圆锥曲线的切线方程
第10讲:圆锥曲线的切线
第12讲:圆锥曲线的切线不管是哪一种圆锥曲线的切线,其本质都是圆锥曲线与直线只有一个交点,即联立圆锥曲线方程与直线方程所得到的一元二次方程有且仅有一个根,即0=∆,相信这对于大家来说都不是问题,在这里我们对圆锥曲线的切线做一些总结,以方便大家在最短的时间内解决题目。
(一)椭圆的切线:①12222=+b y a x 在点P(00,y x )处的切线方程为12020=+by y a x x ②过椭圆外一点Q (11,y x )可以做椭圆的两条切线,两切点所在的直线方程为12121=+by y a x x ③直线m kx y +=与椭圆12222=+by a x 相切时,满足2222m b k a =+例:已知P 为椭圆13422=+y x 上一动点,求点P 到直线062=--y x 的最小值与最大值。
(二)双曲线的切线:①1-2222=by a x 在点P(00,y x )处的切线方程为1-2020=b y y a x x②过椭圆外一点Q (11,y x )可以做椭圆的两条切线,两切点所在的直线方程为1-2121=byy a x x ③直线m kx y +=与椭圆12222=+by a x 相切时,满足2222-m b k a =(三)抛物线的切线:①py x 22=上某点P (00,y x )的切线斜率为p x k 0=,点P(px x 2,20),则切线方程为p x x x p x y 2)(2000+-= ,即pxp x x y 2200-=,通过观察我们知道: 与x 轴的交点为)0,2(x ,切线与x 轴的截距为切点处横坐标的一半, 与y 轴的交点为)2-,0(20px ,在y 轴上的截距为切点纵坐标的相反数。
②A (11,y x ),B (22,y x )均在抛物线py x 22=上,请推证A 、B 处两切线及其两切线的交点坐标。
A 点处切线p x p x x y 2211-=B 点处切线pxp x x y 2222-=两条切线的焦点坐标(1212,22x x x x p+) 我们发现:i 、两切线的交点横坐标为两个切点的中点M 的横坐标 ii 、根据前面弦长知识点可知,直线与抛物线的两个交点满足:122x x pb =-(b 为直线与对称轴的截距),那么我们得到:两切线的交点纵坐标(12222x x pbb p p-==-)与直线与对称轴的截距互为相反数 延伸一:过抛物线对称轴上一点(0,b)做直线与抛物线相交于A 、B 两点,过A 、B 分别做抛物线的切线,两切线相交于点Q ,通过几何画板作图我们发现:不论直线绕P(0,b)如何旋转,两切线的交点的纵坐标恒为-b证明:令过P 的直线为y kx b =+,221212(,),(,)22x x A x B x p p联立22x pyy kx b ⎧=⎨=+⎩得122x x pb =-设A 点处切线pxp x x y 2211-=, B 点处切线p x p x x y 2222-=则两条切线的焦点坐标Q (1212,22x x x x p+) ∴12222Q x x pby b p p -===- 证 毕延伸二、过点Q (,)a b (22b pa <)做抛物线的两条切线分别切抛物线于点A 、B , 直线AB 与y 轴的截距为-b斜率22121212222ABx x x x a p p k x x p p-+===- ∴切点弦方程为:ay x b p=-③对于焦点在x 轴上的抛物线,求切线一般联立方程,利用0=∆求解。
专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法
专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法专题14 圆锥曲线切线方程 微点1 圆锥曲线切线方程的求法 【微点综述】圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的方法及常用结论. 一、圆锥曲线切线方程方法 1.向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程. 例11.已知圆O 的方程是()()222x a y b r -+-=,求经过圆上一点()00,M x y 的圆的切线l 的方程. 2.变换法设椭圆方程为22221x y a b +=,我们作变换:,,x au y bv =⎧⎨=⎩则可把椭圆化为单位圆:221u v +=,从而可将求椭圆的切线方程问题转化为求圆的切线问题. 例22.求过椭圆221169x y +=上一点M ⎛ ⎝⎭的切线l 方程. 3.判别式法可以利用一元二次方程根的判别式来求圆锥曲线的切线方程,这种方法也是中学阶段的常用方法之一.思维导图:设切线方程⇒联立切线与椭圆的方程⇒消去y (或x )得到关于x (或y )的一元二次方程⇒Δ0=求切线斜率⇒写出切线方程. 注意:过双曲线的对称中心不可能作出直线与双曲线相切. 例33.求经过点()2,1M 的双曲线:2222x y -=的切线l 的方程. 4.导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程. 例44.设为,A B 曲线2:4x C y =上两点,,A B 的横坐标之和为4.设M 为曲线C 上一点,C在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 例55.证明:过椭圆C :22221x y m n+=(m >n >0)上一点Q (x 0,y 0)的切线方程为00221x x y y m n +=.5.几何性质法通过对椭圆、双曲线以及抛物线的几何性质的研究,我们知道:(1)若焦点为12,F F 的椭圆或双曲线上有一点M ,则12F MF ∠的平分线一定与圆锥曲线相切;(2)若焦点为F 的抛物线上有一点M ,过M 作准线的垂线,垂足为N ,则FN 的中点P 与M 的连线PM 必与抛物线相切.据此,我们也可以利用圆锥曲线的几何性质作出其切线,然后再求出切线的方程. 例66.求抛物线2:8C y x =上经过点()8,8M 的切线l 的方程. 例77.过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点. 例8(2022乙卷理科)8.已知抛物线C :()220x py p =>的焦点为F ,且F 与圆M :()2241y x ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,P A ,PB 为C 的两条切线,A ,B 是切点,求△P AB 面积的最大值. 【强化训练】(2022桃城区校级模拟)9.已知圆22:1C x y +=,直线:2l x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A .1,02⎛⎫ ⎪⎝⎭B .(0,2)C .(2,1)D .1,12⎛⎫ ⎪⎝⎭(2022聊城一模)10.已知圆22:1C x y +=,直线:20l x y ++=,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B .则直线AB 过定点( ) A .11,22⎛⎫-- ⎪⎝⎭B .()1,1--C .11,22⎛⎫- ⎪⎝⎭D .11,22⎛⎫- ⎪⎝⎭(2022迎泽区校级月考)11.已知圆()22:14C x y -+=.动点P 在直线280x y +-=上,过点P 引圆的切线,切点分别为,A B ,则直线AB 过定点______.12.过圆2216x y +=外一点P (4,2)向圆引切线. (1)求过点P 的圆的切线方程;(2)若过点P 的直线截圆所得的弦长为(3)若过P 点引圆的两条切线,切点分别为1P 、2P ,求过切点1P 、2P 的直线方程. (2021春·黑龙江期中)13.已知点(10,3)P 在椭圆222:199x y C a +=上.若点()00,N x y 在圆222:M x y r +=上,则圆M 过点N 的切线方程为200x x y y r +=.由此类比得椭圆C 在点P 处的切线方程为( )A .13311x y+= B .111099x y += C .11133x y += D .199110x y += (2020.新课标△)14.已知△M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作△M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-= C .210x y -+= D .210x y ++=(2022宿州期末)15.定义:若点()00,P x y 在椭圆()222210x y a b a b+=>>上,则以 P 为切点的切线方程为:00221x x y y a b +=.已知椭圆 22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线 MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11,23⎛⎫- ⎪⎝⎭B .11,23⎛⎫- ⎪⎝⎭C .12,23⎛⎫- ⎪⎝⎭D .12,23⎛⎫- ⎪⎝⎭(2022金安区校级期末)16.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( ) A .1BCD .2(2022吉安期末理)17.过圆222x y r +=上一定点(),o o P x y 的圆的切线方程为20o x x y y r +=.此结论可推广到圆锥曲线上.过椭圆221124x y +=上的点()3,1A -作椭圆的切线l .则过A 点且与直线l 垂直的直线方程为( ) A .20?x y +-= B .30x y --= C .2330x y +-= D .3100x y --=(2022大连期末)18.已知()11,M x y 为圆22:1C x y +=上一点,则过C 上点M 的切线方程为________,若()22,N x y 为椭圆2222:1(0)x y E a b a b+=>>上一点,则过E 上点N 的切线方程为_____________. (2022泸县校级一模)19.椭圆223144x y +=上点P (1,1)处的切线方程是______.(2022金安区校级模拟)20.一般情况下,过二次曲线Ax2+By2=C (ABC ≠0)上一点M (x0,y0)的切线方程为Ax0x+By0y=C ,.若过双曲线22221(0,0)x y a b a b -=>>上一点M (x0,y0)(x0<0)作双曲线的切线l ,已知直线l 过点N 0,2b ⎛⎫⎪⎝⎭,且斜率的取值范围是⎣,则该双曲线离心率的取值范围是______. (2022兴庆区校级一模)21.已知()00,P x y 是抛物线()220y px p =>上的一点,过P 点的切线方程的斜率可通过如下方式求得在22y px =两边同时求导,得:2'2yy p =,则'py y=,所以过P 的切线的斜率0p k y =.试用上述方法求出双曲线22y x 12-=在P 处的切线方程为_________.(2022亳州期末)22.已知椭圆C 的方程为()222210x y a b a b+=>>,离心率12e =,点P (2,3)在椭圆上.(1)求椭圆C 的方程(2)求过点P 的椭圆C 的切线方程(3)若从椭圆一个焦点发出的光线照到点P 被椭圆反射,证明:反射光线经过另一个焦点.(2022福州二模)23.已知椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)若椭圆C 的两条切线交于点M (4,t ),其中t R ∈,切点分别是A 、B ,试利用结论:在椭圆22221x y a b+=上的点()00,x y 处的椭圆切线方程是00221x x y y a b +=,证明直线AB 恒过椭圆的右焦点2F ;(3)试探究2211AF BF +的值是否恒为常数,若是,求出此常数;若不是,请说明理由. (2022香坊区校级三模)24.已知点1(,2)2D -,过点D 作抛物线21:C x y =的两切线,切点为,A B .(1)求两切点,A B 所在的直线方程;(2)椭圆22221(0)x y a b a b +=>>(1)中直线AB 与椭圆交于点P ,Q ,直线,,PQ OP OQ 的斜率分别为k ,1k ,2k ,若123k k k +=,求椭圆的方程. (2022渝中区校级月考)25.已知椭圆22122:1x y C a b+=()0a b >>的离心率为12,过点)E的椭圆1C 的两条切线相互垂直.(△)求椭圆1C 的方程;(△)在椭圆1C 上是否存在这样的点P ,过点P 引抛物线22:4C x y =的两条切线12,l l ,切点分别为,B C ,且直线BC 过点()1,1A ?若存在,指出这样的点P 有几个(不必求出点的坐标);若不存在,请说明理由. (2022杭州模拟)26.已知曲线1C 上任意一点到()0,1F 的距离比到x 轴的距离大1,椭圆2C 的中心在原点,一个焦点与1C 的焦点重合,长轴长为4.(1)求曲线1C 和椭圆2C 的方程;(2)椭圆2C 上是否存在一点M ,经过点M 作曲线1C 的两条切线,MA MB (,A B 为切点)使得直线AB 过椭圆的上顶点,若存在,求出切线,MA MB 的方程,不存在,说明理由.参考答案:1.()()()()200x a x a y b y b r --+--=【分析】设切线l 上任意一点N 的坐标是(),x y ,利用0OM ON ⋅=化简整理可得. 【详解】设切线l 上任意一点N 的坐标是(),x y ,由已知得圆心(),O a b ,()()0000,,,OM x a y b MN x x y y ∴=--=--,又0OM ON ⋅=,即()0000()()()0x x x a y y y b --+--= 所以()()()()()()00000x a x a x a y b y b y b ----+----=⎡⎤⎡⎤⎣⎦⎣⎦, △过圆上的点()00,M x y 的圆的切线l 的方程是:()()()()()()220000x a x a y b y b x a y b --+--=-+-,又()()22200x a y b r -+-=,△所求圆的切线l 的方程为()()()()200x a x a y b y b r --+--=.2.340x y +-=【分析】令,43yx u v ==,利用伸缩变换求得椭圆和点M 在新坐标系下的方程和坐标,然后由圆的切线方程和伸缩变换公式可得.【详解】令,43y x u v ==,则椭圆在新坐标系uOv 下的方程是:221u v +=,点M ⎛ ⎝⎭在新坐标系uOv 下的坐标是:⎝⎭,设过圆221u v +=上的点⎝⎭的切线方程为(22v k u -=-(易得斜率必存在),即(v k u =221u v +=整理得2221(1)(1)(21)02k u k u k k +-+--=由题意可知,22222(1)2(1)(21)0k k k k k =--+--=Δ,整理得2(1)0k +=即1k =-,所以切线方程为(v u =-,即:u v +=∴过椭圆上一点M 的切线l的方程是:43x y+340x y +-=. 3.10x y --=【分析】设直线,与双曲线联立,结合判别式分析,即得解【详解】若直线斜率不存在,过点()2,1M 的直线方程为:2x =,代入2222x y -=可得21y =,与双曲线有两个交点,不是切线;若直线斜率存在,设l 的方程是:()12y k x -=-,即:21y kx k =-+,将它代入方程2222x y -=整理得:()()()222214218840k x k k x k k ---+-+=,由已知20210,k -∆=≠,即()()()2224214218840k k k k k -----+=⎡⎤⎣⎦,解得:1k =,故所求切线l 的方程为:21y x =-+,即:10x y --=. 4.7y x =+【分析】在求得直线AB 的斜率后,便可运用导数法对抛物线的方程求导,得出点M 的坐标,再根据韦达定理和弦长公式求得切线的方程.【详解】设()()1122,,,A x y B x y ,则2212121212,,,444x x x x y y x x ≠==+=,于是直线AB 的斜率为121212121212()()14()4y y x x x x x x k x x x x -+-+====--, 由24x y =,得2x y '=. 设()33,M x y ,由题意可知:312x =,解得32x =,()2,1M ∴. 设直线AB 的方程为y x m =+,故线段的中点为()2,2N m +,1MN m =+将y x m =+代入24x y =得2440x x m --=,当()1610m ∆=+>,即当1m >-时,12x =+22x =-从而可得12AB x =-= 因为AM BM ⊥,且BN AN =,因为直角三角形斜边上的中线等于斜边的一半, 所以BN AN MN ==,所以2AB MN =,即()21m =+, 解得7m =,直线AB 的方程为7y x =+. 5.证明见解析【分析】方法一:分0y >,0y <和0y =,当0y >,0y <时,利用导数求切线方程可得; 方法二:设直线方程联立椭圆方程,利用判别式等于0求切点横坐标,然后可得切线方程. 【详解】法一:由椭圆C :22221x y m n+=,则有22221y x n m =-当0y >时,y =2nx y m '=-,△当00y >时,2000222001x n n n k x x y mm m y n =-=-=-⋅. △切线方程为()200020x n y y x x m y -=-⋅-,整理为:222222220000n x x m y y m y n x m n +=+=,两边同时除以22m n 得:00221x x y ym n+=. 同理可证:00y <时,切线方程也为00221x x y ym n+=. 当0=0y 时,切线方程为x m =±满足00221x x y ym n+=. 综上,过椭圆上一点00(,)Q x y 的切线方程为00221x x y ym n+=. 法二:当斜率存在时,设切线方程为y kx t =+,联立方程:22221x y m ny kx t ⎧+=⎪⎨⎪=+⎩可得222222()n x m kx t m n ++=,化简可得: 22222222()2()0n m k x m ktx m t n +++-=,△由题可得:42222222244()()0m k t m n m k t n ∆=-+-=, 化简可得:2222t m k n =+,△式只有一个根,记作0x ,220222m kt m kx n m k t =-=-+,0x 为切点的横坐标,切点的纵坐标200n y kx t t =+=,所以2020x m k y n =-,所以2020n x k m y =-,所以切线方程为:2000020()()n x y y k x x x x m y -=-=--,化简得:00221x x y ym n+=. 当切线斜率不存在时,切线为x m =±,也符合方程00221x x y ym n+=, 综上:22221x y m n+=在点00(,)x y 处的切线方程为00221x x y y m n +=.6.280x y -+=【分析】根据线段NF 的垂直平分线经过点M 即可求得切线方程.【详解】由抛物线2:8C y x =可得其焦点()2,0F , 准线方程为:2x =-, 过点()8,8M 作准线的垂线,设垂足为N ,则N 的坐标为()2,8-, 又设FN 的中点为P ,则P 的坐标为()0,4,如图所示:故直线PM 的方程为:84480y x --=-, 即280x y -+=,△切线l 的方程为280x y -+=. 7.答案见解析.【分析】根据两切线方程分别为:()11y y p x x =+,()22y y p x x =+,且均过均过点P ,可知弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭.【详解】以22y px =(p >0)为例说明.设点00(,)Q x y 是抛物线22y px =上的任意一点,则过点00(,)Q x y 且与抛物线相切的直线方程为00()y y k x x -=-,联立2002()y pxy y k x x ⎧=⎨-=-⎩得:222222000000(222)20k x k x p ky x k x y kx y -+-++-=,因为二者相切,所以Δ0=,即222222000000(222)4(2)0k x p ky k k x y kx y +--+-=,化简得:0p k y =,又2002y px =, 代入00()y y k x x -=-得:()00y y p x x =+,即抛物线22y px =在00(,)Q x y 处的切线方程为()00yy p x x =+. 设准线上任一点0,2p P y ⎛⎫- ⎪⎝⎭,切点分别为()11,A x y 、()22,B x y ,则切线方程分别为:()11y y p x x =+,()22y y p x x =+两切线均过点P ,则满足1012p y y p x ⎛⎫=-+ ⎪⎝⎭,2022p y y p x ⎛⎫=-+ ⎪⎝⎭.故过两切点的弦AB 方程为:02p y y p x ⎛⎫=- ⎪⎝⎭,则弦AB 过焦点.【点睛】(1)点()00,P x y 是抛物线()220y mx m =≠上一点,则抛物线过点P 的切线方程是:()00y y m x x =+;(2)点()00,P x y 是抛物线()220x my m =≠上一点,则抛物线过点P 的切线方程是:()00x x m y y =+.8.(1)p =2(2)【分析】(1)先求42pFM =+,点F 到圆M 上的点的距离的最小值即为FM r -. (2)求出AB =和点P 到直线AB的距离d =322(6)2144PABb S ⎛⎫--+= ⎪⎝⎭△,根据b 的范围即可求最大值.(1)0,2p F ⎛⎫⎪⎝⎭到圆心4(0,)M -的距离42p FM +,所以点F 到圆M 上的点的距离的最小值为4142pFM r -=+-=, 解得p =2; (2)由(1)知,抛物线的方程为24x y =, 即214y x =,则12y x '=, 设切点()11,A x y ,()22,B x y , 则易得PA l :21124x x y x =-,△PB l :22224x x y x =-,△联立△△可得1212,24x x x x P +⎛⎫⎪⎝⎭,设AB l :y kx b =+,联立抛物线方程,消去y 并整理可得2440x kx b --=, △216160k b ∆=+>,即20k b +>, 且124x x k +=,124x x b =-, △(2,)P k b -△AB ==点P 到直线AB 的距离d =△()322142PABS AB d k b ==+△△,又点(2,)P k b -在圆M :()2241y x ++=上, 故()22144b k --=,代入△得,332222(6)2112154444PAB b b b S ⎛⎫--+⎛⎫-+-== ⎪ ⎪⎝⎭⎝⎭△, 而[]5,3p y b =-∈--,△当b =5时,()max=PAB S【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 9.A【分析】设(2,)P t ,圆心C 的坐标为(0,0),可得以线段PC 为直径的圆N 的方程,两圆方程作差,得两圆公共弦AB 的方程可得答案. 【详解】因为P 为直线l 上的动点,所以可设(2,)P t , 由题意可得圆心C 的坐标为(0,0),以线段PC 为直径的圆N 的圆心为1,2⎛⎫⎪⎝⎭t P所以方程为2220x y x ty +--=,两圆方程作差,即得两圆公共弦AB 的方程为210x ty +-=,()210-+=x ty ,所以直线AB 过定点1,02⎛⎫⎪⎝⎭.故选:A. 10.A【分析】由P A △AC ,PB △BC 可知点A 、B 在以PC 为直径的圆上,设点P 坐标,写出以PC 为直径的圆的方程,然后可得直线AB 方程,再由直线方程可确定所过定点. 【详解】根据题意,P 为直线l :20x y ++=上的动点,设P 的坐标为(),2t t --, 过点P 作圆C 的两条切线,切点分别为A ,B ,则P A △AC ,PB △BC , 则点A 、B 在以PC 为直径的圆上,又由C (0,0),(),2P t t --,则以PC 为直径的圆的方程为:()()20x x t y y t -+++=,变形可得:()2220x y tx t y +-++=,则有22221(2)0x y x y tx t y ⎧+=⎨+-++=⎩,联立可得:()120tx t y -++=,变形可得:()120y t x y +--=, 即直线AB 的方程为()120y t x y +--=,变形可得:()120y t x y +--=,则有1200y x y +=⎧⎨-=⎩,解可得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩,故直线AB 过定点11,22⎛⎫-- ⎪⎝⎭. 故选:A . 11.118,77⎛⎫ ⎪⎝⎭【分析】根据题意,设P 的坐标为(82,)t t -,由圆的切线的性质分析可得则A 、B 在以CP 为直径的圆上,进而可得该圆的方程,进而分析可得直线AB 为两圆的公共弦所在直线的方程,由圆与圆的位置关系分析可得直线AB 的方程,据此分析可得答案. 【详解】根据题意,动点P 在直线280x y +-=上,设P 的坐标为(82,)t t -, 圆22:(1)4C x y -+=,圆心为(1,0),过点P 引圆的切线,切点分别为A ,B ,则PA CA ⊥,PB CB ⊥,则A 、B 在以CP 为直径的圆上,该圆的方程为(1)[(82)](0)()0x x t y y t ---+--=, 变形可得:22(92)(82)0x y t x ty t +---+-=,又由A 、B 在圆C 上,即直线AB 为两圆的公共弦所在直线的方程,则有2222230(92)(82)0x y x x y t x ty t ⎧+--=⎨+---+-=⎩, 则直线AB 的方程为(711)(22)x t x y -=--,则有7110220x x y -=⎧⎨--=⎩,解可得:11787x y ⎧=⎪⎪⎨⎪=⎪⎩;故直线AB 恒过定点11(7,8)7;故答案为:11(7,8)7.【点睛】本题考查直线与圆的位置关系、公共弦方程求法、直线过定点问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两圆相减可得公共弦直线方程的应用. 12.(1)x =4或34200x y +-= (2)y =2或43100x y --= (3)280x y +-=【分析】(1)分k 不存在和k 存在两种情况讨论,利用圆心到直线距离等于半径,求解即可;(22,结合圆心到直线距离公式,可得解; (3)由题意12,,,P O P P 四点共圆,且PO 为直径,写出圆的方程,过切点1P 、2P 的直线即为圆22420x y x y +--=与圆2216x y +=的交线,求解即可. (1)当切线斜率不存在时,过点P (4,2)的直线为x =4,圆心到直线距离等于半径,故x =4为切线;当切线的斜率存在时,设切线方程为()24y k x -=-,即420kx y k --+=.4=,即430k +=解得:34k =-,此时切线方程为34200x y +-=.△过点P 的圆的切线方程为x =4或34200x y +-=; (2)由(1)知,所求切线斜率存在,设直线方程为420kx y k --+=.△r =4,且弦长为△圆心到直线420kx y k --+=的距离2d ==,即2340k k -= 解得k =0或43k =.△所求直线方程为y =2或43100x y --=; (3)由题意,1122,OP PP OP PP ⊥⊥ 故12,,,P O P P 四点共圆,且PO 为直径 △P (4,2),△以PO 为直径的圆圆心为(2,1),半径||2PO r == 故圆的方程为()()22215x y -+-=,由于12,P P 也在圆2216x y +=上,故过切点1P 、2P 的直线为圆22420x y x y +--=与圆2216x y +=的公共弦 两圆方程作差可得过1P 、2P 的直线方程为280x y +-=. 13.C【分析】先根据点在椭圆上,求得2a ,再类比可得切线方程. 【详解】因为点(10,3)P 在椭圆222:199x y C a +=上, 故可得21009199a +=,解得2110a =; 由类比可得椭圆C 在点P 处的切线方程为: 103111099x y +=,整理可得11133x y+=. 故选:C.【点睛】本题考查由椭圆上一点的坐标求椭圆方程,以及类比法的应用,属综合基础题. 14.D【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l 的距离为2d =>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP , min 1PA =,此时PM AB ⋅最小. △()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D.【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题. 15.C【解析】设()26,M t t +,()11,A x y ,()22,B x y ,即可表示出MA 的方程,又M 在MA 上,即可得到()1126132x t y t++=,即可得到直线AB 的方程,从而求出直线AB 过的定点; 【详解】解:因为点M 在直线260x y --=上,设()26,M t t +,()11,A x y ,()22,B x y ,所以MA 的方程为11132x x y y+=,又M 在MA 上,所以()1126132x t y t ++=△,同理可得()2226132x t y t ++=△; 由△△可得AB 的方程为()26132x t yt++=,即()22636x t yt ++=,即()()431260x y t x ++-=,所以4301260x y x +=⎧⎨-=⎩,解得1223x y ⎧=⎪⎪⎨⎪=-⎪⎩,故直线恒过定点12,23⎛⎫- ⎪⎝⎭故选:C 16.C【解析】设1111(,),(0,0)B x y x y >>,根据题意,求得过点B 的切线l 的方程,即可求得C 、D 坐标,代入面积公式,即可求得OCD 面积S 的表达式,利用基本不等式,即可求得答案. 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x y y x =,即111,x y ==时等号成立, 所以OCD. 故选:C【点睛】解题的关键是根据题意,直接写出过点B 的切线方程,进而求得面积S 的表达式,再利用基本不等式求解,考查分析理解,计算化简的能力,属基础题. 17.A【解析】根据类比推理,可得直线l 的方程,然后根据垂直关系,可得所求直线方程.【详解】过椭圆221124x y +=上的点()3,1A -的切线l 的方程为31124x y-+=, 即40x y --=,切线l 的斜率为1, 与直线l 垂直的直线的斜率为-1, 过A 点且与直线l 垂直的 直线方程为(13)y x +=-一, 即20x y +-=. 故选:A【点睛】本题考查类比推理以及直线的垂直关系,属中档题. 18. 111x x y y +=22221x x y ya b+= 【分析】由OM 垂直切线可求出切的斜率,再利用点斜式可求出过C 上点M 的切线方程;利用导数的几何意义在点()22,N x y 处切线的斜率,再利用点斜式求出直线方程 【详解】解:因为11OM y k x =,切线与直线OM , 所以所求切线的斜率为11x y -, 所以所求的切线方程为1111()x y y x x y -=--,即221111y y y x x x -=-+,得221111x x y y x y +=+,因为点()11,M x y 为圆22:1C x y +=上一点,所以22111x y +=,所以过C 上点M 的切线方程为111x x y y +=; 当20y >时,设0y >,由22221x y a b +=得22221y x b a=- 22222y a x b a -= △22222()b y a x a =-△y = △1'222()(2)2b y a x x a-=-⋅-1222()bx a x a -=--=△过点()22,N x y的切线的斜率为△过点()22,N x y的切线的方程为22)y y x x -=-△点()22,N x y 在椭圆上,△2222221x y a b+=,222222222,a y a y b x a b b=+=, △2222()bx b y y x x a ay -=-⋅-, 即222222()b xy y x x a y -=-- 2222222222a y y a y b x x b x -=-+,2222222222a y y b x x a y b x +=+,△222222a y y b x x a b +=,△所求的切线方程为22221x x y ya b+=, 当20y <时,同理可得其切线方程为22221x x y ya b+=所以过E 上点()22,N x y 的切线方程为22221x x y ya b+=, 故答案为:111x x y y +=;22221x x y ya b+= 【点睛】此题考查圆锥曲线的切线方程的求法,属于中档题 19.340x y +-=【分析】由导数的几何意义即可求得切线方程.【详解】△椭圆223144x y +=,△y >0时,y △23xy -'=, △x =1时,13y '=-,即切线斜率13k =-,△椭圆223144x y +=上点P (1,1)处的切线方程是()1113y x -=--,即340x y +-=. 故答案为:340x y +-=. 20.【分析】求得切线方程,将N 代入切线方程,即可求得M 点坐标,求得切线方程,根据斜率公式及离心率公式即可求得答案. 【详解】双曲线在M (x 0,y 0)的切线方程为00221x x y ya b-=,将N 代入切线方程, 解得y 0=﹣2b ,代入双曲线方程解得:x 0,21y b =,即y2bx +,由斜率的取值范围是⎣1≤b a ≤2, 由双曲线的离心率e =c a1≤22b a ≤4,∴双曲线离心率的取值范围, 故答案为:.【点睛】本题考查双曲线的切线方程的应用及离心率公式,考查转化思想,属于中档题.21.20-=x y【详解】分析:结合题中的方法类比求解切线方程即可.详解:用类比的方法对2212y x =-两边同时求导得,22x yy x y y '∴'==,,0002|2x x x k y y =∴='=, △切线方程为2(y x ,整理为一般式即:20x y -.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 22.(1)2211612x y +=;(2)280x y +-=; (3)证明见解析.【分析】(1)根据已知条件列方程组即可求出,,a b c .(2)由直线与椭圆相切,根据判别式Δ0=即可求出直线斜率k . (3)利用向量数量积证明直线1PF 与2F P 关于直线m 对称即可;【详解】(1)由题意可得:2222212491c a a b c a b ⎧=⎪⎪=+⎨⎪⎪+=⎩,解得216a =,212b =,△椭圆C 的方程为:2211612x y +=;(2)显然,过点P (2,3)的切线存在斜率, 设切线l 的斜率为k ,则l :3(2)y k x -=-,由22116123(2)x y y k x ⎧+=⎪⎨⎪-=-⎩得()()222348231648120k x k kx k k +--+--=, 因为直线l 与椭圆C 相切,∴()()()2222Δ64234341648120k k k k k =--+--=,化为:24410k k ++=,解得12k =-.△求过点P 的椭圆切线方程为280x y +-=. (3)证明:△椭圆C 的方程为:2211612x y +=, 则椭圆左右焦点分别为()12,0F -,()22,0F , △过点P 的椭圆切线方程为280x y +-=, △过点P 的椭圆法线方程为m :210x y --=, 法线的方向向量()1,2m =--, △()14,3PF =--,()20,3PF =-, △1112cos ,PF mPF m PF m⋅==-,2222cos ,PF mPF m PF m⋅==- △直线1PF ,2F P 关于直线m 对称;△从椭圆一个焦点发出的光线照到点P ,被椭圆反射后,反射光线一定经过另一个焦点. 【点睛】求椭圆的标准方程有两种方法:△定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程.△待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a ,b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 23.(1)22143x y +=(2)证明见解析(3)是,常数为43【分析】(1)代入点坐标,结合2221b e a=-求解即可;(2)根据结论设出切线方程,两条切线交于点M (4,t ),可得点A 、B 的坐标都适合方程13tx y +=,求出定点坐标即可; (3)联立直线AB 与椭圆,点点距公式表示22,AF BF ,结合韦达定理化简即得解【详解】(1)△椭圆C :()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.△222314b e a =-=,△221914a b +=,△, 由△△得:24a =,23b =,△椭圆C 的方程为22143x y +=. (2)证明:设切点坐标()11,A x y ,()22,B x y ,则切线方程分别为11143x x y y+=,22143x x y y +=. 又两条切线交于点M (4,t ),即1113t x y +=,2213tx y +=,即点A 、B 的坐标都适合方程13tx y +=,令0y =,可得1x = 故对任意实数t ,点(1,0)都适合这个方程,故直线AB 恒过椭圆的右焦点()21,0F .(3)将直线AB 的方程13tx y =-+,代入椭圆方程,得223141203t y y ⎛⎫-++-= ⎪⎝⎭,即2242903t y ty ⎛⎫+--= ⎪⎝⎭, △122612t y y t +=+,1222712y y t =-+, 不妨设10y >,20y <,21AF y =,同理22BF y =,△211212221111y y y y y y AF BF -⎫+=-=⎪⎭1243==,△2211AF BF +的值恒为常数43. 24.(1)2y x =+;(2)2214812x y +=. 【分析】(1)设出切点,利用切点处的导数是斜率,表示出切线方程,1(,2)2D -在切线上,求出两解,分别对应切点,A B 坐标,则方程可求. (2a b 、的一个关系;联立直线和椭圆方程,用上韦达定理,结合123k k k +=,再建立a b 、的一个关系,则椭圆方程可求. 【详解】解:(1)设切点11(,)A x y 22(,)B x y ,则221122,x y x y ==切线的斜率为2y x '=,所以抛物线上过11(,)A x y 点的切线的斜率为12x ,切线方程为()2111112,2y y x x x y x x x -=-=-,1(,2)2D -在切线上,所以21120x x --=,12x =或11x =-, 当12x =时,2114y x ==;当11x =-,2111y x ==,不妨设()(2,4),1,1A B -,1AB k =, 所以两切点,A B 所在的直线方程2y x =+.(2)由e =2234c a =,又222c a b =-,所以224a b =.222244y x x y b=+⎧⎨+=⎩,得225161640x x b ++-=, 21651645P Q P Q x x b x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, 21,Q PP Qk k y y x x ==, 1k =,又因为123k k k +=,()()3,3,223P Q P Q Q P Q Q P P P Q P Q P Qx x x x y y x y x y x x x x x x ++++===+,()2P Q P Q x x x x +=,22161642,1255b b --⨯==,248a =, 所以椭圆的方程2214812x y +=.【点睛】以直线和抛物线、椭圆的位置关系为载体,考查求直线方程、椭圆方程的方法;中档题.25.(△)22143x y +=;(△)满足条件的点P 有两个.【详解】试题分析:(1) 结合椭圆的离心率可求得1c =,则椭圆方程为22143x y +=.(2)由题意首先求得切线方程的参数形式,据此可得直线BC 的方程为002x y x y =-,则点P 的轨迹方程为112y x =-,原问题转化为直线112y x =-与椭圆1C 的交点个数,即满足条件的点P 有两个. 试题解析:(△)由椭圆的对称性,不妨设在x 轴上方的切点为M ,x 轴下方的切点为N , 则1NE k =,NE的直线方程为y x =因为椭圆22122:1x y C a b+= ()0a b >>的离心率为12,所以椭圆22122:143x y C c c+=,所以22221,43y x x y c c ⎧=⎪⎨+=⎪⎩ 0∆=,则1c =, 所以椭圆方程为22143x y +=.(△)设点()11,B x y ,()22,C x y ,()00,P x y ,由24x y =,即214y x =,得12y x '=,△抛物线2C 在点B 处的切线1l 的方程为()1112x y y x x -=-, 即2111122x y x y x =+-, △21114y x =,△112x y x y =-.△点()00,P x y 在切线1l 上,△10012x y x y =-.△ 同理,20022x y x y =-.△ 综合△、△得,点()11,B x y ,()22,C x y 的坐标都满足方程002xy x y =-. △经过()11,B x y ,()22,C x y 两点的直线是唯一的, △直线BC 的方程为002x y x y =-, △点()1,1A 在直线BC 上,△00112y x =-, △点P 的轨迹方程为112y x =-.又△点P 在椭圆1C 上,又在直线112y x =-上, △直线112y x =-经过椭圆1C 内一点()0,1-, △直线112y x =-与椭圆1C 交于两点. △满足条件的点P 有两个.26.(1)21:4C x y =,222:134x y C +=(2)2y =-【分析】(1)依据曲线1C 和椭圆的定义求方程.(2) 假设点M 存在,设切线方程,M 即在抛物线又在椭圆上找到等量关系.【详解】(1)由曲线1C 上任意一点到F (0,1)的距离比到x 轴的距离大1,根据抛物线的定义,曲线1C 为以F (0,1)为焦点的抛物线,则曲线1C :24x y =;设椭圆2C 的方程()222210y x a b a b+=>>,由24a =,a =2,c =1,2223b a c =-=,△椭圆2C :22143y x +=;(2)若存在,由题意设AB 方程:y =kx +2代入24x y =,化简得2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,△ 由于12y x '=,△切线MA 方程为:()11112y y x x x -=-,即2111124y x x x =-,△同理切线MB 方程为:2221124y x x x =-,△ 由△△得1212,24x x x x M +⎛⎫⎪⎝⎭,△M (2k ,-2), 又M (2k ,-2)在椭圆上,24113k +=可得:k =0,△M (0,-2)k =0代入△有:1x =2x =-△椭圆2C 上存在一点M (0,-2)符合题意,此时两条切线的方程为2y =-. 【点睛】本题要证明切点弦过定点,设切点弦的直线方程,得到韦达定理,然后通过切点写出两条切线方程,可以得到交点M 的坐标,由点M 的特性可以求出M 坐标,进而求出切点,写出切线方程.。
圆锥曲线中的切线问题
圆锥曲线中的切线问题过曲线上一点P(x o ,y o )的切线方程(焦点在x 轴上):圆:200r b)-b)(y -(y a)-a)(x -(x =+;椭圆:12020=+b y y a x x ;双曲线:12020=-b y y a x x ;抛物线:)(00x x p y y +=.证明:以双曲线为例.442222020220220420222022022020242022202222202022222020)(4)1)(b a x (4)2(,012)b a x (x .11.11b a b a a y x b x a x b y b y a x b y y y b y b y ax b y y a x x b y a x b y y a x x ---=---=∆=-+--⎪⎪⎩⎪⎪⎨⎧+=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=-得消去①式平方后除以②式,,,.0012222202202220220,即证,所以,得又=∆=--=-b a b a y a x b b y a x 过曲线外一点P(x o ,y o )作曲线的切线,切点A 、B ,过切点A 、B 的直线方程(焦点在x 轴上):圆:200r b)-b)(y -(y a)-a)(x -(x =+;椭圆:12020=+b y y a x x ;双曲线:12020=-b y y a x x ;抛物线:)(00x x p y y +=.证明:以椭圆为例.设切点),(),,(2211y x B y x A ,以A ,B 为切点的直线方程分别为.1122222121=+=+b y y a x x b y y a x x ,若两切线均是P(x o ,y o )点引出的,即两切线均过点P ,则有.112022********=+=+by y ax x by y ax x ,可知点),(),,(2211y x B y x A 均在直线12020=+b y y a x x 上,所以过切点A ,B 的直线方程为12020=+by y a x x .即证.思考1.(2021全国乙卷)已知抛物线C :x 2=2py(y>0)的焦点为F ,且点F 与圆M :x 2+(y+4)2=1上的点最小值为4.(1)求p ;(2)若点P 在M 上,PA ,PB 是C 的两条切线,A ,B 是切点,求PAB ∆面积的最大值.).520;2(最大值为=p 解:(1)焦点坐标为(0,2p ),于4142p=-+是得到p=2;(2)设P(x 0,y 0),切点为),(),,(2211y x B y x A ,设过点),(11y x A 的方程为x 1x=2(y+y 1),联立x 2=4y ,化为关于x 的一元二次方程X 2-2x 1x+4y 1=0,得0=∆,所以x 1x=2(y+y 1)是抛物线上过A 的切线方程,同理可得x 2x=2(y+y 2)是抛物线上过B 点的切线方程.于是过P(x 0,y 0)作抛物线的切线,则过切点A ,B 的方程为x 0x=2(y+y 0),联立抛物线方程消去y 得X 2-2x 0x+4y 0=0,4|4|d AB P 16441||200200202+-=-+=x y x y x x AB 的距离到,点.520S -5)35(151221S 4-114)4(214|4|1644121d ||21S PAB 00020PAB 2020202030202002002020PAB取最小值为时,当,)(,于是)(而所以∆∆∆=-≤≤----=+==++-=+--+=⋅=y y y y y x y x y x x y x y x x AB 2.已知椭圆)0(12222>>=+b a b y a x 的左右焦点分别为F 1,F 2,且|F 1F 2|=2,点M 在直线x=-2上运动,线段MF 2与椭圆相交于N ,当NF 1⊥x 轴时,直线MF 2的斜率的绝对值为42.(1)求椭圆方程;(2)设P 是椭圆上一点,直线PF 1的斜率与直线MF 2的斜率之积为31-,证明直线MP 始终与椭圆相切.(1222=+y x )解:(1).12.2,0122,,22,22,422222222221=+==--=-====y x a a a c b a a b c c a b k NF MF 所以得所以又得为通径的一半,所以(2)设P(x 0,y 0),M(-2,y 1),设过P 的直线方程为1200=+y y xx ,联立椭圆方程消去x 得,.0,12,884024)2(20202020204020022020=∆=+-+=∆=-+-+所以而,y x x y x x x y y y x y .3131,31.121000021-=-⋅+-=⋅=+y x y k k y y x x MF PF 即由是椭圆的切线方程所以.MP .12M )1,2(M ,10000001与椭圆相切即证明直线满足椭圆的切线切线,点于是点=++-+=y y xx y x y x y。
圆锥曲线切线方程的五种求法
圆锥曲线切线方程的五种求法切线对于研究圆锥曲线的性质具有十分重要的作用,中学阶段常用的求圆锥曲线的切线方程的方法主要有以下五种:一、向量法在求圆的切线时,可以利用圆心和切点的连线垂直于切线以及向量的内积运算来求。
例1.已知圆0的方程是(x-a ) 2+ (y-b ) 2=r2,求经过圆上一点M(x0, y0)的圆的切线I的方程.解:设所求切线I上任意一点N的坐标是(x, y)由已知得:点0的坐标是(a,b),且M的坐标是(x0,y0),值得注意的是:此种方法只对于椭圆问题有效.三、判别式法也可以利用一元二次方程根的判别式来求圆锥曲线的切线方程,这种方法也是中学阶段的常用方法之一.例 3. 求经过点M( 2, 1 )的双曲线:x2-2y2=2 的切线I 的方程.将它代入方程x2-2y2=2 中整理得:( 2k2-1 )x2-4k ( 2k-1 )x+( 8k2-8k+4 ) =0,由已知得:△ =[-4k (2k-1 ) ]2-4 (2k2-1 ) (8k2-8k+4 ) =0, 解得:k=1,故所求切线I的方程为:y=x- (2X1 -1 ), 即:x-y-1=0.四、导数法新教材中介绍了微积分的初步知识,我们也可把圆锥曲线的方程看作关于x 的隐函数,利用导数求圆锥曲线的切线方程:例 4. 此处仍以上面的例 3 为例.解:对方程:x2-2y2=2 两边都取关于x 的导数,得:2x-4yy' =0,•••过点M(2, 1)的双曲线x2-2y2=2的切线I的方程为:x-y-1=0.五、几何法通过对椭圆、双曲线以及抛物线的几何性质的研究,我们知道:若焦点为F1、F2的椭圆或双曲线上有一点M则/F1MF2的平分线一定与圆锥曲线相切;又若焦点为F的抛物线上有一点M, 过M作准线的垂线,垂足为N,贝U FN的中点P与M的连线PM必与抛物线相切。
据此,我们也可以将圆锥曲线的切线先用几何方法做出来,然后再求出切线的方程:例 5. 求抛物线C:y2=8x 上经过点M( 8,8)的切线I 的方程.解:由抛物线C的方程可得其焦点F为(2, 0),准线方程为:x=-2 ,过点M(8, 8)作准线的垂线,设垂足为N,贝U N的坐标是( -2 , 8),又设FN的中点为P,则P的坐标为(0, 4),。
专题14 圆锥曲线的切线问题
专题14 圆锥曲线的切线问题一、结论圆锥曲线的切线问题常用方法有几何法,代数法:比如求圆的切线,常用圆心到直线的距离等于半径来解决切线问题,也可以联立直线与圆的方程根据0∆=来求解;比如涉及到椭圆的切线问题,也常常联立直线与椭圆的方程根据0∆=来求解; 对于抛物线的切线问题,可以联立,有时也可以通过求导来求解. 而对于这些圆锥曲线也常常存在一些特殊的求切线公式:1.过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.2.过椭圆22221x y a b+=上一点00(,)P x y 的切线方程为00221x x y ya b +=.3.已知点00(,)M x y ,抛物线C :22(0)y px p =≠和直线l :00()y y p x x =+.(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线. (2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.二、典型例题1.(2021·安徽·六安一中高二期末(文))已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y y a b +=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( )A .1 BCD .2【答案】C 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x yy x =,即111,x y = 所以OCD故选:C【反思】过椭圆()222210x y a b a b+=>>上一点()00,A x y 作切线,切线方程为:00221x x y ya b+=,该结论可以在小题中直接使用,但是在解答题中,需先证后用,所以在解答题中不建议直接使用该公式.2.(2020·江西吉安·高二期末(文))已知过圆锥曲线221x y m n+=上一点()00,P x y 的切线方程为001x x y y m n +=.过椭圆221124x y +=上的点()3,1A −作椭圆的切线l ,则过A 点且与直线l 垂直的直线方程为( ) A .30x y −−= B .-20x y += C .2330x y +−= D .3100x y −−=【答案】B 【详解】过椭圆221124x y +=上的点()3, 1A −的切线l 的方程为()31124y x −+=,即40x y −−=,切线l的斜率为1.与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的直线方程为()13y x +=−−,即20x y +−=. 故选:B【反思】根据题中信息,直接代入公式,但是在代入切线方程为001x x y ym n+=注意不要带错,通过对比本题信息,12m =,4n =,03x =,01y =−,将这些数字代入公式,可求出切线l ,再利用直线垂直的性质求解.3.(2022·江苏南通·一模)过点()1,1P 作圆22:2C x y +=的切线交坐标轴于点A 、B ,则PA PB ⋅=_________.【答案】2− 【详解】圆C 的圆心为()0,0C ,10110CP k −==−, 因为22112+=,则点P 在圆C 上,所以,PC AB ⊥,所以,直线AB 的斜率为1AB k =−,故直线AB 的方程为()11y x −=−−,即20x y +−=, 直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.另解:过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.可知01x =,01y =;0a b ==,22R =,代入计算得到过点()1,1P 作圆22:2C x y +=的切线为:(10)(0)(10)(0)2x y −−+−−=,整理得:20x y +−=,直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.【反思】本题中提供了常规方法和使用二级结论的解法,特别提醒同学们,二级结论的公式代入数字时,最忌讳代入错误,所以需要特别仔细。
圆锥曲线的切线方程的三种求法
圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的三种方法.一、向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程.例1.已知圆O的方程是(x-a)2+(y-b)2=r2,求经过圆上一点M(x0,y0)的圆的切线l的方程.解:设切线l上任意一点N的坐标是(x,y).由(x-a)2+(y-b)2=r2得点O的坐标是(a,b),所以OM=(x0-a,y0-b), MN=(x-x0,y-y0).又因为OM∙MN=0,即[(x-a)-(x0-a)](x0-a)+[(y-b)-(y0-b)](y0-b)=0,所以过圆上的点M(x0,y0)的圆的切线l的方程是:(x0-a)(x-a)+(y0-b)(y-b)=[(x0-a)2+(y0-b)2],所以l的方程:(x0-a)(x-a)+(y0-b)(y-b)=r2.由已知圆的方程与圆上一点的坐标,可得出圆心的坐标,再设出切线上任意一点N的坐标,即可得到与切线垂直的向量,根据向量运算便可求得切线的方程.二、导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程.例2.设A,B为曲线C:y=x24上两点,A与B的横坐标之和为4.设M为曲线C:y=x24上一点,C在M处的切线与直线AB平行,且AB⊥BM,求直线AB的方程.解:设A(x1,y1),B(x2,y2),则x1≠x2,y1=x124,y2=x224,x1+x2=4,于是直线AB的斜率为k=y1-y2x-x=x1+x24=1.由y=x24,得y,=x2.设M(x3,y3),由题意可知:x32=1,解得x3=2,则M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2-m),||MN=||m+1,将y=x+m代入y=x24得x2-4x-4m=0.当Δ=16()m+1>0,即当m>-1时,x1=2+2m+1或x2=2-2m+1,从而可得||AB=2||x1-x2=42(m+1),由||AB=2||MN得42(m+1)=2(m+1),解得m=7,所以直线AB的方程为y=x+7.在求得直线AB的斜率后,便可运用导数法对抛物线的方程求导,得出M点的坐标,再根据韦达定理和弦长公式求得切线的方程.三、几何性质法在解答圆锥曲线问题时,我们经常要用到椭圆、双曲线以及抛物线的几何性质,并结合几何图形,如三角形、梯形、平行四边形的性质来解题.采用几何性质法,关键要根据题意绘制出几何图形,明确各个点、直线、曲线的位置关系,然后运用几何性质来解题.例3.求抛物线C:y2=8x上经过点M(8,8)的切线l的方程.解:由抛物线C:y2=8x可得其焦点F为(2,0),准线方程为:x=-2,过点M(8,8)作准线的垂线,设垂足为N,则N的坐标为(-2,8),又设FN的中点为P,则P的坐标为(0,4),故直线PM的方程为:y=8-48x+4,即x-2y+8=0,所以切线l的方程是:x-2y+8=0.我们根据抛物线的几何性质作出准线,根据图形明确各点、曲线、切线的位置,根据点、直线之间的位置关系以及中点坐标公式建立关系式,求得切线的斜率与方程.相比较而言,几何性质法和导数法比较常用,运用几何性质法和向量法解题过程中的运算量较小.在求圆锥曲线的切线方程时,同学们要结合图形来解题,这样不仅能降低解题的难度,还能提升解题的效率.(作者单位:江苏省阜宁中学)周红芹解题宝典40。
圆锥曲线的切线方程的推导过程
圆锥曲线的切线方程的推导过程圆锥曲线是双曲线的一类,可以分为直角双曲线和非直角双曲线。
关于圆锥曲线的切线方程推导过程,本文将具体讨论,以便让读者更好地了解圆锥曲线的切线方程的推导过程。
一、直角双曲线的切线方程的推导过程直角双曲线,是指双曲线的切线都是直线,其方程为$x^2-y^2=1$。
(1)求对称轴的斜率设直角双曲线的方程:$x^2-y^2=1$,因此其对称轴为$y=0$,因此其斜率为0。
(2)求双曲线的切线方程设双曲线$P(x_0,y_0)$,其切线斜率为$k$,那么其切线方程为:$y-y_0=k(x-x_0)$而根据文章开头给出的直角双曲线的对称轴斜率是0,因此直角双曲线的切线方程可以求得:$y-y_0=0(x-x_0)$即以 $P(x_0,y_0)$ 为切点的切线方程为 $y=y_0$二、非直角双曲线的切线方程的推导过程非直角双曲线是指双曲线的切线都是曲线,其方程为$x^2+y^2=1$。
(1)求对称轴的斜率设非直角双曲线的方程:$x^2+y^2=1$,因此其对称轴为$y=x$,因此其斜率为1。
(2)求双曲线的切线方程设双曲线$P(x_0,y_0)$,其切线斜率为$k$,那么其切线方程为:$y-y_0=k(x-x_0)$而根据文章开头给出的非直角双曲线的对称轴斜率是1,因此非直角双曲线的切线方程可以求得:$y-y_0=1(x-x_0)$即以 $P(x_0,y_0)$ 为切点的切线方程为 $y=x+y_0-x_0$三、推广上文分别讨论了直角双曲线和非直角双曲线的切线方程推导过程,针对更加一般的情况,即双曲线方程为$Ax^2+Bxy+Cy^2+Dx+Ey+F=0$,其中$A,B,C,D,E,F$均为常数,圆锥曲线切线方程的推导过程如下:(1)求对称轴的斜率设双曲线的方程:$Ax^2+Bxy+Cy^2+Dx+Ey+F=0$,因此其对称轴的斜率$m$可以求得:$m=frac{D}{2C}-frac{B}{2A}$(2)求双曲线的切线方程设双曲线$P(x_0,y_0)$,其切线斜率为$k$,那么其切线方程为:$y-y_0=k(x-x_0)$联立以上两方程可以求得双曲线的切线方程:$y-y_0=left (frac{D}{2C}-frac{B}{2A} right )(x-x_0)$四、总结本文结合具体案例,详细讨论了圆锥曲线的切线方程推导过程。
圆锥曲线的切线方程求解方法总结
圆锥曲线的切线方程求解方法总结圆锥曲线是代数几何中的重要概念,指由一个平面与一个锥体相交而产生的曲线。
圆锥曲线包括椭圆、抛物线和双曲线,它们在数学和物理学等领域中有广泛的应用。
本文将总结圆锥曲线切线方程的求解方法,并以椭圆、抛物线和双曲线为例进行说明。
一、椭圆的切线方程求解方法椭圆是一个平面上的闭合曲线,其形状类似于椭圆形。
对于椭圆上的一点P,我们要求解的是通过该点的切线方程。
方法1:使用微积分方法求解椭圆的切线方程。
设椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1(其中a和b为椭圆的半长轴和半短轴),点P的坐标为(x0, y0)。
首先对椭圆方程两边求导,得到2x/a^2 + 2y/b^2 * y' = 0。
然后将点P的坐标代入,得到x0/a^2 + y0/b^2 * y' = 0。
最后将此式变形为y' = -x0 * a^2 / (y0 * b^2),即为所求的切线方程。
方法2:使用解析几何方法求解椭圆的切线方程。
设椭圆的焦点为F1和F2,点P在椭圆上的轨迹为OP。
设P点的坐标为(x0, y0),则PF1和PF2的距离之和等于2a,即PF1 + PF2 = 2a。
又根据焦点和点到直线的距离公式,可得切线所在直线与轴的交点Q的坐标为(a^2/x0, b^2/y0),进而得到切线方程的解析式。
二、抛物线的切线方程求解方法抛物线是一个平面上的开口曲线,其形状类似于抛物形。
对于抛物线上的一点P,我们要求解的是通过该点的切线方程。
方法1:使用微积分方法求解抛物线的切线方程。
设抛物线的标准方程为y^2 = 2px(其中p为抛物线的焦点到顶点的距离),点P的坐标为(x0, y0)。
首先对抛物线方程两边求导,得到2yy' = 2p。
然后将点P的坐标代入,得到y0 * y' = p。
最后将此式变形为y' = p / y0,即为所求的切线方程。
方法2:使用解析几何方法求解抛物线的切线方程。
圆锥曲线切线方程公式推导
圆锥曲线切线方程公式推导
圆锥曲线切线方程:
1. 什么是圆锥曲线:
圆锥曲线是一种双曲线,它具有双曲线特有的性质,即具有凹凸反转
的离心轨迹,在形状上又有圆弧的特性。
它是一种抛物线和双曲线的
结合,形状上是一个凸出来的半圆锥,因此也叫锥形曲线。
2. 圆锥曲线切线方程的定义:
圆锥曲线切线方程是指该曲线上一点,以这点为焦点做一组切线的方程。
3. 圆锥曲线切线方程的推导步骤:
(1)设圆锥曲线上一点A,切线为l。
(2)求出点A在圆锥曲线上满足切线方程的偏移长度s,s=∫[0,t]f(t)dt。
(3)求出切线方程的坡度为曲线在该点的切线的倾斜角,k=f’(t)。
(4)以点A作为参考系,得出该切线的直角坐标为(x,y)=
(cosθs,sinθs),点A的坐标为(x0,y0),可以得出切线的方程为一
般式: y-y0=ks(x-x0)。
4. 圆锥曲线切线方程的应用:
(1)用圆锥曲线切线方程可以表示流体运动轨迹,通过求解切线方程
可以确定某一点所在的水流函数坡度。
(2)用圆锥曲线切线方程可以表示交通运行线路,可以通过确定切线方程的形式,精确控制车辆的行驶速度。
(3)圆锥曲线切线可以用来近似描述光线的传播方程,从而研究光线的行为和光学系统的结构。
(4)圆锥曲线切线可以用来模拟电磁学中偏振波的传播轨迹,从而可以研究电磁散射等现象。
圆锥曲线的切线方程_寇宗娣
∴(3)可以化为 a2b4x2-2a2b4x0x+a4b2y0+a4b4=0,
即 b2x2-2a2x0x+a2y0+a2b2=0.
(4)
∴(4)中 有
△=4b4x02-4b2(a2y02+a2b2) =4b2(b2x02-a2y02)-4a2b4=4a2b4-4a2b4=0.
∴(4)有 唯 一 实 数 解 .
x0x=±2p
y+y0 2
.
过 抛 物 线 :(x-h)2=±2p(y-k)上 一 点 M(x0,y0)的 切 线 方
程
为 :(x0-h)(x-h)=±2p
(y0-k)+(y-k) 2
.
(责任编辑:科 言)
2010 年第 9 期
- 55 -
以
猜想
为
:
x0x a2
-
y0y b2
=1.
证
明
:联
立
x2 a2
-
y2 b2
=1,
x0x a2
-
y0y b2
=1,
得 a2b2y02x2-a4b2y02=b4x02x2-2a2b4x0x+a4b4.
即 (a2b2y02-b4x02)x+2a2b4x0x-a4b2y0-a4b4=0.
(3)
又 -a2y02+b2x02=a2b2,
又 (x0-a)2+(y0-b)2=r2.所 以 (x0-a)(x-a)+(y0-b)(y-b)=r2.
2.
过
椭
圆
x2 a2
+
y2 b2
=1
上一点
p (x0
,y0)做 椭 圆 的 切 线 ,并
圆锥曲线切线方程及简单运用
圆锥曲线切线方程及简单运用圆锥曲线切线方程是一种常见的平面曲线,它可以用平面上两个指定点与它们之间的直线作为参数来定义。
圆锥曲线切线方程的标准方程为:$$\frac{(x-x_1)^2+(y-y_1)^2}{a_1^2}+\frac{(x-x_2)^2+(y-y_2)^2}{a_2^2}=1$$其中$(x_1, y_1)$和$(x_2, y_2)$是指定的两点,而$a_1$和$a_2$是这两点之间的距离,也就是短半径。
圆锥曲线切线的最重要的应用之一就是在几何学中,它可以用来求解平面上两个指定点之间的最优路径。
例如,假设有两个点A(2,3)和B(5,6),我们想知道它们之间的最优路径,则我们可以使用圆锥曲线切线方程来求解。
具体来说,我们可以将切线方程式带入两个点的坐标,从而求出短半径:$$\frac{(2-2)^2+(3-3)^2}{a_1^2}+\frac{(5-2)^2+(6-3)^2}{a_2^2}=1$$从而算出$a_1=a_2=\sqrt 5$,这就是两点之间的最优路径。
此外,圆锥曲线切线方程还可以用来解决特殊的几何问题,例如,求解两个指定点之间的弦长及两端点的角信息等。
假设有两个指定点A(2,3)和B(5,6),当我们知道它们之间的最优路径时,即短半径$a_1=a_2=\sqrt 5$,我们就可以求出弦长,它就是圆锥曲线周长的四分之一,即$$L=\frac{4\pi \sqrt 5}{4}=\pi \sqrt 5$$同时,我们也可以求出AB之间的圆心角,它就是锥角的一半,即$$\theta =\frac{2\pi}{4}=\frac{\pi}{2}$$综上所述,圆锥曲线切线方程是一种常见的平面曲线,它可以用于解决几何问题,包括求解两个指定点之间的最优路径、弦长及圆心角等。
圆锥曲线的切线方程
圆锥曲线的切线方程
圆锥曲线是一种几何曲线,它拥有着独特的几何形状,在古希腊和哥德式艺术中尤为常见。
圆锥曲线具有不同的形状,如圆锥、弧锥等,它们通常都是由一条直线和一条半圆构成的。
而圆锥曲线的切线方程正是由其几何形状决定的。
一般来说,圆锥曲线的切线方程可以用相对简单的解析式来刻画,它的表达式可以写成
y=ax^2+bx+c,其中a、b、c为实数。
这里的a称为圆锥参数,由圆锥的成形决定;b和
c则由圆锥的外接直线的斜率和截距来决定。
由上面表达式可以知,当a<0时,圆锥曲线是一条下凹的曲线;当a=0时,它就会变成
单调递增或者单调递减的直线;而当a>0时,圆锥曲线就变成上凸的曲线。
通过改变a的值,就可以得到各种不同形状的圆锥曲线。
总结来说,圆锥曲线的切线方程是一种实用的几何曲线,它由一条直线和一条半圆构成,可以通过改变圆锥曲线的参数a得到不同形状的几何图案。
切线方程的表达式为
y=ax^2+bx+c,其中a、b、c为实数,可以用来解析其几何形状,从而使圆锥曲线更容易
理解和分析。
圆锥曲线的切线与法线方程
圆锥曲线的切线与法线方程圆锥曲线是平面几何中的重要内容,其切线与法线方程的推导和应用也是数学学习中的重点之一。
圆锥曲线包括圆、椭圆、双曲线和抛物线四种类型。
在圆锥曲线中,每一种曲线都有特定的切线与法线方程。
我们以圆锥曲线的切线与法线方程为例来详细讨论。
1. 圆的切线与法线方程对于圆而言,其切线与法线的性质具有特殊性。
以圆心为原点,半径为r的圆方程为$x^2+y^2=r^2$。
圆的切线与法线方程如下:(1)圆的切线方程:设切点坐标为$(x_0,y_0)$,切线斜率为k,则切线方程为$y=kx+b$,其中$b=y_0-kx_0$。
(2)圆的法线方程:切线斜率为k,法线斜率为$-\frac{1}{k}$,法线方程为$y=-\frac{1}{k}x+c$,其中$c=y_0+\frac{x_0}{k}$。
2. 椭圆的切线与法线方程椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
椭圆的切线与法线方程与圆有所不同,需要根据椭圆的方程进行推导。
3. 双曲线的切线与法线方程双曲线是平面上到两个固定点的距离之差等于常数的点的轨迹。
双曲线的切线与法线方程也需要根据双曲线的方程进行推导。
4. 抛物线的切线与法线方程抛物线是平面上到一个固定点的距离等于到一个固定直线的距离的点的轨迹。
抛物线的切线与法线方程与圆有所不同,同样需要根据抛物线的方程进行推导。
综上所述,圆锥曲线的切线与法线方程是平面几何中重要的内容,对于不同类型的曲线需要采用不同的方法进行推导。
熟练掌握圆锥曲线的切线与法线方程可以帮助我们更好地理解曲线的几何性质,为数学学习提供有效的帮助。
建议学生在学习中多进行练习,加深对圆锥曲线切线与法线方程的理解,提高解题能力。
圆锥曲线切线公式
圆锥曲线切线公式
圆锥曲线,又称为二次曲线,是几何图形中大家都熟悉的视觉元素,其优秀的视觉表现力将被广泛应用到日常设计中。
而圆锥曲线的切线公式便是让曲线的运动更自然更准确的一个关键方程。
什么是圆锥曲线?简单来说,它是二次曲线的一种,又叫做车轮性曲线,由一个车轮状的曲线和两个椭圆形状的曲线组成,也就是我们常见的椭圆形。
它们之间相互连接,形成一个完整的曲线。
圆锥曲线的切线公式是一个精确度很高的方程,可以将曲线的准确性提高到一个很高的程度。
圆锥曲线切线公式是根据曲线圆心切面、曲线圆心线以及曲线圆心切点和曲线点之间的比例关系来求得的。
它的基本公式如下:
切线公式:tn*d=1/r
其中,tn表示曲线的切点到圆心的距离;d表示曲线的切线斜率;r表示圆心到切点圆弧的曲率半径。
圆锥曲线的切线公式可以帮助我们快速准确地计算出任何二次曲线的运动,使它更加自然、立体、充满美感。
它甚至可以被运用到几何设计、动画设计、游戏设计和网页设计中,可谓是一次生活娱乐中不可或缺的元素。
圆锥曲线的切线方程及切点弦方程的应用-图文
圆锥曲线的切线方程及切点弦方程的应用-图文圆锥曲线是一类由一条直线和一个定点(焦点)生成的曲线。
常见的圆锥曲线有椭圆、抛物线和双曲线。
在数学和物理学中,圆锥曲线的切线方程和切点弦方程是非常重要的应用。
一、圆锥曲线的切线方程1.椭圆的切线方程椭圆是一个凹向两侧的曲线,其切线方程可以用点斜式表示。
假设椭圆的标准方程是$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$其中a和b分别是椭圆的半长轴和半短轴。
如果椭圆上的一点P(x1,y1)在曲线上,它的切线方程可以表示为:$y-y1=\frac{b^2}{a^2}(x-x1)$2.抛物线的切线方程抛物线是一个开口向上或向下的曲线,其切线方程可以用点斜式表示。
若抛物线的标准方程是$y^2=4ax$其中a是抛物线的焦点到曲线的距离。
如果抛物线上的一点P(x1,y1)在曲线上,它的切线方程可以表示为:$y-y1=\frac{1}{2a}(x-x1)$3.双曲线的切线方程双曲线是一个开口向上和向下的曲线,其切线方程可以用点斜式表示。
若双曲线的标准方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$其中a和b分别是双曲线的距焦点到曲线的距离。
如果双曲线上的一点P(x1,y1)在曲线上,它的切线方程可以表示为:$y-y1=\frac{b^2}{a^2}(x-x1)$二、圆锥曲线的切点弦方程1.椭圆的切点弦方程椭圆的切点弦方程表示的是通过椭圆上两点的直线方程,也就是连接两点的弦的方程。
如果椭圆上的两点为P(x1,y1)和Q(x2,y2),椭圆的切点弦方程可以表示为:$\frac{y-y1}{y2-y1} = \frac{x-x1}{x2-x1}$2.抛物线的切点弦方程抛物线的切点弦方程表示的是通过抛物线上两点的直线方程,也就是连接两点的弦的方程。
如果抛物线上的两点为P(x1,y1)和Q(x2,y2),抛物线的切点弦方程可以表示为:$\frac{y-y1}{y2-y1} = \frac{x-x1}{x2-x1}$3.双曲线的切点弦方程双曲线的切点弦方程表示的是通过双曲线上两点的直线方程,也就是连接两点的弦的方程。
圆锥曲线的切线方程和切点弦方程的证明
点为 A(x1, y1)B(x2, y2)切点弦所在的直线方程为
y0y = p(x + x0)
−
b2x0 a2y0
[2x
−
(x1
+
x2)]
化简后得
x0x a2
+
y0y b2
=
1
同理过双曲线外一点 P(x0, y0)向双曲线做两条切线 PA 和 PB,切
点为 A(x1, y1)B(x2, y2)切点弦所在的直线方程为
x0x a2
−
y0y b2
=
1
同理过抛物线外一点 P(x0, y0)向抛物线做两条切线 PA 和 PB,切
为 A(x1, y1)B(x2, y2)切点弦所在的直线方程为
x0x a2
+
y0y b2
=
1
切线 PA 的方程和切线 PB 的方程分别为
x1x xa22x a2
+ +
y1y yb22y b2
= =
1 1
两式相减得
x(x1 − a2
x2
)
=
−
y(y1 − a2
y2)
−b2x a2y
=
(y1 (x1
− −
[2x
−
(x1
+
x2)]
切线 PA 的方程和切线 PB 的方程分别为
x1x xa22x a2
+ +
y1y yb22y b2
= =
1 1
两式相加得
x(x1 + a2
x2)
=
y(y1 + a2
y2)
+
2
y1
+
圆锥曲线的切线方程讲义——以一道高考题为例(原创)
因为 P 是 PA, PB 的交点,故 ( x0 , y0 ) 满足:
x0x1 = 2 y1 + 2 y0 ………………① x0x2 = 2y2 + 2y0 ………………②
可知 ( x1, y1 ) , ( x2 , y2 ) 是方程: x0x = 2y + 2y0 的两组解
两边同时除以 a2b2 :
yy0 b2
+
xx0 a2
=
y02 b2
+
x02 a2
因为点 ( x0 , y0 ) 在椭圆上,故
y02 b2
+
x02 a2
=1
所以: xx0 + yy0 = 1. a2 b2
三、应用
(2021 年全国高考乙卷数学(理))已知抛物线 C : x2 = 2 py ( p 0) 的焦点为 F ,且 F 与圆
简单规律: x2 → xx0 , 2 px → px + px → px + px0 (特别注意: ( x0 , y0 ) 为切点)。
二、证明(以椭圆为例)
证明:椭圆
x2 a2
+
y2 b2
= 1( a
b
0) 在 ( x0 ,
y0 ) 的切线方程为
xx0 a2
+
yy0 b2
=1.
证明: 方法、求导法(需要二元求导)
显然 y0 [−5, −3]
P 点在圆上得出
−( y0 + 6)2 + 21 −(−5 + 6)2 + 21 = 20
即: S
专题14 圆锥曲线切线方程 微点2 圆锥曲线切线方程的常用结论及其应用
(2)过抛物线 上一点 处的切线方程为 ;过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: ;
(3)过抛物线 上一点 处的切线方程为 ;过抛物线 的外部一点 引两条切线,过两切点的弦所在直线方程为: .
同理可得焦点在 轴上的情形.
【结论4】(1)过圆 上一点 切线方程为 ;
(2)当 在椭圆 的外部时,过M引切线有两条,过两切点的弦所在直线方程为 .
【结论5】(1)过双曲线 上一点 处的切线方程为 ;
(2)当 在双曲线 的外部时,过M引切线有两条,过两切点的弦所在直线方程为: .
证明:(1) 的两边对x求导,得 ,得 ,由点斜式得切线方程为 ,即 ,又 所求的切线方程为 .
(1)求椭圆的方程;
(2)直线 与椭圆有唯一的公共点 ,与 轴的正半轴交于点 ,过 与 垂直的直线交 轴于点 .若 ,求直线 的方程.
例6.
6.已知椭圆 与直线 相切于点 ,且点 在第一象限,若直线 与 轴、 轴分别交于点 、 .若过原点O的直线 与 垂直交与点 ,证明: 定值.
【强化训练】
7.若椭圆 的焦点在x轴上,过点 作圆 的切线,切点分别为A、B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是()
下面的结论是从斜率的角度得到已知曲线的切线方程.
【结论8】(1)斜率为k的双曲线 的切线方程为 ;
(2)斜率为k的双曲线 的切线方程为 .
证明:(1)设切线方程为 ,联立 方程得:
,
若 即 , ,
令 化简可得: , ,故切线方程为 .
同理可证情形(2).
【评注】 , ,过双曲线的对称中心不可能作出直线与双曲线相切.
圆锥曲线的切线与法线方程求解技巧阐述
圆锥曲线的切线与法线方程求解技巧阐述圆锥曲线是解析几何中的重要内容,其中包括椭圆、双曲线和抛物线等。
在研究圆锥曲线的性质时,常常需要找到曲线上某点处的切线和法线方程。
本文将重点探讨圆锥曲线的切线和法线方程求解技巧。
1. 切线的求解技巧切线是曲线在某一点处的切线,它与曲线仅相交于该点。
我们可以通过求解切线的斜率和通过给定点的方程来确定切线方程。
为了求解切线,首先需要求曲线在某点处的导数。
以椭圆为例,其方程为x^2/a^2 + y^2/b^2 = 1(a > b)。
假设我们要求解椭圆上一点P的切线方程,P的坐标为(x0, y0)。
(1)求解切线斜率:椭圆的导数可以通过隐函数求导法求得。
对椭圆方程两边同时求导,得到2x/a^2 + 2yy'/b^2 = 0。
将点P的坐标代入上式,可得到斜率m = -xb^2/ya^2。
(2)切线的方程:切线方程的一般形式为y - y0 = m(x - x0)。
将m和P的坐标代入切线方程中,可得到椭圆上点P处的切线方程。
2. 法线的求解技巧法线是与切线垂直的直线。
与切线类似,我们可以通过求解法线的斜率和通过给定点的方程来确定法线方程。
为了求解法线,同样需要求曲线在某一点处的导数。
以抛物线为例,其方程为y^2 = 4ax(a > 0)。
假设我们要求解抛物线上一点P的法线方程,P的坐标为(x0, y0)。
(1)求解法线斜率:抛物线的导数可以通过隐函数求导法求得。
对抛物线方程两边同时求导,得到2yy' = 4a。
将点P的坐标代入上式,可得到斜率m = -1/(2a)。
(2)法线的方程:法线方程的一般形式为y - y0 = -1/m(x - x0)。
将m和P的坐标代入法线方程中,可得到抛物线上点P处的法线方程。
3. 切线和法线方程求解实例通过以上技巧,我们可以来解决一个具体的求解问题。
示例:求解椭圆x^2/4 + y^2/9 = 1上点P(2, 3)处的切线和法线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的切线
方程
点击此处添加副标题
作者:鲜海东微信:xhd1438488322
11),(1),()0(13))(())((),())(())((),(),()()(2),(),(1202022220020200022
222000020000002222000020000222=+=+=+=+=--+--=--+--=-+-=+=+=+b
y y a x x M b y a x y x M b
y y a x x y x M b a b y a x r b y b y a x a x M y x M r
b y b y a x a x y x M y x M r b y a x r y y x x M y x M r y y x x y x M r y x 弦所在直线方程为:点的引切线有两条,过两切的外部时,过在椭圆当切线方程为:上一点>>:过椭圆结论所在直线方程:
点切线有两条:切点弦在圆外,过若切线方程:则过一点
为圆上,若的方程::若圆心不在原点,圆结论。
弦所在直线方程为,过两切点的
点引切线有且只有两条在圆外时,过当。
的切线方程为上一点:经过圆结论。
两点的直线方程为、所以过两切点,满足直线现观察以上两个等式,发、以有是两条切线的交点,所。
又因、:
两点的切线方程分别为、可知过由为引两条切线,切点分别外一点>>()设过椭圆(即由点斜式得切线方程为,得求导,得的两边对)大学隐函数求导)(证明:
11),(),,(.11),(11)1().,(),,(),()0121),(,02211(20202020221120220220120100222221212211002222202000202
0020202222
22=+=+=+=+=+=+=+=+--==--==='='+=+b y y a x x B A b y y a x x y x B y x A b y y a x x b y y a x x y x M b y y a x x b y y a x x B A y x B y x A y x M b a b
y a x b
y y a x x x x y a x b y y y a x b x x y b y y a x x b y a x
)(),()0(2);(),()0(2)2()
(),()0(2);(),()0(2)1(511),(1),()00(1400002000020000200002202022220020200022
22y y p x x y x M p py x y y p x x y x M p py x x x p y y y x M p px y x x p y y y x M p px y b
y y a x x M b y a x y x M b
y y a x x y x M b a b y a x +==+==+==+===-=-=-=-弦所在直线方程为的引两条切线,过两切点的外部一点>过抛物线切线方程为上一点>过抛物线弦所在直线方程为的引两条切线,过两切点的外部一点>过抛物线切线方程为上一点>过抛物线:
结论。
的弦所在直线方程为点引切线有两条,过两切的外部时,过在双曲线当。
切线方程为上一点>,>:过双曲线结论。