (−1,0)∪(1,+∞) C. (−1,0)∪(0,1)D. (−∞,−1)∪(1,+∞)33. 已知函数 f (x ) 在定义域 R 上的导函数为 fʹ(x ),若方程 fʹ(x )=0 无解,且 f [f (x )−2017x ]=2017,当 g (x )=sinx −cosx −kx 在 [−π2,π2] 上与 f (x ) 在 R 上的单调性相同时,则实数 k 的取值范围是 ( )A. (−∞,−1]B. (−∞,√2]C. [−1,√2]D. [√2,+∞)34. 已知函数 f (x )=e x ∣x∣,关于 x 的方程 f 2(x )−2af (x )+a −1=0(a ∈R )有 3 个相异的实数根,则 a 的取值范围是 ( ) A. (e 2−12e−1,+∞)B. (−∞,e 2−12e−1) C. (0,e 2−12e−1) D. {e 2−12e−1}35. 函数 y =f (x ) 图象上不同两点 A (x 1,y 1),B (x 2,y 2) 处的切线的斜率分别是 k A ,k B ,规定 φ(A,B )=∣k A −k B ∣∣AB∣叫做曲线在点 A 与点 B 之间的“弯曲度”.设曲线 y =e x 上不同的两点 A (x 1,y 1),B (x 2,y 2),且 x 1−x 2=1,若 t ⋅φ(A,B )<3 恒成立,则实数 t 的取值范围是 ( )A. (−∞,3]B. (−∞,2]C. (−∞,1]D. [1,3]36. 已知函数 f (x )=ax 3+3x 2+1,若至少存在两个实数 m ,使得 f (−m ),f (1),f (m +2) 成等差数列,则过坐标原点作曲线 y =f (x ) 的切线可以作 ( ) A. 3 条B. 2 条C. 1 条D. 0 条37. 已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),⋯,则第 60 个整数对是 ( ) A. (5,7)B. (4,8)C. (5,8)D. (6,7)38. 已知函数 f (x )={∣log 3x ∣,0<x <3,−cos (π3x),3≤x ≤9.若存在实数 x 1,x 2,x 3,x 4,当 x 1<x 2<x 3<x 4 时,满足 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1⋅x 2⋅x 3⋅x 4 的取值范围是 ( ) A. (7,294)B. (21,1354) C. [27,30)D. (27,1354)39. 已知函数 f (x )=e 2x ,g (x )=lnx +12的图象分别与直线 y =b 交于 A ,B 两点,则 ∣AB∣ 的最小值为 ( )A. 1B. e 12C. 2+ln22D. e −ln3240. 设 A ,B 分别为双曲线 C :x 2a 2−y 2b 2=1(a >0,b >0) 的左、右顶点,P ,Q 是双曲线 C 上关于 x 轴对称的不同两点,设直线 AP ,BQ 的斜率分别为 m ,n ,则2b a+a b+12∣mn∣+ln ∣m ∣+ln ∣n ∣ 取得最小值时,双曲线 C 的离心率为 ( ) A. √2B. √3C. √6D. √6241. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,a ≠1);② g (x ) ≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若 f (1)g (1)+f (−1)g (−1)=52,则使 log a x >1 成立的 x 的取值范围是 ( )A. (0,12)∪(2,+∞)B. (0,12)C. (−∞,12)∪(2,+∞)D. (2,+∞)42. 已知函数 f (x )=∣sinx ∣(x ∈[−π,π]),g (x )=x −2sinx (x ∈[−π,π]),设方程 f(f (x ))=0,f(g (x ))=0,g(g (x ))=0 的实根的个数分别为 m ,n ,t ,则 m +n +t = ( )A. 9B. 13C. 17D. 2143. 设 f (x ) 是定义在 R 上的奇函数,且 f (2)=0,当 x >0 时,有xfʹ(x )−f (x )x 2<0 恒成立,则不等式 x 2f (x )>0 的解集是 ( )A. (−2,0)∪(2,+∞)B. (−∞,−2)∪(0,2)C. (−∞,−2)∪(2,+∞)D. (−2,0)∪(0,2)44. 已知函数 f (x )={−x 2+2x,x ≤0ln (x +1),x >0,若 ∣f (x )∣≥ax ,则 a 的取值范围是 ( ) A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]45. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为 (x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +m i=1y i )= ( ) A. 0B. mC. 2mD. 4m46. 若函数 f (x )=x −13sin2x +asinx 在 (−∞,+∞) 单调递增,则 a 的取值范围是 ( )A. [−1,1]B. [−1,13] C. [−13,13] D. [−1,−13]47. 已知两曲线 y =x 3+ax 和 y =x 2+bx +c 都经过点 P (1,2),且在点 P处有公切线,则当 x ≥12 时,log bax 2−c 2x的最小值为 ( )A. −1B. 1C. 12D. 048. 直线 y =m 分别与 y =2x +3 及 y =x +lnx 交于 A ,B 两点,则 ∣AB∣的最小值为 ( ) A. 1B. 2C. 3D. 449. 设函数 f (x )=x 2−2x +1+alnx 有两个极值点 x 1,x 2,且 x 1<x 2,则 f (x 2) 的取值范围是 ( ) A. (0,1+2ln24) B. (1−2ln24,0)C. (1+2ln24,+∞) D. (−∞,1−2ln24)50. 设直线 l 1,l 2 分别是函数 f (x )={−lnx,0<x <1,lnx,x >1,图象上点 P 1,P 2处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则 △PAB 的面积的取值范围是 ( )A. (0,1)B. (0,2)C. (0,+∞)D. (1,+∞)51. 已知定义在 R 上的奇函数 f (x ),其导函数为 fʹ(x ),对任意正实数 x 满足 xfʹ(x )>2f (−x ),若 g (x )=x 2f (x ),则不等式 g (x )<g (1−3x ) 的解集是 ( ) A. (14,+∞)B. (−∞,14)C. (0,14)D. (−∞,14)∪(14,+∞)52. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是( )A. (−∞,0)B. (0,12)C. (0,1)D. (0,+∞)53. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 (m −2)(x −2)<f (x ) 对任意的 x >2 恒成立,则 m 的最大值为 ( ) A. 4B. 5C. 6D. 854. 已知函数 f (x )=a x+xlnx ,g (x )=x 3−x 2−5,若对任意的 x 1,x 2∈[12,2],都有 f (x 1)−g (x 2)≥2 成立,则 a 的取值范围是 ( )A. (0,+∞)B. [1,+∞)C. (−∞,0)D. (−∞,−1]55. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e,1) B. [−32e ,34) C. [32e ,34)D. [32e,1)56. 函数 f (x )={(x −a )2+e,x ≤2xlnx+a +10,x >2(e 是自然对数的底数),若 f (2) 是函数 f (x ) 的最小值,则 a 的取值范围是 ( ) A. [−1,6]B. [1,4]C. [2,4]D. [2,6]57. f (x ),g (x )(g (x )≠0) 分别是定义在 R 上的奇函数和偶函数,当 x <0时,fʹ(x )g (x )<f (x )gʹ(x ),且 f (−3)=0,f (x )g (x )<0 的解集为 ( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(0,3)C. (−3,0)∪(3,+∞)D. (−∞,−3)∪(0,3)58. 已知函数 f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当 x ∈(0,1)时 f (x ) 取得极大值,当 x ∈(1,2) 时 f (x ) 取得极小值,则 (b +12)2+(c −3)2 的取值范围是 ( )A. (√372,5) B. (√5,5)C. (374,25)D. (5,25)59. 若关于 x 的方程 ∣x 4−x 3∣=ax 在 R 上存在 4 个不同的实根,则实数a 的取值范围为 ( ) A. (0,427)B. (0,427]C. (427,23)D. (427,23]60. 设函数 f (x ) 在 R 上存在导函数 fʹ(x ),若对 ∀x ∈R ,有 f (−x )+f (x )=x 2,且当 x ∈(0,+∞) 时,fʹ(x )>x .若 f (2−a )−f (a )≥2−2a ,则 a 的取值范围是 ( )A. (−∞,1]B. [1,+∞)C. (−∞,2]D. [2,+∞)61. 已知 e 为自然对数的底数,若对任意的 x ∈[1e,1],总存在唯一的 y ∈[−1,1],使得 lnx −x +1+a =y 2e y 成立,则实数 a 的取值范围是 ( ) A. [1e ,e]B. (2e,e]C. (2e,+∞)D. (2e ,e +1e)62. 设函数 f (x )={2x +1,x >0,0,x =0,2x −1,x <0.若不等式 f (x −1)+f (mx)>0 对任意x >0 恒成立,则实数 m 的取值范围是 ( ) A. (−14,14)B. (0,14)C. (14,+∞)D. (1,+∞)63. 若 0<x 1<x 2<1,则 ( )A. e x 2−e x 1>lnx 2−lnx 1B. e x 1−e x 2<lnx 2−lnx 1C. x2e x1>x1e x2D. x2e x1<x1e x264. 函数f(x)在定义域R内可导,若f(x)=f(2−x),且(x−1)fʹ(x)<0,若a=f(0),b=f(12),c=f(3),则a,b,c的大小关系是( )A. a>b>cB. b>a>cC. c>b>aD. a>c>b65. 已知函数f(x)=x−4+9x+1,x∈(0,4).当x=a时,f(x)取得最小值b,则函数g(x)=(1a )∣x+b∣的图象为( )A. B.C. D.66. f(x)是定义在(0,+∞)上的单调函数,且对∀x∈(0,+∞)都有f(f(x)−lnx)=e+1,则方程f(x)−fʹ(x)=e的实数解所在的区间是( )A. (0,1e ) B. (1e,1) C. (1,e) D. (e,3)67. 已知R上的奇函数f(x)满足fʹ(x)>−2,则不等式f(x−1)<x2(3−2lnx)+3(1−2x)的解集是( )A. (0,1e) B. (0,1) C. (1,+∞) D. (e,+∞)68. 已知函数f(x)=sinxx,给出下面三个结论:①函数f(x)在区间(−π2,0)上单调递增,在区间(0,π2)上单调递减;②函数f(x)没有最大值,而有最小值;③函数f(x)在区间(0,π)上不存在零点,也不存在极值点.其中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③69. 已知函数 f (x ) 是定义在 R 上的可导函数,fʹ(x ) 为其导函数,若对于任意实数 x ,有 f (x )−fʹ(x )>0,则 A. ef (2015)>f (2016) B. ef (2015)<f (2016) C. ef (2015)=f (2016)D. ef (2015) 与 f (2016) 大小不能确定70. 若存在正实数 m ,使得关于 x 的方程 x +a (2x +2m −4ex )[ln (x +m )−lnx ]=0 有两个不同的根,其中 e 为自然对数的底数,则实数 a 的取值范围是 ( )A. (−∞,0)B. (0,12e)C. (−∞,0)∪(12e,+∞)D. (12e,+∞)71. 定义在 (0,π2) 上的函数 f (x ),fʹ(x ) 是它的导函数,且恒有 f (x )⋅tanx <fʹ(x ) 成立,则 ( ) A. √3f (π4)>√2f (π3)B. f (1)<2f (π6)sin1C. √2f (π6)>f (π4) D. √3f (π6)<f (π3)72. 已知函数 f (x )=x 3+ax 2+bx +c ,下列结论中错误的是 ( )A. ∃x 0∈R ,f (x 0)=0B. 函数 y =f (x ) 的图象是中心对称图形C. 若 x 0 是 f (x ) 的极小值点,则 f (x ) 在区间 (−∞,x 0) 单调递减D. 若 x 0 是 f (x ) 的极值点,则 fʹ(x 0)=073. 已知函数 f (x )=ln x2+12,g (x )=e x−2,若 g (m )=f (n ) 成立,则 n −m 的最小值为 ( )A. 1−ln2B. ln2C. 2√e −3D. e 2−374. 设函数f(x)=e x(x3−3x+3)−ae x−x(x≥−2),若不等式f(x)≤0有解.则实数a的最小值为( )A. 2e −1 B. 2−2eC. 1+2e2D. 1−1e75. 设函数f(x)=2lnx−12mx2−nx,若x=2是f(x)的极大值点,则m 的取值范围为( )A. (−12,+∞) B. (−12,0)C. (0,+∞)D. (−∞,−12)∪(0,+∞)76. 已知函数f(x)=ax3+bx2−2(a≠0)有且仅有两个不同的零点x1,x2,则( )A. 当a<0时,x1+x2<0,x1x2>0B. 当a<0时,x1+x2>0,x1x2<0C. 当a>0时,x1+x2<0,x1x2>0D. 当a>0时,x1+x2>0,x1x2<077. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A. (2,+∞)B. (1,+∞)C. (−∞,−2)D. (−∞,−1)78. 设f(x)、g(x)是定义域为R的恒大于零的可导函数,且fʹ(x)g(x)−f(x)gʹ(x)<0,则当a<x<b时,有( )A. f(x)g(x)>f(b)g(b)B. f(x)g(a)>f(a)g(x)C. f(x)g(b)>f(b)g(x)D. f(x)g(x)>f(a)g(a)79. 设函数fʹ(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=fʹ(x)−3,则4f(x)>fʹ(x)的解集为( )A. (ln43,+∞) B. (ln23,+∞) C. (√32,+∞) D. (√e3,+∞)80. 下列关于函数f(x)=(2x−x2)e x的判断正确的是( )①f(x)>0的解集是{x∣0<x<2};②f(−√2)是极小值,f(√2)是极大值;③f(x)没有最小值,也没有最大值;④f(x)有最大值,没有最小值.A. ①③B. ①②③C. ②④D. ①②④参考答案,仅供参考啊1. D 【解析】fʹ(x)=e x+xe x−m(x+1)=(x+1)(e x−m),因为1≤x≤2,所以e≤e x≤e2,①当m≤e时,e x−m≥0,由x≥1,可得fʹ(x)≥0,此时函数f(x)单调递增.所以当x=1时,函数f(x)取得最小值,f(1)=e−32m.②当m≥e2时,e x−m≤0,由x≥1,可得fʹ(x)≤0,此时函数f(x)单调递减.所以当x=2时,函数f(x)取得最小值,f(2)=2e2−4m.③当e2>m>e时,由e x−m=0,解得x=lnm.当1≤x<lnm时,fʹ(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,fʹ(x)>0,此时函数f(x)单调递增.所以当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=−m2ln2m.2. D 【解析】fʹ(x)=xcosx−sinxx2(0<x<π).(i)当x=π2时,fʹ(x)=−4π2<0;(ii)当0<x<π,且x≠π2时,fʹ(x)=xcosx−sinxx2=cosx(x−tanx)x2.①当0<x<π2时,根据三角函数线的性质,得x<tanx,又cosx>0,所以fʹ(x)<0;②当π2<x<π时,tanx<0,则x−tanx>0,又cosx<0,所以fʹ(x)< 0.综合(i)(ii),当0<x<π时,fʹ(x)<0.所以f(x)在(0,π)上是减函数.若π3<a<b<2π3,则π3<a<√ab<a+b2<b<2π3,所以f(a)>f(√ab)>f(a+b2)>f(b).来自QQ群339444963 3. C 【解析】令f(x1)=a−x1,则f(x1)=a−x1在x1∈[0,1]上单调递减,且f(0)=a,f(1)=a−1.令g(x2)=x22e x2,则gʹ(x2)=2x2e x2+x22e x2=x2e x2(x2+2),且g(0)=0,g(−1)=1e,g(1)=e.若对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,即f(x1)=g(x2),则f(x1)=a−x1的最大值不能大于g(x2)的最大值,即f(0)=a≤e,因为g(x2)在[−1,0]上单调递减,在(0,1]上单调递增,所以当g(x2)∈(0,1e]时,有两个x2使得f(x1)=g(x2).若只有唯一的x2∈[−1,1],使得f(x1)=g(x2),则f(x1)的最小值要比1e大,所以f(1)=a−1>1e,所以a>1+1e,故实数a的取值范围是(1+1e,e].来自QQ群3394449634. B 【解析】zln yz=x,所以xz=lny−lnz,所以lny=xz+lnz,所以ln yx =lny−lnx=xz+lnz−lnx=xz+ln zx,令zx =t,则ln yx=1t+lnt,又因为z2≤x≤ez,所以12≤xz≤e,即t∈[1e ,2],令ln yx=1t+lnt=f(t),则fʹ(t)=t−1t2,令fʹ(t)=0即t=1,又因为1e≤t≤2,所以t∈[1e,1]时fʹ(t)<0,f(t)单调减,t∈[1,2]时fʹ(t)>0,f(t)单调增,所以t=1时f(t)取极小值,即f(1)=1,f(2)=12+ln2,f(1e)=e+ln1e=e−1f(1e )−f(2)=e−ln2−32>e−lne−32=e−52>0,所以f(t)最大值为e−1,所以f(t)∈[1,e−1],所以ln yx∈[1,e−1].5. A【解析】由ln∣x∣−ax2+32=0得ax2=ln∣x∣+32,因为x≠0,所以方程等价为a=ln∣x∣+32x2,设f(x)=ln∣x∣+32x2,则函数f(x)是偶函数,当x>0时,f(x)=lnx+32x2,则fʹ(x)=1x⋅x2−(lnx+32)⋅2xx4=x−2xlnx−3xx4=−2x(1+lnx)x4,由fʹ(x)>0得−2x(1+lnx)>0,得1+lnx<0,即lnx<−1,得0<x<1e,此时函数单调递增,由fʹ(x)<0得−2x(1+lnx)<0,得1+lnx>0,即lnx>−1,得x>1e,此时函数单调递减,即当 x >0 时,x =1e 时,函数 f (x ) 取得极大值 f (1e)=ln 1e +32(1e)2=(−1+32)e 2=12e 2, 作出函数f (x ) 的图象如图:要使 a =ln∣x∣+32x 2,有 4 个不同的交点,则满足 0<a <12e 2.6. D 【解析】提示:令 fʹ(x )=2sinx ⋅e x =0,得 x =kπ,易知当 x =2kπ(k ∈Z ),1≤k ≤1007 时 f (x ) 取到极小值,故各极小值之和为f (2π)+f (4π)+⋯+f (2014π)=−(e 2π+e 4π+⋯+e 2014π)=−e 2π(1−e 2014π)1−e 2π.7. A 【解析】因为 f (x )=x (fʹ(x )−lnx ), 所以 xfʹ(x )−f (x )=xlnx , 所以xfʹ(x )−f (x )x 2=lnx x,所以 [f (x )x]ʹ=lnxx,令 F (x )=f (x )x ,则 Fʹ(x )=lnx x,f (x )=xF (x ),所以 fʹ(x )=F (x )+xFʹ(x )=F (x )+lnx , 所以 fʺ(x )=Fʹ(x )+1x=lnx+1x,因为 x ∈(0,1e ),fʺ(x )<0,fʹ(x ) 单减,x ∈(1e ,+∞),fʺ(x )>0,fʹ(x ) 单增,所以 fʹ(x )≥fʹ(1e )=F (1e )+ln 1e =ef (1e )−1=0,所以 fʹ(x )≥0,所以 f (x ) 在 (0,+∞) 上单增,因为 e ⋅f (e x )<fʹ(1e )+1,fʹ(1e )=−1+e ⋅f (1e )=0, 所以 e ⋅f (e x )<1, 所以 f (e x )<1e ,所以 f (e x )<f (1e ), 所以 0<e x <1e ,所以不等式的解集为 x <−1. 8. A 9. C 【解析】因为 fʹ(x )=1−(1+lnx )x 2=−lnx x 2,所以 f (x ) 在 (0,1) 上单调递增,在 (1,,+∞) 上单调递减,当 a >0 时,f 2(x )+af (x )>0⇔f (x )<−a 或 f (x )>0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a =0 时,f 2(x )+af (x )>0⇔f (x )≠0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a <0 时,f 2(x )+af (x )>0⇔f (x )<0 或 f (x )>−a ,要使不等式 f 2(x )+af (x )>0 恰有两个整数解,必须满足 f (3)≤−a <f (2),得 −1+ln22<a ≤−1+ln33.10. B【解析】因为 f (x )=x +xlnx ,所以 f (x )−m (x −1)>0 对任意 x >1 恒成立,即 m (x −1)<x +xlnx , 因为 x >1,也就是 m <x⋅lnx+x x−1对任意 x >1 恒成立.令 ℎ(x )=x⋅lnx+x x−1,则 ℎʹ(x )=x−lnx−2(x−1)2,令 φ(x )=x −lnx −2(x >1),则 φʹ(x )=1−1x=x−1x>0,所以函数 φ(x ) 在 (1,+∞) 上单调递增.因为 φ(3)=1−ln3<0,φ(4)=2−2ln2>0,所以方程 φ(x )=0 在 (1,+∞) 上存在唯一实根 x 0,且满足 x 0∈(3,4). 当 1<x <x 0 时,φ(x )<0,即 ℎʹ(x )<0, 当 x >x 0 时,φ(x )>0,即 ℎʹ(x )>0,所以函数 ℎ(x ) 在 (1,x 0) 上单调递减,在 (x 0,+∞) 上单调递增. 所以 [ℎ(x )]min =ℎ(x 0)=x 0(1+x 0−2)x 0−1=x 0∈(3,4).所以 m <[g (x )]min =x 0,因为 x 0∈(3,4),故整数 m 的最大值是 3. 11. D 【解析】函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0, 将 x 换为 −x ,函数值不变,即有 f (x ) 图象关于 y 轴对称,即 f (x ) 为偶函数,有 f (−x )=f (x ),当 x ≥0 时,f (x )=xln (1+x )+x 2 的导数为 fʹ(x )=ln (1+x )+x 1+x+2x ≥0,则 f (x ) 在 [0,+∞) 递增,f (−a )+f (a )≤2f (1),即为 2f (a )≤2f (1), 可得 f (∣a∣)≤f (1),可得 ∣a∣≤1,解得 −1≤a ≤1.12. D 【解析】由题意,可知 f (x )−log 2016x 是定值,不妨令 t =f (x )−log 2016x ,则 f (x )=log 2016x +t ,又 f (t )=2017,所以 log 2016t +t =2017⇒t =2016,即 f (x )=log 2016x +2016,则 fʹ(x )=1xln2016,显然当x ∈(0,+∞) 时,有 fʹ(x )>0,即函数 f (x ) 在 (0,+∞) 上为单调递增,又 20.5>1>log π3>log 43,所以 f (20.5)>f (log π3)>f (log 43). 13. D 【解析】当 x ≥1 时,f (x )=lnx ≥0, 所以 f (x )+1≥1,所以 f [f (x )+1]=ln (f (x )+1),当 x <1,f (x )=1−x2>12,f (x )+1>32,f [f (x )+1]=ln (f (x )+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e−m,f(x)=e−m−1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e−m−1,当x<1时,1−x12=e−m−1,令t=e−m−1>12,则lnx2=t,x2=e t,1−x12=t,x1=2−2t,所以x1x2=e t(2−2t),t>12,设g(t)=e t(2−2t),t>12,求导gʹ(t)=−2te t,t∈(12,+∞),gʹ(t)<0,函数g(t)单调递减,所以g(t)<g(12)=√e,所以g(x)的值域为(−∞,√e),所以x1x2取值范围为(−∞,√e).14. A 【解析】当x<0时,f(x)=(x+1)e x,可得fʹ(x)=(x+2)e x,可知x∈(−∞,−2),函数是减函数,x∈(−2,0)函数是增函数,f(−2)=−1e2,f(−1)=0,且x→0时,f(x)→1,又f(x)是定义在R上的奇函数,f(0)=0,而x∈(−∞,−1)时,f(x)<0,所以函数的图象如图:令t=f(x)则f(t)=m,由图象可知:当t∈(−1,1)时,方程f(x)=t至多3个根,当t∉(−1,1)时,方程没有实数根,而对于任意m∈R,方程f(t)=m至多有一个根,t∈(−1,1),从而函数F(x)=f(f(x))−m的零点个数至多有3个.15. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y=ax在区间(0,3]上有三个交点.画图如下.当 a ≤0 时,显然,不合乎题意,当 a >0 时,由图知,当 x ∈(0,1] 时,存在一个交点,当 x >1 时,f (x )=lnx ,可得 g (x )=lnx −ax (x ∈(1,3]),gʹ(x )=1x−a =1−ax x,若 gʹ(x )<0,可得 x >1a,g (x ) 为减函数,若 gʹ(x )>0,可得 x <1a,g (x ) 为增函数,此时 y =f (x ) 与 y =ax 必须在 [1,3] 上有两个交点,即 y =g (x ) 在 [1,3] 上有两个零点,所以 {g (1a)>0,g (3)≤0,g (1)≤0,解得ln33≤a <1e,故函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点时,ln33≤a <1e.16. A 【解析】因为函数 f (x ) 是偶函数, 所以 f (x +1)=f (3−x )=f (x −3).所以 f (x +4)=f (x ),即函数 f (x ) 是周期为 4 的周期函数. 因为 f (2015)=f (4×504−1)=f (−1)=f (1)=2, 所以 f (1)=2. 设 g (x )=f (x )e x,则 gʹ(x )=fʹ(x )e x −f (x )e xe 2x=fʹ(x )−f (x )e x<0,所以 g (x ) 在 R 上单调递减. 不等式 f (x )<2e x−1 等价于 f (x )e x<2e,即 g (x )<g (1),所以 x >1,所以不等式 f (x )<2e x−1 的解集为 (1,+∞). 17. C 【解析】构造函数 g (x )=f (x )e x,则函数求导得 gʹ(x )=fʹ(x )−f (x )e x.由已知 fʹ(x )>f (x ),所以 gʹ(x )>0,即 g (x ) 在实数范围内单调递增, 所以 g (ln2)<g (ln3),即f (ln2)e ln2<f (ln3)e ln3,解得 3f (ln2)<2f (ln3).18. A 【解析】由题意,fʹ(x )=x 2+ax +2b ,因为 fʹ(x ) 是开口朝上的二次函数,所以 {fʹ(0)>0fʹ(1)<0fʹ(2)>0,得 {b >0,a +a +2b <0,2+a +b >0, 由此可画出可行域,如图,b−2a−1表示可行域内的点 (a,b ) 和点 P (1,2) 连线的斜率,显然 PA 的斜率最小,PC 的斜率最大.19. B 【解析】令 y =xe x ,则 yʹ=(1+x )e x ,由 yʹ=0,得 x =−1,当 x ∈(−∞,−1) 时,yʹ<0,函数 y 单调递减,当 x ∈(−1,∞) 时,yʹ>0 函数单调递增.做出 y =xe x 图象,利用图象变换得 f (x )=∣xe x ∣ 图象(如图),令 f (x )=m ,则关于 m 方程 ℎ(m )=m 2−tm +1=0 两根分别在 (0,1e ),(1e ,+∞) 时(如图),满足 g (x )=−1 的 x 有 4 个,由 ℎ(1e )=1e 2−1e t +1<0 解得 t >e 2+1e.20. C【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)−log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)−log2x为定值,设t=f(x)−log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,fʹ(x)=1ln2⋅x,将f(x)=log2x+2,fʹ(x)=1ln2⋅x代入f(x)−fʹ(x)=2,可得log2x+2−1ln2⋅x=2,即log2x−1ln2⋅x=0,令ℎ(x)=log2x−1ln2⋅x,分析易得ℎ(1)=−1ln2<0,ℎ(2)=1−12ln2>0,则ℎ(x)=log2x−1ln2⋅x的零点在(1,2)之间,则方程log2x−1ln2⋅x=0,即f(x)−fʹ(x)=2的根在(1,2)上.21. A 【解析】当x≤0时,由y=√1+9x2得y2−9x2=1(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=−3x,此时渐近线的斜率k1=−3,当x>0时,f(x)=1+xe x−1,当过原点的直线和f(x)相切时,设切点为(a,1+ae a−1),函数的导数fʹ(x)=e x−1+xe x−1=(x+1)e x−1,则切线斜率k2=fʹ(a)=(a+1)e a−1,则对应的切线方程为y−(1+ae a−1)=(1+a)e a−1(x−a),即y=(1+a)e a−1(x−a)+1+ae a−1,当x=0,y=0时,(1+a)e a−1(−a)+1+ae a−1=0,即a2e a−1+ae a−1=1+ae a−1,即a2e a−1=1,得a=1,此时切线斜率k2=2,则切线和y=−3x的夹角为θ,则tanθ=∣∣−3−21−2×3∣∣=55=1,则θ=π4,故∠AOB(O为坐标原点)的取值范围是(0,π4).来自QQ群33944496322. C 【解析】由题意可知,因为 f (x )=x 3−x 2+a 在区间 [0,a ] 存在 x 1,x 2 (a <x 1<x 2<b),满足 fʹ(x 1)=fʹ(x 2)=f (a )−f (0)a=a 2−a ,因为 f (x )=x 3−x 2+a , 所以 fʹ(x )=3x 2−2x ,所以方程 3x 2−2x =a 2−a 在区间 (0,a ) 有两个不相等的解. 令 g (x )=3x 2−2x −a 2+a ,(0<x <a ). 则 {Δ=4−12(−a 2+a )>0,g (0)=−a 2+a >0,g (a )=2a 2−a >0,0<16<a. 解得:12<a <1.来自QQ 群339444963所以实数 a 的取值范围是 (12,1). 23. C 【解析】当 m <0 时,函数 f (x ) 的图象为开口向下的抛物线,所以在 x >0 时,f (x )>0 不恒成立. 函数 g (x )=mx 当 x >0 时,g (x )<0. 所以不满足题意.当 m =0 时,f (x )=−8x +1,g (x )=0,不满足题意. 当 m >0 时,需 f (x )>0 在 x <0 时恒成立,所以令 Δ<0 或 {Δ≥0,−b2a ≥0,f (0)>0,即 4(4−m )2−8m <0 或 {4(4−m )2−8m ≥0,4−m 2m≥0.解得 2<m <8 或 0<m ≤2.综合得:0<m <8.24. A 【解析】若 a <0,由于一次函数 y =ax +b 单调递减,不能满足且 e x+1≥ax +b 对 x ∈R 恒成立,则 a ≥0. 若 a =0,则 ab =0.若 a >0,由 e x+1≥ax +b 得 b ≤e x+1−ax ,则 ab ≤ae x+1−a 2x . 设函数 f (x )=ae x+1−a 2x ,所以 fʹ(x )=ae x+1−a 2=a (e x+1−a ),令 fʹ(x )=0 得 e x+1−a =0,解得 x =lna −1,因为 x <lna −1 时,x +1<lna ,则 e x+1<a ,则 e x+1−a <0, 所以 fʹ(x )<0,所以函数 f (x ) 递减;同理,x >lna −1 时,fʹ(x )>0,所以函数 f (x ) 递增;所以当 x =lna −1 时,函数取最小值,f (x ) 的最小值为 f (lna −1)=2a 2−a 2lna .设 g (a )=2a 2−a 2lna (a >0),gʹ(a )=a (3−2lna )(a >0),由 gʹ(a )=0 得 a =e 32,不难得到 a <e 32时,gʹ(a )>0;a >e 32时,gʹ(a )<0;所以函数 g (a ) 先增后减,所以 g (a ) 的最大值为 g (e 32)=12e 3,即 ab 的最大值是 12e 3,此时 a=e 32,b =12e 32.25. D 来自QQ 群339444963【解析】构造函数 g (x )=x 2f (x ),gʹ(x )=x(2f (x )+xfʹ(x )), 当 x >0 时,因为 2f (x )+xfʹ(x )>0, 所以 gʹ(x )>0,所以g(x)在(0,+∞)上单调递增,因为不等式(x+2016)f(x+2016)5<5f(5)x+2016,所以x+2016>0时,即x>−2016时,(x+2016)2f(x+2016)<52f(5),所以g(x+2016)<g(5),所以x+2016<5,所以−2016<x<−2011.26. C 【解析】S=(x−a)2+(lnx−a24)2(a∈R),其几何意义为:两点(x,lnx),(a,a 24)的距离的平方,由y=lnx的导数为yʹ=1x,所以k=1x1,点(a,a24)在曲线y=14x2上,所以yʹ=12x,所以k=12x2,令f(x)=lnx,g(x)=14x2,则D(x)=√(x1−x2)2+[f(x1)−g(x2)]2+g(x2)+1,而g(x2)+1是抛物线y=14x2上的点到准线y=−1的距离,即抛物线y=14x2上的点到焦点(0,1)的距离,则D可以看作抛物线上的点(x2,g(x2))到焦点距离和到f(x)=lnx上的点的距离的和,即∣AF∣+∣AB∣,由两点之间线段最短,得D最小值是点F(0,1)到f(x)=lnx上的点的距离的最小值,由点到直线上垂线段最短,这样就最小,即取B(x0,lnx0),则fʹ(x0)⋅lnx0−1x0=−1,垂直,则 lnx 0−1=−x 02,解得 x 0=1,所以 F 到 B (1,0) 的距离就是点 F (0,1) 到 f (x )=lnx 上的点的距离的最小值, 所以 D 的最小值为 ∣DF ∣=√2.27. D 【解析】定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,可知函数 f (x ) 是偶函数, 所以 y =xf (x ) 是奇函数,又因为当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),所以函数 y =xf (x ) 在 R 上既是奇函数又是减函数; 0.76∈(0,1),60.6<912∈(2,4),log 1076≈log 1.56∈(4,6).所以 a >c >b .来自QQ 群33944496328. A 【解析】由 x 2(lny −lnx )−ay 2=0(x,y >0),可得:a =ln y x (y x)2,令y x=t >0,所以 a =lnt t2,设 g (t )=lnt t2,gʹ(t )=1t×t 2−2tlnt t 4=1−2lnt t 3.令 gʹ(t )>0.解得 0<t <√e ,此时函数 g (t ) 单调递增; 令 gʹ(t )<0.解得 t >√e ,此时函数 g (t ) 单调递减.又t>1时,g(t)>0;1>t>0时,g(t)<0.可得函数g(t)的图象.因此当a∈(0,12e )时,存在两个正数,使得a=lntt2成立,即对任意的正数x,都存在两个不同的正数y,使x2(lny−lnx)−ay2=0成立.29. C 【解析】函数f(x)=x3−6x2+9x,导数为f′(x)=3x2−12x+9=3(x−1)(x−3),可得f(x)的极值点为1,3,由f(0)=0,f(1)=4,f(3)=0,f(4)=4,可得f(x)在[0,4]的值域为[0,4];g(x)=13x3−a+1 2x2+ax−13(a>1),导数为g′(x)=x2−(a+1)x+a=(x−1)(x−a),当1<x<a时,g′(x)<0,g(x)递减;当x<1或x>a时,g′(x)> 0,g(x)递增.由g(0)=−13,g(1)=12(a−1),g(a)=−16a3−12a2−13>−13,g(4)=13−4a,当3≤a≤4时,13−4a≤12(a−1),g(x)在[0,4]的值域为[−13,12(a−1)],由对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),可得[0,4]⊆[−13,12(a−1)],即有4≤12(a−1),解得a≥9不成立;当1<a<3时,13−4a>12(a−1),g(x)在[0,4]的值域为[−13,13−4a],由题意可得[0,4]⊆[−13,13−4a],即有4≤13−4a,解得a≤94,即为1<a≤94;当 a >4 时,可得 g (1) 取得最大值,g (4)<−3 为最小值,即有 [0,4]⊆[13−4a,12(a −1)],可得 13−4a ≤0,4≤12(a −1),即 a ≥134,且 a ≥9,解得 a ≥9.综上可得,a 的取值范围是 (1,94]∪[9,+∞).30. A【解析】因为函数 f (2−x )=f (x ) 可得图象关于直线 x =1 对称,且函数为偶函数则其周期为 T =2, 又因为 fʹ(x )=1x −1=1−x x,当 x ∈[1,2] 时有 fʹ(x )≤0,则函数在 x ∈[1,2]为减函数,作出其函数图象如图所示:其中 k OA =ln2−16,k OB =ln2−18,当 x <0 时 , 要使符合题意则 m ∈(ln2−16,ln2−18),根据偶函数的对称性,当 x >0 时,要使符合题意则 m ∈(1−ln28,1−ln26).综上所述,实数 m 的取值范围为 (1−ln28,1−ln26)∪(ln2−16,ln2−18).31. A 【解析】因为 f (x )={e x ,x ≥0ax,x <0,所以 f (−x )={−ax,x >01,x =0e −x ,x <0. 显然 x =0 是方程 f (−x )=f (x ) 的一个根, 当 x >0 时,e x =−ax, ⋯⋯① 当 x <0 时,e −x =ax, ⋯⋯②显然,若 x 0 为方程 ① 的解,则 −x 0 为方程 ② 的解, 即方程 ①,② 含有相同个数的解, 因为方程 f (−x )=f (x ) 有五个不同的根, 所以方程 ① 在 (0,+∞) 上有两解,。

完整版导数压轴题题型学生版

完整版导数压轴题题型学生版

导数压轴题题型引例【2016高考山东理数】(本小题满分13分)(I )讨论f (x)的单调性;(II )当a 1时,证明f(x)>f' x |对于任意的x1.高考命题回顾例 1.已知函数 (X ) ae 2x +(a - 2) e x — x. (1)讨论f (x)的单调性;(2)若f (x )有两个零点,求a 的取值范围已知 f (x) ax In x2x 1 2,aXR .1,2成立.2例 2.(21)(本小题满分12分)已知函数f x x 2 e x a x 1 2有两个零点(I) 求a的取值范围;(II) 设x i,x2是f x的两个零点证明:X i X2 2.例3.(本小题满分12分)3 1已知函数 f (x) =x3ax —,g(x) In x 4(I )当a为何值时,x轴为曲线y f (x)的切线;第2 页共18 页(n)用min m,n 表示m,n 中的最小值,设函数h(x) min f (x), g(x) (x 0),讨论h (x)零点的个数例4.(本小题满分13分)已知常数八〉口,函数L:_hilln L''.x + 2(i)讨论在区间上的单调性;(n)若fi门存在两个极值点且/i : ■;':,求的取值范围例 5 已知函数f(x)= e x—In(x+ m).(1) 设x= 0是f(x)的极值点,求m,并讨论f(x)的单调性;(2) 当m<2 时,证明f(x)>0.1 例6已知函数f(x)满足f(x) f'⑴e x 1f(0)x -x2(1)求f(x)的解析式及单调区间;1 2⑵若f (x) x ax b,求(a 1)b的最大值。

2第4 页共18 页a In x b例7已知函数f(x) ,曲线y f(x)在点(1,f (1))处的切线方程为x 1 xx 2y 3 0。

(i)求a、b的值;(n )如果当x 0,且x 1时,f(x)山仝k,求k的取值范围。

导数压轴小题必刷100题

导数压轴小题必刷100题

,
2 e2
【答案】B
【解析】因为 f ( x) 与 g ( x) 互为“1距零点函数”.且当 f ( x) = log2020 ( x −1) = 0 时, x = 2
设 g ( x) = x2 − aex = 0 的解为 x0 ,由定义 − n 可知, 2 − x0 1
解得1 x0
3 ,而当 g ( x) = x2 − aex
A.
B.
C.
D.
【答案】A
【解析】因为 不满足方程
,所以原方程化为化为

,令
, 时, ,令
; ,
时,
+
0
-
当 要使
递增
,即 时,
无解,则

递减
,综上可得, 的值域为

即使关于 的方程
3
,
4
+ ln 6
2
【答案】D
【解析】由题意,函数 f ( x) = ln x − ax2 − (a − 2) x 的定义域为 (0, +),
不等式 f ( x) 0 ,即 ln x − ax2 − (a − 2) x 0 ,即 ln x ax2 + (a − 2) x ,
两边除以 x ,可得 ln x a(x +1) − 2 , x
,
+
时,
g
(
x
)
0

所以
g
(
x
)

e−1
,

e
2 3
−2
时增函数,在 e 3 , + 时减函数,且
f
−2 e 3
=
e2 3,f Nhomakorabea1 e

导数压轴小题汇编

导数压轴小题汇编

导数压轴小题(01)12【图像法】设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( D )A .3[,1)2e -B .33[,)24e -C .33[,)24eD .3[,1)2e图像法】已知函数()m +-=mx xe x f x,若()0<x f 的解集为(a,b ),其中b<0;不等式在(a,b )中有(03)16【切线应用】若函数),()(23R b a bx ax x x f ∈++=的图象与x 轴相切于一点)0)(0,(≠m m A ,且)(x f 的极大值为21,则m 的值为 .答案: 32{f ′(m )=0f (m )=0(04)12【导数的切线法】设函数与有公共点,且在公共点处的切线方程相同,则实数b 的最大值为( A ) 【此题也是多变量转化+等与不等转化】 f′(x )=g′(x) ⇒ x =aA .B .C .D . 构造F(b)=−12a 2−a 2lna (05)11【导数的切线法】若对于函数()()2ln 1f x x x =++图象上任意一点处的切线1l ,在函数()sin cos g xa x x x =-的图象上总存在一条切线2l ,使得12ll ⊥,则实数a 的取值范围为( D ) −2+2√2≤∃kl 2<0A .⎤⎥⎣⎦B .1⎡-⎢⎣⎦C.⎛⎤-∞+∞ ⎥ ⎝⎦⎣⎦UD .(][),11,-∞-+∞U(06)12【导数的切线法】已知实数满足,实数满足,则的最小值为( A ) 【距离模型+转化法】A .1B .2C .3D .4 (07)12【导数的切线法】若直线kx −y −k +1=0 (k ∈R)和曲线E :y =ax 3+bx 2+53(ab ≠0)的图像交于A( x 1 y 1 ) B ( x 2 y 2 ) C ( x 3 y 3 ) (x 1<x 2<x 3)三点时,曲线E 在点A ,点C 处的切线总是平行,则过点(b, a )可作曲线E 的( B )条切线 (咋读题目一头雾水,无思路!) A. 0 B. 1 C. 2 D. 3(08)16【导数的直接应用】若f(x)是定义在R 上的可导函数,且满足(x −1)f′(x)≥0,则必有( D ) A .f(0)+ f (2)<2f(1) B .f(0)+ f (2)>2f(1)C .f(0)+ f (2)≤2f(1)D .f(0)+ f (2)≥2f(1) 【易选B 】 (09)12 【导数的直接应用】若函数f (x )=e x (sinx +acosx )在(π4,π2)上单调递增,则实数的取值范围是( A )(A) (B) (C) (D)()()02232>-=a axx x f ()b x a x g +=ln 2221e 221e e 1223-e ,a b ln(1)30b a b ++-=,c d 20d c -+=22()()a c b d -+-a (],1-∞(),1-∞[)1,+∞()1,+∞(10)12【利用对称中心破题】已知函数, 则的值为( B ) (A ) (B ) (C ) (D )(11)12【利用对称中心破题】已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫⎪⎝⎭∑的值为( B ) (A )2016 (B )1008 (C )504 (D )0 (12)12【利用对称中心破题】已知函数()())221ln3cos 1x x x f x x ++=+,且()20172016f =,则()2017f -=( A )A .2014-B .2015-C .2016-D .2017-(13)12【利用对称中心破题】已知函数()2ln f x x x =-与()()()()21222g x x m m R x =-+-∈-的图象上存在关于()1,0对称的点,则实数m 的取值范围是( D ) 注意题干中是存在而不是任意 f (x )=−g (2−x ) A.(),1ln 2-∞- B.(],1ln 2-∞- C. ()1ln 2,-+∞ D.[)1ln 2,-+∞(14)16【通过构造函数破题】已知函数(为自然对数的底数),若对任意的正数,当时,都有成立,则实数m 的取值范围为 .答案:[0,+∞)(15)12【通过构造函数破题】已知函数2)1ln()(x x a x f -+=,在区间(0,1)内任取两个实数p ,q ,且q p <,若不等式1)1()1(>-+-+qp q f p f 恒成立,则实数a 的取值范围是( B )A .(15,)+∞B .[15,)+∞C .(-∞,6)D .(-∞,6] (16)11【直接法】已知直线与函数的图象交于两点AB ,若中点为点,则的大小为( B ) A.B. C. 1 D. 2 (17)12【函数性质+K 法】已知函数f(x)=x +sinx (x ∈R),且f (y 2−2y +3)+f(x 2−4x +1)≤0,则当y ≥1时,y x+1的取值范围是( A ) A .B .C .D .(18)12【考查函数性质】已知函数22()(8)12(0)f x x a x a a a =++++-<,且2(4)(28)f a f a -=-,则*()4()1f n an N n -∈+的最小值为( A ) 提示: a 2−4+2a −8=0()32331248f x x x x =-++201612017k k f =⎛⎫⎪⎝⎭∑050410082016()ln xf x e m x =+,m R e ∈12,x x 12x x >()()1212f x f x x x ->-l ())()ln ln 1f x x =--AB 1,2P m ⎛⎫⎪⎝⎭m 1312A.374B.358C.328D.274(19)12.【分离参数法+隐含零点】已知函数f (x )=x +xlnx ,若k ∈Z ,并且k(x −1)<f(x)对任意的x >1恒成立,则k 的最大值为(B ) 提示:隐含零点必然用到导函数的零点的等量代换A. 2B. 3C.4D.5(20)8【考查函数的零点+嵌套函数】已知函数⎩⎨⎧≥+--<-=1,2)2(1,)1(log )(25x x x x x f ,则方程a x x f =-+)21(的实根个数不可能为(B) 考查作图能力+双勾函数,特别要注意双勾函数的二个拐点,本题当a=0 有3个,a=1时有7个,一共有2.3.4.6.7.8六种情况B. A .8个 B .7个 C .6个D .5个(21)12【考查函数的零点】定义在R 上的偶函数()f x 满足(2)()f x f x -=,且当[]1,2x ∈时,()ln 1f x x x =-+, 若函数()()g x f x mx =+有7个零点,则实数m 的取值范围为( A ) 函数的性质-对称中心要掌握哦!画出图像A. 1ln 21ln 2ln 21ln 21(,)(,)8668----⋃ B. ln 21ln 21(,)68-- C. 1ln 21ln 2(,)86-- D. 1ln 2ln 21(,)86-- (22)10【考查函数的零点】设函数()21cos,12,01x x f x x x π⎧+>⎪=⎨⎪<≤⎩,函数()()10g x x a x x =++>,若存在唯一的0x ,使得()()(){}min ,h x f x g x =的最小值为()0h x ,则实数a 的取值范围是( A ) 好好琢磨一下本题!A. 2a <-B. 2a ≤-C. 1a <-D. 1a ≤- 画出图像(23)12【考查函数的零点】已知函数()xe f x kx x=-(e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是( B ) 分参后求导画出图像(画图像注意x<0部分) A .(0,2)B .2(0,)4eC .(0,)eD .(0,)+∞ 【分离参数法】(24)16【转化法+零点】已知函数()2ln (6)f x a x x a x =++-在(0,3)上不是单调函数,则实数a 的取值范围是 (0,2) 本题还需注意是相交,相切不行!求导后,分离a,转化为双勾函数!(25)11【图像法+转化法+零点】函数()())ln 00x x f x x x ⎧>⎪=⎨-≤⎪⎩与()()112g x x a =++的图象上存在关于y 轴对称的点,则实数a 的取值范围是( B ) 画出f(x)图像,再画出y =12|x |+1图像 实际转化为ln(−x)=12(−x −a +1)有解 A .(],32ln 2-∞- B .[)32ln 2,-+∞ C.),e ⎡+∞⎣D .(,e -∞(26)12【考查函数的零点】定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x ∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x ∈(1,2]时,f(x)=2﹣x ;记函数g(x)= f(x)﹣k (x ﹣1),若函数g (x )恰有两个零点,则实数k 的取值范围是( C ) A .[1,2)B .4[,2]3C .4[,2)3D .4(,2)3f(x)图像容易画错(27)12【多变量转化+等与不等转化】已知函数n x m x g x x f ++==)32()(,ln )(,若对任意的),0(+∞∈x ,总有)()(x g x f ≤恒成立,记n m )32(+的最小值为),(n m f ,则),(n m f 最大值为( C )A. 1B. e 1C.21e D. e1 (28)12【多变量转化+等与不等转化】已知不等式(2)2xe a x b -+≥- 恒成立,则52b a -+的最大值为( A ) A . ln 3- B .ln 2- C .1ln3-- D .1ln2--失败:直接求导f ′(x )=e x−(a +2)(x ∈R);一般要对原函数作一下处理!分a +2>< =0三种情况讨论(29)12【多变量转化+等与不等转化】对于任意0b >,a R ∈,不等式[][]222(2)ln (1)b a b a m m --+--≥-恒成立,则实数m 的最大值为( B ) 本质是平行线间距离A ..2 C. e D .3(30)11【嵌套函数+零点图像法】函数f (x )={|log 2|4x −1|| x ≠14 ,0 x =14若方程af 2(x )+bf (x )+c =0有8个不同的实根,则此8个实根之和是( D ) 适合高一学生做A. 52 B. 4 C.114D. 2(31)10【嵌套函数法】已知函数()132,1,1x e x f x x x x -⎧<=⎨+≥⎩,则()()2f f x <的解集为( B ) 适合高一学生做A .(1−ln2 ,+∞)B .(−∞ ,1−ln2 ) C. (1−ln2 ,1) D .(1 ,1+ln2)(32)12【导数+嵌套函数法+分离参数】函数22()3,()2xf x x x ag x x =-++=-,若[()]0f g x ≥对[0,1]x ∈恒成立,则实数a 的取值范围是( C )A.[,)e -+∞B.[ln 2,)-+∞C.[2,)-+∞D.1(,0]2-(33)11【导数+嵌套函数法+定义域与值域的关系】已知函数2)(+⋅+=-xxe a e xf (R a ∈,e 为自然对数的底数),若)(x f g =与))((x f f y =的值域相同,则a 的取值范围是( A )A .0<aB .1-≤aC . 40≤<aD .0<a 或40≤<a (34)12【导数+嵌套函数法+分离参数】已知函数)0()1(21)(2>++-+⋅=a a x a x a e e x f x ,其中e 为自然对数的底数.若函数)(x f y =与)]([x f f y =有相同的值域,则实数a 的最大值为( B )A .eB .2 C. 1 D .2e (35)12【导数+嵌套函数法+导函数零点】已知函数()3213f x x ax bx c =-+++有两个极值点12,x x ,若()112x f x x <<,则关于x 方程()()()220f x af x b --=的实根个数不可能为( D ). 多研究研究 A .2 B .3 C .4 D .5 (36)12【导数+嵌套函数法+导函数零点】已知函数()3213f x x ax bx c =-+++有两个极值点12,x x ,若x 1=f(x 1),则关于x 方程()()()220f x af x b --=的实根个数为( B ). 多研究研究A .2B .3C .4D .5(37)12【嵌套函数法+零点】已知偶函数f(x)满足f (x +4)=f(4−x),且当x ∈(0,4]时,()()ln 2x f x x=,关于x 的不等式f 2(x )+af (x )>0在[−200 ,200]则实数a 的取值范围是( D ) A. 1(ln2,ln6)3-- B. 1(ln2,ln6]3-- C. 13ln2(ln6,)34-- D.13ln2(ln6,]34-- (38)12【导数极值点常规处理手段-转化法】已知函数()ln x f x x x ae =-(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( A )A .10,e ⎛⎫ ⎪⎝⎭B .()0,e C.1,e e ⎛⎫⎪⎝⎭D .(),e -∞f ′(x )=1+lnx −ae x=0有2解⇔g (x )=a =1+lnx e 有2解 g’(x )=1x−1−lnx e 且g’(1)=0lim g (x )n →+∞=0(39)12【5点法+向量法】将函数34y x π⎛⎫=⎪⎝⎭的图象向左平移3个单位,得函数()34y x πϕϕπ⎛⎫=+< ⎪⎝⎭的图象(如图) ,点,M N 分别是函数()f x 图象上y 轴两侧相邻的最高点和最低点,设MON θ∠=,则()tan ϕθ-的值为( A )A .23-.23-13.13(40)12【分析法】已知函数f (x )=e x −ax −1,g (x )=lnx −ax +a ,若存在x 0∈(1,2),使得f (x 0)g (x 0)<0,则实数a 的取值范围为( )A 、(ln2,e 2―12) B 、(ln2,e ―1) C 、[1,e ―1) D 、[1,e 2―12)(41)12【导函数构造法】设定义在R 上的可导函数f′(x)的导函,若f(3)=1,且 3 f(x)+x f′(x)>ln(x +1),则不等式(x −2017)3 f(x −2017)﹣27>0的解集( D )A .(2014,+∞)B .(0,2014)C .(0,2020)D .(2020,+∞)(42)12【导函数2次构造法】已知()f x 是定义在R 上的可导函数,且满足(2)()'()0x f x xf x ++>,则( A )A.()0f x > B .()0f x < C .()f x 为减函数 D .()f x 为增函数(43)12【导函数2次构造法】定义在R 上的函数)(x f 满足:xe x xf x f •=-')()(,且21)0(=f ,则)()(x f x f '的最大值为( D )A .0B .21C .1 D.2 (44)12【导函数构造法】已知偶函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x <时有22()()f x xf x x '+>,则不等式2(2014)(2014)4(2)0x f x f ++--<的解集为( B )A .(),2012-∞-B .()2016,2012--C .(),2016-∞-D .()20160-,(45)12【导函数构造法】设函数()f x 满足()()232'xx f x x f x e +=,()228e f =,则[)2,x ∈+∞时,()f x 的最小值为( D )A.22eB.232eC.24eD.28e 【导函数构造法,特殊1题】 (46)12【导函数构造法】已知函数()f x 是定义在R 上的奇函数,其导函数为'()f x ,若对任意的正实数x ,都有'()2()0xf x f x +>恒成立,且1f =,则使2()2x f x <成立的实数x 的集合为( C )A .(,)-∞+∞U B .( C .(-∞ D .)+∞(47)10【导函数构造法】已知函数()f x 为R 上的可导函数,其导函数为'()f x ,且满足()'()1f x f x +<恒成立,(0)2018f =,则不等式()20171x f x e -<+的解集为( A )A .(0,)+∞B .(,0)-∞ C.(,)e +∞ D .(,)e -∞(48)12【导函数构造法】已知定义在R 上的可导函数()f x 的导函数为'()f x ,对任意实数x 均有(1)()'()0x f x xf x -+>成立,且(1)y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是( D )A .(,)e -∞B .(,)e +∞ C. (,1)-∞ D .(1,)+∞(49)12【导函数构造法】已知定义域为R的函数f(x)的导函数为f′(x) ,并且满足f ′(x )>f (x )+1,则下列正确的是( A ) 构造为:g (x )=f(x)e x+e −xA . f (2018)−ef(2017)>e-1 B. f (2018)−ef(2017)<e-1 C. f (2018)−ef(2017)>e+1 D. f (2018)−ef(2017)<e+1(50)16【导函数类极值零点最值】.关于的方程有两个不等实根,则实数的取x ()22174ln 0k x x k x-+-+=k值范围是 .(51)12【导函数类极值零点最值】已知函数()(ln )f x x x ax =-有极值,则实数a 的取值范围是( A )A .1(,)2-∞B .1(0,)2C .1(,]2-∞ D .1(0,]2 【转化法】(52)12【导函数类极值零点最值】已知函数()221x f x e ax bx =-+-,其中,,a b R e ∈为自然对数的底数.若()()10,f f x '=是()f x 的导函数,函数()f x '在区间()0,1内有两个零点,则a 的取值范围是( A )A .()223,1e e -+ B .()23,e -+∞C. ()2,22e-∞+ D .()2226,22ee -+ 觉得有问题(53)12【导函数类极值零点最值】已知a R ∈,若1()()x f x a e x=+在区间(0,1)上有且只有一个极值点,则a 的取值范围是( B )A .0a <B .0a >C .1a ≤D .0a ≥ 【导数应用】 (54)12【分析结构+换元法】若存在正实数m ,使得关于x 的方程()()224ln ln 0x a x m ex x m x ++-+-=⎡⎤⎣⎦有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是( D ) A .(),0-∞ B .),(e 210 C. ),21()0,(+∞-∞e Y D .),21(+∞e(55)16【函数性质+单调性】定义在x R ∈上的函数()f x 在(),2-∞-上单调递增,且()2f x -是偶函数,若对一切实数x ,不等式()()2sin 2sin 1f x f x m ->--恒成立,则实数m 的取值范围为____________. 答案:2m <-或4m >(56)11【函数性质法-单调性+奇偶性】已知函数,若,则实数的取值范围是( D )A .B . C. D .(57)10【函数性质法】已知函数()f x 是偶函数,(1)f x +是奇函数,且对于任意1x ,2[0,1]x ∈,且12x x ≠,都有1212()[()()]0x x f x f x --<,设82()11a f =,50()9b f =-,24()7c f =,则下列结论正确的是( B ) A .a b c >> B .b a c >> C.b c a >> D .c a b >> (58)10【函数性质-周期函数法】设函数(0)()sin f x x =,定义(1)(0)()'()f x f f x ⎡⎤=⎣⎦,(2)(1)()'()f x f f x ⎡⎤=⎣⎦,…,()(1)()'()n n f x f f x -⎡⎤=⎣⎦,则(1)(2)(3)(2017)(15)(15)(15)(15)f f f f ︒+︒+︒++︒…的值是( A )A.4 B.4C .0D .1(59)12【函数性质-周期函数法】若函数)(x f y =,M x ∈对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有)()(T x f x af +=恒成立,此时T 为)(x f 的假周期,函数)(x f y =是M 上的a 级假()4,7()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩()()()21f a f a f -+≤a (][),11,-∞-+∞U []1,0-[]0,1[]1,1-周期函数,若函数)(x f y =是定义在区间[)∞+,0内的3级假周期且2=T ,当,)2,0[∈x ⎪⎩⎪⎨⎧<<-≤≤-=)21)(2()10(221)(f 2x x f x x x 函数m x x x x g +++-=221ln 2)(,若[]8,61∈∃x ,)0(2∞+∈∃,x 使0)()(12≤-x f x g 成立,则实数m 的取值范围是( C )A .]213,(-∞ B .]12,(-∞ C .]39,(-∞ D .),12[+∞ (60)12【函数解析式】(文)若,则等于( C )A .-2B .-4C .2D .0 (61)11【函数解析式】已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠ ⎪⎝⎭,则()2f -=( C ) A. 72-B. 92C. 72D.92-(62)11【函数解析式】已知函数满足,若在上为偶函数,且其解析式为,则的值为( B )A .-1B .0 C.D . (63)11【函数性质法】已知单调函数()f x ,对任意的x R ∈都有[()2]6f f x x -=.则(2)f =( C )A . 2B . 4C . 6D . 8(64)12【三角函数】在锐角三角形ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .若2sin a b C =,则tan A+ tan B+tan C的最小值是( C ) 【三角函数难题】A. 4B.(65)12【不等式法】记},,min{c b a 为c b a ,,中的最小值,若y x ,为任意正实数,则}1,1,2min{xy y x M +=的最大值是( D )A .21+B .2C . 22+D .3(66)16【图像+分析法】已知函数f (x )=sinx −acosx 图像的一条对称轴为x=34π,记函数f (x )的两个极值点分别为x 1,x 2;则⌈x 1+x 2⌉的最小值为_____π2 _______ (67)10【分析法】已知函数()1cos 626f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,若存在123,,,,n x x x x L 满足12306n x x x x π≤<<<<≤L 且()()()()1223f x f x f x f x -+-+L ()()()1122,n n f x f x n n N *-+-=≥∈,则n 的最小值为( C )A. 6B. 10C. 8D. 12 (68)11【线性规划法+平行线】若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|34||349|x y a x y -++--的()y g x =(2)()g x g x +=-()y f x =(2,0)(2,0)--U 2log ,02()(),20x x f x g x x <<⎧=⎨-<<⎩(2017)g -1212-取值与,x y 无关,则实数a 的取值范围是( D ) A. 4a ≤- B. 46a -≤≤ C. 4a ≤-或6a ≥ D. 6a ≥ (69)10【泰勒四鬼法】(理)若,则下列不等式恒成立的是( C )A .B .C .D .(70)12【图像法+零点】已知(),01,0x x e ax x f x ax x e⎧+>⎪=⎨-<⎪⎩,若函数()f x 有四个零点,则实数a 的取值范围是( B )A. 1,e ⎛⎫-∞- ⎪⎝⎭ B. (),e -∞- C. (),e +∞ D. 1,e ⎛⎫+∞ ⎪⎝⎭(71)12【图像法+零点】定义在R 上的函数f(x),满足,01[,210[,2)(22⎪⎩⎪⎨⎧-∈-∈+=),),x x x x x f 且f(x+1)=f(x-1),若g(x)=3-x 2log ,则函数F(x )=f(x )-g(x )在()∞+,0内的零点个数有( B )A.3个B.2个C.1个D.0个(72)12【图像法+零点】已知函数⎪⎩⎪⎨⎧<++≥+=)0(12)0(1)(2x x x x exx f x ,若函数1))((--=a x f f y 有三个零点,则实数a 的取值范围是( B )A .]3,2()11,1(⋃+eB. }13{]3,2()11,1(ee +⋃⋃+C. }13{)3,2[)11,1(ee +⋃⋃+ D. ]3,2()21,1(⋃+e(73)12【图像法+零点】已知函数34)(,||)(2+-=+--=x x x g a a x x f ,若方程|)(|)(x g x f =恰有2个不同的实数根,则实数a 的取值范围是( A ) A .1313(,)(,+228∞U )B.1135(,)+282⎛⎫∞ ⎪ ⎪⎝⎭U C .]813,23[]2135,21(Y - D .)813,23[]2135,21(Y -(74)12【图像法+零点】定义在)1,1(-上的函数)(x f 满足1)1(1)(+-=x f x f ,当]0,1(-∈x 时, 111)(-+=x x f ,若函数m mx x f x g ---=21)()(在)1,1(-内恰有3个零点,则实数m 的取值范围是( C ) A .)169,41( B . )169,41[ C .11[,)42 D .11(,)42(75)16【图像法+零点】已知函数()222,0,4,0.3x x f x x x ⎧-≥⎪=⎨-<⎪⎩,函数()()()24g x f x f x ax a =+-+有三个零点,则实数a 的取值范围为 .答案:44,913⎡⎫--⎪⎢⎣⎭(76)12【图像法+零点】设函数1222,2()1130,2x x f x x x x +⎧-⎪=⎨-+>⎪⎩≤,若互不相等的实数,,,a b c d 满足()()()f a f b f c ===()f d ,则2222a b c d +++的取值范围是( B )A.2,146) B .(98,146) C.2,266)D .(98,266)(77)12【图像法+零点】设函数21,2()5,2xx f x x x ⎧-⎪=⎨-+>⎪⎩≤,若互不相等的实数,,a b c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( B ) 【图像法+均值不等式】 A .(16,32) B .(18,34)C .(17,35)D .(6,7)(78)12【图像法+零点】已知函数2,0()e ,xx x f x x >⎧=⎨⎩≤0,()e x g x =(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为( D )A .1(1ln 2)2- B .1ln 22+ C .1ln2-D . 1(1ln 2)2+(79)12【图像法+零点】已知函数2,0()e ,xx x f x x >⎧=⎨⎩≤0,()e x g x =(e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为 ( D )A .1(1ln 2)2- B .1ln 22+ C .1ln2- D .1(1ln 2)2+(80)12【图像法+零点】已知f (x )为偶函数,对任意x ∈R , f (x )=f (2−x )恒成立,且当0≤x ≤1时,f (x )=2−2x 2;设函数g (x )= f (x )−log 3x 则g (x )的零点的个数为( C )A. 6B. 7C. 8D. 9(81)11【零点】已知函数h (x )=xlnx 与函数g (x )=kx −1的图像在区间[1e ,e]上有两个不同的交点,则实数k 的取值范围是( B )A. [1+1e,e −1] B. (1, 1+12] C. (1, e-1) D. (1, +∞)(82)12【导数+零点】若函数2()ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( A )A.1(1,)1e e e -- B.1[1,]1e e e -- C. 1(,1)1e e e --- D. 1[,1]1e e e --- (83)11【零点】已知函数2||33()()(3)(3)3x x f x g x b f x x x -≤⎧⎪==--⎨-->⎪⎩,,函数,,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围是( ) A. 11(,)4-+∞ B. 11(3,)4--C. 11(,)4-∞- D. (3,0)- (84)12【零点】已知关于的方程,,若对任意的,该方程总存在唯一的实数解,则实数a 的取值范围是( B ) A.B.C.D.(85)12【零点】已知当x ∈(1,+∞)时;关于x 的方程xlnx+(2−k)xk=−1有唯一实数解,则k 值所在的范围( A )A.( 3,4 )B.( 4, 5 )C. ( 5 , 6 )D. ( 6, 7 )(86)10【零点】已知函数f (x )={2018xx ≥0–x x <0则关于x 的方程f [f(x)]=t 给出下列五个命题:① 存在实数t 使得方程没有实数根 ② 存在实数t 使得方程恰有1个实数根③ 存在实数t 使得方程恰有2个不同实数根 ④ 存在实数t 使得方程恰有3个不同实数根 ⑤ 存在实数t 使得方程恰有4个不同实数根 其中正确命题个数是( B )A. 4B. 3C. 2D. 1(87)12【考查二次函数值域】已知函数()()33f x x a x a =--+(0)a >在[]1,b -上的值域为[]22,0a --,则b 的取值范围是( A )A .[]0,3B .[]0,2C .[]2,3D .(]1,3-(88)16【外接球与内切球】.如图,圆形纸片的圆心为O ,半径为 6 cm ,该纸片上的正方形ABCD 的中心为O .,,,E F G H 为圆O 上的点,,,,ABE BCF CDG ADH △△△△分别是以,,,AB BC CD DA 为底边的等腰三角形,沿虚线剪开后,分别以,,,AB BC CD DA 为折痕折起,,,ABE BCF CDG ADH △△△△,使得,,,E F G H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为 .16.答案:27解析:如下图,连结OE 交AB 于点I ,设,,,E F G H 重合于点P .正方形的边长为(0)x x >,则2x OI =,62x IE =-.因为该四棱锥的侧面积是底面积的2倍,所以6222x x-=⋅,解得4x =.设该四棱锥的外接球的球心为Q ,外接球半径为R ,则OC OP ===,222)R R =+,解得R =,外接球的体积34327V π==. (89)12 【导数法】设函数,则关于函数说法错误的是( C ) A .在区间,内均有零点 B .与的图象有两个交点 C. ,使得在,处的切线互相垂直 D .恒成立(90)12【极值点偏移】已知函数()xf x e ax =-有两个零点12,x x ,12x x <,则下面说法正确的是( D ) A .122x x +< B .a e <C .121x x >D .有极小值点0x ,且1202x x x +<(91)12【均值不等式】.若0,0,1x y x y >>+=,则2222x y x y +++的最小值为( A ) A.14B.4 D.12(92)12【恒成立-分离参数法】已知函数f (x )=ax +xlnx (a ∈R)的图像在点x =1e处的切线斜率为 1.当k ∈Z 时, 不等式 f (x )−kx +k >0在x ∈(1,+∞)上恒成立,则k 的最大值是( C )A. 1B. 2C. 3D. 4(93)12【等和线】在平行四边形ABCD 中,AB=1 AD=2 ∠BAD =π3,动点P 在以点C 为圆心并且与BD 相切的圆上,若AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ 则λ+μ 的最大值为 ( D ) A. 1 B. √5 C. 2√2 D. 3 (94)(12)已知函数()f x ax =,()ln g x x =,存在(]0,t e ∈,使得()()f t g t -的最小值为3,则函数()ln g x x=图象上一点P 到函数()f x ax =图象上一点Q 的最短距离为( D )()3xf x e x =-()y f x =(0,1)(1,)+∞ln y x =1x R ∀∈2x R ∃∈()y f x =1x x =2x x =()1f x ≥-F ABD CPOQA .1eB .41e +41e + D .41e +(95)12【函数综合】定义在实数集R 上的奇函数()f x 满足(+2)=-()f x f x ,且当[1,1]x ∈-时,()f x x =,则下列四个命题:① (2018)0f =; ②函数f(x)的最小正周期为2; ② 当x ∈[−2018 , 2018]时,方程1()2f x =有2018个根; ④方程5()log ||f x x =有5个根. 其中真命题的个数为( C )A . 1B . 2 C. 3 D .4(96)10【函数性质与数列】已知定义在R 上的函数)(x f 是奇函数,且满足)()23(x f x f =-,2)2(-=-f ,数列{}n a 满足11-=a ,且12+=na n S nn({}n a S n 为的前项和n ),则=)(5a f ( D ) A .3- B .2- C .3 D .2(97)12【存在与任意】设函数()2ln 2f x x x x =-+,若存在区间[]1,,2a b ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],a b 上的值域为()()2,2k a k b ++⎡⎤⎣⎦,则k 的取值范围是( C )A .92ln 21,4+⎛⎫ ⎪⎝⎭B .92ln 21,4+⎡⎤⎢⎥⎣⎦C. 92ln 21,10+⎛⎤ ⎥⎝⎦D .92ln 21,10+⎡⎤⎢⎥⎣⎦(98)15【存在与任意】已知函数()sin f x x x =-,若2(2)()f a f a -+≥0,则实数a 的取值范围是 .54+(99)15【存在与任意】若函数3()f x x x =+,若2(2)()f a f a -+≥0,则实数a 的取值范围是 54(100)16【存在与任意】已知函数xxx f ln )(=,-=)(x g e ax x +2(e 是自然对数的底数),对任意的∈1x R ,存在]2,31[2∈x ,有)()(21x g x f ≤,则a 的取值范围为 . ),2[+∞(101)12【导数综合】已知函数x x x x f cos sin )(-=,现有下列结论: ①当],0[π∈x 时,0)(≥x f ;②当πβα<<<0时,αββαsin sin ⋅>⋅;③若m x x n <<sin 对)2,0(π∈∀x 恒成立,则n m -的最小值等于π21-; ④已知]1,0[∈k ,当)2,0(π∈i x 时,满足k x x ii =|sin |的i x 的个数记为n ,则n 的所有可能取 值构成的集合为}.3,2,1,0{ 其中正确的个数为( C )A.1B.2C.3D.4 (102)12对于满足0<b <3a 的任意实数a,b ;函数f (x )=ax 2+bx +c 总有两个不同的零点,则a+b−c a的取值范围()A. (1 , 74] B. (1 ,2] C. [1 ,+∞) D. (2 ,+∞)(103)15.记{}⎩⎨⎧<≥=ba b b a a b a ,,,max ,设{}82,4max 22+-+-=x y y x M ,,若对一切实数y x ,,m m M 22-≥ 恒成立,则实数m 的取值范围是 ▲ .(104)12.记{}min ,,a b c 为,,a b c 中的最小值,若,x y 为任意正实数,则11min 2,,M x y y x ⎧⎫=+⎨⎬⎩⎭的最大值为( D )A. 1+2(105)12【导数+隐含零点】已知函数f (x )=xlnx +12x 2, x 0是函数f(x)的极值点。

函数导数压轴小题2(师生版)

函数导数压轴小题2(师生版)

函数导数压轴小题21、设函数,函数,若对任意的,总存在,使得,则实数的取值范围是( )A .B .C .D .2、已知函数)2()(2Inx xk x e x f x +-=,若 x =2 是函数 f(x)的唯一的一个极值点,则实数 k 的取值范围为( )A .(-∞,e]B .[0,e]C .(-∞,e)D .[0,e)3、已知函数,212)(-=x e x g ,若成立,则的最小值是( )A .B .C .D .4、已知函数,则函数的零点的个数为( )A .6B .7C .8D .95、已知函数⎪⎩⎪⎨⎧≤+>+=2,22,2)(2x x x e x x x f x函数有两个零点,则实数的取值范围为( )A .B .C .D .6、已知函数满足,若对任意正数a ,b 都有,则x 的取值范围是 ( )A .B .C .D .7、定义在上的偶函数 ,当时,,且在上恒成立,则关于的方程的根的个数叙述正确的是( )A .有两个B .有一个C .没有D .上述情况都有可能8、已知函数的定义域为,当时,,且对任意的实数,等式成立,若数列满足,且,则f (2021)=___________9、已知函数⎩⎨⎧<+-≥++=0,10,)1()(x b ax x m x In x f (m <-1),对于任意且.均存在唯一实数t ,使得,且.若关于x 的方程有4个不相等的实数根,则a 的取值范围是 ( )A .B .C .D .10、已知定义在R 上的函数y =f (x )对于任意的x 都满足f (x +1)=-f (x ),当-1≤x <1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值范围是( )A .∪(5,+∞)B .∪C .∪(5,7) D .∪[5,7)11、定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为( )A .B .C .D .12、已知函数,若方程有四个不同的实数根,,,,则的取值范围是( )A .B .C .D .13、已知函数f (x )是R 上的单调函数,且对任意实数x ,都有31]122)([=++xx f f ,则=)3(log 2f ( ) A .1 B . C . D .0函数导数压轴小题21、设函数,函数,若对任意的,总存在,使得,则实数的取值范围是()A .B .C .D .2、已知函数)2()(2Inxxkxexfx+-=,若x =2 是函数f(x)的唯一的一个极值点,则实数k的取值范围为()A.(-∞,e]B.[0,e]C.(-∞,e)D.[0,e)3、已知函数,212)(-=x exg,若成立,则的最小值是()A.B.C.D.4、已知函数,则函数的零点的个数为()A.6 B.7 C.8 D.95、已知函数⎪⎩⎪⎨⎧≤+>+=2,22,2)(2xxxexxxf x函数有两个零点,则实数的取值范围为()A.B.C.D.6、已知函数满足,若对任意正数a,b都有,则x的取值范围是()A.B.C.D.7、定义在上的偶函数 ,当时,,且在上恒成立,则关于的方程的根的个数叙述正确的是( )A .有两个B .有一个C .没有D .上述情况都有可能8、已知函数的定义域为,当时,,且对任意的实数,等式成立,若数列满足,且,则f (2021)=___________∴f (2021)=21-9、已知函数⎩⎨⎧<+-≥++=0,10,)1()(x b ax x m x In x f (m <-1),对于任意且.均存在唯一实数t ,使得,且.若关于x 的方程有4个不相等的实数根,则a 的取值范围是 ( ) A .B .C .D .10、已知定义在R 上的函数y =f (x )对于任意的x 都满足f (x +1)=-f (x ),当-1≤x <1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值范围是( )A .∪(5,+∞) B .∪C .∪(5,7) D .∪[5,7)11、定义在上的函数满足,且当时, ,对,,使得,则实数的取值范围为( )A .B .C .D .12、已知函数,若方程有四个不同的实数根,,,,则的取值范围是( )A .B .C .D .13、已知函数f (x )是R 上的单调函数,且对任意实数x ,都有31]122)([=++x x f f ,则=)3(log 2f ( ) A .1 B . C . D .0。

导数压轴小题(含答案)

导数压轴小题(含答案)

导数压轴小题1. 已知函数f(x)=xe x−m2x2−mx,则函数f(x)在[1,2]上的最小值不可能为( )A. e−32m B. −12mln2m C. 2e2−4m D. e2−2m2. 已知函数f(x)=sinxx ,若π3<a<b<2π3,则下列结论正确的是( )A. f(a)<f(√ab)<f(a+b2) B. f(√ab)<f(a+b2)<f(b)C. f(√ab)<f(a+b2)<f(a) D. f(b)<f(a+b2)<f(√ab)3. 已知e为自然对数的底数,对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,则实数a的取值范围是( )A. [1,e]B. (1,e]C. (1+1e ,e] D. [1+1e,e]4. 若存在正实数x,y,z满足z2≤x≤ez且zln yz=x,则ln yx的取值范围为( )A. [1,+∞)B. [1,e−1]C. (−∞,e−1]D. [1,12+ln2]5. 已知方程ln∣x∣−ax2+32=0有4个不同的实数根,则实数a的取值范围是( )A. (0,e 22) B. (0,e22] C. (0,e23) D. (0,e23]6. 设函数f(x)=e x(sinx−cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为( )A. −e 2π(1−e2016π)1−e2πB. −e2π(1−e1008π)1−eπC. −e 2π(1−e1008π)1−e2πD. −e2π(1−e2014π)1−e2π7. 若函数f(x)满足f(x)=x(fʹ(x)−lnx),且f(1e )=1e,则ef(e x)<fʹ(1e)+1的解集为( )A. (−∞,−1)B. (−1,+∞)C. (0,1e)D. (1e,+∞)8. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,且 a ≠1);② g (x )≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若f (1)g (1)+f (−1)g (−1)=52,则 a 等于 ( )A. 12B. 2C. 54D. 2 或 129. 已知函数 f (x )=1+lnx x,若关于 x 的不等式 f 2(x )+af (x )>0 有两个整数解,则实数 a 的取值范围是 ( ) A. (−1+ln22,−1+ln33) B. (1+ln33,1+ln22) C. (−1+ln22,−1+ln33] D. (−1,−1+ln33]10. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 f (x )−m (x −1)>0 对任意的 x >1 恒成立,则 m 的最大值为 ( ) A. 2B. 3C. 4D. 511. 已知函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0,若 f (−a )+f (a )≤2f (1),则实数 a 的取值范围是 ( ) A. (−∞,−1]∪[1,+∞) B. [−1,0] C. [0,1]D. [−1,1]12. 已知 fʹ(x ) 是定义在 (0,+∞) 上的函数 f (x ) 的导函数,若方程 fʹ(x )=0 无解,且 ∀x ∈(0,+∞),f [f (x )−log 2016x ]=2017,设 a =f (20.5),b =f (log π3),c =f (log 43),则 a ,b ,c 的大小关系是 ( )A. b >c >aB. a >c >bC. c >b >aD. a >b >c13. 已知函数 f (x )={lnx,x ≥11−x 2,x <1,若 F (x )=f [f (x )+1]+m 有两个零点 x 1,x 2,则 x 1⋅x 2 的取值范围是 ( ) A. [4−2ln2,+∞) B. (√e,+∞) C. (−∞,4−2ln2]D. (−∞,√e)14. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=(x +1)e x , 则对任意的 m ∈R ,函数 F (x )=f(f (x ))−m 的零点个数至多有 ( ) A. 3 个B. 4 个C. 6 个D. 9 个15. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( ) A. (0,1e)B. (ln33,e) C. (0,ln33] D. [ln33,1e)16. 已知 f (x ) 是定义在 R 上的偶函数,其导函数为 fʹ(x ),若 fʹ(x )<f (x ),且 f (x +1)=f (3−x ),f (2015)=2,则不等式 f (x )<2e x−1 的解集为 ( ) A. (1,+∞)B. (e,+∞)C. (−∞,0)D. (−∞,1e)17. 设函数 f (x ) 的导函数为 fʹ(x ),对任意 x ∈R 都有 fʹ(x )>f (x ) 成立,则 ( )A. 3f (ln2)>2f (ln3)B. 3f (ln2)=2f (ln3)C. 3f (ln2)<2f (ln3)D. 3f (ln2) 与 2f (ln3) 的大小不确定18. 已知函数 f (x )=x 33+12ax 2+2bx +c ,方程 fʹ(x )=0 两个根分别在区间 (0,1) 与 (1,2) 内,则 b−2a−1的取值范围为 ( )A. (14,1)B. (−∞,14)∪(1,∞)C. (−1,−14)D. (14,2)19. 已知 f (x )=∣xe x ∣,又 g (x )=f 2(x )−tf (x )(t ∈R ),若满足 g (x )=−1 的 x 有四个,则 t 的取值范围是 ( )A. (−∞,−e 2+1e) B. (e 2+1e,+∞)C. (−e 2+1e,−2) D. (2,e 2+1e)导数压轴小题(含答案)20. 已知 f (x ) 是定义在 (0,+∞) 上的单调函数,且对任意的 x ∈(0,+∞),都有 f [f (x )−log 2x ]=3,则方程 f (x )−fʹ(x )=2 的解所在的区间是 ( )A. (0,12)B. (12,1)C. (1,2)D. (2,3)21. 已知函数 f (x )={√1+9x 2,x ≤01+xe x−1,x >0,点 A ,B 是函数 f (x ) 图象上不同两点,则 ∠AOB (O 为坐标原点)的取值范围是 ( ) A. (0,π4)B. (0,π4]C. (0,π3)D. (0,π3]22. 定义:如果函数 f (x ) 在 [a,b ] 上存在 x 1,x 2 (0<x 1<x 2<a) 满足fʹ(x 1)=f (b )−f (a )b−a,fʹ(x 2)=f (b )−f (a )b−a ,则称函数 f (x ) 是 [a,b ] 上的“双中值函数”.已知函数 f (x )=x 3−x 2+a 是 [0,a ] 上的“双中值函数”,则实数 a 的取值范围是 ( ) A. (13,12)B. (32,3)C. (12,1)D. (13,1)23. 已知函数 f (x )=2mx 2−2(4−m )x +1,g (x )=mx ,若对于任意实数 x ,函数 f (x ) 与 g (x ) 的值至少有一个为正值,则实数 m 的取值范围是 ( )A. (2,8)B. (0,2)C. (0,8)D. (−∞,0)24. 已知 a,b ∈R ,且 e x+1≥ax +b 对 x ∈R 恒成立,则 ab 的最大值是( )A. 12e 3B. √22e 3 C.√32e 3 D. e 325. 函数 f (x ) 是定义在区间 (0,+∞) 上的可导函数 , 其导函数为 fʹ(x ),且满足 xfʹ(x )+2f (x )>0,则不等式 (x+2016)f (x+2016)5<5f (5)x+2016的解集为 ( ) A. {x >−2011} B. {x ∣x <−2011} C. {x ∣−2011<x <0}D. {x∣∣−2016<x <−2011}26. 设 D =√(x −a )2+(lnx −a 24)2+a 24+1(a ∈R ),则 D 的最小值为( ) A. √22B. 1C. √2D. 227. 已知定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,且当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),若 a =0.76f (0.76),b =log 1076f (log 1076),c =60.6f (60.6),则 a ,b ,c 的大小关系是 ( )A. a >b >cB. b >a >cC. c >a >bD. a >c >b28. 对任意的正数 x ,都存在两个不同的正数 y ,使 x 2(lny −lnx )−ay 2=0 成立,则实数 a 的取值范围为 ( ) A. (0,12e)B. (−∞,12e)C. (12e,+∞)D. (12e,1)29. 已知函数 f (x )=x 3−6x 2+9x ,g (x )=13x 3−a+12x 2+ax −13(a >1)若对任意的 x 1∈[0,4],总存在 x 2∈[0,4],使得 f (x 1)=g (x 2),则实数 a 的取值范围为 ( )A. (1,94]B. [9,+∞)C. (1,94]∪[9,+∞)D. [32,94]∪[9,+∞)30. 定义在 R 上的偶函数 f (x ) 满足 f (2−x )=f (x ),且当 x ∈[1,2] 时,f (x )=lnx −x +1,若函数g (x )=f (x )+mx 有 7 个零点,则实数 m 的取值范围为 ( )A. (1−ln28,1−ln26)∪(ln2−16,ln2−18)B. (ln2−16,ln2−18) C. (1−ln28,1−ln26) D. (1−ln28,ln2−16)31. 已知函数 f (x )={e x ,x ≥0ax,x <0,若方程 f (−x )=f (x ) 有五个不同的根,则实数 a 的取值范围为 ( ) A. (−∞,−e )B. (−∞,−1)C. (1,+∞)D. (e,+∞)32. 已知 fʹ(x ) 是奇函数 f (x ) 的导函数,f (−1)=0,当 x >0 时,xfʹ(x )−f (x )>0,则使得 f (x )>0 成立的 x 的取值范围是 ( ) A. (−∞,−1)∪(0,1) B. (−1,0)∪(1,+∞) C. (−1,0)∪(0,1)D. (−∞,−1)∪(1,+∞)33. 已知函数 f (x ) 在定义域 R 上的导函数为 fʹ(x ),若方程 fʹ(x )=0 无解,且 f [f (x )−2017x ]=2017,当 g (x )=sinx −cosx −kx 在 [−π2,π2] 上与 f (x ) 在 R 上的单调性相同时,则实数 k 的取值范围是 ( )A. (−∞,−1]B. (−∞,√2]C. [−1,√2]D. [√2,+∞)34. 已知函数 f (x )=e x ∣x∣,关于 x 的方程 f 2(x )−2af (x )+a −1=0(a ∈R )有 3 个相异的实数根,则 a 的取值范围是 ( ) A. (e 2−12e−1,+∞)B. (−∞,e 2−12e−1) C. (0,e 2−12e−1) D. {e 2−12e−1}35. 函数 y =f (x ) 图象上不同两点 A (x 1,y 1),B (x 2,y 2) 处的切线的斜率分别是 k A ,k B ,规定 φ(A,B )=∣k A −k B ∣∣AB∣叫做曲线在点 A 与点 B 之间的“弯曲度”.设曲线 y =e x 上不同的两点 A (x 1,y 1),B (x 2,y 2),且 x 1−x 2=1,若 t ⋅φ(A,B )<3 恒成立,则实数 t 的取值范围是 ( )A. (−∞,3]B. (−∞,2]C. (−∞,1]D. [1,3]36. 已知函数 f (x )=ax 3+3x 2+1,若至少存在两个实数 m ,使得 f (−m ),f (1),f (m +2) 成等差数列,则过坐标原点作曲线 y =f (x ) 的切线可以作 ( ) A. 3 条B. 2 条C. 1 条D. 0 条37. 已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),⋯,则第 60 个整数对是 ( ) A. (5,7)B. (4,8)C. (5,8)D. (6,7)38. 已知函数 f (x )={∣log 3x ∣,0<x <3,−cos (π3x),3≤x ≤9.若存在实数 x 1,x 2,x 3,x 4,当 x 1<x 2<x 3<x 4 时,满足 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1⋅x 2⋅x 3⋅x 4 的取值范围是 ( ) A. (7,294)B. (21,1354) C. [27,30)D. (27,1354)39. 已知函数 f (x )=e 2x ,g (x )=lnx +12的图象分别与直线 y =b 交于 A ,B 两点,则 ∣AB∣ 的最小值为 ( )A. 1B. e 12C. 2+ln22D. e −ln3240. 设 A ,B 分别为双曲线 C :x 2a 2−y 2b 2=1(a >0,b >0) 的左、右顶点,P ,Q 是双曲线 C 上关于 x 轴对称的不同两点,设直线 AP ,BQ 的斜率分别为 m ,n ,则2b a+a b+12∣mn∣+ln ∣m ∣+ln ∣n ∣ 取得最小值时,双曲线 C 的离心率为 ( ) A. √2B. √3C. √6D. √6241. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,a ≠1);② g (x ) ≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若 f (1)g (1)+f (−1)g (−1)=52,则使 log a x >1 成立的 x 的取值范围是 ( )A. (0,12)∪(2,+∞)B. (0,12)C. (−∞,12)∪(2,+∞)D. (2,+∞)42. 已知函数 f (x )=∣sinx ∣(x ∈[−π,π]),g (x )=x −2sinx (x ∈[−π,π]),设方程 f(f (x ))=0,f(g (x ))=0,g(g (x ))=0 的实根的个数分别为 m ,n ,t ,则 m +n +t = ( )A. 9B. 13C. 17D. 2143. 设 f (x ) 是定义在 R 上的奇函数,且 f (2)=0,当 x >0 时,有xfʹ(x )−f (x )x 2<0 恒成立,则不等式 x 2f (x )>0 的解集是 ( )A. (−2,0)∪(2,+∞)B. (−∞,−2)∪(0,2)C. (−∞,−2)∪(2,+∞)D. (−2,0)∪(0,2)44. 已知函数 f (x )={−x 2+2x,x ≤0ln (x +1),x >0,若 ∣f (x )∣≥ax ,则 a 的取值范围是 ( ) A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]45. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为 (x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +m i=1y i )= ( ) A. 0B. mC. 2mD. 4m46. 若函数 f (x )=x −13sin2x +asinx 在 (−∞,+∞) 单调递增,则 a 的取值范围是 ( )A. [−1,1]B. [−1,13] C. [−13,13] D. [−1,−13]47. 已知两曲线 y =x 3+ax 和 y =x 2+bx +c 都经过点 P (1,2),且在点 P处有公切线,则当 x ≥12 时,log bax 2−c 2x的最小值为 ( )A. −1B. 1C. 12D. 048. 直线 y =m 分别与 y =2x +3 及 y =x +lnx 交于 A ,B 两点,则 ∣AB∣的最小值为 ( ) A. 1B. 2C. 3D. 449. 设函数 f (x )=x 2−2x +1+alnx 有两个极值点 x 1,x 2,且 x 1<x 2,则 f (x 2) 的取值范围是 ( ) A. (0,1+2ln24) B. (1−2ln24,0)C. (1+2ln24,+∞) D. (−∞,1−2ln24)50. 设直线 l 1,l 2 分别是函数 f (x )={−lnx,0<x <1,lnx,x >1,图象上点 P 1,P 2处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则 △PAB 的面积的取值范围是 ( )A. (0,1)B. (0,2)C. (0,+∞)D. (1,+∞)51. 已知定义在 R 上的奇函数 f (x ),其导函数为 fʹ(x ),对任意正实数 x 满足 xfʹ(x )>2f (−x ),若 g (x )=x 2f (x ),则不等式 g (x )<g (1−3x ) 的解集是 ( ) A. (14,+∞)B. (−∞,14)C. (0,14)D. (−∞,14)∪(14,+∞)52. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是( )A. (−∞,0)B. (0,12)C. (0,1)D. (0,+∞)53. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 (m −2)(x −2)<f (x ) 对任意的 x >2 恒成立,则 m 的最大值为 ( ) A. 4B. 5C. 6D. 854. 已知函数 f (x )=a x+xlnx ,g (x )=x 3−x 2−5,若对任意的 x 1,x 2∈[12,2],都有 f (x 1)−g (x 2)≥2 成立,则 a 的取值范围是 ( )A. (0,+∞)B. [1,+∞)C. (−∞,0)D. (−∞,−1]55. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e,1) B. [−32e ,34) C. [32e ,34)D. [32e,1)56. 函数 f (x )={(x −a )2+e,x ≤2xlnx+a +10,x >2(e 是自然对数的底数),若 f (2) 是函数 f (x ) 的最小值,则 a 的取值范围是 ( ) A. [−1,6]B. [1,4]C. [2,4]D. [2,6]57. f (x ),g (x )(g (x )≠0) 分别是定义在 R 上的奇函数和偶函数,当 x <0时,fʹ(x )g (x )<f (x )gʹ(x ),且 f (−3)=0,f (x )g (x )<0 的解集为 ( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(0,3)C. (−3,0)∪(3,+∞)D. (−∞,−3)∪(0,3)58. 已知函数 f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当 x ∈(0,1)时 f (x ) 取得极大值,当 x ∈(1,2) 时 f (x ) 取得极小值,则 (b +12)2+(c −3)2 的取值范围是 ( )A. (√372,5) B. (√5,5)C. (374,25)D. (5,25)59. 若关于 x 的方程 ∣x 4−x 3∣=ax 在 R 上存在 4 个不同的实根,则实数a 的取值范围为 ( ) A. (0,427)B. (0,427]C. (427,23)D. (427,23]60. 设函数 f (x ) 在 R 上存在导函数 fʹ(x ),若对 ∀x ∈R ,有 f (−x )+f (x )=x 2,且当 x ∈(0,+∞) 时,fʹ(x )>x .若 f (2−a )−f (a )≥2−2a ,则 a 的取值范围是 ( )A. (−∞,1]B. [1,+∞)C. (−∞,2]D. [2,+∞)61. 已知 e 为自然对数的底数,若对任意的 x ∈[1e,1],总存在唯一的 y ∈[−1,1],使得 lnx −x +1+a =y 2e y 成立,则实数 a 的取值范围是 ( ) A. [1e ,e]B. (2e,e]C. (2e,+∞)D. (2e ,e +1e)62. 设函数 f (x )={2x +1,x >0,0,x =0,2x −1,x <0.若不等式 f (x −1)+f (mx)>0 对任意x >0 恒成立,则实数 m 的取值范围是 ( ) A. (−14,14)B. (0,14)C. (14,+∞)D. (1,+∞)63. 若 0<x 1<x 2<1,则 ( )A. e x 2−e x 1>lnx 2−lnx 1B. e x 1−e x 2<lnx 2−lnx 1C. x2e x1>x1e x2D. x2e x1<x1e x264. 函数f(x)在定义域R内可导,若f(x)=f(2−x),且(x−1)fʹ(x)<0,若a=f(0),b=f(12),c=f(3),则a,b,c的大小关系是( )A. a>b>cB. b>a>cC. c>b>aD. a>c>b65. 已知函数f(x)=x−4+9x+1,x∈(0,4).当x=a时,f(x)取得最小值b,则函数g(x)=(1a )∣x+b∣的图象为( )A. B.C. D.66. f(x)是定义在(0,+∞)上的单调函数,且对∀x∈(0,+∞)都有f(f(x)−lnx)=e+1,则方程f(x)−fʹ(x)=e的实数解所在的区间是( )A. (0,1e ) B. (1e,1) C. (1,e) D. (e,3)67. 已知R上的奇函数f(x)满足fʹ(x)>−2,则不等式f(x−1)<x2(3−2lnx)+3(1−2x)的解集是( )A. (0,1e) B. (0,1) C. (1,+∞) D. (e,+∞)68. 已知函数f(x)=sinxx,给出下面三个结论:①函数f(x)在区间(−π2,0)上单调递增,在区间(0,π2)上单调递减;②函数f(x)没有最大值,而有最小值;③函数f(x)在区间(0,π)上不存在零点,也不存在极值点.其中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③69. 已知函数 f (x ) 是定义在 R 上的可导函数,fʹ(x ) 为其导函数,若对于任意实数 x ,有 f (x )−fʹ(x )>0,则 A. ef (2015)>f (2016) B. ef (2015)<f (2016) C. ef (2015)=f (2016)D. ef (2015) 与 f (2016) 大小不能确定70. 若存在正实数 m ,使得关于 x 的方程 x +a (2x +2m −4ex )[ln (x +m )−lnx ]=0 有两个不同的根,其中 e 为自然对数的底数,则实数 a 的取值范围是 ( )A. (−∞,0)B. (0,12e)C. (−∞,0)∪(12e,+∞)D. (12e,+∞)71. 定义在 (0,π2) 上的函数 f (x ),fʹ(x ) 是它的导函数,且恒有 f (x )⋅tanx <fʹ(x ) 成立,则 ( ) A. √3f (π4)>√2f (π3)B. f (1)<2f (π6)sin1C. √2f (π6)>f (π4) D. √3f (π6)<f (π3)72. 已知函数 f (x )=x 3+ax 2+bx +c ,下列结论中错误的是 ( )A. ∃x 0∈R ,f (x 0)=0B. 函数 y =f (x ) 的图象是中心对称图形C. 若 x 0 是 f (x ) 的极小值点,则 f (x ) 在区间 (−∞,x 0) 单调递减D. 若 x 0 是 f (x ) 的极值点,则 fʹ(x 0)=073. 已知函数 f (x )=ln x2+12,g (x )=e x−2,若 g (m )=f (n ) 成立,则 n −m 的最小值为 ( )A. 1−ln2B. ln2C. 2√e −3D. e 2−374. 设函数f(x)=e x(x3−3x+3)−ae x−x(x≥−2),若不等式f(x)≤0有解.则实数a的最小值为( )A. 2e −1 B. 2−2eC. 1+2e2D. 1−1e75. 设函数f(x)=2lnx−12mx2−nx,若x=2是f(x)的极大值点,则m 的取值范围为( )A. (−12,+∞) B. (−12,0)C. (0,+∞)D. (−∞,−12)∪(0,+∞)76. 已知函数f(x)=ax3+bx2−2(a≠0)有且仅有两个不同的零点x1,x2,则( )A. 当a<0时,x1+x2<0,x1x2>0B. 当a<0时,x1+x2>0,x1x2<0C. 当a>0时,x1+x2<0,x1x2>0D. 当a>0时,x1+x2>0,x1x2<077. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A. (2,+∞)B. (1,+∞)C. (−∞,−2)D. (−∞,−1)78. 设f(x)、g(x)是定义域为R的恒大于零的可导函数,且fʹ(x)g(x)−f(x)gʹ(x)<0,则当a<x<b时,有( )A. f(x)g(x)>f(b)g(b)B. f(x)g(a)>f(a)g(x)C. f(x)g(b)>f(b)g(x)D. f(x)g(x)>f(a)g(a)79. 设函数fʹ(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=fʹ(x)−3,则4f(x)>fʹ(x)的解集为( )A. (ln43,+∞) B. (ln23,+∞) C. (√32,+∞) D. (√e3,+∞)80. 下列关于函数f(x)=(2x−x2)e x的判断正确的是( )①f(x)>0的解集是{x∣0<x<2};②f(−√2)是极小值,f(√2)是极大值;③f(x)没有最小值,也没有最大值;④f(x)有最大值,没有最小值.A. ①③B. ①②③C. ②④D. ①②④参考答案,仅供参考啊1. D 【解析】fʹ(x)=e x+xe x−m(x+1)=(x+1)(e x−m),因为1≤x≤2,所以e≤e x≤e2,①当m≤e时,e x−m≥0,由x≥1,可得fʹ(x)≥0,此时函数f(x)单调递增.所以当x=1时,函数f(x)取得最小值,f(1)=e−32m.②当m≥e2时,e x−m≤0,由x≥1,可得fʹ(x)≤0,此时函数f(x)单调递减.所以当x=2时,函数f(x)取得最小值,f(2)=2e2−4m.③当e2>m>e时,由e x−m=0,解得x=lnm.当1≤x<lnm时,fʹ(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,fʹ(x)>0,此时函数f(x)单调递增.所以当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=−m2ln2m.2. D 【解析】fʹ(x)=xcosx−sinxx2(0<x<π).(i)当x=π2时,fʹ(x)=−4π2<0;(ii)当0<x<π,且x≠π2时,fʹ(x)=xcosx−sinxx2=cosx(x−tanx)x2.①当0<x<π2时,根据三角函数线的性质,得x<tanx,又cosx>0,所以fʹ(x)<0;②当π2<x<π时,tanx<0,则x−tanx>0,又cosx<0,所以fʹ(x)< 0.综合(i)(ii),当0<x<π时,fʹ(x)<0.所以f(x)在(0,π)上是减函数.若π3<a<b<2π3,则π3<a<√ab<a+b2<b<2π3,所以f(a)>f(√ab)>f(a+b2)>f(b).来自QQ群339444963 3. C 【解析】令f(x1)=a−x1,则f(x1)=a−x1在x1∈[0,1]上单调递减,且f(0)=a,f(1)=a−1.令g(x2)=x22e x2,则gʹ(x2)=2x2e x2+x22e x2=x2e x2(x2+2),且g(0)=0,g(−1)=1e,g(1)=e.若对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,即f(x1)=g(x2),则f(x1)=a−x1的最大值不能大于g(x2)的最大值,即f(0)=a≤e,因为g(x2)在[−1,0]上单调递减,在(0,1]上单调递增,所以当g(x2)∈(0,1e]时,有两个x2使得f(x1)=g(x2).若只有唯一的x2∈[−1,1],使得f(x1)=g(x2),则f(x1)的最小值要比1e大,所以f(1)=a−1>1e,所以a>1+1e,故实数a的取值范围是(1+1e,e].来自QQ群3394449634. B 【解析】zln yz=x,所以xz=lny−lnz,所以lny=xz+lnz,所以ln yx =lny−lnx=xz+lnz−lnx=xz+ln zx,令zx =t,则ln yx=1t+lnt,又因为z2≤x≤ez,所以12≤xz≤e,即t∈[1e ,2],令ln yx=1t+lnt=f(t),则fʹ(t)=t−1t2,令fʹ(t)=0即t=1,又因为1e≤t≤2,所以t∈[1e,1]时fʹ(t)<0,f(t)单调减,t∈[1,2]时fʹ(t)>0,f(t)单调增,所以t=1时f(t)取极小值,即f(1)=1,f(2)=12+ln2,f(1e)=e+ln1e=e−1f(1e )−f(2)=e−ln2−32>e−lne−32=e−52>0,所以f(t)最大值为e−1,所以f(t)∈[1,e−1],所以ln yx∈[1,e−1].5. A【解析】由ln∣x∣−ax2+32=0得ax2=ln∣x∣+32,因为x≠0,所以方程等价为a=ln∣x∣+32x2,设f(x)=ln∣x∣+32x2,则函数f(x)是偶函数,当x>0时,f(x)=lnx+32x2,则fʹ(x)=1x⋅x2−(lnx+32)⋅2xx4=x−2xlnx−3xx4=−2x(1+lnx)x4,由fʹ(x)>0得−2x(1+lnx)>0,得1+lnx<0,即lnx<−1,得0<x<1e,此时函数单调递增,由fʹ(x)<0得−2x(1+lnx)<0,得1+lnx>0,即lnx>−1,得x>1e,此时函数单调递减,即当 x >0 时,x =1e 时,函数 f (x ) 取得极大值 f (1e)=ln 1e +32(1e)2=(−1+32)e 2=12e 2, 作出函数f (x ) 的图象如图:要使 a =ln∣x∣+32x 2,有 4 个不同的交点,则满足 0<a <12e 2.6. D 【解析】提示:令 fʹ(x )=2sinx ⋅e x =0,得 x =kπ,易知当 x =2kπ(k ∈Z ),1≤k ≤1007 时 f (x ) 取到极小值,故各极小值之和为f (2π)+f (4π)+⋯+f (2014π)=−(e 2π+e 4π+⋯+e 2014π)=−e 2π(1−e 2014π)1−e 2π.7. A 【解析】因为 f (x )=x (fʹ(x )−lnx ), 所以 xfʹ(x )−f (x )=xlnx , 所以xfʹ(x )−f (x )x 2=lnx x,所以 [f (x )x]ʹ=lnxx,令 F (x )=f (x )x ,则 Fʹ(x )=lnx x,f (x )=xF (x ),所以 fʹ(x )=F (x )+xFʹ(x )=F (x )+lnx , 所以 fʺ(x )=Fʹ(x )+1x=lnx+1x,因为 x ∈(0,1e ),fʺ(x )<0,fʹ(x ) 单减,x ∈(1e ,+∞),fʺ(x )>0,fʹ(x ) 单增,所以 fʹ(x )≥fʹ(1e )=F (1e )+ln 1e =ef (1e )−1=0,所以 fʹ(x )≥0,所以 f (x ) 在 (0,+∞) 上单增,因为 e ⋅f (e x )<fʹ(1e )+1,fʹ(1e )=−1+e ⋅f (1e )=0, 所以 e ⋅f (e x )<1, 所以 f (e x )<1e ,所以 f (e x )<f (1e ), 所以 0<e x <1e ,所以不等式的解集为 x <−1. 8. A 9. C 【解析】因为 fʹ(x )=1−(1+lnx )x 2=−lnx x 2,所以 f (x ) 在 (0,1) 上单调递增,在 (1,,+∞) 上单调递减,当 a >0 时,f 2(x )+af (x )>0⇔f (x )<−a 或 f (x )>0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a =0 时,f 2(x )+af (x )>0⇔f (x )≠0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a <0 时,f 2(x )+af (x )>0⇔f (x )<0 或 f (x )>−a ,要使不等式 f 2(x )+af (x )>0 恰有两个整数解,必须满足 f (3)≤−a <f (2),得 −1+ln22<a ≤−1+ln33.10. B【解析】因为 f (x )=x +xlnx ,所以 f (x )−m (x −1)>0 对任意 x >1 恒成立,即 m (x −1)<x +xlnx , 因为 x >1,也就是 m <x⋅lnx+x x−1对任意 x >1 恒成立.令 ℎ(x )=x⋅lnx+x x−1,则 ℎʹ(x )=x−lnx−2(x−1)2,令 φ(x )=x −lnx −2(x >1),则 φʹ(x )=1−1x=x−1x>0,所以函数 φ(x ) 在 (1,+∞) 上单调递增.因为 φ(3)=1−ln3<0,φ(4)=2−2ln2>0,所以方程 φ(x )=0 在 (1,+∞) 上存在唯一实根 x 0,且满足 x 0∈(3,4). 当 1<x <x 0 时,φ(x )<0,即 ℎʹ(x )<0, 当 x >x 0 时,φ(x )>0,即 ℎʹ(x )>0,所以函数 ℎ(x ) 在 (1,x 0) 上单调递减,在 (x 0,+∞) 上单调递增. 所以 [ℎ(x )]min =ℎ(x 0)=x 0(1+x 0−2)x 0−1=x 0∈(3,4).所以 m <[g (x )]min =x 0,因为 x 0∈(3,4),故整数 m 的最大值是 3. 11. D 【解析】函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0, 将 x 换为 −x ,函数值不变,即有 f (x ) 图象关于 y 轴对称,即 f (x ) 为偶函数,有 f (−x )=f (x ),当 x ≥0 时,f (x )=xln (1+x )+x 2 的导数为 fʹ(x )=ln (1+x )+x 1+x+2x ≥0,则 f (x ) 在 [0,+∞) 递增,f (−a )+f (a )≤2f (1),即为 2f (a )≤2f (1), 可得 f (∣a∣)≤f (1),可得 ∣a∣≤1,解得 −1≤a ≤1.12. D 【解析】由题意,可知 f (x )−log 2016x 是定值,不妨令 t =f (x )−log 2016x ,则 f (x )=log 2016x +t ,又 f (t )=2017,所以 log 2016t +t =2017⇒t =2016,即 f (x )=log 2016x +2016,则 fʹ(x )=1xln2016,显然当x ∈(0,+∞) 时,有 fʹ(x )>0,即函数 f (x ) 在 (0,+∞) 上为单调递增,又 20.5>1>log π3>log 43,所以 f (20.5)>f (log π3)>f (log 43). 13. D 【解析】当 x ≥1 时,f (x )=lnx ≥0, 所以 f (x )+1≥1,所以 f [f (x )+1]=ln (f (x )+1),当 x <1,f (x )=1−x2>12,f (x )+1>32,f [f (x )+1]=ln (f (x )+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e−m,f(x)=e−m−1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e−m−1,当x<1时,1−x12=e−m−1,令t=e−m−1>12,则lnx2=t,x2=e t,1−x12=t,x1=2−2t,所以x1x2=e t(2−2t),t>12,设g(t)=e t(2−2t),t>12,求导gʹ(t)=−2te t,t∈(12,+∞),gʹ(t)<0,函数g(t)单调递减,所以g(t)<g(12)=√e,所以g(x)的值域为(−∞,√e),所以x1x2取值范围为(−∞,√e).14. A 【解析】当x<0时,f(x)=(x+1)e x,可得fʹ(x)=(x+2)e x,可知x∈(−∞,−2),函数是减函数,x∈(−2,0)函数是增函数,f(−2)=−1e2,f(−1)=0,且x→0时,f(x)→1,又f(x)是定义在R上的奇函数,f(0)=0,而x∈(−∞,−1)时,f(x)<0,所以函数的图象如图:令t=f(x)则f(t)=m,由图象可知:当t∈(−1,1)时,方程f(x)=t至多3个根,当t∉(−1,1)时,方程没有实数根,而对于任意m∈R,方程f(t)=m至多有一个根,t∈(−1,1),从而函数F(x)=f(f(x))−m的零点个数至多有3个.15. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y=ax在区间(0,3]上有三个交点.画图如下.当 a ≤0 时,显然,不合乎题意,当 a >0 时,由图知,当 x ∈(0,1] 时,存在一个交点,当 x >1 时,f (x )=lnx ,可得 g (x )=lnx −ax (x ∈(1,3]),gʹ(x )=1x−a =1−ax x,若 gʹ(x )<0,可得 x >1a,g (x ) 为减函数,若 gʹ(x )>0,可得 x <1a,g (x ) 为增函数,此时 y =f (x ) 与 y =ax 必须在 [1,3] 上有两个交点,即 y =g (x ) 在 [1,3] 上有两个零点,所以 {g (1a)>0,g (3)≤0,g (1)≤0,解得ln33≤a <1e,故函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点时,ln33≤a <1e.16. A 【解析】因为函数 f (x ) 是偶函数, 所以 f (x +1)=f (3−x )=f (x −3).所以 f (x +4)=f (x ),即函数 f (x ) 是周期为 4 的周期函数. 因为 f (2015)=f (4×504−1)=f (−1)=f (1)=2, 所以 f (1)=2. 设 g (x )=f (x )e x,则 gʹ(x )=fʹ(x )e x −f (x )e xe 2x=fʹ(x )−f (x )e x<0,所以 g (x ) 在 R 上单调递减. 不等式 f (x )<2e x−1 等价于 f (x )e x<2e,即 g (x )<g (1),所以 x >1,所以不等式 f (x )<2e x−1 的解集为 (1,+∞). 17. C 【解析】构造函数 g (x )=f (x )e x,则函数求导得 gʹ(x )=fʹ(x )−f (x )e x.由已知 fʹ(x )>f (x ),所以 gʹ(x )>0,即 g (x ) 在实数范围内单调递增, 所以 g (ln2)<g (ln3),即f (ln2)e ln2<f (ln3)e ln3,解得 3f (ln2)<2f (ln3).18. A 【解析】由题意,fʹ(x )=x 2+ax +2b ,因为 fʹ(x ) 是开口朝上的二次函数,所以 {fʹ(0)>0fʹ(1)<0fʹ(2)>0,得 {b >0,a +a +2b <0,2+a +b >0, 由此可画出可行域,如图,b−2a−1表示可行域内的点 (a,b ) 和点 P (1,2) 连线的斜率,显然 PA 的斜率最小,PC 的斜率最大.19. B 【解析】令 y =xe x ,则 yʹ=(1+x )e x ,由 yʹ=0,得 x =−1,当 x ∈(−∞,−1) 时,yʹ<0,函数 y 单调递减,当 x ∈(−1,∞) 时,yʹ>0 函数单调递增.做出 y =xe x 图象,利用图象变换得 f (x )=∣xe x ∣ 图象(如图),令 f (x )=m ,则关于 m 方程 ℎ(m )=m 2−tm +1=0 两根分别在 (0,1e ),(1e ,+∞) 时(如图),满足 g (x )=−1 的 x 有 4 个,由 ℎ(1e )=1e 2−1e t +1<0 解得 t >e 2+1e.20. C【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)−log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)−log2x为定值,设t=f(x)−log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,fʹ(x)=1ln2⋅x,将f(x)=log2x+2,fʹ(x)=1ln2⋅x代入f(x)−fʹ(x)=2,可得log2x+2−1ln2⋅x=2,即log2x−1ln2⋅x=0,令ℎ(x)=log2x−1ln2⋅x,分析易得ℎ(1)=−1ln2<0,ℎ(2)=1−12ln2>0,则ℎ(x)=log2x−1ln2⋅x的零点在(1,2)之间,则方程log2x−1ln2⋅x=0,即f(x)−fʹ(x)=2的根在(1,2)上.21. A 【解析】当x≤0时,由y=√1+9x2得y2−9x2=1(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=−3x,此时渐近线的斜率k1=−3,当x>0时,f(x)=1+xe x−1,当过原点的直线和f(x)相切时,设切点为(a,1+ae a−1),函数的导数fʹ(x)=e x−1+xe x−1=(x+1)e x−1,则切线斜率k2=fʹ(a)=(a+1)e a−1,则对应的切线方程为y−(1+ae a−1)=(1+a)e a−1(x−a),即y=(1+a)e a−1(x−a)+1+ae a−1,当x=0,y=0时,(1+a)e a−1(−a)+1+ae a−1=0,即a2e a−1+ae a−1=1+ae a−1,即a2e a−1=1,得a=1,此时切线斜率k2=2,则切线和y=−3x的夹角为θ,则tanθ=∣∣−3−21−2×3∣∣=55=1,则θ=π4,故∠AOB(O为坐标原点)的取值范围是(0,π4).来自QQ群33944496322. C 【解析】由题意可知,因为 f (x )=x 3−x 2+a 在区间 [0,a ] 存在 x 1,x 2 (a <x 1<x 2<b),满足 fʹ(x 1)=fʹ(x 2)=f (a )−f (0)a=a 2−a ,因为 f (x )=x 3−x 2+a , 所以 fʹ(x )=3x 2−2x ,所以方程 3x 2−2x =a 2−a 在区间 (0,a ) 有两个不相等的解. 令 g (x )=3x 2−2x −a 2+a ,(0<x <a ). 则 {Δ=4−12(−a 2+a )>0,g (0)=−a 2+a >0,g (a )=2a 2−a >0,0<16<a. 解得:12<a <1.来自QQ 群339444963所以实数 a 的取值范围是 (12,1). 23. C 【解析】当 m <0 时,函数 f (x ) 的图象为开口向下的抛物线,所以在 x >0 时,f (x )>0 不恒成立. 函数 g (x )=mx 当 x >0 时,g (x )<0. 所以不满足题意.当 m =0 时,f (x )=−8x +1,g (x )=0,不满足题意. 当 m >0 时,需 f (x )>0 在 x <0 时恒成立,所以令 Δ<0 或 {Δ≥0,−b2a ≥0,f (0)>0,即 4(4−m )2−8m <0 或 {4(4−m )2−8m ≥0,4−m 2m≥0.解得 2<m <8 或 0<m ≤2.综合得:0<m <8.24. A 【解析】若 a <0,由于一次函数 y =ax +b 单调递减,不能满足且 e x+1≥ax +b 对 x ∈R 恒成立,则 a ≥0. 若 a =0,则 ab =0.若 a >0,由 e x+1≥ax +b 得 b ≤e x+1−ax ,则 ab ≤ae x+1−a 2x . 设函数 f (x )=ae x+1−a 2x ,所以 fʹ(x )=ae x+1−a 2=a (e x+1−a ),令 fʹ(x )=0 得 e x+1−a =0,解得 x =lna −1,因为 x <lna −1 时,x +1<lna ,则 e x+1<a ,则 e x+1−a <0, 所以 fʹ(x )<0,所以函数 f (x ) 递减;同理,x >lna −1 时,fʹ(x )>0,所以函数 f (x ) 递增;所以当 x =lna −1 时,函数取最小值,f (x ) 的最小值为 f (lna −1)=2a 2−a 2lna .设 g (a )=2a 2−a 2lna (a >0),gʹ(a )=a (3−2lna )(a >0),由 gʹ(a )=0 得 a =e 32,不难得到 a <e 32时,gʹ(a )>0;a >e 32时,gʹ(a )<0;所以函数 g (a ) 先增后减,所以 g (a ) 的最大值为 g (e 32)=12e 3,即 ab 的最大值是 12e 3,此时 a=e 32,b =12e 32.25. D 来自QQ 群339444963【解析】构造函数 g (x )=x 2f (x ),gʹ(x )=x(2f (x )+xfʹ(x )), 当 x >0 时,因为 2f (x )+xfʹ(x )>0, 所以 gʹ(x )>0,所以g(x)在(0,+∞)上单调递增,因为不等式(x+2016)f(x+2016)5<5f(5)x+2016,所以x+2016>0时,即x>−2016时,(x+2016)2f(x+2016)<52f(5),所以g(x+2016)<g(5),所以x+2016<5,所以−2016<x<−2011.26. C 【解析】S=(x−a)2+(lnx−a24)2(a∈R),其几何意义为:两点(x,lnx),(a,a 24)的距离的平方,由y=lnx的导数为yʹ=1x,所以k=1x1,点(a,a24)在曲线y=14x2上,所以yʹ=12x,所以k=12x2,令f(x)=lnx,g(x)=14x2,则D(x)=√(x1−x2)2+[f(x1)−g(x2)]2+g(x2)+1,而g(x2)+1是抛物线y=14x2上的点到准线y=−1的距离,即抛物线y=14x2上的点到焦点(0,1)的距离,则D可以看作抛物线上的点(x2,g(x2))到焦点距离和到f(x)=lnx上的点的距离的和,即∣AF∣+∣AB∣,由两点之间线段最短,得D最小值是点F(0,1)到f(x)=lnx上的点的距离的最小值,由点到直线上垂线段最短,这样就最小,即取B(x0,lnx0),则fʹ(x0)⋅lnx0−1x0=−1,垂直,则 lnx 0−1=−x 02,解得 x 0=1,所以 F 到 B (1,0) 的距离就是点 F (0,1) 到 f (x )=lnx 上的点的距离的最小值, 所以 D 的最小值为 ∣DF ∣=√2.27. D 【解析】定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,可知函数 f (x ) 是偶函数, 所以 y =xf (x ) 是奇函数,又因为当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),所以函数 y =xf (x ) 在 R 上既是奇函数又是减函数; 0.76∈(0,1),60.6<912∈(2,4),log 1076≈log 1.56∈(4,6).所以 a >c >b .来自QQ 群33944496328. A 【解析】由 x 2(lny −lnx )−ay 2=0(x,y >0),可得:a =ln y x (y x)2,令y x=t >0,所以 a =lnt t2,设 g (t )=lnt t2,gʹ(t )=1t×t 2−2tlnt t 4=1−2lnt t 3.令 gʹ(t )>0.解得 0<t <√e ,此时函数 g (t ) 单调递增; 令 gʹ(t )<0.解得 t >√e ,此时函数 g (t ) 单调递减.又t>1时,g(t)>0;1>t>0时,g(t)<0.可得函数g(t)的图象.因此当a∈(0,12e )时,存在两个正数,使得a=lntt2成立,即对任意的正数x,都存在两个不同的正数y,使x2(lny−lnx)−ay2=0成立.29. C 【解析】函数f(x)=x3−6x2+9x,导数为f′(x)=3x2−12x+9=3(x−1)(x−3),可得f(x)的极值点为1,3,由f(0)=0,f(1)=4,f(3)=0,f(4)=4,可得f(x)在[0,4]的值域为[0,4];g(x)=13x3−a+1 2x2+ax−13(a>1),导数为g′(x)=x2−(a+1)x+a=(x−1)(x−a),当1<x<a时,g′(x)<0,g(x)递减;当x<1或x>a时,g′(x)> 0,g(x)递增.由g(0)=−13,g(1)=12(a−1),g(a)=−16a3−12a2−13>−13,g(4)=13−4a,当3≤a≤4时,13−4a≤12(a−1),g(x)在[0,4]的值域为[−13,12(a−1)],由对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),可得[0,4]⊆[−13,12(a−1)],即有4≤12(a−1),解得a≥9不成立;当1<a<3时,13−4a>12(a−1),g(x)在[0,4]的值域为[−13,13−4a],由题意可得[0,4]⊆[−13,13−4a],即有4≤13−4a,解得a≤94,即为1<a≤94;当 a >4 时,可得 g (1) 取得最大值,g (4)<−3 为最小值,即有 [0,4]⊆[13−4a,12(a −1)],可得 13−4a ≤0,4≤12(a −1),即 a ≥134,且 a ≥9,解得 a ≥9.综上可得,a 的取值范围是 (1,94]∪[9,+∞).30. A【解析】因为函数 f (2−x )=f (x ) 可得图象关于直线 x =1 对称,且函数为偶函数则其周期为 T =2, 又因为 fʹ(x )=1x −1=1−x x,当 x ∈[1,2] 时有 fʹ(x )≤0,则函数在 x ∈[1,2]为减函数,作出其函数图象如图:其中 k OA =ln2−16,k OB =ln2−18,当 x <0 时 , 要使符合题意则 m ∈(ln2−16,ln2−18),根据偶函数的对称性,当 x >0 时,要使符合题意则 m ∈(1−ln28,1−ln26).综上所述,实数 m 的取值范围为 (1−ln28,1−ln26)∪(ln2−16,ln2−18).31. A 【解析】因为 f (x )={e x ,x ≥0ax,x <0,所以 f (−x )={−ax,x >01,x =0e −x ,x <0. 显然 x =0 是方程 f (−x )=f (x ) 的一个根, 当 x >0 时,e x =−ax, ⋯⋯① 当 x <0 时,e −x =ax, ⋯⋯②显然,若 x 0 为方程 ① 的解,则 −x 0 为方程 ② 的解, 即方程 ①,② 含有相同个数的解, 因为方程 f (−x )=f (x ) 有五个不同的根, 所以方程 ① 在 (0,+∞) 上有两解,。

导数极值-2024高考数学压轴小题(原卷版)

导数极值-2024高考数学压轴小题(原卷版)

导数极值-2024高考小题压轴练一.选择题(共12小题) 1.关于函数f (x )=2x+lnx ,下列判断不正确的是( ) A .x =2是f (x )的极小值点B .函数y =f (x )﹣x 有且只有1个零点C .存在正实数k ,使得f (x )>kx 恒成立D .对任意两个正实数x 1,x 2,且x 2>x 1,若f (x 1)=f (x 2),则x 1+x 2>4 2.已知函数f (x )={ax −lnx ,x >0ax +ln(−x),x <0,若f (x )有两个极值点x 1,x 2,记过点A (x 1,f (x 1)),B (x 2,f (x 2))的直线的斜率为k ,若0<k ≤2e ,则实数a 的取值范围为( ) A .(1e,e ]B .(1e,2]C .(e ,2e ]D .(2,2+1e]3.函数f (x )=13x 3+12bx 2+cx +d 在(0,2)内既有极大值又有极小值,则c 2+2bc +4c 的取值范围是( ) A .(0,116) B .(0,14)C .(0,12)D .(0,1)4.已知函数f (x )=e x ﹣2ax ﹣1在区间(﹣1,1)内存在极值点,且f (x )<0在R 上恰好有唯一整数解,则实数a 的取值范围是( ) A .[e 2−12e 2,e2) B .(e−12,e2)C .[e 2−14e2,e−12e )∪(e−12,e 2)D .[e 2−14e 2,12)∪(e−12,e 2−14] 5.已知函数f(x)=sin(ωx +π6)(ω>0).给出以下几个结论: ①若对任意x ∈R ,均有f(x)=f(π3−x),则ω的最小值为2; ②若对任意x ∈R ,均有f(x)=−f(π3−x),则ω的最小值为5; ③若f (x )在区间(0,π2)上的极小值点有且仅有2个,则203<ω≤323.其中,正确结论的序号是( )A .①②B .①③C .②③D .①②③6.若函数f(x)=a(x −2)e x +lnx +1x 在(0,2)上存在两个极值点,则a 的取值范围是( ) A .(−∞,−14e 2) B .(−∞,−1e )C .(−∞,−1e )∪(−1e ,−14e 2) D .(−1e,−14e 2)∪(1,+∞) 7.已知函数f (x )=axlnx ﹣x 2+(3﹣a )x +1(a ∈R ),若f (x )存在两个极值点x 1,x 2(x 1<x 2),当x 2x 1取得最小值时,实数a 的值为( )A .0B .1C .2D .38.设函数f (x )=x 3+ax 2+bx +c (a ,b ,c ∈R ),若关于x 的不等式f (x )<0的解集为:{x |x <m ,且x ≠n },且m =n +1,若f (x )的极大值为M ,极小值为N ,则M +N =( ) A .−427B .−49C .427D .499.若函数f (x )=2x +12sin2x ﹣a sin x 在(0,π2)上恰有两个不同的极值点,则实数a 的取值范围是( ) A .(√2,3)B .(2√2,3)C .(2√2,4)D .(√2,6)10.若函数f(x)=13x 3+12ax 2+2bx +c 在(0,1)上取得极大值,在(1,2)上取得极小值,则b−3a−1的取值范围是( )A .(12,1)B .(1,32)C .(12,2)D .(12,32)11.已知函数f(x)=(x 2−4x +4)e x −a 3x 3+ax 2+1,若f (x )在x =2处取得极小值,则a 的取值范围是( ) A .(﹣∞,0]B .(0,e 2)C .(﹣∞,1]D .(﹣∞,e 2)12.已知定义在(1,+∞)上的函数f (x )满足xf '(x )﹣f (x )=x 2lnx (f '(x )为f (x )的导函数),且f (e )=﹣e 2,则当x >√e 时,f (x )( ) A .有极大值,没有极小值 B .有极小值,没有极大值C .有极大值和极小值D .没有极值二.多选题(共1小题)(多选)13.已知a为常数,函数f(x)=e x(x﹣ae x)有两个极值点x1,x2(x1<x2),则()A.a的取值范围是(0,12)B.a的取值范围是(−∞,12)C.f(x1)<0D.f(x2)>−12三.填空题(共5小题)14.已知函数f(x)=(x2+x+a)e x有两个极值点x1,x2,若f(x)存在最小值,且满足不等式f(x1)⋅f(x2)>−e−3,则a的取值范围为.15.已知函数f(x)=(x2﹣ax+a)e x﹣x2,a∈R,若函数f(x)在x=0处取得极小值,则a的取值范围为.16.已知函数f(x)=e x﹣2ax﹣1在区间(﹣1,1)内存在极值点,且f(x)<0在R上恰好有唯一整数解,则实数a的取值范围是.17.设函数f(x)=ex−(ax+lnx)有两个不同极值点x1,x2,若x1<x2,则f(x1)的取值范围是.18.已知定义在(0,+∞)上的函数f(x)=2xln2−a2x2+e2x+1恒有两个不同的极值点,则a的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22【. 考查函数的零点】设函数 f x
=
1 + cos π2x ,x > 1 ,函数 gx x2, 0 < x ≤ 1
=
x
+
1 x
+
a
x
>
0
,若存在唯一的
x0,使得 hx = minf x ,gx 的最小值为 hx0 ,则实数 a 的取值范围是( )
A. a < -2
B. a ≤ -2
C. a < -1
C. -1 - ln 3
D. -1 - ln 2
28【. 多变量转化+等与不等转化】对于任意 b > 0,a ∈ R,不等式 b - (a - 2) 2+ lnb - (a - 1) 2≥ m2
- m 恒成立,则实数 m 的最大值为( )
A. e
B. 2
C. e
D. 3
|log2 4x-1 |
29. 嵌套函数+零点图像法】函数 f(x) = 0
A. ( -ln2, -31 ln6)
B. ( -ln2, -31 ln6]
C. ( -31 ln6, -3l4n2 ) D. ( -31 ln6, -3l4n2 ]
37【. 导数极值点常规处理手段-转化法】已知函数 f x = xlnx - aex(e 为自然对数的底数)有两个极值
点,则实数 a 的取值范围是( )
在关于 1, 0 对称的点,则实数 m 的取值范围是( )
A. - ∞ , 1 - ln2
B. - ∞ , 1 - ln2
C. 1 - ln2, + ∞
D. 1 - ln2, + ∞
14【. 通过构造函数破题】已知函数 f (x) = ex+ mln x(m ∈ R, e 为自然对数的底数),若对任意的正数 x1, x2,当 x1> x2时,都有 f(x1) - f(x2) > x1- x2恒成立,则实数 m 的取值范围为
9.【导数的直接应用】若函数
f
(x)
=
ex(
sin x
+
acos x
)
在(
π 4
,
π 2
)上单调递增,则实数
a
的取值范围是
()
A. ( - ∞ 1]
B. ( - ∞ 1)
C. [1, + ∞)
D. (1 + ∞)
10【. 利用对称中心破题】已知函数
f
(x)
=
x3-
32 x2+
34 x
+
81 ,

2016
B. ( + ∞ , 1 - ln 2) C. (1 - ln 2, 1)
D. (1, 1 + ln 2)
31【. 导数+嵌套函数法+分离参数】函数 f(x) = - x2+ 3x + a, g(x) = 2x- x2,若 f[g(x)]≥ 0 对 x ∈[0, 1]恒成立,
则实数 a 的取值范围是( )
A. a < 0
B. .a ≤− 1
C. 0 < a ≤ 4
D. a < 0 或 0 < a ≤ 4
33【. 导数+嵌套函数法+分离参数】已知函数
f
(x)
=
e1 ⋅ex
+
a 2
x2
−(a
+
1)x
+
a(a
>
0),其中
e
为自然对数
的底数.若函数 y = f(x)与 y = f[ f(x)]有相同的值域,则实数 a 的最大值为( )
实根,则此 8 个实根之和是( )
x≠4
x=
1 4
.
若方程
af
2(x)
+
bf
(x)
+
c
=
0

8
个不同的
A. .52
B. 4
C.
11 4
D. 2
2ex-1,x<1
30【. 嵌套函数法】已知函数 f x = x3+x,x≥1 ,则 f f x < 2 的解集为( )
A. (1 - ln 2, + ∞)
A. [ -e, + ∞)
B. [ -ln2, + ∞)
C. [ -2, + ∞)
D. ( -21 ,0]
32【. 导数+嵌套函数法+定义域与值域的关系】已知函数 f(x) = ex+ a⋅e−x+ 2(a ∈ R,e 为自然对数的底 数),若 y = f(x)与 y = f( f(x))的值域相同,则 a 的取值范围是( )
f(n) -4a n+1
(n

N
*)的最小值为(

A.
37 4
B.
35 8
C.
28 3
D.
27 4
19【. 分离参数法+隐含零点】已知函数 f(x) = x + xln x,若 k ∈ Z,并且 k(x - 1) < f(x)对任意的 x > 1 恒成 立,则 k 的最大值为( )
A. 2
极大值为 21 ,则 m 的值为
.
4.【导数的切线法】设函数 f(x) = 32 x2- 2ax(a > 0)与 g(x) = a2ln x + b 有公共点,且在公共点处的切线方 程相同,则实数 b 的最大值为( )
A.
1 2e
B. 21 e2
C.
1 e
D. - 23e
5.【导 数 的 切 线 法 】 若 对 于 函 数 f x = ln x + 1 + x 2 图 象 上 任 意 一 点 处 的 切 线 l 1 , 在 函 数 g x
B. 3
C. 4
D. 5
20【. 考查函数的零点+嵌套函数】已知函数 f(x) =
log5(1−x) , −(x−2)2+2,
x<1 x≥1
,则方程
f
(x
+
1 x

2)
=
a
的实根
个数不可能为( )
A. 8 个
B. 7 个
C. 6 个
D. 5 个
21【. 考 查 函 数 的 零 点 】 定 义 在 R 上 的 偶 函 数 f ( x ) 满 足 f ( 2 - x ) = f ( x ) , 且 当 x ∈ 1, 2 时 , f ( x )
时,x +y 1 的取值范围是( )
A. [41 , 34 ]
B. [0, 34 ]
C. .[41 , 43 ]
D. [0, 43 ]
18【. 考查函数性质】已知函数 f (x) = x2+ (a + 8)x + a2+ a - 12(a < 0),且 f (a2- 4) = f (2a - 8),则
+ (b - d)2的最小值为( )
A. 1
B. 2
C. 3
D. 4
7.【导数的切线法】若直线
kx
-
y
-
k
+
1
=
0(x

R)和曲线
E
:y
=
ax
3
+
bx
2
+
5 3
(ab

0)的图像交于
A(x1, y1), B(x2, y2), C(x3, y3) (x1< x2< x3)三点时,曲线 E 在点 A,点 C 处的切线总是平行,则过点
导数压轴小题练习
1.【图像法】设函数 f(x) = ex(2x - 1) - ax + a,其中 a < 1,若存在唯一的整数 x0使得 f(x0) < 0,则 a 的 取值范围是( )
A. [ - 23e ,1)
B. [ - 23e ,34 )
C. [ 23e ,34
D. [ 23e ,1)
2.【图像法】已知函数 f x = xex− mx + m,若 f x < 0 的解集为(a, b),其中 b < 0;不等式在(a, b)中
= asinxcosx - x 的图象上总存在一条切线 l2,使得 l1⊥ l2,则实数 a 的取值范围为( )
A. 22-1 ,1
B.
-1

1-2 2
C.
-
∞,
1-2 2

2-1 2

+

D. - ∞ , -1 ∪ 1, + ∞
6.【导数的切线法】已知实数 a, b 满足 ln (b + 1) + a - 3b = 0, 实数 c, d 满足 2d - c - 5 = 0,则(a - c)2
= lnx - x + 1,若函数 g(x) = f(x) + mx 有 7 个零点,则实数 m 的取值范围为( )
A. (1-8ln2 ,1-6ln2 )∪(ln26-1 ,ln28-1 ) C. (1-8ln2 ,1-6ln2 )
B. (ln26-1 ,ln28-1 ) D. (1-8ln2 ,ln26-1 )
有 f(x)≤ g(x)恒成立,记(2m + 3)n 的最小值为 f(m, n),则 f(m, n)最大值为( )
A. 1
B.
1 e
C.
1 e2
D. 1 e
27【. 多变量转化+等与不等转化】已知不等式
相关文档
最新文档