历届希望杯数学竞赛五年级试题及答案
第十三届小学“希望杯”全国数学邀请赛-五年级第2试试题及答案
第十三届小学“希望杯”全国数学邀请赛五年级第2试试题一、填空题1、用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是__________.2. 有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=__________.3. 用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用)4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是__________分.5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有__________种.6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是 .7. 大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是__________.8. 从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.9、观察下表中的数的规律,可知第8行中,从左向右第5个数是__________.第1行 1第2行 2 3 4第3行 5 6 7 8 9第4行10 11 12 13 14 15 16第5行17 18 19 20 ………10. 如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换__________只鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法)12. 将五位数“12345”重复写403次组成一个2015位数:“123451234512345…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是__________.二、解答题13. 甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14. 如图1,中有多少个三角形?15.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边分别为8cm和5cm,乙直角三角形的两条直角边分别为6cm和2cm.求图中阴影部分的面积.16.有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.。
历届(9—13届)希望杯五年级答案及解析
历届五年级希望杯答案及解析2010年第八届2011年第九届1、解:原式=1.25 ×31.3 ×3 ×8 = 100 ×93.9 = 9392、解:将循环节多写一次即可逐位比较3、解:十位数之前应该有1 + 2 + 3 +……+9 = 45位。
1位数有9位,10—19有20位,20—27有16位,所以十位数的开头应为28,为28293031324、解:从A到B一定会经过三步,第一步要从A走到中间,最后一步应该是从中间走到B,而第二步为从中间走到中间只能有一种走法。
从A到中间一条线上共有5种走法,从B到中间一条线上也有5种走法。
所以共有5 ×1 ×5 = 25种走法。
5、解:在3 ×4的长方形中有20个横平竖直的正方形。
斜着的有1 ×1正方形17个,2 ×2的正方形8个,还有1个3 ×3的大正方形。
共46个。
6、解:47 ÷b = c ……c ,即b ×c + c = 47,即c ×( b + 1 ) = 47,所以c一定是47的约数,c为47肯定不符合条件,所以c = 1,即除数是46,余数是1.7、解:能被90整除说明即能被9整除也能被10整除,被10整除说明最后一位是0,被9整除说明数字和应为9的倍数,即2 + 0 + 1 + 1 + a +0 是9的倍数,所以a = 5,即后两位是50.8、解:约数个数为奇数说明这个自然数为完全平方数,1000以内最大的完全平方数是31²= 9619、解:首先最下面的一个角肯定没有,最上面的中部也会少一部分,所以是丁。
10、解:一圈共400米,甲是乙速度的1.5倍,所以甲共走了240米,乙走了160米。
DE为60米,CE为40米。
SADE = 3000平方米,SBCE = 2000平方米,差为1000平方米。
11、解:弟弟如果不多跑半小时应比哥哥少跑80 ×30 — 900 = 1500米,所以哥哥共跑了1500 ÷(110—80)= 50分钟,共跑了50 ×110 = 5500米。
第二届小学“希望杯”全国数学邀请赛五年级试题及答案
第二届小学“希望杯”全国数学邀请赛五年级第1试2004年3月14日上午8:30至10:00一、填空题1.0.4×[]×26=。
2.根据规律填空:0.987654,0.98765,0.9877,0.988,,1.0。
3.一个数被7除,余数是3,该数的3倍7除,余数是。
4.2004的约数中,比100大且比200小的约数是。
5.下边的加法算式中,每个“□”内有一个数字,所有“□”内的数字之和最大可达到。
6.甲、乙、丙三人掷骰子,每人掷三次,他们掷出的点数的积都是24。
将每人掷出的点数的和由大到小排列,依次是甲、乙、丙,则点数3是掷出的。
(点数:向上的一面上的数字。
骰子的六个面上的点数分别是1至6)7.在一个四位数的某位数字的前面添上一个小数点,再和原来的四位数相减,差是1803.6,则原来的四位数是。
8.,,都是质数,并且+=33,+=44,+=66,那么=,9.如果A◆B=,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=。
10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的差都不是1,这样的四位数共有个。
11.甲、乙、丙三个网站定期更新,甲网站每隔一天更新1次,乙网站每隔两天更新1次,丙网站每隔三天更新1次。
在一个星期内,三个网站最少更新网站次。
12.下图中共有个正方形。
13.如图,每个小格的边长都是1个单位长度,一只甲虫在水平方向上每爬行1个单位长度需要5秒,在竖直方向上每爬行1个单位长度需要6秒,每拐弯一次需要1秒。
它从A点爬到B点,最少需要秒。
14.将长15厘米,宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点与分点及顶点连结,如图3,则阴影部分的面积是平方厘米。
15.沿图中的虚线折叠,可以围成一个长方体,它的体积是立方厘米。
16.小永的三门功课的成绩,如果不算语文,平均分是98分;如果不算数学,平均分是93分;如果不算英语,平均分是91分。
希望杯第1-8届五年级数学试题及答案(WORD版)
第一届小学“希望杯”全国数学邀请赛五年级第1试一、填空题1.计算=_______ .2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点.4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
17.从1,2,3,4,5,6,7,8,9。
2024新希望杯五年级竞赛模拟数学试卷
1.对于非零自然数,,规定运算“”的含义是:,已知,的值 .2.计算:的结果个位数字是 .个3.把分解质因数是 。
4.将至六个数填入下图所示球体的圆内,使球体的各个大圆上每四个数的和都相等。
这个和是 。
5..6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多块,第二名小朋友的糖果比第三名小朋友的糖果多块……即前一名小朋友总比后一名小朋友多块糖果.他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友块糖果,第二名小朋友给第三名小朋友块糖果……即每一名小朋友总是将前面传来的糖果再加上自己的块传给下面的小朋友.当游戏进行到最后一名小朋友无法按规定给出糖果时,有两名相邻的小朋友的糖果数之比是,最多有 名小朋友.7.新希望杯五年级竞赛模拟数学试卷①猴子和狮子的总数要比熊猫的数量多,②熊猫和狮子的总数要比猴子的两倍还多,③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.8.某天早上,一只怪物攻击了奥拉星球.为了拯救星球,从怪物出现时亚比英雄们就对怪物进行反击.怪物出现时有点生命值,每位亚比英雄每个白天可以消耗怪物点生命值,但在晚上亚比英雄们都休息时,怪物会恢复点生命值.如果在天内怪物被消灭,至少需要 位亚比英雄.9.在这个数中,十位数字是奇数的数共有 个.,,,,10.欢欢和乐乐同时出发去集市,他们以不同的速度沿同一条直路匀速前行,开始时两人相距米,小时后两人仍相距米.再过小时他们都没有到达集市,这时候他们相距 米.11.艾迪、 薇儿和大宽是好朋友, 住在同一个镇上, 靠着同一条镇中小道. 大宽在中间些,艾迪和薇儿在小道的两端. 三个好朋友每天都要聚一次. 第一天, 艾迪和薇儿从同一时刻出发, 从各自的家沿着小道走, 结果同时到达大宽家. 第二天, 艾迪比第一天提早小时出发,薇儿比第一天又推迟半个小时出发, 艾迪和薇儿比第一天提前了分钟相遇. 第三天薇儿比第一天提早小时出发, 艾迪比第一天推迟半个小时出发, 艾迪和薇儿在离大宽家千米处相遇. 问艾迪的速度是 .12.的分数单位是 ,再增加 个这样的单位就是最小的质数.13.边长是厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽厘米的方框.把五个这样的方框放在桌面上,成为一个这样的图案(如图所示).桌面上被这些方框盖住的部分面积是 平方厘米.14.从这个自然数中删掉若干个连续的自然数,使得余下数的和能被整除,最少要删掉 个数.15.自然数、、、、都大于,其乘积,则其和的最大值是 ,最小值是 .16.三位数是一个质数,巧的是,,,,也都是质数, .17.个连续自然数的和恰好是三个不同质数的积,那么这三个质数的和最小是 .18.在这个数中,最多可取出 个数,使所取出的数中,任意两个数的和能被整除.19.若六位数能被和整除,则两位数 .20.的个位是 .21.平面内有个点,其中任意个点均不在同一条直线上,以这些点为端点连接线段,则除这个点外,这些线段至少还有 个交点.22.如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有 种不同的样式.(不可旋转、翻转)23.用,,,这个数字任意写出一个一万位数,从这个一万位数中任意截取相邻的个数字,可以组成许许多多的四位数,这些四位数中,至少有 个相同.24.甲、乙、丙、丁兄弟四人各收藏了一些宝石.每天早上他们都要聚在一起,重新分配宝石.分配的规则是:拥有宝石最多的人分给其他三人每人颗.如果第天早上分配完后,甲、乙、丙、丁四人分别有、、、颗宝石,那么第天早上分配完后,甲有 颗宝石.25.舞台中央有一个音效区,被分隔成个不同区域,每个区域安装个音箱(音箱无差别),音箱朝向只能向东、西、南或北,且相邻两个区域的音箱朝向不能面对面(有公共边的两个区域视为相邻).共有 种安装方案.东南西北(1)可以组成 个不同的三位数.26.有张卡,分别写有数字,,,,.如果允许可以作用,那么从中任意取出张卡片,并排放在一起.27.在平面上有个点,其中任意个点都不在同一条直线上.如果在这个点之间连结条线段,那么这些线段最多能构成 个三角形.28.计算 .29.计算: .30.定义新运算:,(个相乘),则.31.已知三个不同的非零自然数、、满足算式, 且.那么代表的自然数是 .32.下面表格所有数的和是 ?33.三位数(,,互不相同),是,,的最小公倍数,是,,的最大公因数,等于的因数个数,这样的三位数有 个.34.35.一个两位数,在它的前面写上,得到一个三位数.这个三位数比原两位数的倍多,那么原来的两位数为 .36.左图一个由小正方体组成的的大正方体.从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通.右图中的阴影部分是抽空的状态.右图的正方体中还剩 个小正方体.37.有一个两位数,除以余,除以余,除以余,那么这个数最小是 .38.小明全家拍全家福,家里有爷爷、奶奶、爸爸、妈妈和小明人,爷爷必须站最中间,小明不站两边,请问:一共有 种不同的排队方式.39.图中有四个等边三角形,边长分别为,,,,那么阴影部分的总面积是最小的等边三角形面积的 倍.乐乐老师想把件相同的礼物全部分给个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有 种.41.题图中共有 个正方形.42.龙猫家的大花园是一个平行四边形.如图,线段和将花园分成四块,其中的和的面积分别是和,则四边形的面积是 .43.如图所示,正六边形的面积为,则阴影部分的面积为 .44.一张卡片如左图所示,从中选个数字,分别写在个部分上,“”已经写好,然后将卡片折成右图的正方体纸盒.这个纸盒三组相对面上的数字和都相等,这个和是 .45.在一个的方阵中,任意填上自然数,从中任选出个的方格.如果选出的方格中必有个方格为原方阵中一个矩形的个角,上面所填的个数的和是偶数,那么的最小值是 .46.潘多拉星球遭到只飞龙和只地虎的袭击,机甲战士奋力抗击.潘多拉星球上的机甲战士共名,每个战士击退只飞龙需要分钟,击退只地虎需要分钟.那么,战士们击退全部敌人至少需要 分钟.47.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走梯级,女孩每秒钟走梯级.结果男孩用秒到达楼上,女孩用秒到达楼上.该楼梯共有 级.48.小明读一本小说,已读页数比全书页数的多页,未读的页数比全书页数的少页.这本书共有 页.49.父亲节来临之际,商店进行优惠促销.领带原价元条,现在买条送条,妈妈和两位阿姨现在合买条领带,每条领带比原来便宜 元.50.年父亲的年龄是儿子年龄的倍,年父亲年龄是儿子年龄的倍.儿子是在 年出生的.51.一辆汽车的速度是每小时千米,现有一个每小时比标准表多走秒的计时器,若用该计时器计时,则测得这辆汽车的速度是每小时 千米.52.放暑假真棒啊下面算式中不同的汉字代表不同的数字,六位数“”的最小值是 .放放放暑暑暑假假假真真棒啊53.若,则整数的所有数位上数字的和是 .个个54.甲、乙、丙三位同学去买书,他们买的本数都是两位数,且甲买的最多,丙买的最少,又知这些书本数的总和是偶数,它们的积是,那么乙最多买 本.55.已知、两地相距千米,从到是下坡路.小高同学早上点骑车从地去地,点整到达;第天早上点,他从地原路返回,中午点整才到达地.他在两天往返的过程中曾在同一时刻到达同一地点,那么小高同学 时 分到达这一地点,此地距离地 千米.56.有这样一类四位数,它满足的形式,如.这样的四位数中偶数有 个.57.下图有五个圆,它们相交相互分成个区域,现在两个区域里已经填上与,要求在另外七个区域里分别填进、、、、、、七个数,使每个圆内的和都等于.则所表示的三位数是 .58.四个边长都是整数的正方形如下图摆放,正方形的三个顶点分别是正方形,,的中心.若红色部分的总面积和绿色部分的面积相等,则正方形的边长最小是 .59.名工人小时加工零件个,按这个效率,小时加工个零件,需要 名工人.60.一只蚂蚁从正方体某个面的中心出发,每次走到相邻面的中心,每个中心恰好经过一次最终回到出发点,所有经过的中心排出的序列共有 种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)61.若一个能被整除的两位数,既不能被整除,又不能被整除,它的倍是偶数,十位数字不小于,则这个两位数是 .62.除以的余数是 .63.一个正方体被切成个大小形状一模一样的小长方体(如图所示),这些小长方体的表面积之和为平方厘米。
第9-11届希望杯数学竞赛五年级二试试题含答案
第九届小学“希望杯”全国数学邀请赛五年级第 2 试一、填空题(每小题 5 分,共 60 分)1、计算:0.15÷2.1×56=___________。
2、 15+115+1115+……+1111111115=____________。
3、一个自然数除以 3,得余数 2,用所得的商除以 4,得余数 3。
若用这个自然数除以 6,得余数____________。
4、数一数,图 1 中共有____________个长方形。
5、有一些自然数(0 除外)既是平方数(可写成两个相同的自然数的乘积),又是立方数(可写成三个相同的自然数的乘积)。
如:1=1×1=1×1×1,64=8×8=4×4×4。
那么在 1000 以内的自然数中,这样的数有________个。
6、有一个自然数,它的最小的两个约数的差是 4,最大的两个约数的差是 308,则这个自然数是___________。
7、如图 2,先将 4 黑1 白共 5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5 个棋子拿掉。
如此不断操作下去,圆圈上的 5 个棋子中最多有_______个白子。
8、甲、乙两人分别从 A、B 两地同时相向而行,甲的速度是乙的速度的 3 倍,经过 60 分钟,两人相遇。
然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。
那么,当甲到达 B地后,再经过____分钟,乙到达_____A 地。
9、如图 3,将一个棱长为 1 米的正方体木块分别沿长、宽、高三个方向锯开 1,2,3 次,得到 24 个长方体木块。
这 24 块长方体木块的表面积的和是_____________平方米。
(18)10.如图4,小丽和小明的桶中原来各装有 3 千克和5 千克水。
根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。
希望杯5年级考前100题题目和答案
第十五届(2017年)小学“希望杯”全国数学邀请赛五年级培训题1. 计算:2016×20172017-2017×20162016.2. 计算:32.2÷2.7+386÷54-4.88÷0.27.3. 计算:6051×0.125-0.375×1949+3.75×1.2.5. 用[a]表示不超过 a的最大整数,{a}表示 a 的小数部分,即{a}=a-[a],定义一种运算“⊕”:a⊕b=(a-b)÷(b+1),求[3.9]⊕{5.6}+[4.7]的值.6. 找规律,填数:0,2,12,36,80,150,252,______,_______,…7. 如图 1 所示的七个圆填入七个连续自然数,使每相邻圆的数之和等于连线上的数,求这七个自然数的和.8. 有一串数,最前面的 4 个数是 2,0,1,6,从第 5 个数起,每一个数是它前面相邻 4 个数之和的个位数字,问在这一串数中,会依次出现 2,0,1,7 这 4个数吗?9. 小华在电脑上玩一种游戏:输入一个大于零的自然数,则输出的数比输入的数扩大一倍还多 1,若先输入的数既不是质数,也不是合数,再将输出的数输入,…则输出的数中,首先超过100的数是多少?10. 从1123个1×1的正方形纸片中,依次取出 1个,3个,5个,7 个,…,(2n-1)个,求最大的n.11. 已知x是两位数,y是一位数,若1123=x× x+11y× y,求x+y.12. 20152015+20162016+20172017的个位数字是多少?(定义:x n表示n个 x相乘)13. 1×2×3×4×…×2016×2017 的积的末尾有多少个连续的 0?14. 111a是四位数,若111a-3是7的倍数,求自然数a.15. 有三个连续的自然数,它们的和是三位数,并且是 31 的倍数,求这三个数的和的最小值.16. 若是四位数,并且-3是7的倍数,那么a + b有多少个不同的值?17. 100 名同学面向老师站成一行.大家先从左至右按 1,2,3,…依次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 5 的倍数的同学向后转. 问:背向老师的有多少人?18. 一个自然数,它除了 1以外的两个不同约数的和最大是 60,求这个自然数.19. 三位数中,被6 除,余数是5的有多少个?20. 有一类四位数,除以5余3,除以7余6,除以9余6,求这类四位数中最小的数.21. 求被 7除余5,被8除余2的最小的三位数.22. 是三位数,若-a可被13整除,求自然数a的最小值.23 .是三位数,若+1 是7的倍数,-1是13的倍数,求自然数 a.24. ,求a÷7 得到的余数.25. 五年级(2)班同学分为 5 组,按组活动.第一组到第五组的人数分别是 12 人,6人,10人,13人,7 人. 其中有一个小组需要留在教室,其余四组去操场跑步和跳绳,若跑步的人数比跳绳的人数的 2 倍多5人,则留在教室的是第几组?26. 小华将连续偶数 2,4,6,8,10,…逐个相加,结果是2016. 验算时发现漏加了一个数,那么,这个漏加的数是多少?27. 三个质数的平方和是 390,这三个质数分别是多少?28. 3个不同的质数 a,b,c满足a+b=c,且 b× c=143,求a×(b+c)的值.29. 下面是著名的百羊问题.原文如下:《算法统宗》(明)程大位甲赶羊群逐草茂,乙拽一羊随其后,戏问甲及一百否? 甲云所说无差谬,所得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁猜透?原文的意思是说,一个牧羊人赶着一群羊,有人牵着一只羊从后面跟来,问牧羊人:“你这群羊有 100 只吗?”牧羊人说:“如果我再有这样一群羊,加上这群羊的一半,再加上一半的一半,连同你这一只羊,就刚好满 100 只.”请问牧羊人赶着多少只羊?30. 用两个 3,三个 2,两个1可以组成多少个互不相同的七位数?31. 从1 到2017的所有奇数的平方数中,个位数是 5的有几个?32. 从1 到101这101 个自然数中,(1) 至少选出_____个才能保证其中一定有两个数的和是 7的倍数;(2) 如果要保证其中一定有两个数的和是 6的倍数至少要选出______个.33. A,B,C,D四人久别重逢.(1) 四人站成一排照相,问有多少种站法?(2) 四人围成一圈照相有多少种站法?34. 电视台打算 3天播完 6集电视剧,其中可以有若干天不播,共有多少种播出的方法?35. 属相各异的 12 位同学按鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、犬、猪的顺序围成一圈传递一袋不足 200 颗糖的幸运礼包.每人接到礼包后取出一颗糖,然后将礼包往下传.属牛的最牛,先取糖,将礼包传给属虎的同学,…,若最后取到糖的同学属龙,则(1) 礼包里至少有多少颗糖?(2) 礼包里至多有多少颗糖?36. 纸箱中有赤,橙,黄,绿,青,蓝,紫七色袜子,每种袜子都是单色,且数量足够多,那么从中至少取多少只袜子可以保证有一双同色的袜子?37. 五年(1)班有 46 名学生参加 3 项活动.其中有 24 人参加了数学小组,20 人参加了语文小组,参加美术小组的人数是既参加数学小组又参加美术小组人数的 4倍,又是3项都参加的人数的 8倍,既参加美术小组也参加语文小组的人数是 3项都参加的人数的 3 倍,既参加数学小组又参加语文小组的有 10 人,问参加美术小组的人数是多少?38. 有1 克、2克、4 克、8克、16 克重的砝码 5枚,若只能在一边放砝码,问:(1) 用这些砝码可称出多少种不同的重量?(2) 若4克的砝码破损后只剩下 3克,则可称出多少种不同的重量?39. 小明家住在一条胡同里,这条胡同里的门牌从 1号、2号、…连续下去.全胡同所有住户的门牌号之和减去小明家的门牌,其结果为265. 则(1) 这条胡同共有多少家住户?(2) 小明家的门牌是几号?40. 数一数,图2中共有多少个三角形?41. (1) 图3中有多少个长方形(包括正方形)?(2) 图3中包含*的长方形有多少个(包括正方形)?42. 波兰数学家尔宾斯基(Sierpinski)在1915年提出了尔宾斯基三角形. 以下是它的构造方法:①取一个实心的等边三角形;②沿三边中点的连线,将它分成四个小三角形;③去掉中间的那一个小三角形;④对其余三个小三角形重复②③④.这样下去可以重复无数次操作,如图 4 所示. 如果原来的大等边三角形面积为256,那么在 4次操作之后,三角形中被去掉的空白部分面积为多少?43. 如图 5,8个小等边三角形组成了一个梯形.(1) 数一数图5中有几个等边三角形;(2) 若去掉一个三角形,使得三角形的总数减少 1个,你能办得到么?减少两个呢?44. 所谓闭折线,就是一些线段首尾相接构成一个回路.比如五角星,它是一个有5条边的闭折线,并且它的 5条边互相相交,共有5个交点(不包括线段的端点交点). 请问:一个有 6 条边的闭折线,它的 6 条边之间最多可以有多少个交点(不包括线段的端点交点)?45. 如图 6,将正面为白色,背面为红色,面积为 105 的长方形彩纸背面向正面折起一部分,使这部分重合到彩纸,这时,白色彩纸的面积只剩下了原来的0.2倍,求被折起的这部分(阴影部分)的面积.46. 如图 7,长方形 ABCD 中,△ABP 的面积为 30,△CDQ 的面积为 35,求阴影部分的面积.47. 如图 8,8边形的 8个角都是 135°.已知 AB=EF,BC=20,DE=10,GF=30,求AH的长.48. 如图 9,四边形 ABCD 是一个正方形,梯形 AEBD 的面积是 26,△AOE 的面积比△BOD的面积小 10,求正方形的边长.49. 如图 10,直角梯形 ABCD 中,DF⊥BC,AB=10,DE 的长度是 EF 的 4 倍,阴影部分的面积为90. 求梯形ABCD的面积.50. 如图 11,在梯形 ABCD中,AB=15,CD=5,梯形的面积为80,求△AOB的面积.51. 如图 12,过平行四边形 ABCD 的一点 P 作边的平行线 EF,GH,若平行四边形BEPH的面积为 4,平行四边形PFDG的面积为7,求△PAC 的面积.52. 如图 13,△ABC 中,试在AB上取点E,在AC 上取点F,D,连接 EF,ED,BD,使得△AEF,△EDF,△BDE,△BCD 的面积都相等(说出一种方法即可,但要证明其正确性).53. 如图 14(a)边长分别为 13,5 的两个正方形叠放在一起,两个正方形部的阴影部分的面积差为M. 如图14(b)边长分别为15, 9的两个正方形叠放在一起,两个正方形部的阴影部分的面积差为 N. 试比较 M与N 的大小.54. 在边长是 2米的等边三角形任意丢放 5颗小石子,则总有两颗小石子的距离不大于1米,请说出理由.55. 大伯利用一堵旧墙 AB,用长 50m 的篱笆围成一个留有 1m 宽的门的梯形场地CDEF(CD∥EF),如图15所示.若DE的长为 10m,则梯形场地 CDEF的最大面积是多少?56. 如图 16,ABCD 是正方形,AEGD,EFHG,FBCH 都是长方形,若图 16 中所有长方形(含正方形)的周长之和为190,EF=5,求正方形ABCD的面积.57. 用2017 个等腰直角三角形能不能拼成一个正方形? 请说明理由. (注:等腰直角三角形不要求一样大).、58. 一只乌鸦从其鸟巢飞出,飞向其巢北10 千米东7千米的A地,在 A地它发现有一个稻草人,所以就转向巢北 4 千米东 5 千米的 B 地飞去,在 B 地吃了一些谷物后立即返巢,其所飞的途径构成了一个三角形,这个三角形的面积为多少平方千米?59. 图 17 是一个正方体纸盒的展开图,当折叠成纸盒时,与点 1 重合的点的编号有哪些?60. 一组积木组成的图形,从正面看是,从侧面看是,则(1) 这组积木最少是用多少块正方体积木摆出来的?(2) 这组积木最多是用多少块正方体积木摆出来的?61. 甲、乙、丙在猜一个完全平方的两位数.甲说:它的因数个数为奇数,而且它比90大.乙说:它是奇数,而且它比 80小.丙说:它是偶数,而且它比 100小.如果他们三个人每个人都有半句真话,半句假话,那么这个数是多少?62. 如图 18,三根绳子系在一起,现在要在绳子的某处点火,如果每分钟火燃烧的距离是1,那么至少需要几分钟才能烧光这些绳子?63. 已知“西门鸡翅”的价格是3元钱2个鸡翅,“好伦哥”的价格是20元自助餐(无论吃多少个鸡翅都是 20 元),请根据图 19 中的对话判断,小笨至少能吃多少个鸡翅?64. 小笨得到了一笔压岁钱,但却忘了具体有多少钱. 他只记得这个三位数的各位数字之和是17,其中十位数字比个位数字大 1. 如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大 198. 请你帮小笨算算,这笔压岁钱有多少元?65. 某次考试共有 12 道判断题.小聪划了 7 个钩和 5 个叉,结果对了 8 道;小笨划了 3 个钩和9 个叉,结果对了 10 道;大壮一道不会,索性全部打叉,那么他至少可以蒙对多少道题?66. 如图 20,在空格填入数字 1~4,使得每行、每列和每个粗线围成的区域里数字都是1~4恰好各一个,若M+N>4,则 M× N 的值是多少?67. 有 61 个人坐成一横排.首先,正中间的一个人站起来,然后,按下述方法大家都或坐或站:(1) 如果邻座的人站起来,那么1秒钟后自己也站起来;(2) 站起1秒钟后坐下;(3) 如果左右邻座的人都是站着的,那么即使过了 1秒钟,自己仍然坐着.那么最初的那个人站起7秒钟后,有几个人站着?68. 某学生俱乐部有 11 个成员,他们的名字分别是 A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11 个人里面,总说谎话的有几个人?”那天,J 和K休息,余下的9个人这样回答:那么这个学生俱乐部的 11 个成员中,总说谎话的有多少个人?69. 某单位空降一名总经理,五位职员了解了这位经理的一些情况,现列表如下:这五位职员了解的情况,每人只有1项是正确的,请判定该经理的情况.70. 班长小英让 x 名同学去种少于 100棵的树苗.若每人种7棵,则余下 5棵;若每人种8棵,则有1 人只须种6棵. 求:(1)人数x; (2)树苗的棵数.71. 全家四口人,父亲比母亲大 3岁,姐姐比弟弟大 2岁. 4年前他们全家的年龄之和是58岁,而现在是 73岁. 问现在母亲的年龄是多少岁?72. 有一根木棍有三种刻度,第一种刻度将木棍分成 10 等份,第二种刻度将木棍分成12等份,第三种刻度将木棍分成15等份.如果沿每条刻度线将木棍锯断,请问木棍共被锯成多少段?73. 某快递公司已囤积部分快件,但仍有快件不断运来,公司决定用快递专车将快件分给客户,若 9 辆车发货,12 小时运完;若用 8 辆车发货,16 小时可以运完. 问:如果先用6 辆车运,3小时后需再增加几辆车,再过5小时可以运完?74. 10 点多的某个时刻,小明发现 1 分钟后表的时针与 1 分钟前表的分针夹角是180°,那么现在是 10点几分?75. 三堆苹果共 48 个. 先从第一堆中拿出与第二堆个数相等的苹果放入第二堆,再从第二堆中拿出与第三堆个数相等的苹果放入第三堆,最后又从第三堆中拿出与第一堆个数相等的苹果放入第一堆,这时三堆苹果数恰好相等.第一堆苹果原来有多少个?76. 甲、乙共有 26 颗糖.甲先拿走乙的一半,乙发现后,也拿走了甲的一半. 甲不服气,又偷偷拿了乙 5颗糖,此时甲比乙多 2颗,问:乙刚开始时有多少颗糖果?77. 甲、乙两车同时从 A,B两地相向而行,在距A地70千米处第一次相遇.各自到达对方出发地后立即返回,途中又在距 A 地 50 千米处相遇. 问:A,B 两地相距多少千米?78. 一列火车速度不变地驶过长为 600米的铁路桥需 1分钟,以相同的速度完全穿过长为2200米的隧道需要 3分钟,问:火车长多少米? (从车头上桥到车尾离桥即为完全驶过铁路桥)79. 华从家到学校上课,先用每分钟 80 米的速度走了 3 分钟,发现这样走下去将迟到3分钟;于是她就改用每分钟 110米的速度前进,结果提前了 3分钟到校.华家离学校有多远?80. 有 A,B,C 三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用 6分钟、10 分钟、12 分钟追上骑车人.现在知道 A车每小时行24 千米,B车每小时行 20千米,那么,C 车每小时行多少千米?81. 某人沿着电车道旁的便道以 4.5千米每小时的速度步行,每14.4 分钟有一辆电车迎面开过,每 24 分钟有一辆电车从后面追过来,如果电车按相等的时间间隔以同一速度不停的往返运行,问:电车发车间隔是多少分?82. 星期六小王去球馆打球,去时发现家中的钟没电了,于是换上电池,把钟暂时调整到 8 时整,到球馆时球馆的钟刚好是 8 时整,打球到 11 时整,他以原速度回家发现家中的钟刚好是 12 时整,小王根据这些时间关系再次调整了时间,如果小王在路上的速度是 60米/分钟,请问:(1) 从家到球馆的路程是多少米?(2) 小王到家的准确时间是几点?83. 某汽车从 A 地开往 B 地,如果在计划行驶时间的前一半时间每小时行驶 30千米,而后一半时间每小时行驶 50千米,则按时到达;但汽车以每小时行驶 40千米的速度从A地行驶至离 A,B 中点还差 40 千米的地方发生故障,而停车检修半小时,此后以50 千米每小时的速度行驶,仍按时到达B地,问:(1) 原计划时间是几小时?(2) A,B两地的距离是多少千米?84. 甲、乙两名同学从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动. 已知山坡长 360 米,甲上山的速度是乙上山的速度的 1.5 倍,并且甲乙下山的速度是各自上山速度的 1.5 倍. 当甲第三次到达山顶时,乙所在的位置距山顶多少米?85. 熊大和熊二清晨起床后去学校的环形跑道上跑步锻炼,已知环形跑道的一周是 400 米,两只熊分别在相距 80 米的 A,B 两处同时跑,熊大每秒跑 3 米,熊二每秒跑2米,那么熊大和熊二几秒后第一次相遇?86. 甲、乙二人在一条相距 20 千米的平直公路的两处同时同向骑自行车(时速不超过 60 千米)前进,一小时后两人相距 15 千米,已知乙的时速比甲的时速的 2倍少10 千米,求甲,乙二人的时速.87. 加工一批零件,如果甲先做4 小时,乙再加入一起做,完成时甲比乙多做 400个,如果乙先做 4 小时,甲再加入一起做,完成时甲比乙多做 40 个. 如果一开始甲乙就一起做,那么,完成时甲比乙多做多少个?88. 猴子 A,B 一起上山摘桃子,猴子 B 单独摘完需要 50 天,如果猴子 A 第一天摘,猴子B第二天摘,这样交替摘,恰好整天数可摘完. 如果猴子 B 第一天摘,猴子 A 第二天摘,这样交替摘,恰好比上次轮流的方法多用半天摘完,那么猴子A单独摘完需要多少天?89. 一个玻璃容器里所装的糖水中含有10克糖,再倒入浓度为5%的糖水200克,配成浓度为2.5%的糖水. 那么原来这个玻璃容器的水有多少克?90. 用黑、白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑、白皮块 32 块,则(1) 黑色皮块有多少块?(2) 白色皮块有多少块?91. 小聪与小笨一起爬楼梯上楼,小聪家住 5层,小笨算了一下,自己的速度必须是小聪的2倍,这样才可以与小聪同时到达各自家中,那么小笨家住几层?92. 一个牧民买了一头母羊,每年能生 2只公羊, 4只母羊,每只小母羊两年后,又可以每年生6只羊,其中2只公羊,4只母羊.这样从今年开始到第 4年底,一共有多少只羊?93. 一辆长途汽车的起点是甲站,终点是丙站,中途停靠乙站. 从甲站到乙站和从乙站到丙站的票价都是 2元,而从甲站到丙站的票价是 3元,一天这辆长途汽车离开甲站时载有 45 名乘客,到了乙站有 12 人下车,19 人上车,那么该长途汽车这一天的车票收入是多少元?94. 甲、乙两人共带 90 千克行坐飞机旅行,机场规定:每人所带行重量不超过规定重量免费,超出部分重量按标准收费.两人分开带行分别收费是 16.8元和13.2 元;如果由一人带行就要收 42元.问:免费规定重量是不超过多少千克?95. 大壮加工一批产品,他每加工出一件正品,得报酬0.75元,每加工出一件次品,罚款1.50元,这天他加工的正品是次品的 7倍,得到11.25 元的报酬. 那么他这天加工出几件次品?96. 一个工人与用人单位签订了一个月的短期合同,双方约定,每工作一天得 80元,不上班不但没工资,且每天要倒扣10元.月末结账时,该工人领到工资 2030元,问这个工人工作了多少天?97. 顾客和店主有如下对话:顾客:老板,这件商品多少元?店主:这件商品五折减 5角和六折减6角的结果一样.顾客:按“五折减5 角”的优惠价买可以么?店主:不行!顾客:按“九折减9 角”的优惠价来买可以吗?店主:不行!问:(1) 这件商品的单价是多少?(2) 店主为什么坚持不卖?98. 小聪赶着一头猪到山外的生猪收购站去卖,过秤知猪重150斤,他和收购站的工作人员有如下对话:收购员:你这头猪肚子这么大又这么重,是不是故意让猪吃了很咸的猪食,然后大量喝水造成的?不收!小聪:我们家有诚信的家风,绝不会这样!请收购吧,我走了很远的山路才到这里.收购员:如果马上收购,猪的重量要打九折,如果你明天早上来,当面再称猪的重量,收购价提高两成五,两种选择由你确定!请帮助小聪作出选择,并说明理由.99. 一种商品,甲店:“买四赠一”,乙店:“优惠”,如果只从经济方面考虑,你选择去哪家商店?100. 有27位客人来某厂参观学习,厂领导派车去火车站接人,厂里有两种车子:可乘 3 人(司机除外)的小轿车和可乘 7 人(司机除外)的面包车,若要求车子全都满载,请确定派车的方案.参考答案1. 02. 13. 304. 105. 5.56. 392,5767. 358. 不会9. 12710. 3311. 3512. 813. 50214. 615. 18616. 1317. 3518. 40 或4519. 15020. 120321. 13822. 123. 9 24. 425. 4或 526. 5427. 2,5,1928. 4829. 3630. 21031. 20232. 47,3733. 24,634. 2835. 19636. 837. 2438. 31,2739. 23,1140. 1641. 360,10842. 17543. 10,可以44. 745. 4246. 6547. 2048. 649. 168.7550. 4551. 1.552. 略53. M = N54. 略55. 20556. 10057. 可以58. 1159. 2, 660. 3,961. 8162. 2163. 1464. 47665. 766. 967. 868. 969. 姓黄,男性,年薪240.万元,硕士学历70. 7,5471. 3172. 2873. 874. 2375. 2276. 1677. 13078. 20079. 2000 80. 1981. 1882. 1800,11:3083. 3,12084. 12085. 32086. 15,20;或5,087. 22088. 2589. 59090. 12,2091. 992. 9793. 16194. 2095. 396. 2697. 1元.98. 略99. 乙100. 9 辆小车或者 2 辆小车 3 辆面包车。
希望杯五年级奥数试卷【含答案】
希望杯五年级奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 32答案:D3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形答案:A4. 一个正方形的边长是4厘米,那么它的面积是多少平方厘米?A. 8B. 16C. 32D. 64答案:B5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
(正确)2. 所有的等差数列都是递增的。
(错误)3. 两个奇数相加的和是偶数。
(正确)4. 任何数乘以0都等于0。
(正确)5. 所有的质数都是奇数。
(错误)三、填空题(每题1分,共5分)1. 1+2+3++100的和是______。
(5050)2. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。
(5)3. 两个质数相乘得到的数是______数。
(合)4. 一个数的因数个数是______。
(有限的)5. 0的阶乘是______。
(1)四、简答题(每题2分,共10分)1. 请列举出前5个质数。
答案:2,3,5,7,112. 请写出等差数列的通项公式。
答案:an = a1 + (n 1)d3. 请解释什么是偶数。
答案:偶数是能被2整除的整数。
4. 请解释什么是因数。
答案:因数是能整除一个数的数。
5. 请解释什么是等边三角形。
答案:等边三角形是三边长度相等的三角形。
五、应用题(每题2分,共10分)1. 一个数列的前三项分别是2,4,6,那么第10项是多少?答案:第10项是20。
2. 一个正方形的边长是6厘米,那么它的面积是多少平方厘米?答案:36平方厘米。
3. 请列举出10以内的所有质数。
答案:2,3,5,7。
五年级希望杯近四年一、二试试题及答案解析
第十三届小学“希望杯”全国数学邀请赛五年级 第1试试题以下每题6分,共120分 1、计算:(2015201.520.15)________.2.015--= 2、9个13相乘,积的个位数字是________. 3、如果自然数a ,b ,c 除以14都余5,则a b c ++除以14,得到的余数是_______. 4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,,25相减,并且都是大数减小数,则在这25个差中,偶数最多有_______个. 5、如图1,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是_______厘米. 图1 6、字母,,,,,,a b c d e f g 分别代表1至7中的一个数字,若a b c c d e c f g ++=++=++,则c 可取的值有________个. 7、用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体的8个顶点处的小正方体都去掉,则此时的几何体的表面积是 平方米. 8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后的第一位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这三位数是.(π取3.14)9、循环小数0.0142857的小数部分的前2015位数字之和是 . 10、如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看,分别是①、②、③,则至少需要 小正方体. 11、已知a 与b 的最大公约数是4,a 与c 以及b 与c 的最小公倍数都是100,而且a 小于等于b ,则满足条件的有序自然数对(a ,b ,c )共有 组.12、从写有1、2、3、4、5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有_____个.13、两位数ab 和ba 都是质数,则ab 有 个.14、ab ,cde 分别表示两位数和三位数, 如果ab+ cde =1079,则a +b +c +d +e = 15、已知三位数abc ,并且a (b +c )=33,b (a +c )=40, 则这个三位数是 .16、若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体 个. 17、某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成,如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是 个. 18、某次考试中,11名同学的平均分经四舍五入到小数点后的第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是分. 19、有编号1,2,3,4…2015的2015盏亮着的电灯,各有一个拉线开光控制,若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有 盏.20、今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同.”则小明现在 岁. 第十三届小学“希望杯”全国数学邀请赛 五年级 第二试试题 一.填空题(每小题5分,共60分) 1. 用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 . 【解析】首先要想让乘积最大,应该先乘数的十位尽量大,所以十位应用7、8.然后根据数字和一定,两数差越小乘积越大,可以知道83和74的差是最小的,因此乘积最大是83746142⨯=.2. 有三个自然数,它们的和是2015,两两相加的和分别是m +1,m +2011和m +2012,则m =____.【解析】由题意可以知道(1)m +、(2011)m +、(2012)m +三者的和是三个自然数和的2倍, ①②③因此12011201220152m m m +++++=⨯,得出2m =.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).【解析】方法一:由于8个数字中有2个不为2的偶数,这2个数不能在个位,因此可以组成的质数最多有826-=(个),经尝试可得2、3、5、7、61、89满足条件,因此最多可以组成6个质数;方法二:题目要求最多个质数,应该使一位数的质数尽量多,有2、3、5、7;剩下1、6、8、9,我们会发现6和8只要放在个位这个数就不是质数,尝试可以组成61和89这两个质数,因此最多可以组成6个质数.4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.【解析】10个人的总分是8410840⨯=(分),其他9个人的总分是84093747-=(分),因此其他9个人的平均分是747983÷=(分). 5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种. 【解析】朝上一面的4个数字和最大是666624+++=,最小是11114+++=,最小和最大数字和之间的情况都有可能出现,因此朝上一面的4个数字和有244121-+=(种). 6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.【解析】三个彼此互质的自然数乘积是665,则其中必然有一个质数是5,6655133=⨯,那么133等于另外两个质数的乘积,可以看出133719=⨯,那么知道这三个彼此互质的自然数分别是5、7、19,长方体的表面积是(57719519)2526⨯+⨯+⨯⨯=.7.大于0的自然数n 是3的倍数,3n 是5的倍数,则n 的最小值是_____.【解析】若3n 是5的倍数,那么n 也是5的倍数,由题意可以得到n 既是3的倍数,也是5的倍数,所以n 的最小值是3515⨯=. 8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个. 【解析】若这个三位数的数字和不能被3整除,那么就不能被3整除.枚举可以知道(1、2、4),(1、2、5),(1、3、4),(1、4、5),(2、3、5),(2、4、5)这6组数字的数字和不能被3整除.那么不能被3整除的三位数有33636A ⨯=(个).9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.【解析】前7行共有135********++++++=(个)数,即第7行的最后一个数是49,那么第8行前5个数分别是50、51、52、53、54,所以从左到右第5个数是54.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.【解析】根据题意有:2牛=42羊,3羊=26兔,2兔=3鸡,所以可得:3牛=4223÷⨯羊=63羊=26363÷⨯兔=546兔=54623÷⨯鸡=819鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).【解析】设矩形的长为a ,宽为b ,且a b ≥,根据题意可得:17a b +=,由于a 、b 均为整数,因此(a ,b )的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______.【解析】从左到右删去奇数位上的数字,第一次删除后剩余第2,4,6,8,12k (11007k ≤)位上的数; 第二次删除后剩余第4,8,12,16,,()224503k k ≤位上的数;第n 次删除后剩余第2,22,23n n n ⨯⨯位上的数,以此类推最后剩余的一定是1021024=位上的数字(11220482015=>),102452044÷=,所以最后剩余的数字应为4.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?【解析】设甲船顺水航行x小时,则逆水航行()3-x小时,根据题意列方程得:()843x x=-,解得:1x=,甲船出发后顺水航行1小时后逆水航行2小时;同理可求出乙船出发后逆水航行2小时后顺水航行1小时.因此出发后的第2个小时甲、乙两船均逆水,有1小时行船方向相同.14.图中有多少个三角形?图1【解析】设最小的三角形面积为1,图中面积为1的三角形有16个;面积为2的三角形有44+8=24⨯(个);面积为4的三角形有44+4=20⨯(个);面积为8的三角形4+4=8(个);面积为16的三角形有4个;所以共有16+24+20+8+4=72(个).15.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边边分别为8cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图2 【解析】如下图所示,延长CP与DF垂直于F,DF与AH交于E,由于ABCD为平行四边形,则直角三角形CFD与甲三角形相等,直角三角形AED与乙三角形相等,阴影部分的面积为直角三角形CFD与直角三角形AED面积之和减去长方形EFPH,可得EF=5-2=3cm,EH=8-6=2cm,则阴影部分的面积为8×5÷2+6×2÷2-3×2=20(平方厘米). 16. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.【答案】52人【解析】由于从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,即每2个人1个周期,158能被2整除,相当于从右边起(第一个人不发苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,发香蕉的周期为3,则从右边起每6个人为一个周期,发的水果数如下:苹果 1 0 1 0香蕉0 0 1 0 可以发现每个6个人的周期中共有2人没发水果,158÷6=26…… 2,剩余的2人均发了水果,则没发水果的一共有26×2=52(人).第十三届小学“希望杯”全国数学邀请赛五年级第二试试题一.填空题(每小题5分,共60分)1.用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .2.有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=____.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).4.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.5.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.6.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.7.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是_____.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个.9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14.图中有多少个三角形?图115.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边边分别为8cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图2 16. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.2014第十二届希望杯五年级试题1.201403165÷,余数是________。
第三届小学“希望杯”全国数学邀请赛五年级试题及答案
第三届小学“希望杯”全国数学邀请赛五年级第1试2005年3月13日上午8:30至10:00一、填空题1.数x比“112的六分之一”小,则x= _____。
2.计算:0.3+=_____(结果写成分数)。
3.设a=,b=,则在a与b中,较大的数是______。
4.在,,中,最小的数是______。
5.某校五年级一班参加兴趣小组的人数统计图如图所示,由图可知:该班共有_____人参加兴趣小组,_____小组的人数最多。
6.下图是3×3的正方形方格,∠1与∠2相比,较大的是_____。
7.小明和小新在同一街道,小明家在学校东600米处,小新家在学校西200米处,那么小新家距离小明家_____米。
8.用五张数字卡片:0,2,4,6,8能组成______个不同的三位数。
(6不能看作9)9.一盘草莓约20个左右,几位小朋友分。
若每人分3个,则余下2个;若每人分4个,则差3个。
这盘草莓有______个。
10.计算:7.816×1.45+3.14×2.184+1.69×7.816=_____。
11.买2条毛巾,3块肥皂,要付18元;买3条毛巾,2块肥皂,要付19元(毛巾,肥皂,都分别是同一品种的)。
那么买1条毛巾,1块肥皂要付_____元。
12.在等式=中,( )内的两个不同自然数可以是___和____ (填一组即可)。
13.在六位数3□ 2□1□的三个方框里分别填入数字,使得该数能被15整除,这样的六位数中最小的是______.14.在一袋大米包装袋上标着净重,那么这袋大米净重最少是______千克。
15.下表中上一行的一个字与下一行对应的一个字作为一组,如第一组是(数,我),第二组是(学,们)。
那么第2005组是_____。
16.如图,由边长为1的小三角形拼成,其中边长为4的三角形有_____个。
17.用125个边长为1厘米的正方体可以拼成一个边长为5厘米的正方体,要使拼成的立方体的边长变为6厘米,则需要增加边长为1厘米的正方体______个。
第十一届小学五年级希望杯2试题及解析
第十一届小学五年级希望杯2试题及解析第十一届小学“希望杯”全国数学邀请赛五年级第2试试题2021年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1. 请在横线上方填入一个数,使等式成立:5?4??【答案】25【解析】5?4?20,20?0.8?25。
2. 两个自然数的和与差的积是37,则这两个自然数的积是。
【答案】342 【解析】(1)37?1?37,两个数的和是37,差是1。
(2)较大数是:?37?1??2?19,较小数是:?37?1??2?18。
(3)两个数的乘积是:19?18?3423. 180的因数共有个。
【答案】18【解析】(1)180分解质因数:180?22?32?5(2)180的因数个数是:?2?1???2?1???1?1??18(个)。
4. 数字1至9的排列如图所示,沿着图中的连接线将全部的数字各取一遍(每个数字只能经过一次)组成一个九位数,例如123654789。
按此取法取得的数中,最小的是。
最大的是。
??0.8。
【答案】123547896;987563214 【解析】(1)从最高位开始,每一位由小到大选择数字,即:123547896 (2)从最高位开始,每一位由大到小选择数字,即9875632145. 若32只兔子可换4只羊,9只羊可换3头猪,8头猪可换2头牛。
那么,5头牛可换只兔子。
【答案】480 【解析】(1)5头牛可以换猪:8?2?5?20(头)。
(2)20头猪可换羊:9?3?20?60(只)。
(3)60只羊可换兔子:32?4?60?480(只)6. 包含数字0的四位自然数共有个。
【答案】2439 【解析】(1)四位自然数共有:9?10?10?10?9000(个);(2)不含有0的四位自然数共有:9?9?9?9?6561(个);(3)包含数字0的四位自然数共有:9000?6561?2439(个)。
7. 养殖场将一批鸡蛋装入包装盒,每盒装30枚,恰好全部装完。
五年级希望杯数学竞赛题目
五年级希望杯数学竞赛题目一、题目与解析。
1. 计算:0.125×0.25×0.5×64- 解析:- 把64分解成8×4×2。
- 原式=(0.125×8)×(0.25×4)×(0.5×2)。
- 因为0.125×8 = 1,0.25×4=1,0.5×2 = 1。
- 所以结果为1×1×1 = 1。
2. 计算:(1.25+1.25+1.25+1.25)×25×8- 解析:- 括号里1.25+1.25+1.25+1.25 = 1.25×4。
- 原式=(1.25×4)×25×8。
- 根据乘法交换律和结合律,先算4×25 = 100,1.25×8 = 10。
- 结果为100×10 = 1000。
3. 一个数除以5余3,除以6余4,除以7余5。
这个数最小是多少?- 解析:- 这个数加上2就能被5、6、7整除。
- 5、6、7的最小公倍数为5×6×7=210。
- 所以这个数最小是210 - 2 = 208。
4. 有一个自然数,用它分别去除63,90,130都有余数,三个余数的和为25。
这三个余数中最大的一个是多少?- 解析:- 设这个自然数为x,设除63的余数为a,除90的余数为b,除130的余数为c。
- 则63 = k_1x + a,90=k_2x + b,130 = k_3x + c。
- 已知a + b + c = 25。
- 那么63+90 + 130-(a + b + c)=(k_1 + k_2 + k_3)x。
- 即63+90+130 - 25=(k_1 + k_2 + k_3)x。
- 计算得258=(k_1 + k_2 + k_3)x。
- 把258分解因数:258 = 2×3×43。
2024年希望杯冬令营比赛试题——五年级含答案
2024 IHC D-5 中文卷1.计算:2.0 + 2.02 + 2.024 + 2.0294 + 2.02994 ++ 2.02999 9994 = 。
97个92.已知2024 2024 是72 的倍数,那么非零自然数n 的最小值是。
n个20243.已知n! =1× 2×3××n 。
那么2023!+ 2024! 的末尾有个连续的零。
4.四个互不相同的自然数的乘积为2024,则这四个数的和最大是。
5.已知两个自然数之差为140,这两个数的最小公倍数是其最大公约数的120倍,那么这两个自然数的和是。
6.为了调查学生的身体状况,学校对幸福小学毕业生进行了体检,毕业生总人数满足除以8 余5。
率先体检的45 名学生中有44 名是合格的。
后面该校体检毕业生每8名中有7 名是合格的,且该校毕业生体检合格率在90%以上,则该校毕业生的人数最多有名。
7.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”(下图所示的是一个9 层的三角垛)。
“三角垛”最上层有1 个球,第二层有3 个球,第三层有6 个球,…,设第n 层有a n个球,则1+1a1a2+... +1a2023+1a2024的值是。
2024年希望杯冬令营比赛试题——五年级8. 若1×2×3×⋅⋅⋅×2022 ×2023 = 2024k×m ,其中k,m 为整数,则整数k 最大可取。
9.黑板上写有1 到100 这100 个自然数,现擦去其中一些数,黑板上至多保留个数,才能使剩下的数中任意两个的和都不能被10 整除。
10.已知一个凸六边形ABCDEF 的六个内角都是120°,AF,AB,BC,CD 的长依次是3,6,2,5,则阴影部分的面积与中间三角形BDF 的面积之比是。
11.如图,一个8×8 格点阵相邻两个格点间的距离均为1,连接最外层的格点得到正方形ABCD。
2024年希望杯五年级竞赛数学试卷培训题含答案
2024年希望杯五年级竞赛数学试卷培训题1 .计算:.2 .计算:.3 ..4 ..5 .在横线上填上“”“”或“”.6 .已知:,则.7 .现定义一种新运算“”:,则.8 .表示的整数部分,如:,.计算:.9 .小强在计算除法时,把除数写成,结果得到的商是且余数是,正确的商是,余数是.10 .小虎在计算时,先算了减法,最后得到的结果是,正确的计算结果应该是.11 .在的两个里填入相同的数,使等式成立,里应填.12 .一个数的小数点向右移动一位后,比原来的数大,原来的数是.13 .循环小数小数点后第位数字是.14 .把化成小数,小数点后面第位上的数字是.15 .请你根据题图所示向日葵上的数字规律,在方框中填入正确的数字.16 .在一个四位数的前、后分别加上,组成两个五位数.若这两个五位数相差,则.17 .王冬有存款元,张华有存款元.王冬每月存元,张华每月存元,个月后张华的存款才能和王冬的一样多.18 .,要使商的中间有,里可以填.19 .题图算式中的,,分别代表不同的数字.式中的,和分别表示,和的倒置数字(如的倒置数字是,的倒置数字还是).那么是,是,是.20 .请把图中的除法竖式补充完整.21 .这个自然数的和是三位数,且这个三位数各个数位上的数字相同,则.22 .九位数能被中任何一个自然数整除,且数字、、互不相同,则三位数.23 .一个自然数的个位数字是,将这个移动到最左边,得到的新数恰好是原数的倍.原数最小是.24 .已知三个最简真分数的分母分别为,和,它们的乘积是.则这三个最简真分数中,最大的数是.25 .在等差数列1,8,15,22,29,36,43,…中,如果前个数乘积的末尾0的个数比前个数乘积的末尾0的个数少3个,那么最小是 .26 .是的倍数,则.27 .有一篮鸡蛋,每次取出个,最后剩下个,如果每次取出个或个,最后都剩下个,篮子里的鸡蛋至少有个.28 .自然数除以的余数是,则除以的余数是.29 .Given and are two non-zero digits and the digit numbers formed by these two digits have the following properties:.can be expressed by a product of and;.is a square number;Find the digit number.已知和为两个非零数位.且利用这两个数位组成的两位数有以下性质:.可以被写成和的积;.是个平方数;求两位数.30 .快速公交路线有四个站点,把这四个站点两两之间的距离从小到大排列,分别是:,,,,,,则“”.31 .有个因数且能被整除的最小自然数是.32 .从开始做乘法:,当乘到时,乘积的末尾有个连续的.33 .的计算结果末尾有个.34 .一个正整数与的积是一个完全平方数,则的最小值是.35 .,都是非零自然数.如果是的倍,那么和的最大公因数是;如果,那么和的最小公倍数是.36 .已知存在三个小于的自然数,它们的最大公因数是,且两两不互质,将这三个数相加,最大可能是.37 .定义,则有个因数.38 .选一选..A..B..C..D..E.39 .九张卡片上分别写有数,,,,,,,,(不能倒过来看).甲,乙,丙,丁四人分别抽取了其中两张:甲说:“我拿到的两个数互质,因为它们相邻.”乙说:“我拿到的两个数不互质,但也不是倍数关系.”丙说:“我拿到的两个数都是合数,但它们却互质.”丁说:“我拿到的两个数是倍数关系,它们不互质.”如果这四人说的都是真话,那么剩下的一张卡片上写的数是.40 .用、、、四个数字可以组成个双数,其中最大的是.(每个数字都要用且不重复)41 .将一个能被整除的三位数的首、末数字交换后,还是三位数,原数的倍也是三位数,原数的后两位数字的和是的约数,满足条件的最大的三位数是.42 .如图,大长方形被两条互相垂直的线段分成了四个小长方形.已知四个小长方形面积均为整数,其中两块面积分别为和.大长方形面积最大是.(注:图中各部分大小并不代表其面积大小关系)43 .如图,正方形的面积是,是中点,连接、交于点.是中点,连接并延长交于点.阴影部分的面积是.44 .如图,分别以一个正六边形的顶点和各边的中点为圆心,以正六边形的边长为直径画了个圆和个半圆.若阴影部分的面积和是,那么正六边形内部的阴影面积是.45 .正方形的面积是,,,,是正方形各边的中点,那么阴影部分的总面积是.46 .如图,在四边形中,,分别是,边的三等分点.已知四边形的面积是平方厘米,求四边形的面积是平方厘米.47 .如图所示,如果一块正方形土地的两边各增加米,面积将增加平方米.原来正方形的面积是平方米.48 .如图,两个正方形并排放在一起,、、在同一条直线上,大正方形边长为厘米,小正方形边长为厘米,那么阴影三角形的面积为平方厘米.49 .下图中,平行四边形的面积是,点是线段的中点.三角形的面积是.50 .如图,若大正方形的周长是,小正方形的周长是,则蓝色阴影部分的面积是.51 .正方形的边长为,,,是对角线的四等分点.图中阴影部分的总面积是.52 .学校校园里有一块宽为米的长方形空地,后勤部门准备从空地中划分出一块米宽的形区域作为绿植区,剩下的部分作为休闲区,而且休闲区和绿植区的面积刚好相等,如图所示(单位:米).那么这块空地的面积是平方米.53 .如图所示,梯形的面积为平方厘米,,厘米,厘米,又已知于点,那么阴影部分的总面积为平方厘米.54 .如图,长方形中有四个完全相同的直角三角形,这四个直角三角形的面积总和是.55 .鲁西西最近爱上了折纸,她发现如果把折纸按照图中的样子翻折一下,以直线为折痕将点翻折到,,.当阴影部分的面积与空白部分的面积相等时,如果知道折纸的面积就能算出折痕的长度.如果鲁西西的这张折纸(正方形)的面积是平方厘米,折痕厘米.56 .如图,长方形的广告牌长为,宽为,,,,分别在四条边上,并且比低,在的左边,四边形的面积是.57 .如图的一个骰子,其中对面的数字之和等于,首先将骰子如图放置,然后将骰子向右滚动次,再向前滚动次,此时面朝上.58 .,它一定是由个相同大小的正方体摆成的.59 .一个正方体木块,棱长是,从它的八个顶点处各截去棱长分别是、、、、、、、的小正方体.这个木块剩下部分的表面积最少是.60 .如图,在一个棱长为厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有一定量的水且水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有厘米露出水面.已知圆柱体的底面积是正方体底面积的,则实心圆柱体的体积为立方厘米.61 .琳琳、彤彤各带一些钱去书店,她们看上了一本元的书.如果这元由琳琳出,则琳琳剩下的钱是彤彤的倍;如果这元由彤彤出,琳琳的钱是彤彤剩下的钱的倍.那么开始时琳琳带了元,彤彤带了元.62 .一片牧场,每天草的生长速度相同,这片牧场可供头牛吃天,或者可供只羊吃天.如果只羊的吃草量相当于头牛的吃草量,那么头牛和只羊一起吃这片牧场上的草,可以吃天.63 .大黄蜂从赛博坦星球飞往潘多拉星球,原计划每小时行驶万千米,实际途中遇到电子风暴,只有一半的路程能按原计划的速度行驶,其余路程每小时行驶万千米,结果比原计划推迟了小时抵达潘多拉星球.赛博坦星球到潘多拉星球的路程是万千米.64 .张强晚上六点多外出锻炼身体,此时时针与分针的夹角;回家时还未到七点,此时时针与分针的夹角仍是,则张强外出锻炼身体用了分钟.65 .一条线段上最初有个点(包含端点),第一次在每相邻的两点之间增加一个点,第二次同样在每相邻的两点之间增加一个点.这时线段上共有个点.66 .冰墩墩练习滑雪一周,其中后四天平均每天滑雪的长度比前三天平均每天滑雪的长度多千米,后三天平均每天滑雪的长度比前四天平均每天滑雪的长度多千米.冰墩墩后三天滑雪的总长度比前三天滑雪的总长度多千米.67 .个数的平均数是,如果其中一个数变为,则这个数的平均数为.原来这个数是.68 .小林和叔叔的年龄和是岁.69 .若干年后,爷爷的年龄比小高年龄的倍多岁;再过几年,爷爷的年龄比小高年龄的倍多岁,已知今年小高岁,那么爷爷今年岁(今年爷爷年龄不到岁).70 .某汽车厂同时建成两条生产线.第一条生产线第一个月生产了辆汽车,以后每个月比前一个月多生产辆;第二条生产线第一个月也生产了辆汽车,以后每半个月比前半个月生产辆.那么,该厂生产辆汽车需要个月.71 .张三、李四两人一起加工一批零件,用时天完成了任务,李四中途有事请假天.已知张三每天比李四多做个零件,且最终李四加工的零件数恰好是张三的一半.这批零件的总数是个.72 .一项工程,甲单独做天完成,乙单独做天完成,若甲先做若干天后乙接着做,共用天完成.甲做了天.73 .游艇在静水中的速度是千米时,水速是千米时,喜羊羊驾驶游艇从下游的地到上游的地,然后立即返回下游地.游艇从到的时间是从到的倍,那么.74 .一位考古学家乘坐游艇从尼罗河上游码头出发,沿河行驶米到下游,然后原路返回.水流速度是千米时,游艇逆流而上比顺流而下多用小时,那么游艇在静水中的速度是每小时千米.75 .从地球到沙拉达行星有光年(注:光年是一个长度单位).贝吉塔和孙悟空从地球出发前往沙拉达行星.贝吉塔比孙悟空先出发天,如果贝吉塔和孙悟空沿直线飞行,他们每天都能飞行光年,那么孙悟空出发天后,贝吉塔正好在孙悟空和沙拉达行星的正中间.76 .有甲、乙两个村,小王从甲村步行到乙村,小李骑摩托车从乙村与小王同时出发,并不停地往返于甲、乙两村之间,过分钟后两人第一次相遇,分钟时小李第一次追上小王,那么当小王到达乙村时,小李追上小王的次数是.77 .甲乙两车分别从、两地同时出发,相向而行,在距离地米处的地相遇.相遇后乙的速度保持不变,甲的速度变为原来一半,甲继续行驶到地后立即掉头返回.当甲再次到达地时,乙刚好第一次到达地.、两地的距离是米.78 .甲乙两站相距,某天上午,车以的速度从甲站开往乙站,当天上午时,车以每小时的速度从乙站开往甲站,那么两车在点分时相遇.79 .如图所示,一个边长为米的正方形围墙,甲、乙两人分别从两个对角处沿围墙按逆时针方向同时出发.已知甲每秒走米,乙每秒走米.至少经过秒甲才能看到乙.80 .边长为的正方形的顶点,各有一只小虫,它们同时出发沿正方形的边顺时针爬行,小虫甲每秒爬,小虫乙每秒爬,它们在顶点处转弯时都需要耗秒.经过秒其中一只小虫将首次追上另一只小虫.81 .在校运动会上,三班参加跳绳比赛的有人,参加踢毽比赛的有人,那么参加这两项比赛的最多有人,最少有人.82 .数一数,下图一共有个“☆”.83 .如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有种不同的样式.(不可旋转、翻转)84 .用三种颜色去涂如图所示的三块区域,要求一个区域中只能涂一种颜色,相邻区域涂不同颜色,那么共有种不同的涂法.86 .从以内的个质数中任取两个构成真分数,这样的真分数有个.87 .池塘中片莲叶如下图排列.青蛙在莲叶间跳跃,每次只能从一片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶上起跳,连跳步,那么它有种不同的跳法.88 .数一数,下图中共有个梯形.89 .图中共有个平行四边形.90 .如图,在的网格中,每一个小正方形的面积为,点可以是每个小正方形的顶点,则满足的点的个数是.91 .把本书分给某班学生,不论怎么分总有一个学生至少分到本,那么这个班最多有人.92 .桌上有编号至的张卡片,小明每次取出张卡片,要求一张卡片的编号是另一张卡片的倍多,则小明最多取出张卡片.93 .果蔬王国正在举行国王竞选,全国人每人投票,从番茄勇士、香蕉超人、胡萝卜博士中选择人,票数最多的人当选.截至目前番茄勇土得票,香蕉超人得票,胡萝卜博士得票.那么,番茄勇士至少再得票就能够保证当选国王.94 .找规律填数.95 .一列慢车长米,一列快车长米,如果两车在并行的轨道上同向而行,从快车追上慢车到快车超过慢车要秒,如果两车相向而行,从两车相遇到完全错开要秒.慢车的速度是米秒.96 .小明手里有一盒棋子,最初盒子里全是白子.他先取出颗白子,然后放入颗黑子,再取出颗白子,再放入颗黑子.此时小明发现盒子里的白子恰好是黑子颗数的一半,那么最初盒子里有颗白子.97 .在六位数的某一位数字后面再插入一个同样的数字(例如,可以在的后面插入得到),这样得到的七位数最大是,最小是.98 .从、、、、、、、、这串奇数中至少取个数,才能保证其中一定有两个数之和是.99 .左图的表格中分别填入了,我们把对角相邻的两个数同时加上或同时减去一个相同的数叫做一次操作(如和同时加,变成和),经过若干次操作得到右图,那么和的乘积是.100 .将数字填入空白方格中,使得每一行、每一列、每个粗线围成的区域数字都只恰好出现一次,那么最下面的一行个数字组成的位数是.2 、【答案】3 、【答案】4 、【答案】5 、【答案】6 、【答案】7 、【答案】8 、【答案】9 、【答案】10 、【答案】11 、【答案】12 、【答案】略13 、【答案】14 、【答案】15 、【答案】.16 、【答案】17 、【答案】18 、【答案】,,,,19 、【答案】20 、【答案】.21 、【答案】22 、【答案】23 、【答案】24 、【答案】25 、【答案】 10826 、【答案】27 、【答案】28 、【答案】29 、【答案】.30 、【答案】31 、【答案】34 、【答案】35 、【答案】36 、【答案】37 、【答案】38 、【答案】 DECAB39 、【答案】40 、【答案】41 、【答案】42 、【答案】43 、【答案】44 、【答案】45 、【答案】46 、【答案】47 、【答案】48 、【答案】49 、【答案】50 、【答案】51 、【答案】52 、【答案】53 、【答案】54 、【答案】55 、【答案】56 、【答案】57 、【答案】58 、【答案】59 、【答案】60 、【答案】61 、【答案】62 、【答案】63 、【答案】66 、【答案】67 、【答案】68 、【答案】69 、【答案】70 、【答案】71 、【答案】72 、【答案】73 、【答案】74 、【答案】75 、【答案】76 、【答案】77 、【答案】78 、【答案】79 、【答案】80 、【答案】81 、【答案】82 、【答案】83 、【答案】84 、【答案】85 、【答案】86 、【答案】87 、【答案】88 、【答案】89 、【答案】90 、【答案】91 、【答案】92 、【答案】93 、【答案】94 、【答案】95 、【答案】97 、【答案】98 、【答案】99 、【答案】100 、【答案】。
第三届小学希望杯数学竞赛五年级第二试试题及答案
第三届小学“希望杯”全国数学邀请赛五年级 第2试20XX 年4月10日 上午8:30至10:00 得分_____一、填空题(每小题6分,共90分)1.2.005×390-F 20.05×41+200.5×2=____2.计算:0.16+0.16=_______(结果写成分数)。
3.一个数的四分之一减去5,结果等于5,则这个数等于_____4.计算口÷△,结果是:商为10,余数为▲。
如果▲的最大值是6,那么△的最小值是_____5.在.145,114,83,52,21,……这一列数中的第8个数是____.6.如果规定5471.07632,那么c b d a cd ab ⨯-⨯==_____7.如图1所示的三角形ABC 的三条边AB 、BC 、AC 中,最长的______8.图2中的“我爱希望杯”有______种不同的读法。
9.比较图3中的两个阴影部分I和Ⅱ的面积,它们的大小关系______10.已知两个自然数的积是180,差不大于5,则这两个自然数的和是_____。
11.孙悟空会七十二变,猪八戒只会其中的一半。
如果他们同时登台表演71次,则变化相同的最多有_____次。
12.买三盏台灯和一个插座需付300元;买一盏台灯和三个插座需付200元。
那么买一盏台灯和一个插座需付_____元。
13.小明、小华和小新三人的家在同一街道,小明家在小华家西300米处,小新家和小明家相距400米,则小华家在小新家西_____米处。
14.某种品牌的电脑每台售价5400元,若降价205后销售,仍可获利120元,则该品牌电脑的进价为每台_____元。
15.如图4所示,长方形AEGH与正方形BFGH的面积比为3:2,则正方形ABCD的面积是正方形BFGH的面积的______ 倍(结果写成小数)二、解答题(每题10分,共40分) 要求:写出推算过程。
16.在某次测试中,小明、小方和小华三人的平均成绩为85分,已知小明和小方的平均成绩为88分,小明和小华的平均成绩为86分。
第八届希望杯-五年级-第2试试卷及解析
第八届小学“希望杯”全国数学邀请赛五年级第2试1.计算:587÷26.8×19×2.68÷58.7×1.9=( )2.在下面的两个小数的小数部分的数字的上方分别加上表示循环节的一个或两个点,使不等式成立. 0.285 < 2/7 < 0.2853.在长500米,宽300米的长方形广场的外围,每隔2.5米摆放一盆花,现在要改为每隔2米摆放一盆花,并且广场四个顶点处的花盆不动,则需要增加( )盆花,在重新摆放花盆时,共有( )盆花不用挪动.4.如图,一只蚂蚱站在1号位置上,第1次跳1步,站在2号位置上;第2次跳2步,站在4号位置上;第3次跳3步,站在1号位置上、、、、、第n次跳n步.当蚂蚱沿顺时针方向跳100次时,到达( )号位置上.5.五一班男生的平均身高是149厘米,女生的平均身高是144厘米,全班同学的平均身高是147厘米,则该班男生人数是女生人数的( )倍6.停车场上停有轿车和卡车,轿车辆数是卡车辆数的3.5倍,过了一会儿,3辆轿车开走了,又开来了6辆卡车,这时停车场轿车的辆数是卡车辆数的2.3倍,那么,停车场原来停有( )辆车.7.有若干张面值分别为0.5元、0.8元和1.2元的邮票,面值共60元,其中面值为0.8元的邮票张数是面值为0.5元邮票张数的4倍,那么,面值为1.2元的邮票有( )张.8.如果一个自然数的各位数字中有偶数个偶数,则称之为“希望数”,如:26,201,533是希望数,8,36,208不是希望数,那么,把所有的希望数从小到大排列,第2010个希望数是( )9.小明骑车到A、B、C三个景点去旅游,如果从A地出发经过B地到C地,共行10千米;如果从B地出发经过C地到A地,共行13千米;如果从C地出发经过A地到B地,共行11千米,则距离最短的两个景点间相距( )千米.10.一个长方体,如果长减少2厘米,宽和高不变,体积减少48立方厘米;如果宽增加3厘米,长和高不变,体积增加99立方厘米;高增加4厘米,长和宽不变,体积增加352立方厘米.原长方体的表面积是( )平方厘米11.如图,一个正方体木块放在桌面上,每个面内都画有若干个点,相对的两个面内的点数和都是13,京京看到前、左、上三个面内的点数和是16,庆庆看到上、右、后三个面内的点数和是24,那么贴着桌面的那个面内的点数是( )12.如图所示算式,除数是( ),商是( )二、解答题(每小题15分,共60分)每题都要写出推算过程.13.先看示例,然后回答问题示例:问:将数1,2各二个分别填入2×2表格中,使各行、各行及两条对角线上的两个数互不相同,请问,有没有满足条件的填数方法,请在“没有”和“有”中勾选合适的答案.若选“有”,请给出一种填数方法.答:(√)没有; ( )有如:请你回答:(1)将数1,2,3各二个分别填入3×3表格中,使各行、各行及两条对角线上的三个数互不相同,请问,有没有满足条件的填数方法,请在“没有”和“有”中勾选合适的答案.若选“有”,请给出一种填数方法.答:( )没有;( )有(2)将数1,2,3,4各二个分别填入4×4表格中,使各行、各行及两条对角线上的四个数互不相同,请问,有没有满足条件的填数方法,请在“没有”和“有”中勾选合适的答案.若选“有”,请给出一种填数方法.答:( )没有;( )有14.甲乙两地相距360千米,一辆卡车载有6箱药品,从甲地驶往乙地,同时一辆摩托车从乙地出发,与卡车相向而行,卡车的速度是40千米/小时,摩托车的速度是80千米/小时.摩托车与卡车相遇后,从卡车上卸下2箱药品运回乙地,又随即掉头、、、、、摩托车每次与卡车相遇,都从卡车上卸下2箱药品运回乙地,那么将全部的6箱药品运到乙地,至少需要多长时间?这时摩托车一共行驶了多长路程?(不考虑装卸药品的时间)15.如图,E是平行四边形ABCD的CD边上的一点,BD与AE相交于点F,已知三角形AFD的面积是6,三角形DEF的面积是4,求四边形BCEF的面积16.如图,用一个“T”形框在2010年8月的日历上可以框出5个数,图中两个“T”形框中的5个数的和分别是31和102.如果用“T”形框在下图中框出的5个数的和是101,分别求出这5个数中最大数和最小数.第8届5年级2试参考答案1.原式=587÷58.7×2.68÷26.8×19×1.9=10×0.1×19×1.9=36.12. 2/7=0.285714....所以0.285 (285是循环节)<2/7<0.28 5 (85是循环节),或0.2 85 (5是循环节)<27<0.28 5(85是循环节)3. 周长是 (500+300) ×2=1600米所以要增加1600÷2-1600÷2.5=160盆在2米和2.5米的公倍数米处的不用挪动,[2,2.5]=10每10米有1盆花不用挪动,总共1600÷10=160盆不用挪动4. 蚂蚱一共跳了1+2+3+、、、、+100=5050步,每6步一次循环5050÷6=841、、、4,所以此时蚂蚱相当于跳了4步,到达5号位置.5.设男生x人,女生y人由题意可列出方程 149x+144y=147×(x+y)解得 2x=3y 即x÷y=3÷2=1.56.设原来卡车x辆,那么轿车3.5x辆由题可列出方程 3.5x-3=(x+6)×2.3解得 x=14所以,原来共有14×4.5=63辆7.设0.5元的邮票有x张,那么0.8元的邮票就有4x张,再设1.2元的邮票有y张,得到不定方程0.5x+0.8×4x+1.2y=60也就是37x+12y=600,由于600是12的倍数,12y肯定是12的倍数,所以37x必然是12的倍数,即x应为12的倍数,也只能是12,从而y=13.8. 0---19中,有10个“希望数”20---39中,有10个“希望数”即依次每20个连续自然数中就有10个“希望数”因此,第2010个“希望数”是40199. AB+BC=10BC+AC=13AC+BC=11以上三式相加,得AB+BC+AC=17我们就可以分别算出AB、BC、AC三段的长度,其中AB最短,是410. 长方体的体积=长×宽×高在其他两个量不变的情况下,长减少2厘米,相当于减少2个宽×高,体积减少48立方厘米,即宽×高=24,同理可以推出:长×高=99÷3=33,长×宽=352÷4=88长方体的表面积=(长×宽+长×高+宽×高)×2=290平方厘米11. 上+左+前=16上+右+后=24可知 2上+左+右+前+后=16+24=40由于左+右=前+后=13所以上=7那么,下面的点数是13-7=612. 仔细观察,商中的6乘以除数是一个两位数,而竖式中减去这个两位数,差又是一位数,可以推出除数是15或16,尝试下,很容易排除15所以除数是16,商是6.65.13. (1)没有.注意到将第一行填满后中心数没法填.(2)有.如右图14. 第一次相遇用时360÷ (40+80) =3小时,摩托车返回仍需3小时;第二次相遇用时 360-40×6 ÷ (40+80) =1小时,摩托车返回用1小时;第三次相遇用时(360-40×8)÷(40+80)=1/3小时,摩托车返回用1/3小时.至此6箱药全部运完,共用时8又 2/3小时,摩托车行驶了8又2/3 ×80=693又1/3千米.15. 三角形AFD的面积是6,DFE的面积是4,两三角形的高相同,所以AF和EF的长度比是3:2. 三角形ADE与三角形DEB是同底等高,面积相等,那么三角形BEF的面积等于AFD的面积,等于6.从而三角形ABF的面积是6÷2×3=9.三角形ABD的面积是6+9=15,所以三角形BCD的面积也是15,四边形BCEF面积是15-4=11.16. “T”字框可以有4种摆法,分情况讨论,只有1种满足题意,最小数是15,最大数是30。
第九届小学希望杯数学竞赛五年级一试试题及答案
第九届小学希望杯数学竞赛五年级一试试题及答案一、选择题(每题2分,共40分)1.下面哪一个数是2的倍数?A. 15B. 12C. 9D. 62.求10+20的结果是多少?A. 30B. 25C. 40D. 153.45÷5=?A. 9B. 8C. 7D. 64.如果一个四边形的长是7cm,宽是4cm,那么它的面积是多少?A. 21cm²B. 28cm²C. 16cm²D. 32cm²5.下面哪一个数字是奇数?A. 12B. 8C. 7D. 166.如果一个数加上8等于25,那么这个数是多少?A. 17B. 18C. 15D. 207.一个三角形的底是6cm,高是3cm,那么它的面积是多少?A. 9cm²B. 12cm²C. 15cm²D. 18cm²8.如果一个数减去4等于10,那么这个数是多少?A. 14B. 11C. 15D. 169.27÷3=?A. 9B. 8C. 7D. 610.在1-50中,个位数为7的数字有几个?A. 4B. 5C. 6D. 711.8×5=?A. 40B. 35C. 45D. 3012.54÷9=?A. 6B. 7C. 8D. 913.如果一个长方形的长是5cm,宽是3cm,那么它的周长是多少?A. 10cmB. 12cmC. 16cmD. 14cm14.下面哪一个数字是偶数?A. 13B. 18C. 25D. 3115.求45-21的结果是多少?A. 24B. 26C. 20D. 2216.如果一个数减去5等于8,那么这个数是多少?A. 13B. 12C. 11D. 1417.一个正方形的边长是4cm,那么它的面积是多少?A. 12cm²B. 16cm²C. 8cm²D. 20cm²18.如果3个苹果共卖给两个人,每人分多少个?A. 1B. 2C. 3D. 419.在1-100中,十位数为2的数字有几个?A. 9B. 10C. 11D. 1220.9×6=?A. 45B. 54C. 36D. 63二、填空题(共20分)1.计算:20+15=______2.计算:36÷6=______3.一个矩形的长是8cm,宽是4cm,周长是______cm。
希望杯五年级历届试题与答案
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a 的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。