南京工业大学新编期末高等数学a试卷a精选精选精选
高等数学a上期末考试试题和答案
高等数学a上期末考试试题和答案高等数学A上期末考试试题一、选择题(每题3分,共30分)1. 极限的定义是()。
A. 函数在某点的值B. 函数在某点的增量C. 函数在某点的导数D. 函数在某点的无穷小答案:D2. 函数f(x)=x^2在x=0处的导数是()。
A. 0B. 1C. 2D. 3答案:C3. 定积分∫₀¹x²dx的值是()。
A. 1/3B. 1/2C. 1D. 2答案:C4. 函数f(x)=sinx在x=π/2处的值是()。
A. 0B. 1C. -1D. π/2答案:B5. 函数f(x)=e^x的原函数是()。
A. e^xB. e^(-x)C. ln(x)D. x答案:A6. 函数f(x)=x^3-3x^2+2的极值点是()。
A. 0B. 1C. 2D. 3答案:B7. 函数f(x)=x^2+2x+1的最小值是()。
A. 0B. 1C. 2D. 3答案:B8. 函数f(x)=ln(x)的定义域是()。
A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B9. 函数f(x)=x^3-6x^2+11x-6的拐点是()。
A. 1B. 2C. 3D. 4答案:B10. 函数f(x)=x^4-4x^3+6x^2-4x+1的零点是()。
A. 0B. 1C. 2D. 3答案:B二、填空题(每题3分,共30分)11. 函数f(x)=x^3-3x^2+2的导数是______。
答案:3x^2-6x12. 函数f(x)=e^x的二阶导数是______。
答案:e^x13. 函数f(x)=ln(x)的不定积分是______。
答案:xln(x)-x+C14. 函数f(x)=x^2-4x+4的顶点坐标是______。
答案:(2, 0)15. 函数f(x)=sinx+cosx的周期是______。
答案:2π16. 函数f(x)=x^3-3x^2+2的单调增区间是______。
南京工业大学高等数学B 试卷(A)卷(闭)
南京工业大学 高等数学 B 试卷(A )卷(闭)学院 班级 学号 姓名一、填空题(本题共5小题,每小题3分,满分15分,请将正确答案填在题后的横线上)1、方程132=-'-''y y y 的一个特解为2、设yoz 平面上曲线12222=-cz b y 绕z 轴旋转所得到的旋转面方程为 .3、设a x x a y D ≤≤-≤≤0,0:22,由二重积分的几何意义知⎰⎰=--Ddxdy y x a 222 .4、已知向量c 与(1,1,1)a =,(2,1,3)b =-都垂直,且向量a ,b ,c 构成右手系则c = . 5、曲面04x 8z xy 3x :2=--+-∑在)2,3,1(-P 处的切平面的法向量是 二、选择题(本题共5小题,每小题3分,满分15分,请将正确答案填在题后的括号内)1、下列微分方程中( )可以被称为是关于y 的贝努里微分方程(A )xyy x dx dy 23+= (B )22y )1x (dxdy+= (C )x e xy dxdy=- (D )222xy x dx dy += 2、设有直线22z 11y 11x :L 1-=-=--及41z 52y 33x :L 2+=+=-则21L ,L 的位置关系为( ).(A )异面 (B )平行 (C )垂直 (D )相交3、对二元函数)y ,x (fz =在点)y ,x (P 000处的下列叙述中正确的是( ) (A ) 若在0P 处的偏导数)y ,x (f 00x ,)y ,x (f 00y 存在,则)y ,x (f在0P 处连续 (B ) 若)y ,x (f 00x ,)y ,x (f 00y 存在,则+=dx )y ,x (f dz 00x dy )y ,x (f 00y (C ) 若)y ,x (f 在0P 处不连续,,则在0P 处的偏导数必不存在 (D)若)y ,x (f在0P 处的两个偏导数连续,则)y ,x (f 在0P 处必可微分4、若区域D 为)1,1(,)1,1(--,)1,1(-三点围成的区域,1D 是D 在第一象限的部分,则dxdy y x D2⎰⎰=( ))(A dxdy y x 21D 2⎰⎰ )(B dxdy y x 41D 2⎰⎰ )(C 0 )(D dxdy y x 1D 2⎰⎰5、下列关于数项级数的叙述中正确的是( ).)(A 若∑∞=1n n u 收敛,则∑∞=+1n 100n u 收敛 )(B 若∑∞=1n n u 收敛,则∑∞=1n n u 收敛)(C 若1u u limn1n n <ρ=+∞→,则∑∞=1n n u 收敛 )(D 若)u u (1n 1n n ∑∞=++收敛,则∑∞=1n n u 收敛 三、计算与解答题(本部分共有7小题,55分,注意每小题的分数不完全相同)1、(7分)求微分方程5)1x (1x y2dx dy +=+-的通解。
高等数学A-1试卷A(10.01)
南京工业大学高等数学A-1试卷(江浦A 卷、闭)2009-2010学年第一学期一、选择题(每小题3分, 共12分)1、设的是,则)(01arctan )(x f x xx x f =⋅=( ))(A 可去间断点 )(B 跳跃间断点 )(C 连续点 )(D 第二类间断点2、设,2sin )(,11)(32x x g x x x f =-++=则当0→x 时 ( ))(A )()(x g x f 是的高阶无穷小量 )(B )()(x g x f 是的低阶无穷小量 )(C )()(x g x f 是的是同阶但非等价无穷小量 )(D )()(x g x f 与是等价无穷小量3、设函数()f x 在(,)-∞+∞连续,在(,0)(0,)-∞+∞内具有二阶导数,其导函数()f x '的图像如图,则()f x ( ))(A 有两个极大值点和一个极小值点,曲线)(x f y =有一个拐点)(B 有一个极大值点和两个极小值点,曲线)(x f y =有一个拐点)(C 有一个极大值点和一个极小值点,曲线)(x f y =有两个拐点)(D 有两个极大值点和两个极小值点,曲线)(x f y =有一个拐点4、下列广义积分中收敛的是 ( ))(A dx xx eln 1⎰+∞ )(B dx xx e2ln 1⎰+∞ )(C dx x x e ln ⎰+∞ )(D dx x x e 2ln ⎰∞+二、填空题(每空3分, 共12分,把答案填在题中横线上) 1、设)0('f 存在,则=-→xx f f x )2()0(lim_____________________。
2、xoy 面内的曲线1:22=-y x C 绕x 轴旋转一周所生成的曲面方程为_______________________________。
3、已知⎰-⋅=Φx dt t x f t x 022)()(,则=Φ')(x ________________________。
南京工业大学期末考试(A)卷
南京工业大学期末考试(A)卷课程:«化工原理»(上册)每题1.(1) x01a05155如图所示,若敞口罐液面恒定,罐上方压强为Pa,忽略流动阻力损失,出水管管径为d,则出水管的出口速度u与有关。
(A)H(B)H、d(C)d(D)Pa(E)H、d、Pa水有一并联管路,两段管路的流量,流速、管径、管长及流动阻力损失分别为V1,u1,d1,l1,hf1及V2,u2,d2,l2,hf2。
若d1=2d2,l1=2l2,则:①hf1/hf2=()(A)2(B)4(C)1/2;(D)1/4(E)1②当两段管路中流体均作滞流流动时,V1/V2=()(A)2(B)4(C)8(D)1/2(E)1(3)x01b05043转子流量计的主要特点是()(A)恒截面、恒压差(B)变截面、变压差(C)恒流速、恒压差(D)变流速、恒压差2.X02a05106⑴已知流体经过泵后,压力增大∆P N/m2,则单位重量流体压能的增加为()(A)∆P (B)∆P/ρ (C)∆P/ρg (D)∆P/2g⑵离心泵的下列部分是用来将动能转变为压能()(A)泵壳和叶轮(B)叶轮(C)泵壳(D)叶轮和导轮3.x03a05095(1)过滤介质阻力忽略不计,滤饼不可压缩进行恒速过滤时,如滤液量增大一倍,则___ (A)操作压差增大至原来的√2倍(B)操作压差增大至原来的4倍(C)操作压差增大至原来的2倍(D)操作压差保持不变(2)恒压过滤时,如介质阻力不计,过滤压差增大一倍时同一过滤时刻所得滤液量___ (A)增大至原来的2倍(B)增大至原来的4倍(C)增大至原来的√2倍(D)增大至原来的1.5倍4.x04a05056比较下列对流给热系数的大小空气流速为6m/s的α1,空气流速为25m/s的α2,水流速为1.2m/s的α3,水流速为2.5m/s的α4,蒸汽膜状冷凝的α5,自大到小的顺序为:> > > >二、填空题:(每题5分,共20分)1.t01b05027①1atm=__________kN/m2。
2020-2021大学《高等数学》(下)期末课程考试试卷A2(含答案)
2020-2021《高等数学》(下)期末课程考试试卷A2适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 判断题(每小题2分,共10分)1.二元函数(),z f x y =在平面区域上的积分为二重积分。
( )2.二元函数(),z f x y =的极值点只能是使得0z zx y∂∂==∂∂的点。
( )3.二元函数z =在()0,0点连续但偏导数不存在。
( )4.闭区域上的二元连续函数一定存在最大最小值,且一定可积。
( )5.二元函数z =在()0,0点连续但偏导数不存在。
( )二.单项选择题(每小题2分,共20分)1.平面2y = ( ) A.垂直于xOz 平面 B.平行于xOy 平面 C.平行于xOz 平面 D. 平行于Oy 轴2. 二元函数(),z f x y =在某点()00,x y 连续,那么(),z f x y =在该点一定 ( )A .极限存在 B.两个偏导存在 C.可微 D.以上都不对3. 极限()(),0,0lim x y xyx y→+的结果为 ( )A.0B.∞C. 12D.不存在4.若区域D 是由1x y +≤与12x y +≥所围成,则积分()22ln Dx y d σ+⎰⎰的值( )A.大于零B. 小于零C.等于零D. 不存在 5.下列绝对收敛的级数是 ( )A.∑∞=--1n nn1n 23)1( B.∑∞=--1n 1n n )1(C.∑∞=--1n 51n n)1(D.∑∞=--1n n 21)1(6. 下列无穷级数中发散的无穷级数是 ( )A.∑∞=+1n 221n 3n B. ∑∞=+-1n n 1n )1(C. ∑∞=--3n 1n n ln )1(D. ∑∞=+1n 1n n32 7. 点(0,0,1)到平面z=1的距离为 ( ) A .0 B .1 C .2 D .38. 积分2011dx x +∞+⎰的结果为 ( )A.0B. 2πC. 2π-D.不存在9. 函数()arctan f x x =在 []0,1上,使拉格朗日中值定理成立的ξ是( )A.-10.设()f x 在(),a b 内满足()'0f x <,()''0f x >,则曲线()f x 在(),a b 内是( )A.单调上升且是凹的B. 单调下降且是凹的C.单调上升且是凸的D. 单调下降且是凸的三.填空题(每小题2分,共10分) 1. 设函数z x y =-,则xz∂∂=___________。
南京工业大学2012-2013高等数学期末试卷A及答案
南京工业大学2012-2013高等数学期末试卷A 及答案一、填空题(每小题3分,共36分)1.=⎪⎪⎭⎫⎝⎛+∞→∞→x y x xy 11lim ==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→∞→∞→⋅∞→∞→01lim111lim 11lim e xy xy yxyy x yxy y x y x 1 .2.函数),(y x z z =由方程0sin =+x y e xz 确定,则=-=-=∂∂xz z y xe x y x F F y z cos 1xz ex x y 2cos - . 3.设函数222lnz y x u ++=,则它在点)1,1,1(0-M 处的方向导数的最大值为33. 4.设函数y xy ax x y x f 22),(22+++=在点)1,1(-处取得极值,则常数=a 5-.5.空间曲线x z x y -==1,222在点)22,1,21(处的切线方程为 212211121--=-=-z y x .6.改变积分次序:==⎰⎰-dy y x f dx I x x 22020),(dx y x f dy y y ⎰⎰-+--2211111),( .7.设平面曲线L 为下半圆周21x y --=,则=⋅=⋅=+⎰⎰π2221211)(LLds ds y x π . 8.设∑为曲面22y x z +=在10≤≤z 的部分,则⎰⎰∑=xdS 0 .9.设,0,10,)(⎩⎨⎧<≤<≤-=-ππx x e x f x 则其以π2为周期的傅里叶级数在π=x 处收敛于)1(21πe + . 10.设321,,y y y 是微分方程)()()(x f y x q y x p y =+'+''的三个不同的解,且≠--3221y y y y 常数,则微分方程的通解为 1322211)()(y y y C y y C +-+- .11.函数x x f -=21)(展开为x 的幂级数的形式为)2,2(2101-∈∑∞=+x x nn n .12.微分方程x xe y xy =-'1的通解为 x xe Cx + . 二、计算下列各题(每小题6分,共18分)1.设),(xye xy f z =,)(x y ϕ=,其中ϕ,f 均为一阶可微函数,求dxdz . 解:)(221y x y e f xy x y f dx dz xy'+⋅'+-'⋅'= ))()(()()(221x x x e f xx x x f xyϕϕϕϕ'+⋅'+-'⋅'= 2.求曲面)(21422y x z +-=与平面2=z 所围立体的体积.解:所围立体在xoy 面的投影域4:22≤+y x D ,所围立体的体积 dxdy y x dxdy dxdy y x V D DD ⎰⎰⎰⎰⎰⎰+-=⎭⎬⎫⎩⎨⎧-+-=)(2122)](214[2222 πππθππ4482122202202=-=-⨯=⎰⎰rdr r d3.在曲面6632222=++z y x 上第一卦限部分求一点,使该点的切平面与已知平面1=++z y x 平行.解:设曲面在第一卦限的切点的坐标为),,(z y x M ,令=),,(z y x F 6632222-++z y x ,则切平面的法向量)6,4,2(),,(z y x F F F n M z y x ==, 已知平面1=++z y x 的法向量)1,1,1(1=n依题意1//n n,即令t z y x ===161412 代入曲面方程中解的2,3,6===z y x ,即切点坐标为)2,3,6(M . 三、计算下列各题(每小题6分,共18分) 1.设Ω是由锥面22y x z +=与半球面221y x z --=围成的空间区域,∑是Ω的整个边界的外侧,求曲面积分⎰⎰∑++zdxdy ydzdx xdydz .解:已知x z y x P =),,(,y z y x Q =),,(,z z y x R =),,(,由高斯公式有dv zR y Q x P zdxdy ydzdx xdydz ⎰⎰⎰⎰⎰Ω∑∂∂+∂∂+∂∂=++)(dr r d d dv ϕϕθππsin 33122040⎰⎰⎰⎰⎰⎰==Ωππ)22(31)221(23-=⨯-⨯⨯= 2.写出级数++++43227252321的通项,判别该级数的敛散性.若级数收敛时,试求其和. 解:该数项级数的通项为nn n u 212-=;级数为正项级数,由于 21121221lim lim1=-+⋅=∞→+∞→n n u u n nn n ,由比值审敛法知该级数收敛.令)1,1()()(22)12()(211111-∈-=-=-=∑∑∑∞=∞=-∞=x x s x xs x xn x x n x s n n n n nn ,则xxx dt ntdt t s n xn n n x-===∑⎰∑⎰∞=∞=-1)(1111, 于是2011)1(1)()(x dtt s dx d x s x -=⎥⎦⎤⎢⎣⎡=⎰, 又xxx x s n n -==∑∞=1)(12, 所以)1,1()1(1)1(2)(222-∈-+=---=x x x x x x x x x s ,于是3)1(21)12()21(21221=⎥⎦⎤⎢⎣⎡-+=-==∞=∑x n n x x x n s .3.求微分方程x e y y y 223=+'-''的通解.解:微分方程对应的齐次线性微分方程的特征方程0232=+-r r 的特征根为2,121==r r ,x e x f 2)(=的1=λ为特征方程的单根,则原方程的特解为x Axe y =*,代入原方程中得2-=A ,齐次线性微分方程的通解为x x e C e C Y 221+=,所以原方程的通解为=+=*y Y y x x x xe e C e C 2221-+.四、计算下列各题(每小题6分,共18分) 1.求函数22)(4),(y x y x y x f ---=的极值.解:由于x y x f x 24),(-=,y y x f y 24),(--=,令,0),(0),(⎩⎨⎧==y x f y x f yx 得驻点,22⎩⎨⎧-==y x 又 2),(-==y x f A xx ,0),(==y x f B xy ,2),(-==y x f C yy ,及4)()2,2(2-=--AC B , 则点)2,2(-位极大值点,极大值为8)2(2)]2(2[4)2,2(22=-----=-f .2.求幂级数∑∞=-12)1(n nnn x 的收敛半径及收敛域. 解:令 1-=x t ,则 nn nn n n t n n x ∑∑∞=∞==-11212)1(,由于 212)1(2lim lim 11=+=+∞→+∞→n n n nn n n n a a , 则收敛半径2=R .又当2-=t 时,级数∑∞=-1)1(n nn 收敛,当2=t 时,级数∑∞=11n n 发散,所以)2,2[-∈t ,即级数的收敛域为)3,1[-.3.设),()sin(y x x xy z ϕ+=,其中),(v u ϕ具有二阶偏导数,求yx z∂∂∂2.解:),(1),()cos(21yxx y y x x xy y x z ϕϕ'+'+=∂∂,)(),(1),(1)(),()sin()cos(222222122yxy x x y y x x y y x y x x xy xy xy y x z -⋅''+'--⋅''+-=∂∂∂ϕϕϕ五、(本题5分)求函数2),(22+-=y x y x f 在椭圆域}14|),{(22≤+=y x y x D 上的最大值和最小值.解:由于x y x f x 2),(=,y y x f y 2),(-=,令,0),(0),(⎩⎨⎧==y x f y x f y x 在D 内求得驻点)0,0(.在D 的边界上,设)14(2),,(2222-+++-=y x y x y x F λλ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+==+-==+=)3(014),,()2(0212),,()1(022),,(22y x y x F y y y x F x x y x F y x λλλλλλ当0≠x ,由(1)得1-=λ,代入(2)得0=y ,在代入(3)得⎩⎨⎧=±=01y x ;同理当0≠y 得⎩⎨⎧±==20y x ;由于2)0,0(=f , 3)0,1(=±f , 2)2,0(-=±f ,所以最大值为3,最小值为2-.六、(本题5分)设在上半平面}0|),{(>=y y x D 内,函数),(y x f 具有连续偏导数,且对任意的0>t 都有),(),(2y x f t ty tx f -=,证明对D 内的任意分段光滑的有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.解:由格林公式,对D 内的任意分段光滑的有向简单闭曲线L ,⎰⎰⎰----±=-1)],(),(),(),([),(),(D y xLdxdyy x yfy x f y x xf y x f dyy x xf dx y x yf .dxdy y x yf y x xf y x f y D x )],(),(),(2[1---±=⎰⎰ (*)由于函数),(y x f 具有连续偏导数,且对任意的0>t 都有),(),(2y x f t ty tx f -=,即),(),(2ty tx f y x f t =上式两端对t 求导有),(),(),(221ty tx f y ty tx f x y x tf '+'= 特取1=t 得),(),(),(2y x yf y x xf y x f y x += 由(*)式既有0),(),(=-⎰dy y x xf dx y x yf L。
高数a大一期末考试题简单及答案
高数a大一期末考试题简单及答案一、选择题(每题4分,共40分)1. 极限的定义中,如果对于任意的正数ε,存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,则称函数f(x)当x趋近于a时的极限为L。
以下哪个选项不是极限的定义?A. 函数f(x)在某点a处的极限B. 函数f(x)在某点a的左极限C. 函数f(x)在某点a的右极限D. 函数f(x)在某点a处的连续性答案:D2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = |x|答案:B3. 以下哪个函数是偶函数?A. f(x) = x^3B. f(x) = x^2C. f(x) = x^4D. f(x) = |x|答案:B4. 以下哪个函数在x=0处不可导?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^4答案:B5. 以下哪个选项是正确的不定积分?A. ∫x dx = x^2 + CB. ∫x^2 dx = x^3 + CC. ∫1/x dx = ln|x| + CD. ∫e^x dx = e^x + C答案:C6. 以下哪个选项是正确的定积分?A. ∫[0,1] x dx = 1/2B. ∫[0,1] x^2 dx = 1/3C. ∫[0,1] x^3 dx = 1/4D. ∫[0,1] x^4 dx = 1/5答案:B7. 以下哪个选项是正确的微分方程的通解?A. y' = 2y => y = Ce^(2x)B. y' = 3y => y = Ce^(3x)C. y' = 4y => y = Ce^(4x)D. y' = 5y => y = Ce^(5x)答案:A8. 以下哪个选项是正确的二阶导数?A. y = x^3, y'' = 6xB. y = x^2, y'' = 2C. y = x^4, y'' = 12x^2D. y = x^5, y'' = 20x^3答案:B9. 以下哪个选项是正确的洛必达法则的应用?A. ∫0/0 型不定式,分子分母同时乘以分母的导数B. ∫∞/∞ 型不定式,分子分母同时乘以分子的导数C. ∫0/0 型不定式,分子分母同时除以分子的导数D. ∫∞/∞ 型不定式,分子分母同时除以分母的导数答案:D10. 以下哪个选项是正确的泰勒级数展开?A. e^x = 1 + x + x^2/2! + x^3/3! + ...B. sin(x) = x - x^3/3! + x^5/5! - ...C. cos(x) = 1 - x^2/2! + x^4/4! - ...D. ln(1+x) = x - x^2/2 + x^3/3 - ...答案:A二、填空题(每题4分,共20分)11. 函数f(x) = x^2 + 3x + 2的导数是________。
《高等数学》期末考试A卷(附答案)
《高等数学》期末考试A卷(附答案)【编号】ZSWD2023B0089一、填空题(每小题2分,共20分)1.设 是正整数, 为非零实数,若20001lim ()x x x x,则 _________________,______________________。
【答案】120012001,2.设)(x f 的定义域是]1,0[,且102a ,则()()f x a f x a 的定义域是____________________________ .【答案】1[,]a a3.2211sin()lim x x x x ______________________。
【答案】04.设1111010,(),x x x x e e x f x e e x,0 x 是)(x f 的___________间断点. 【答案】跳跃5.设24cos y x ,则dy ________________________. 【答案】3448sin cos x x x dx6.203sin limxx t dt x _________________________________.【答案】137. 函数2412()()x f x x的渐近线有______________________________.【答案】20,x y8.函数()x f x x e 的单调递增区间为____________________________.【答案】(,0)9.若 C x dx xx f sin )(ln ',则 )(x f .【答案】C e x )sin( 10.[()()]aaf x f x dx ______________________________________.【答案】0二、单项选择题(每小题2分,共10分) 1.若下列极限存在,则成立的是( ) .A. 0()()lim '()x f a x f a f a x B. 0000()()lim '() x f x f x x f x xC. 0(12)(1)lim '(1)t f t f f tD. 4(8)(4)lim '(4)4x f x f f x【答案】B2.当0 x 时,与x 等价的无穷小量是( )A. x x 1sinsin B. xx sin C. x x 22 D. )1ln(x【答案】D3. 当0x x 时,0'()f x ,当0x x 时,0'()f x ,则0x 必定是函数()f x 的( )A. 驻点B. 最大值点C.极小值点D. 以上都不对 【答案】D4.设'()f x 存在且连续,则()'df x ( )A. ()f xB. '()f xC. '()f x cD. ()f x c 【答案】B 5.设4()2xx f t dt,则40 f dx ( )A. 16B. 8C. 4D. 2【答案】A三、计算下列各题(每小题5分,共35分)1. 求极限)sin 11(cot lim 0xx x x解: )sin 11(cot lim 0x x x x xx x xx x tan sin sin lim 030sin lim x xx x (0 x 时x sin ~x ,x tan ~x )2031cos lim x x x 616sin lim 0 x x x2. 设3sin 2,0()9arctan 2(1),0xx ae x f x x b x x ,确定,a b 的值,使函数在0 x 处可导。
南京工业大学期末考试高等数学A 试卷A
南京工业大学 高等数学A-2 试题(A )卷(闭)2013---2014 学年 第2学期 使用班级 江浦大一学生 班级 学号 姓名一、单项选择题(本大题共5小题, 每小题3分, 总计15分)1、直线12:201x y z l --==与平面:2+60x y z π--=之间的夹角为( ) )(A 0 )(B 6π )(C 4π )(D 2π2、设函数(,)f x y 在点(,)a b 的偏导数存在,则0(,)(,)limx f a x b f a x b x→+--=( ) )(A 0 )(B (2,)x f a b )(C (,)x f a b )(D 2(,)x f a b3、二次积分40(,)xdx f x y dy ⎰⎰交换积分次序后为( ))(A 40(,)y dy f x y dx ⎰⎰)(B 2404(,)yy dy f x y dx ⎰⎰)(C 2440(,)yydy f x y dx ⎰⎰)(D 44(,)dy f x y dx ⎰⎰4、设椭圆L :13422=+y x 的周长为l ,则⎰=+L ds y x 2)23(( ) )(A l )(B l 3 )(C l 4 )(D l 125、极限lim 0n n u →∞=是级数1nn u∞=∑收敛的( ))(A 充要条件 )(B 充分条件 )(C 必要条件 )(D 既非充分也非必要条件二、填空题(本大题共5小题, 每小题3分,总计15分)1、已知曲面224z x y =--在点M 处的切平面与平面2210x y z ++-=平行,则点M 的坐标 为__________________。
2、设函数2x y xe =是某二阶常系数线性齐次微分方程的解,则该微分方程为_________________。
3、设∑为曲面2222x y z R ++=,则曲面积分2221dS x y z ∑++⎰⎰= _______ 。
4、函数1()f x x=展开成2x -的幂级数为____________________________。
高等数学A试卷A解答
南京工业大学 高等数学A-2试卷(A )解答2012--2013学年 第 二 学期 使用班级 江浦12级一、选择题(本大题共5小题, 每小题3分, 总计15分)1、)(C2、()A3、)(B4、()D5、)(B 二、填空题(本大题共5小题, 每小题3分,总计15分) 1、221x x y -+= ⒉、 1 3、2π 4、43-5、 2π 三、解答下列各题(本大题共4小题,每小题7分,总计28分,每题要有必要的解题步骤)1、设函数6),,(+---++=z y x yz zx xy z y x f ,问在点)0,4,3(P 处沿怎样的方向l ,f 的变化率最大?并求其最大的变化率。
解:)6,2,3()1,1,1()0,4,3(=-+-+-+=P y x z x z y gradff 沿方向(3,2,6)l =的变化率最大; ……4分其最大的变化率为(3,4,0)7Pf gradf l∂==∂。
……3分2、设22(,)y z f x y x =+,其中(,)f u v 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2。
解:1222z yx f f x x∂''=⋅-⋅∂, ……3分2111222122221112(2)(2)z y x yf f f yf f x y x x x x∂'''''''''=+--+∂∂ 22111222223142(1)y yf xyf f f x x x'''''''=-++-- ……4分 3、计算二次积分11sinxxdx y dy y⎰⎰。
解:111000sinsin y xx xdx y dy dy y dx y y=⎰⎰⎰⎰(交换积分顺序) ……2分120(1cos1)y dy =-⎰……3分1(1cos1)3=- ……2分 4、计算Lxds ⎰,其中L 为由直线y x =及抛物线2y x =所围成的区域的整个边界。
高等数学A-1试卷A卷(11.01)
南京工业大学高等数学A-1试卷(江浦A 卷、闭)2010-2011学年第一学期一、选择题(每小题3分, 共15分)1、设的是,则)(0)1()(2x f x x x xx x f =-+=( ))(A 可去间断点 )(B 跳跃间断点 )(C 无穷间断点 )(D 振荡间断点2、设,arcsin )(,)1ln()(20110dt t x g dt t x f x x ⎰⎰=+=-+则当0→x 时 ( ))(A )()(x g x f 是的高阶无穷小 )(B )()(x g x f 是的低阶无穷小 )(C )()(x g x f 是的同阶但非等价无穷小 )(D )()(x g x f 与是等价无穷小3、若函数)(x f 在a x =处可导,则)(x f 在a x =处( ))(A 一定连续且可导 )(B 一定连续但不可导 )(C 一定连续但不一定可导 )(D 不一定连续且不一定可导4、设函数)(),(x g x f 在[]a a ,-上均具有连续导数,且)(x f 为奇函数,)(x g 为偶函数,则积分[]d x x g x fa a⎰-+)()(''=( ))(A )()(a g a f + )(B )()(a g a f - )(C )(2a g )(D )(2a f5、曲线xe y =与过原点的切线ex y =及y 轴所围成的平面图形的面积S 为( ))(A dx ex e x ⎰-10)( )(B dy y e y ⎰-10)ln ( )(C dx ex e e x⎰-1)( )(D dy y e y e ⎰-1)ln ( 二、填空题(每空3分, 共15分,把答案填在题中横线上)1、设k 是正整数,且极限kk n n n n )1(lim 2010--∞→的值是非零常数,则k = ____2、设⎪⎩⎪⎨⎧=≠+=0,0,1sin sin 1)(x a x xx x x x f ,在0=x 处连续,则 =a ____ 3、设nx y =在点)1,1(处的切线与x 轴交于点)0,(n ξ,则_________lim =∞→n n n ξ4、设函数)(x f 在点)0,1(处有)(x o x y ∆+∆=∆,则极限)1ln()(lim21x dtt f xe x +⎰→= ____5、曲线x y 23sin =(π≤≤x 0)与x 轴围成的平面图形绕x 轴旋转一周所得的旋转体的体为 ____三、试解下列各题(本大题共4个小题,每题6分,计24分,解答写出推理、演算步骤) 1、求极限().11lim 22--+∞→n nnn 。
高数考试A卷题目及答案
2013级光学、电信、电信实验班、电气、计算机、网络工程、物联网、核电《高等数学A 》期末考试试卷(A 卷、闭卷)一、判断题(每小题2分,共10分)1、0xy =是指数函数. ( ) 2、左右导数处处存在的函数, 一定处处可导. ( ) 3、闭区间上的连续函数一定存在最大值与最小值. ( )4、1211d 0x x -=⎰. ( )5、函数x y ln =在其定义域内是凸函数. ( ) 二、填空(每小题2分,共20分)1、已知函数xxx f +=12)(,则复合函数[()]f f x = ; 2、极限01limln(1)sin()x x x→+⋅= ;3、函数()f x 在点0x 可导是函数()f x 在点0x 可微的 条件,函数()f x 在点0x 连续是函数()f x 在点0x 可导的 条件;4、设()y y x =是由方程0)ln(sin =+-y x xy 所确定的隐函数,则=dxdy;5、函数y 的拐点是 ;6、d(sec )x ⎰= ; 7、12[()()]bak f x k g x dx +=⎰;8、递推公式(1)n Γ+= ; 9、曲线sin xy x=的渐近线方程为 ; 10、1122sin d x x ππ-⎰= .三、选择题(每小题2分,共10分)1.下列命题正确的是( )(A )因为数列}{a n 有界,所以数列}{a n 有极限;(B )因为数列}{a n 单增,所以数列}{a n 无极限 (C )因为数列}{a n 单减,所以数列}{a n 有极限 (D )因为数列}{a n 单增有上界,所以数列}{a n 有极限 2.设函数x e y -=,则=)(n y ( )(A )xe (B )x n e --)1( (C )x n e ---1)1( (D )xe-3.函数x x y +=2在区间]1,0[上应用拉格朗日中值定理,则中值定理中的=ξ( )(A )21 (B )25(C )1 (D )2 4.设⎰+=,)()(C x F dx x f 则⎰=+dx b ax f )(( )(A )C b ax F ++)( (B )C b ax F a++)(1(C )C x aF +)( (D )C b ax aF ++)( 5.⎰='xadt t f )2(( )(A ))]2()2([2a f x f - (B ))2()2(a f x f -(C ))]2()2([21a f x f - (D ))]()([2a f x f - 四、计算题(共50分) 1、求下列极限:(每小题4分,共16分)(1)30tan sin lim arcsin x x x x →- (2)1lim 1xx x x →∞+⎛⎫⎪-⎝⎭(3)332132lim 1x x x x x x →-+--+ (4)()22220limxt x x t e dt e dt→∞⎰⎰2. 计算下列导数或微分:(每小题4分,共12分)(1)ye xy e +=,求(0)y ' (2)设()()()xf t y tf t f t '=⎧⎨'=-⎩,且()0f t ''≠,求22d ydx(3)22cos()xy x y =,求dy 3. 计算下列积分:(每小题4分,共16分)(1)3cos xdx ⎰ (2)221(1)(1)x dx x x ++-⎰(3)1⎰(4)32031(1)dx x -⎰4、求曲线22y x =和4y x =-所围成的图形的面积。
高等数学(A)下期末试卷及答案
《高等数学 A 》( 下)期末试卷 A 答案及评分标准 得 一、选择题(本大题分 5 小题,每题 3 分,共 15 分分)e dxln x f ( x, y)dy 的积分序次为1、互换二次积分1(c )e ln xf ( x, y)dxe1 (A)dy(B)e ydyf ( x, y)dx11 eln xe(C)dy e y f ( x, y)dx(D)dy1f ( x, y)dx2、锥面zx2y 2在柱面 x2y22x 内的那部分面积为( D )d2 cos2d2 cos 2d(A)2d2(B)222cos 2d22 cosd(C)2 d(D)2 d2 023、若级数a n ( x 2) n在 x2 处收敛,则级数n 1na n ( x 2)n 1( B )在 x 5n 1(A)条件收敛 (B) 绝对收敛 (C) 发散 (D) 收敛性不确立4、以下级数中收敛的级数为( A )(A)( n ) n(B)n2 3n 1 n 1 n 1 n 1(C)sin1(D)n!n 1 3 n n 1 n 15、若函数f ( z)( x 2 y 2 2 xy) i( y 2 axy x2 ) 在复平面上到处分析,则实常数 a 的值为(c )(A) 0 (B) 1 (C) 2 (D) -2得 二、填空题(本大题分 5 小题,每题 4 分,共 20 分分)、曲面 z x2y21 在点 (2,1,4) 处的切平面1方程为 4x 2 y z62 、已知L : x2y2a 2(a 0) , 则L [ x 2y2sin( xy)]ds2 a33、 是由曲面zx2y 2及平面 zR(R0) 所围成的闭地区,在柱面坐标下化三重积分f ( x2y 2)dxdydz 为2 RR2)dz三次积分为ddf (4、函数 f (x) x (0 x) 睁开成以 2 为周期的正弦级 数 为x2 ( 1) n 1 sin nx,收敛区间为n 1n0 x5、Ln( 1 i)ln 2 i(32k ), k 0, 1, 24Re s[e z,0]12得 三、 (此题 8 分)设zf ( x2y 2) g( x, xy) ,分y此中函数 f (t) 二阶可导, g(u, v) 拥有二阶连续偏导数,求 z ,2zx x y解: z 2xf1g 1yg23 分xy2z4xyfg 2xyg 221 g 1 x g 11 5 分x yy 2 y 3得x 2y 2z 21内分四、(此题 8 分)在已知的椭球面43全部内接的长方体(各边分别平行坐标轴)中,求最大的内接长方体体积。
南京工业大学高等数学A-2期末考试试卷A解答(2014.06)
x
y
……2 分
由格林公式 (2xy 2 y)dx (x2 4x)dy (Q P )dxdy
L
D x y
(2)dxdy (2) 9 18
D
南京工业大学 第 1 页 共 3 页
……2 分 ……3 分
四、解答下列各题(本大题共 4 小题,每小题 7 分,总计 28 分,每题要有必要的解题步骤)
1、1,1, 2 2、 y 4y 4y 0 3、 4
4、
n0
(1)n 2n1
(x
2)n
(0 x 4) 5、 0
三、解答下列各题(本大题共 4 小题,每小题 7 分,总计 28 分,每题要有必要的解题步骤)
1、解: gradf 2x 4,4 y 6,6z 8; gradf (2,1,2) 0,2,4
1、解:由条件可知 dy 2x y ,且 y 0 0
dx
……2 分
其通解为
y
e
dx
2xedxdx c ex 2
xexdx c cex 2x 2
……4 分
将 y 0 0 代入通解中,得 c 2 ,故所求曲线方程为 y 2ex 2x 2
……3 分
比较得最大值: f (0, 2) f (0, 2) 25 ,最小值: f (0, 0) 9
……2 分
3、解:先考查
n1
(1)n
1 3n
n
n1
1 3n n
,记 un
1 ,则 3n n
lim un1 u n
n
lim
n
高数a上册期末试题及答案
高数a上册期末试题及答案一、选择题(每题5分,共20题)1. 设函数 $f(x) = \sqrt{3x-2}$,则其定义域为A. $(-\infty, \frac{2}{3}]$B. $\left[ \frac{2}{3}, \infty \right)$C. $[\frac{2}{3}, \infty)$D. $(-\infty, \frac{2}{3}) \cup [\frac{2}{3}, \infty)$答案:C2. 函数 $y = \sin^2 x + \cos^2 x$ 的值域为A. $(-\infty, 1]$B. $[0, 1]$C. $[1, \infty)$D. $[\frac{1}{2}, 1]$答案:B3. 设函数 $f(x) = e^x \ln x$,则 $f'(x) = $A. $e^x \ln x$B. $e^x \left( \frac{1}{x} + \ln x \right)$C. $e^x \left( \ln x - \frac{1}{x} \right)$D. $e^x \left( \frac{1}{x} - \ln x \right)$答案:B4. 若直线 $y = 3x + b$ 与抛物线 $y = ax^2 + bx + 1$ 相切,则 $a + b = $A. 2B. 3C. 4D. 5答案:D5. 函数 $f(x) = \frac{x-1}{\sqrt{x^2 + 1}}$ 的渐近线为A. $y = x - 1$B. $y = x + 1$C. $y = -x + 1$D. $y = -x - 1$答案:A6. 函数 $f(x) = \ln(1 + e^{2x})$ 的反函数为A. $f^{-1}(x) = \ln(x) - \ln(1 - x^2)$B. $f^{-1}(x) = \ln(x^2 - 1)$C. $f^{-1}(x) = \frac{e^x - 1}{2}$D. $f^{-1}(x) = \frac{1}{2} \ln(x) + \ln(1 - x)$答案:D7. 设函数 $f(x) = \arcsin (\sin x)$,则当 $x = \frac{5\pi}{6}$ 时,$f(x) =$A. $\frac{5\pi}{6}$B. $\frac{\pi}{6}$C. $\frac{\pi}{3}$D. $\frac{2\pi}{3}$答案:C8. 函数 $f(x) = \frac{\sin x}{\cos^2 x}$ 的最大值为A. 1B. $\sqrt{3}$C. 2D. $2\sqrt{3}$答案:D9. 函数 $f(x) = x^2 + 2x + 1$ 在区间 $[-1, 1]$ 上的最大值为A. 0B. 1C. 2答案:D10. 函数 $f(x) = \frac{x^2 - 1}{x^2 + 1}$ 的图像关于直线 $x = a$ 对称,则 $a = $A. 1B. 0C. -1D. 2答案:B11. 设 $\sin \alpha = \frac{1}{4}$,$\cos \beta = \frac{4}{5}$,且$\alpha$ 和 $\beta$ 都是第二象限角,则下列四个式子中成立的是A. $\sin (\alpha - \beta) = -\frac{3}{4}$B. $\sin (\alpha + \beta) = \frac{3}{8}$C. $\cos (\alpha - \beta) = \frac{1}{5}$D. $\cos (\alpha + \beta) = \frac{2}{5}$答案:C12. 如果点 $A(1, 2)$ 在抛物线 $y = -x^2 + 3x + k$ 上,那么 $k = $A. -3B. -5D. -9答案:B13. 设函数 $f(x) = x^3 - 3x^2 - 4x + 12$,则 $f'(x)$ 的零点有A. -2, 2B. -1, 3C. -4, 3D. -1, 4答案:A14. 设点 $P(x, y)$ 满足 $y^2 = px$,其中 $p > 0$ 是常数,则焦点所在的直线方程为A. $y = -\frac{p}{2}$B. $x = -\frac{p}{2}$C. $y = \frac{p}{2}$D. $x = \frac{p}{2}$答案:B15. 函数 $f(x) = x^3 - 3x + 1$ 在区间 $[0, 2\pi]$ 上的最小值为A. -1B. 0D. 2答案:A16. 设直线 $y = 2x + 1$ 与曲线 $y = x^2 + bx + c$ 相切,则 $b + c = $A. 0B. $\frac{1}{2}$C. 1D. 2答案:C17. 设函数 $f(x) = (1 - x^2) \cos x$,则 $f''(x)$ 的一个零点在A. $(0, \frac{\pi}{2})$B. $(0, \pi)$C. $(\pi, 2\pi)$D. $(\pi, 3\pi)$答案:B18. 设函数 $f(x) = \sin^2 x - \sqrt{3} \sin x \cos x + \cos^2 x$,则$f(x)$ 的最大值为A. 2B. $2\sqrt{2}$C. 3D. $2 + \sqrt{3}$答案:C19. 设函数 $f(x) = e^x$,$g(x) = x^2$,则 $f(x) \cdot g(x) = $A. $e^{x^2}$B. $x^2 e^x$C. $x^2 e^{x^2}$D. $x^2 + e^x$答案:B20. 设 $a > 0$,则 $\lim\limits_{x \to +\infty} \frac{x^a}{e^x}$ 的值为A. 0B. $\frac{1}{e}$C. 1D. $+\infty$答案:A二、计算题(每题10分,共4题)1. 求函数 $f(x) = \frac{2x^2 - 3x + 1}{x - 1}$ 的极限 $\lim\limits_{x\to 1} f(x)$.解:使用“分子分母可约”的性质,可将函数 $f(x)$ 化简为 $f(x) = 2x - 1$,则 $\lim\limits_{x \to 1} f(x) = \lim\limits_{x \to 1} (2x - 1) = 2(1) - 1 = 1$.答案:12. 求曲线 $y = e^x$ 与直线 $y = kx$ 相交的两个点的坐标,其中 $k > 0$ 是常数.解:将曲线 $y = e^x$ 和直线 $y = kx$ 代入方程中,得到 $e^x = kx$,然后可以使用迭代法或图像法求得相交点的坐标.答案:相交点的坐标为 $(x_1, e^{x_1})$ 和 $(x_2, e^{x_2})$,其中$x_1$ 和 $x_2$ 是满足方程 $e^x = kx$ 的两个解.3. 求曲线 $y = \sin x$ 与直线 $y = x$ 相交的点的个数,并说明理由.解:将曲线 $y = \sin x$ 和直线 $y = x$ 代入方程中,得到 $\sin x = x$,然后可以通过分析函数的周期性和图像来确定相交点的个数.答案:方程 $\sin x = x$ 的解存在无穷个,但相交点的个数取决于给定的区间. 在区间 $[0, \pi]$ 上,方程有一个解;在区间 $[2\pi, 3\pi]$ 上,方程又有一个解. 因此,相交点的个数是不确定的.4. 求函数 $y = x^2 + x$ 在区间 $[-2, 2]$ 上的最大值和最小值,并求出取得最大值和最小值的点.解:首先求导数 $y' = 2x + 1$,然后令 $y' = 0$,解得 $x = -\frac{1}{2}$,将 $x = -2, -\frac{1}{2}, 2$ 代入函数 $y = x^2 + x$,得到对应的 $y$ 值. 最大值为 $y = y_{\text{max}}$ 对应的点为 $(-\frac{1}{2},y_{\text{max}})$,最小值为 $y = y_{\text{min}}$ 对应的点为 $(-2,y_{\text{min}})$ 和 $(2, y_{\text{min}})$.答案:最大值为 $y_{\text{max}} = \frac{5}{4}$,取得最大值的点为 $(-\frac{1}{2}, \frac{5}{4})$;最小值为 $y_{\text{min}} = -2$,取得最小值的点为 $(-2, -2)$ 和 $(2, -2)$.三、证明题(每题20分,共2题)1. 证明函数 $f(x) = \frac{x^3}{3} - x^2 + 2x$ 的导数 $f'(x)$ 恒大于零.证明:求导数 $f'(x) = x^2 - 2x + 2$,我们可以通过判别式来判断 $f'(x)$ 的正负性.判别式为 $\Delta = (-2)^2 - 4(1)(2) = 4 - 8 = -4$,由于 $\Delta < 0$,所以判别式小于零,即 $f'(x)$ 的二次项系数小于零,说明二次项的系数是正的,从而导数 $f'(x)$ 恒大于零.证毕.2. 证明函数 $f(x) = x^3 - 3x^2 + 3$ 的图像关于直线 $x = 1$ 对称.证明:要证明函数的图像关于直线 $x = 1$ 对称,需证明对于任意$x$ 值,函数 $f(x)$ 和 $f(2 - x)$ 的函数值相等.将 $f(x) = x^3 - 3x^2 + 3$ 代入 $f(2 - x)$,得到 $f(2 - x) = (2 - x)^3 -3(2 - x)^2 + 3$,对其进行展开和化简得到 $f(2 - x) = (2 - x)^3 - 3(2 -x)^2 + 3 = x^3 - 3x^2 + 3 = f(x)$,即 $f(x) = f(2 - x)$,证明了函数的图像关于直线 $x = 1$ 对称.证毕.四、应用题(每题50分,共1题)1. 求函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值.解:求导函数 $f'(x) = 3x^2 + 2x - 3$,令 $f'(x) = 0$,求得驻点的 $x$ 坐标,然后将其代入原函数求得对应的 $y$ 坐标.求导的一阶导数方程为 $f'(x) = 3x^2 + 2x - 3 = 0$,通过求根公式求得 $x = -1$ 和 $x = \frac{1}{3}$,将其代入原函数 $f(x)$ 得到对应的$y$ 坐标.将 $x = -1$ 代入 $f(x)$,得到 $f(-1) = (-1)^3 + (-1)^2 - 3(-1) = -1 + 1+ 3 = 3$,将 $x = \frac{1}{3}$ 代入 $f(x)$,得到 $f(\frac{1}{3}) =(\frac{1}{3})^3 + (\frac{1}{3})^2 - 3(\frac{1}{3}) = \frac{1}{27} +\frac{1}{9} - 1 = 0$.因此,函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$.答案:驻点为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$,分别对应极大值和极小值.。
高等数学A试卷A()
南京工业大学 高等数学A-2 试题(A 、闭)卷2011--2012 学年第 2 学期 使用班级 江浦2011级学院 班级 学号 姓名1)(A )xOz(B)yOz成(C )xOz(D )yOz成2、设z y y x= )(C)3、设区域是平面上以点)1,1(A 、)1,1(-B 、为顶点的三角形区域,区域1D 是D 在第一象限的部分,则:=+⎰⎰dxdy y x xy D)sin cos (( )(A)⎰⎰1)sin (cos 2D dxdy y x(B)⎰⎰12D xydxdy(C)⎰⎰+1)sin cos (4D dxdy y x xy(D) 04、设∑为曲面222()z x y =-+在xoy 平面上方的部分,则zdS∑=⎰⎰()(A )(222202r d r πθ--⎰⎰(B )(22202d r πθ-⎰⎰(C ))22002d r rdr πθ-⎰ (D )22002.d r πθ-⎰5、正项级数(1) ∑∞=1n n u 、(2) ∑∞=13n nu ,则下列说法正确的是( )(A )若(1)发散、则(2)必发散 (B )若(2)收敛、则(1)必收敛 (C )若(1)发散、则(2)不确定 (D )若(1)、(2)敛散性相同二、填空题(本大题共5小题, 每小题3分,总计15分)1、已知三个单位向量a 、b 、c 满足0a b c ++=,则a b b c c a ⋅+⋅+⋅=___________2、函数z xy x u 22+-=在点()1,2,1-处的方向导数的最小值为3、将10(,)y eedy f x y dx ⎰⎰交换积分次序得 __________________4、设∑是母线平行于oz 轴的柱面的部分,它的底是位于xoy 平面上的光滑曲线L ,它的高z 是,x y 的非负函数(,)z f x y =,用曲线积分表示柱面∑的面积A =___________5、设函数21,0(),0x f x x x ππ--<≤⎧=⎨<≤⎩,则其以π2为周期的傅里叶级数在点π=x 处收敛于 _____ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京工业大学 高等数学A-2 试卷(A )卷(闭)
2010--2011学年 第 二 学期 使用班级 江浦10级 学院 __ 班级 __学号 __ 姓名 __ ___
一、选择题(本题共4小
题,每小题3分,满分12分,每小题给出四个选项,请将正确答案填在题后的括号内) 1.若),(y x f 在),(00y x 处可微,则在),(00y x 点下列结论中不一定成立的是( C )
)(A 连续 )(B 偏导数存在 )(C 偏导数连续 )(D 切平面存在
2. 直线
011523
1
2325=--+-=-+=-z y x z y x 与平面的位置关系是( D ) )(A 平行但不在平面上 )(B 在平面上 )(C 垂直 )(D 斜交
3. 若曲面∑:2
2
2
2
a z y x =++,则2
()x y z dS ∑
++⎰⎰Ò=( C ) 4.设)11ln()1(n
u n
n +
-=,则级数( B )
)(A ∑∞
=1n n u 与∑∞
=12n n u 都收敛 )(B
∑∞=1
n n u 收敛而∑∞
=1
2
n n u 发散
)(C ∑∞
=1
n n u 与∑∞
=1
2
n n u 都发散 )(D ∑∞
=1
n n u 发散而∑∞
=1
2
n n u 收敛
二、填空题(本题共4小题,每小题3分,满分12分,请将正确答案填在题后的横线上)
1.已知矢量,a b r r
的模分别为()
2
||2,||a b a b a b
==⋅=⨯=r r r r r r 及 2 __ 。
⒉ 已知=+
=)1,1(),1ln(dz y x
z 则 ()12
dx dy - 。
3.幂级数1
(1)2n
n n x n ∞
=-⋅∑的收敛域是 [)1,3- ____ 。
4.设函数⎩⎨⎧≤<+≤<--=π
πx x x x f 0,10,1)(2
,则其以π2为周期的傅里叶级数在点π=x 处收敛于 _ 。
三、计算题(本题共4小题,每小题7分,满分28分,写出必要的解题过程)
1.求过点)2,1,3(-且通过直线43:
521
x y z
L -+==的平面方程。
由已知点)0,3,4(),2,1,3(--B A 在平面上,直线L 的方向向量为)1,2,5(=s ρ
则)2,4,1(-=AB ,所求平面的法向量为)22,9,8(-=⨯=s AB n
ρ
ρ
平面直线的方程为0)2(22)1(9)3(8=+----z y x 即为0592298=---z y x
2. 设
ln x z z y = ,求,z z x y ∂∂∂∂。
1,,ln ln 1x y z z
F F F y z y
==
=--; 3. 计算积分
y
x
D
e
dxdy ⎰⎰,其中2:,2D y x y x ==由所围成的区域。
4. 计算半径为R 、中心角为2α的圆弧L 对于它的对称轴的转动惯量I (设线密度1μ=)。
四、计算题(本题共4小题,每小题7分,满分28分,写出必要的解题过程)
1.设(,)z f x xy =,其中f 具有二阶连续偏导数,求2z
x y
∂∂∂。
2. 设22(,,)x y z
f x y z e
x y =++, (1) 求f 在点()1,1,1P
处的梯度; (2) 求f 在点()1,1,1P 处方向导数的最大值。
3.计算曲面积分()()
⎰⎰∑-+++=dxdy z dzdx z y dydz xz I
322912
其中∑为曲面12
2
++=y x z ()21≤≤z ,取下侧。
4. 将函数()2
1
32
f x x x =
-+展开成()3x -的幂级数,并求展开式成立的区间。
五、应用题题(本题满7分) 求质点(,)M x y )受作用力j x y i x y F
)2()3(-++=沿路径L 所作的功W ,其中L 是沿椭圆
2244x y +=顺时针方向的一周。
六、综合题(本题满7分)
某工厂生产两种型号的机床,其产量分别为x 台和
y 台,成本函数为
xy y x y x c -+=222),
( (万元)
若市场调查分析,共需两种机床8台,求如何安排生产,总成本最少?最小成本为多少? 七、证明题(本题满6分) 设40
tan d n
n
a x x π
=⎰,证明:级数∑∞
=++12)(1
n n n a a n
收敛于1。