(完整版)小学五年级奥数第一讲__定义新运算及作业
五年级奥数定义新运算练习题
五年级奥数定义新运算练习题知识要点:定义新运算,是指用某些特殊的符号,表示特定的意义,从而解答某些特殊的算式的一种运算。
定义新运算中运算符号有:#、*、※、▽等,有时借用一些已有的运算符号“+、-、×、÷”,但与四则中的运算符号是有区别的。
解答定义新运算,必须先理解新定义的含义,遵循新定义的关系式,把问题转化为一般四则运算。
例题解答例1:已知a※b=a÷b×2+3×a-b,计算169※13例2:对于整数a,b,规定运算如下:a⊙b=a×b-a-b+1,求⊙2练习1、规定a⊕b=×b,求⊕52、对于任意整数a和b,规定a▲b=3a+2b-2,求11▲10的值。
3、已知a#b=a÷b×2+3,若256#a=19,求a定义新运算测试题1、假设x△y=÷4,求13△17的值;2△的值;求a△16=10中a的值。
2、已知P※Q=3、如果A⊙B=P?Q,求3※的值。
A?B,照这样的规则:3⊙[6⊙]的结果是多少?4、如果a□b表示a×b+a+b,那么□1=29,a是多少?5、如果a※b表示a×b+a,那么当x※5比5※x大100时,x是多少?6、若A☆B=A++++??+,那么X☆10=65中X的值是多少?7、令A#B=4A+3B,那么,#的结果是多少?五年级奥数专题三:定义新运算关键词:运算四则四则运算定义奥数符号意义这些表示年级我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
例 1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
(完整版)定义新运算(小学数学五年级奥数)
定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定的数与它们对应。
这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。
特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。
例1:设a、b都表示数,规定:aAb =3X a— 2X b。
试计算:(1) 3A2; (2) 2A3。
练习1:1. 设a b都表示数,规定:a。
b=5X a— 2X b。
试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。
试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。
练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。
2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。
小学奥数 定义新运算 精选练习例题 含答案解析(附知识点拨及考点)
定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
【奥数专题】精编人教版小学数学五年级上册 定义新运算(试题)含答案与解析
经典奥数:定义新运算(专项试题)一.选择题(共6小题)1.对于两个数a、b.定义一种运算“*”,a*b=3a+2b.则3*5=()A.19B.15C.6D.52.假设a#g=(a+g)÷(a÷g),如果x#(5#1)=6,那么x是()A.0.1B.0.2C.0.3D.0.43.假设A※B表示A的3倍减去B的2倍,即A※B=3A﹣2B.已知x※(4※1)=7,那么x※4=()A.7B.9C.19D.364.如果规定符号“☆”为选择两数中的较大数,“△”为选择两数中的较小数,例如:4☆6=6,4△6=4,那么[(8△4)☆6]×(4☆8)=()A.48B.24C.325.将2020年2月2日记成20200202,这个数字从左往右、从右往左读都样,我们称这样的数为“世纪吉祥数”。
从2000年到2099年这样的“世纪吉祥数”有()个。
A.15B.12C.9D.36.如果:a*b=a×(b+3),则5*2=5×(2+3)=25.同理可得:4*8=()A.32B.56C.44二.填空题(共6小题)7.如果规定:符号*表示选择两个数中较大的数,#表示选择两个数中较小的数,例如3*8=8,3#8=3,则4.5#5.4=,(3.6*15.6)÷(1.2#1.8)=。
8.根据运算定律,填一填。
78.6×※+☆×2.4=78.6×10,※=,☆=。
9.如果A△B表示3×A+B,例如2△4表示3×2+4=10,那么,5△2=。
10.规定A△B=5A﹣B,如果X△(5△2)=1;那X=。
11.如果1*3=1+11+111=123,2*4=2+22+222+2222=2468,3*3=3+33+333=369,那么5*4=.12.有这样两种运算◆和■:规定a◆b=a×b﹣a,a■b=a÷b+a.则(6◆5)■4=.三.解答题(共9小题)13.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),按收方由密文→明文(解密),已知加密规则为明文a,b,c对应的密文a+1,2b+4,3c+9,例如明文1,2,3对应的密文为2,8,18,如果接收的密文7,18,15,则解密得到的明文是什么?14.对于实数x、y,定义一种新的运算*,x*y=ax+by,其中a、b为常数,等式的右边是通常的加法与乘法运算,已知3*2=7,2*3=8,则1*1是多少?15.定义一种新运算:a*b=3a+5ab+kb,其中a和b为任意两个不为0的数,k为常数.比如:2*7=3×2+5×2×7+7k(1)如果5*2=7*3,8*5与5*8的值相等吗?请说明理由(2)当k取什么值时,对于任何不同的a和b,都有a*b与b*a,即新运算“*”符合交换律?16.1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么(1)7*4=?(2)210*2=?17.a和b都是正整数,设a※b表示从a起b个连续正整数的和。
(完整版)小学奥数定义新运算
六年级数学讲义定义新运算教学目标: 1、在理解定义新运算的基础上,会灵活按照所给的规律对所给数字进行灵活的运算,2、培养学生对知识的运算能力和灵活运用能力。
一、 教学衔接414212115865.78+-+ )17281(1719+- 36×10.9+12×42.3(0.25×4-0.25×3)×40 119891988198719891988-⨯⨯+二、 教学内容(一)知识要点:所谓“定义新运算”是以学生熟知的四则运算为基础,以一种特殊的符号来表示的特别定义(规定)的运算。
运算时要严格按照新运算的定义(规定)进行代换,再进新计算。
具体程序如下:1.代换.即按照定义符号的运算方法,进行代换,注意此过程不能轻易改变原有的运算顺序。
2.计算.把代换后的算式准确地计算出来。
(二)例题讲解:例1、 对于任意数a ,b ,定义运算“*”: a*b=a ×b-a-b 。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32例2、设45e。
a b a b=⨯-⨯(1)求(64)2e e的值;(2)若(2)18e e,则x等于多少?x x=3,x>=2,求x的值。
分析与解:按照定义的运算,<1,2,3,x>=2,x=6。
分析与解:按新运算的定义,符号“⊙”表示求两个数的平均数。
四则运算中的意义相同,即先进行小括号中的运算,再进行小括号外面的运算。
按通常的规则从左至右进行运算。
分析与解:从已知的三式来看,运算“”表示几个数相加,每个加数各数位上的数都是符号前面的那个数,而符号后面的数是几,就表示几个数之和,其中第1个数是1位数,第2个数是2位数,第3个数是3位数……按此规定,得35=3+33+333+3333+33333=37035。
例6有一个数学运算符号⊗,使下列算式成立:9=7⊗,25⊗,求?3⊗7=3=2=48⊗,133⊗,115=5三、教学练习1、若A*B 表示(A +3B )×(A +B ),求5*7的值。
五数奥数新定义运算
第一讲定义新运算一、学习目标1. 了解新运算的定义并学会按新运算的要求进行计算。
2. 学习观察、比较、判断和推理的数学方法。
二、内容提要与方法点拨1.要熟练掌握四则运算的法则及运算定律。
2. 定义新运算是指用某种特定的符号表示特定意义的运算。
解答这类题目时,首先要弄清新定义的运算的特定含义,也就是弄清它所表示的通常意义下是什么运算,然后转化为通常意义下的四则运算来进行解答。
在没有特别说明的情况下,一些基本的四则运算法则如从左往右计算、有括号时先算括号里面的等在新定义的运算中也是适用的。
但是,在新定义的运算中,不一定都适合交换律或结合律。
三、例题选讲例1如果a▽b表示a×b+a-b,试计算:(7▽4)▽5。
解:式子a▽b表示两个数的积加上第一个数后再减去第二个数。
在式子(7▽4)▽5中,要先算小括号里面的。
(7▽4)=7×4+7-4=31而31▽5=31×5+31-5=181,所以,(7▽4)▽5=181。
例2规定a☆b表示a的4倍减去b的3倍,即a☆b=4a-3b,试计算:(1)5☆6 ;(2)6☆5。
解:(1)根据a☆b=4a-3b,所以,5☆6=4×5-3×6=2(2)6☆5=6×4-5×3=9注意:a☆b表示a的4倍减去b的3倍,而b☆a表示b的4倍减去a的3倍,这里a≠b,所以a☆b≠b☆a。
因此,本例定义的新运算是不满足交换律的,计算中不能把前后两个数交换。
例3 对于两个数x、y,规定x#y表示3x+2y,试计算:(1)(5#7)#8 ;(2)5#(7#8)。
解:(1)根据x#y=3x+2y,得(5#7)#8=(3×5+2×7)#8=29#8=3×29+2×8=103(2)5#(7#8)=5#(3×7+2×8)=5#37=3×5+2×37=89注意:本例定义的运算是不满足结合律的。
小学五年级奥数__定义新运算图文百度文库
小学五年级奥数__定义新运算图文百度文库一、拓展提优试题1.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.2.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米3.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.4.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)5.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.6.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.7.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.8.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH9.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.10.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.11.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?12.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.13.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.14.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.【参考答案】一、拓展提优试题1.解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.故答案为441.2.2800[解答] 设两地之间距离为S。
奥数专题_定义新运算(带答案完美排版)
定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?解:① 6 ⊕2=6×2+6+2=20,2 ⊕6=2×6+2+6=20.②(1 ⊕2)⊕3=(1×2+1+2)⊕3=5 ⊕3=5×3+5+3=231 ⊕(2 ⊕3)=1 ⊕(2×3+2+3)=1 ⊕11=1×11+1+11=23.③先看“⊕”是否满足交换律:a ⊕b=a×b+a+bb ⊕a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕b=b ⊕a,因此“⊕”满足交换律.再看“⊕”是否满足结合律:(a ⊕b)⊕c=(a×b+a+b)⊕c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕b)⊕c=a ⊕(b ⊕c),因此“⊕”满足结合律.说明:“⊕”对于普通的加法不满足分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?解:通过对2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25这几个算式的观察,找到规律:a ⊗b =2a +b ,因此7⊗3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.m=1n =2 m=2 n =23(舍去)m=3 n =1课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+⋯+9)=10x + 45 因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?例5、x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a , ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b ÷a ba +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?。
奥数讲义一、新运算和简便计算
第一 定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、、、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -12×b ,求(25*12)*(10*5)。
例题2。
设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。
求30△(5△3)。
3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
那么7*4=?,210*2=?7*4=7+77+777+7777=8638210*2=210+210210=2104201. 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,…..那么,4*4=?,18*3=?2. 规定a*b=a+aa+aaa+aaa+aaaa ……..a,那么8*5=?(b-1)个a3. 如果2*1=12 ,3*2=133 ,4*3=1444,那么(6*3)÷(2*6)=?。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
小学五年级奥数家庭作业试题及答案第一讲
第一讲找规律与定义新运算基础班1、找规律(1)3,4,6,9,14,22,(),56……(2)1,4,8,13,19,(),34,(),……(3)2,3,5,7,11,13,(),19……(4)1,2,2,4,8,32,()……(5)6,7,3,0,3,3,6,9,5,(),()……解:(1)35;(2)26,43;(3)17;(4)256;(5)4,9。
提示:(1)3+4-1=6;4+6-1=9;6+9-1=14;9+14-1=22,所以扩号中应该填14+22-1=35。
(2)前两个数的差是3,以后相邻两个数的差每次增大1,19+7=26,34+9=43。
(3)连续质数数列。
(4)从第3个数开始后一个数等于前两个数的乘积。
(5)从第3个数开始,后一个数都是前两个数的和的个位数字。
2、有一列数3,1000,997,3,994,991,……从第三个数起,每一个数都是它前面两个数中大数减小数的差,那么在这列数中最小的数是几?它第一次出现时在这列数的第几个?解:0。
提示:每三个数中就有一个3,去掉3后剩余的数成递减的等差数列,公差为3;结合该数列的奇偶性,可续写:……,3,10,7,3,4,1,3,2,1,1,0,1,1,0,……因此出现的最小数是0,第一次出现是在第[(1000-1)÷3+1] ÷2×3+5=506个。
3、一串数排成一行:头两个数都是1,从第三个数起,每一个数都是前两个数的和,也就是:1,1,2,3,5,8,13,21,34,55,...问:这串数的前100个数中(包括其100个数)有多少个偶数?解:数列为:1,1,2,3,5,8,13,21,34,55 3 6 9 ……从以上可以看出3,6,9,12......位上数是偶数,因为3,6,9,12......形成一个等差数列,所以前100位中的偶数数量(99-3)÷3+1=33个或者:100中3的倍数:100/3=33……1,共33个。
小学五年级奥数讲义(学生版)30讲全
⼩学五年级奥数讲义(学⽣版)30讲全五年级奥数第1讲数字迷(⼀)第16讲巧算24第2讲数字谜(⼆) 第17讲位置原则第3讲定义新运算(⼀) 第18讲最⼤最⼩第4讲定义新运算(⼆) 第19讲图形的分割与拼接第5讲数的整除性(⼀) 第20讲多边形的⾯积第6讲数的整除性(⼆) 第21讲⽤等量代换求⾯积第7讲奇偶性(⼀)第22 ⽤割补法求⾯积第8讲奇偶性(⼆)第23讲列⽅程解应⽤题第9讲奇偶性(三)第24讲⾏程问题(⼀)第10讲质数与合数第25讲⾏程问题(⼆)第11讲分解质因数第26讲⾏程问题(三)第12讲最⼤公约数与最⼩公倍数(⼀)第27讲逻辑问题(⼀)第13讲最⼤公约数与最⼩公倍数(⼆)第28讲逻辑问题(⼆)第14讲余数问题第29讲抽屉原理(⼀)第15讲孙⼦问题与逐步约束法第30讲抽屉原理(⼆)第1讲数字谜(⼀)例1 把+,-,×,÷四个运算符号,分别填⼊下⾯等式的○内,使等式成⽴(每个运算符号只准使⽤⼀次):(5○13○7)○(17○9)=12。
例2 将1~9这九个数字分别填⼊下式中的□中,使等式成⽴:□□□×□□=□□×□□=5568。
例3 在443后⾯添上⼀个三位数,使得到的六位数能被573整除。
例4 已知六位数33□□44是89的倍数,求这个六位数。
例5 在左下⽅的加法竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字,请你⽤适当的数字代替字母,使加法竖式成⽴。
FORTYTEN+ TENSIXTY例6 在左下⽅的减法算式中,每个字母代表⼀个数字,不同的字母代表不同的数字。
请你填上适当的数字,使竖式成⽴。
练习11.在⼀个四位数的末尾添零后,把所得的数减去原有的四位数,差是621819,求原来的四位数。
2.在下列竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字。
请你⽤适当的数字代替字母,使竖式成⽴:(1) A B (2) A B A B+ B C A - A C AA B C B A A C3.在下⾯的算式中填上括号,使得计算结果最⼤:1÷2÷3÷4÷5÷6÷7÷8÷9。
五年级奥数.定义新运算
五年级奥数•定义新运算定义新运算知识结构一、定义新运算(1)基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
(2) 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
⑶ 关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、一、X、一等.如:2+3 = 5 2X3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同•可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算•当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应•只要符合这个要求,不同的法则就是不同的运算•在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“ + ” , “一” , “X”,“十”运算不相同.定义新运算分类(1)直接运算型(2)反解未知数型(3)观察规律型其他类型综合(4)重难点(1)正确理解新运算的规律。
⑵把不熟悉的新运算变化成我们熟悉的运算。
⑶新运算也要遵守运算规律。
例题精讲【例1】对于任意两个数X 和y ,定义新运算♦和「规则如下:由此计算:0.36 ♦ 4 _ 11二 ______【巩固】对于任意两个数x,y ,定义新运算,运算,规则如下: x ♦ y = x y —x ,2 , x 二 y =x y-〉2 .按此规则计算: 3.6 ♦ 2= _________ , 0.12 ♦ 7.5 二 4.8 二 _________ . ♦ 一 2x y x y y = e ,X“rr^ 如: 1 ♦ 2=冷1 1 2 1 + 2+3【例2】如果a、b、c是3个整数,则它们满足加法交换律和结合律,即⑴ a b =b a ;(2) (a b) c = a (b c)。
小学五年级奥数讲义(教师版)30讲全
小学奥数基础教程(五年级)第1讲数字迷(一)第16讲巧算24第2讲数字谜(二)第17讲位置原则第3讲定义新运算(一)第18讲最大最小第4讲定义新运算(二)第19讲图形的分割与拼接第5讲数的整除性(一)第20讲多边形的面积第6讲数的整除性(二)第21讲用等量代换求面积第7讲奇偶性(一)第22讲用割补法求面积第8讲奇偶性(二)第23讲列方程解应用题第9讲奇偶性(三)第24讲行程问题(一)第10讲质数与合数第25讲行程问题(二)第11讲分解质因数第26讲行程问题(三)第12讲最大公约数与最小公倍数(一)第27讲逻辑问题(一)第13讲最大公约数与最小公倍数(二)第28讲逻辑问题(二)第14讲余数问题第29讲抽屉原理(一)第15讲子问题与逐步约束法第30讲抽屉原理(二)第1讲数字谜(一)数字谜的容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○时,因为除数是13,要想得到整数,只有第二个括号是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○时,运算结果不可能是整数。
当“÷”在第三个○时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲定义新运算
一、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。
二、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,
求75*5=?,12*4=?
三、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?
四、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○+b=a+b-1,a○×b=a×b-1,那么8○× [(6○+10)○+(5○×3)]等于多少?
五、定义运算“○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+
12)哪一个大?大的比小的大多少?
六、a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?
七、如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则
计算3*7=?
八、规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?
九、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。
第二讲定义新运算作业
十、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。
十一、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。
十二、规定a○+b,表示自然数a到b的各个数之和,例如:3 ○+10=3+4+5+6+7+8+9+10=52,求1○+200的值。
十三、定义新运算“○×”,a○×b=10a+20b,求(3○×7)+(4○×8)。
十四、定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?
十五、规定a*b=(a+b)÷2,求[(1*9)*9]*3的值。
十六、规定a☆b=3a-2b,如果x☆(4☆1)=7,求x的值。
十七、规定X○+Y=(X+Y)÷4求:(1)2○+(3○+5),(2)如果X○+16=10,求X的值。
十八、规定a◇+b=(a+3)×(b+5),求5◇+(6◇+7)的值。
十九、已知a○-b表示a除以3的余数再乘b,求13○-4的值。
二十、定义新运算“*”:a*b=a+b-1,求7*4。