第三章 圆的基本性质单元能力提升测试卷(含答案)

合集下载

圆的基本性质 单元能力测试(含答案)

圆的基本性质 单元能力测试(含答案)

第7题第8题第三章 圆的基本性质能力提升测试卷一、选择题(共10小题,每小题3分,共30分)1. 如图,在⊙O 中,弦AB ∥CD ,若︒=∠40ABC ,则=∠BOD ( ) A. ︒20 B. ︒40 C. ︒50 D. ︒802.如图,点A 、B 、C 在⊙O 上,∠ACB =30°,则sin ∠AOB 的值是( ) A . B .C .D .3.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( ) A .cm B .3cm C .4cm D .4cm4.如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是:甲:1、作OD 的中垂线,交⊙O 于B ,C 两点,2、连接AB ,AC ,△ABC 即为所求的三角形 乙:1、以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点。

2、连接AB ,BC ,CA .△ABC 即为所求的三角形。

对于甲、乙两人的作法,可判断( )A .甲、乙均正确B .甲、乙均错误C .甲正确、乙错误D .甲错误,乙正确第4题 第5题 5.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,⌒AB =⌒BC,∠AOB =60°,则∠BDC 的 度数是( )A.20°B.25°C.30°D. 40°6.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD =12,则⊙O 的直径为( ) A. 8 B. 10 C.16 D.20第1题 第2题 第3题DCB AO第9题7.如图所示,扇形AOB的圆心角为120︒,半径为2,则图中阴影部分的面积为( )334.-πA2334.-πB3234.-πC34.πD8.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.CB=DB C.∠ACD=∠ADC D.OM=MD9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.CB=DB C.∠ACD=∠ADC D.OM=MD10.如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()A、是正方形B、是长方形C、是菱形D、以上答案都不对二、填空题(共6小题,每小题4分,共24分)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.12.如图,AB是⊙O的弦,OC⊥AB于C.若AB=23,0C=1,则半径OB的长为________.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.14.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成. 已知正三角形的边长为1,则凸轮的周长等于_________.15.如图所示,AB为⊙O的直径,AC为弦,OD∥BC交AC于点D,若AB=20cm,∠A=30°,则AD=cm.16.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交AB于E,交⊙O于D.则AD=_____________.三、解答题(共7题,共66分)17、(本题8分)如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的A BCO第10题第11题第12题第13题第14题第15题第16题中点,AD ⊥BC 于点D .求证:AD =12BF .18(本题8分).如图,⊙O 的直径AB 和弦CD 相交于点E ,∠CEA =30°, 求CD 的长.19.(本题8分)如图所示,OA 、OB 、OC都是圆O 的半径,∠AOB =2∠BOC . 求证:∠ACB =2∠BAC .20、(本题10分)如图,弧AC 是劣弧,M 是弧AC 中点,B 为弧AC 上任意一点,自M 向BC 弦引垂线,垂足为D ,求证:AB +BD =DC 。

浙教版九上数学第三章:圆的基本性质能力提升测试答案

浙教版九上数学第三章:圆的基本性质能力提升测试答案

第三章:圆的基本性质能力提升测试答案一.选择题:1.答案:B 解析:∵∠A=42°,∠APD=77°,∴000354277=-=∠C ,∴035=∠B ,故选择B2.答案:BA .解析:小明的画法是,画线段AB=c ,画AB 的垂直平分线,找到AB 的中点O ,以O 为圆心,以c 21为半径画圆,过B 画弦BC=a ,连接AC ,即完成所作,故090=∠ACB ,依据为直径所对的圆周角是直角,故选择B3.答案:A解析:过O 作AC OH ⊥,连接OA ,∴HC HA =,∵060=∠B ,∴060=∠AOH ,∴030=∠OAH ,∵3224,2,422=-=∴=∴=AH OH OA ,∴34=AC ,故选择A4.答案:B解析:连接OC ,∵5:1:,12==PA PB AB ,∴10,2==PA PB ,∴AB 是直径,∴426=-=OP ,∵CD AB ⊥,∴DP CP =,在CPO Rt ∆中,524622=-=CP ,∴54=CD ,故选择B5.答案:B解析:连接OB ,OC ,∴ππ63606602=⨯==BOCS S 扇形阴影, 故选择B6.答案:D解析:作AH ⊥BC 于H ,作直径CF ,连结BF ,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF ,∴DE BF =∴DE=BF=6,∵AH ⊥BC ,∴CH=BH ,∵CA=AF ,∴AH 为△CBF 的中位线,∴AH=21BF=3. ∴点A 到弦BC 的距离为:3.故选择D7.答案:D解析:连接DC,分别过D作BCDKACDH⊥⊥,,在ABCRt∆中,∵D是AB的中点,且AB=2,∴DC=1,∴43601902ππ=⨯=DEFS扇形,∵KDPHDQDKPDHQDHDKBCAC∠=∠∠=∠=∴=,,,,∴△DHQ≌△DKP,∴21222=⎪⎪⎭⎫⎝⎛==DHCKDQCPSS,∴214-=π阴影S,故选择D8.答案:C解析:∵D为AC的中点,AC=AO=6,∴OD⊥AC,∴AD=21AO,∴∠AOD=30°,OD=33,同理可得:∠BOE=30°,∴∠DOE=150°-60°=90°,∴点D所经过路径长为ππ2331803390=⨯. 故选C;9.答案:D解析:连接OC ,∵CD OA //,∴070=∠=∠AOD ODC ,∵OC OD =,∴070=∠=∠OCD ODC ,∴00040140180=-=∠DOC ,∴0001104070=+=∠BOC ,∴055=∠B ,故选择D10.答案:C解析:∵DC 平分∠PCH ,∴HCD PCD ∠=∠,∵BC DH AC DP ⊥⊥,,∴090=∠=∠DHC DPC ,∵DC=DC ,∴△DPC ≌△DHC (AAS )∴CH CP =,故①正确;∵∠BDC 是弧BC 所对的圆周角,∠DBC 是弧DC 所对的圆周角,∴DAB BDC DBC ∠=∠+∠,∵DCH BDC DBC ∠=∠+∠,DCP DCH ∠=∠,DAB DCA ∠=∠,∵DCA ABD ∠=∠,∴DBA DAB ∠=∠,∴AD BD =,故②正确;∵DBH DAP ∠=∠,090=∠=∠BHD APD ,DH DP =,∴△APD ≌△AHD (AAS )∴BH AP =,故③正确;∵条件没有给出AC AB =,故④错误,故正确答案:①②③共3个,故选择C二.填空题:11.答案:070解析:连接AC ,∵C 为BD 的中点,∴020=∠=∠BAC DAC ,∵AB 是⊙O 的直径,∴090=∠ACB ,∴000702090=-=∠B12.答案:035解析:连接OC ,∵直径CD AB ⊥,∴DOB COB ∠=∠,∵020=∠D ,∴070=∠DOB ,∴070=∠COB ,∴035=∠A13.答案:060或0120解析:如图:∵AB OE ⊥,∴BE AE =,∵32=AB ,∴3=AE , ∵2=OA ,∴()13222=-=OE ,∴0060,30=∠∴=∠AOE OAE , ∴0120=∠AOB ,∴00120,240AB ADB ==, ∴00120,60=∠=∠ACB ADB14.答案:3解析:∵030,=∠=∠∴=ABC ACB AC AB ,∵BC 平分∠ABD ,∴030=∠DBC ,∵BD 是直径,∴△BCD 为直角三角形,∵2,1=∴=BD CD ,在BAD Rt ∆中,312,2,30220=-=∴==∠AD BD ADB15.答案:352或142解析:如图1,作BC OE ⊥,∵AB=AC ,连接AO ,∴A ,O ,E 在同一直线上,∵OB=7,OE=3,∴1023722=-=BE ,∴()3521021022=+=AB , 如图2,在AHB Rt ∆中,()142410222=+=AB16.答案:①②④解析:连接AD ,∵AB 是⊙O 的直径,∴BC AD ⊥,∵AC AB =,∴DC BD =,故②正确,∴005.22452121=⨯=∠=∠BAC DAC , ∴05.22=∠=∠CAD EBC ,故①正确;∵AB 是直径,∴090=∠AEB ,∵045=∠BAE ,∴045=∠=∠BAE ABE ,∴AE AB AC 2==,∴AC EC 222-=,故③错误;∵045=∠ABE ,∴弧AE 的度数为090,∵05.22=∠BAD ,∴弧BD 的度数为045,∴弧AE 的度数为弧BD 的度数的2倍,故④正确;∵,BE AE =在直角三角形BEC 中,BE BC >,∴AE BC >,故⑤错误,故正确的答案为:①②④三.解答题:17.解析:∵AB 为⊙O 的直径,∴∠ADB =90°.又∵∠A =30°,∴∠ABD =60°.∵AB =AC ,∴∠ABC =∠ACB =75°,∴∠DBC =15°.18.解析:(1)∵AC 是⊙O 的直径,∴AE ⊥BC .又∵OD ∥BC ,∴OD ⊥AE ,∴D 是AE 的中点.(2)∵D 是AE 的中点,∴AD DE =,∴∠ACD =∠DAE .∵AC 是⊙O 的直径,∴∠DAO +∠ACD =90°.∵AE ⊥BC ,∴∠B +∠BAD +∠DAE =90°,∴∠DAO =∠B +∠BAD .19.解析:解析:(1)∵060=∠=∠APC ABC ,060=∠=∠CPB BAC ,∴△ABC 为等边三角形;(2)PA +PB =PC .如图①,在PC 上截取PD =PA, 连结AD .∵∠APC =60°,∴△PAD 是等边三角形,∴PA =AD, ∠PAD =60°,又∵∠BAC =60°,∴∠PAB =∠DAC .又∵AB =AC ,∴△PAB ≌△DAC ,∴PB =DC .∵PD +DC =PC ,∴PA +PB =PC .(3)如图②,过点P 作PE ⊥AB ,垂足为E ,过点C 作CF ⊥AB ,垂足为F .∵S △PAB =21AB ·PE , S △ABC =21AB ·CF , ∴S 四边形APBC =21AB (PE +CF ). 当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径,∴此时四边形APBC 的面积最大.又∵⊙O 的半径为1,∴其内接正三角形的边长AB =3.∴S 四边形APBC =12×2×3=3. 故当点P 为AB 的中点时,四边形APBC 的面积最大,最大面积为3.20解析:(1)BC =BD ,BC ⊥AC ,BC =2OF 等;连结OC.∵∠A =∠D =30°,∴AB =2BC =2.∵AC 2=AB 2-BC 2,∴AC =3.∵OF ⊥AC ,∴AF =CF.∵AO =BO =21AB =1, ∴OF 是△ABC 的中位线,∴OF =21BC =21. ∵∠BOC =2∠A =60°,∴∠AOC =120°, ∴S 阴影=S 扇形OAC -S △AOC =433213313601120-=⨯⨯-⨯ππ21.解析:(1)连结AC,延长PO交AC于H,如图1,∵P是弧AC的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC; (2)如图2,∵P是弧AC的中点,∴PA=PC,∴∠PAC=∠PCA,∵OA=OC,∴∠OAC=∠OCA,∴∠PAO=∠PCO,当DO=DC,设∠DCO=x,则∠DOC=x,∠PAO=x,∴∠OPC=∠OCP=x,∠PDO=2x,∵∠OPA=∠PAO=x,∴∠POD=2x,在△POD中,x+2x+2x=180°,解得x=36°,即∠PAO=36°;当CO=CD,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD=2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x,在△POC中,x+x+5x=180°,解得x=7180⎪⎭⎫⎝⎛,即∠PAO=7180⎪⎭⎫⎝⎛.综上所述,∠A的度数为36°或0 7 180⎪⎭⎫⎝⎛22.解析:(1)∵AB是⊙O的直径,CE⊥AB,∴AB垂直平分CE,即H为CE中点,弧AC=弧AE,又∵C 是AD ︵的中点,∴弧AC =弧CD ,∴弧AC =弧CD =弧AE ,∴∠ACH =∠CBD ;(2)由(1)知,∠ACH =∠CBD ,又∵∠CAD =∠CBD ,∴∠ACH =∠CAD ,∴AP =CP.又∵AB 是⊙O 的直径,∴∠ACB =∠ADB =90°,∴∠PCQ =90°-∠ACH ,∠PQC =∠BQD =90°-∠CBD ,∴∠PCQ =∠PQC ,∴PC =PQ ,又∵AP =CP ,∴AP =PQ ,∴P 是线段AQ 的中点;(3)连结OC ,∵BH =8,OB =OC =5,∴OH =3,∴由勾股定理得:CH =43522=-,由(1)知:CH =EH =4,∴CE =8.23.解析:(1)∵BC OD ⊥,∴33362121=⨯==BC CE , 设圆的半径为R ,在CEO Rt ∆中,33,3,=-==CE R OE R OC , ∴()()222333-+=R R ,解得:6=R ; (2)∵AB 是⊙O 的直径,∴090=∠ACB ,在ABC Rt ∆中,∵36,12==BC AB ,()6361222=-=∴AC ;(3)∵6===AC OA OC ,∴AOC ∆为等边三角形,∴060=∠AOC ,∴ππ63606602=⨯=AOC S 扇形,39662321=⨯⨯⨯=∆AOC S , ∴396-=π阴影S。

浙教版九年级数学上册 第三章 圆的基本性质能力提升训练(一)及答案

浙教版九年级数学上册 第三章 圆的基本性质能力提升训练(一)及答案

第三章 圆的基本性质能力提升训练(一)一.选择题:1.在⊙O 上作一条弦AB ,再作一条与弦AB 垂直的直径CD ,CD 与AB 交于点E ,则下列 结论中不一定正确是( )A. BE AE =B. AC BC =C. EO CE =D. AD BD = 2、如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( ) A 、20°B 、40°C 、50°D 、80°3、在一个圆中,给出下列命题,其中正确的是( )A 、若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直.B 、若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有四个公共点.C 、若两条弦所在直线平行,则这两条弦之间的距离一定小于圆的直径.D 、若两条弦所在直线不平行,则这两条弦一定在圆内有公共点.4.已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的 点的 个数为m ,给出下列命题:①若d >5,则m =0;②若d =5,则m =1;③若1<d <5,则m =2;④若d =1,则m =3;⑤若d <1,则m =4、其中正确命题的个数是( ) A.5B.4C.3D.25.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC 、若AB =8,CD =2,则EC 的长为( )D. 8 6.如图,AB 是⊙O 的直径,==,∠COD =34°,则∠AEO 的度数是( )A.51°B.56°C.68°D.78°7.如图,圆O 的内接四边形ABCD 中,BC =DC ,∠BOC =130°,则∠BAD 的度数是( )A.120°B.130°C.140°D.150°8.如图,MN 是半径为2的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,点B 为劣弧AN 的中点、点P 是直径MN 上一动点,则P A +PB 的最小值为( ) A 、42 B 、2C 、4D 、229.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且030=∠D ,下列四个结论:①BC OA ⊥;②BC = 63cm ;③四边形ABOC 是菱形、其中正确结论的序号是( )A. ①③B. ①②③C. ②⑨D. ①②10.某景点有一座圆形的建筑,如图,小江从点A 沿AO 匀速直达建筑中心点O 处,停留拍照后,从点O 沿OB 以同样的速度匀速走到点B ,紧接着沿BCA 回到点A ,下面可以近似地刻画小江与中心点O 的距离S 随时间t 变化的图象是( )二、填空题:11、如图,在O Θ中,040ACB ∠=,则AOB ∠= 度、12. 如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm .13、正n 边形的一个内角比一个外角大100º,则n = .14、如图,点P (3a ,a )是反比例函xky =(k >0)图像与⊙O 的一个交点,图中阴影部分的面积为π10,则反比例函数的解析式为___________15.如下图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E , CE =4,CD =6,则AE 的长为__________16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =, 那么CD =17.如图,⊙O 的半径是4,△ABC 是⊙O 的内接三角形,过圆心O 分别作AB 、BC 、AC 的垂线,垂足为E 、F 、G ,连接EF 、若OG ﹦1,则EF =18.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相 交于点F 、若∠E +∠F =80°,则∠A =19.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE , ∠E =36º,则∠ADC 的度数是20、如图,在扇形AOB 中,∠AOB =90,半径OA =6、将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,整个阴影部分的而积____________ 三、解答题:21.如图,点A 、B 、C 在⊙O 上,且四边形OABC 是一平行四边形、 (1)求∠AOC 的度数; (2)若⊙O 的半径为3,求图中阴影部分的面积.22.如图,点E是边长为1的正方形ABCD的边AB上任意一点(不含A、B),过B、C、E 三点的圆与BD相交于点F,与CD相交于点G,与∠ABC的外角平分线相交于点H、(1)求证:四边形EFCH是正方形;(2)设BE=x,△CFG的面积为y,求y与x的函数关系式,并求y的最大值、Array 23.(1)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF. 求证:BF=DF;(2)如图,在□ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,求阴影部分的面积、(结果保留π)24.正方形纸片ABCD 的对称中心为O ,翻折∠A 使顶点A 重合于对角线AC 上一点P ,EF 是折痕:(1)证明:AE =AF ;(2)尺规作图:在图中作出当点P 是OC 中点时的△EFP (不写画法,保留作图痕迹);完成作图后,标注所作△EFP 的外接圆心M .25.如图,菱形ABCD 的边长为4,∠BAD =60°,AC 为对角线、将ACD ∆ 绕点A 逆时针旋转60°得到AC D ''∆,连结DC '、(1)求证:ADC ∆≌ADC '∆、 (2)求在旋转过程中线段CD 扫过图形的面积、(结果保留π).参考答案一.选择题:二.解答题: 21.(1)连结OB∵四边形OABC 是一平行四边形,∴AB =OC ;又∵⊙O 中,OA =OB =OC ,∴AB =OA =OB ,即△OAB 是等边三角形∴∠AOB =60º,同理∠BOC =60º,∴∠AOC =120º (2)S 阴影=439634336122-=⨯-⨯ππ22.(1)证明:∵B 、H 、C 、F 、E 在同一圆上,且∠EBC =90° ∴∠EFC =90°,∠EHC =90° 又∠FBC =∠HBC =45°,∴CF =CH ∵∠HBF +∠HCF =180°,∴∠HCF =90°∴四边形EFCH 是正方形 (2)∵∠BFG +∠BCG =180°,∴∠BFG =90°由(1)知∠EFC =90°,∴∠CFG +∠BFC =∠BFE +∠BFC∴∠CFG =∠BFE ,∴CG =BE =x ∴DG =DC -CG =1-x易知△DFG 是等腰直角三角形∴△CFG 中CG 边上的高为DG 21()x -=121()1612141121212+⎪⎭⎫ ⎝⎛--=-⋅=∴x x x y∴当21=x 时,y 有最大值 16123.(1)证明:∵四边形ABCD 和AEFG 都是正方形, ∴AB =AD ,AE =AG =EF =FG ,∠BEF =∠DGF =90°, ∵BE =AB ﹣AE ,DG =AD ﹣AG , ∴BE =DG ,在△BEF 和△DGF 中,⎪⎩⎪⎨⎧=∠=∠=GF EF DGF BEF DGBF∴△BEF ≌△DGF (SAS ) ∴BF =DF ;(2)解:过D 点作DF ⊥AB 于点F 、∵AD =4,AB =8,∠A =30° ∴DF =2 EB =AB -AE =4∴阴影部分的面积=8×2-2303604π⨯⨯-4×2×12=16-34π-4 =12-43π、24.(1)证明:设AP 交EF 于点Q ,∵P 是A 的对称点, ∴AP ⊥EF , 在△AEQ 和△AFQ 中:∵点P 在AC 上,∴∠EAQ =∠F AQ =45° AQ 公共边,∠AQE =∠AQF =90°∴△AEQ ≌△AFQ (ASA ) ∴AE =AF(注:也可以证明△AEP ≌△AFP ,或证AEPF 是正方形.)(2)尺规作图:OC 中点P 作AP 垂直平分线EF 、 或PE 、PF 用角平分线、或过P 作垂直线等方法获得△EFP△EFP 的外接圆心M 的位置是EF 与AC 的交点(位置正确即可)()SAS C AD ADC ADAD C A AC CAD AD C ADC D C A AC D BAC ABCD '∆≅∆∴='=∴=∠='∠∴∆''∆='∠=∠∴ 000306030,.25得到旋转是由菱形。

浙教版九年级数学上册第三章圆的基本性质单元综合能力测试卷(含答案)

浙教版九年级数学上册第三章圆的基本性质单元综合能力测试卷(含答案)

第三章圆的基天性质综合能力测试卷班级姓名学号一、选择题(共10 小题,每题 3 分,满分30 分)1、以下图,体育课上,小丽的铅球成绩为 6.4m,她投出的铅球落在()A. 地区①B.地区②C. 地区③D.地区④2、以下命题中正确的选项是()A. 三点确立一个圆B.两个等圆可能内切C. 一个三角形有且只有一个内切圆D.一个圆有且只有一个外切三角形3、如图,从圆O外一点P引圆O的两条切线PA, PB ,切点分别为A,B .假如APB60 ,PA8,那么弦AB 的长是()A. 4B.8C. 4 3D.8 34、已知圆1、圆 2 的半径不相等,圆 1 的半径长为3,若圆2上的点A 知足 1 = 3,则圆O O O O AO1 与圆2 的地点关系是()O OA. 订交或相切B. 相切或相离C.订交或内含D.相切或内含5、在半径为 27m的圆形广场中心点O的上空安装了一个照明光源S, S 射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°( 以下图 ) ,则光源离地面的垂直高度SO为() .A. 54m B.m C.m D.m6、一条弦的两个端点把圆周分红4:5 两部分,则该弦所对的圆周角为() .A. 80°B.100°C.80°或100°D.160°或200°7、如,AB是⊙O的直径,AC是⊙O的切,接OC交⊙ O于点 D,接 BD,∠ C=40°.∠ABD的度数是()A . 30 °B.25°C.20°D.15°8、“ 材埋壁”是我国古代有名的数学著作《九章算》中的:“今有材,埋在壁中,不知大小,以之,深一寸,道一尺,径几何?”用数学言可表示:如所示, CD⊙ O的直径,弦AB⊥CD于 E,CE=1寸, AB=10寸,直径CD的() A. 12.5 寸 B . 13寸C.25寸D.26寸9、如是一△ABC余料,已知 AB=20cm,BC=7cm,AC=15cm,将余料裁剪成一个形资料,的最大面是()2222 A.πcm B.2πcm C.4πcm D . 8 πcm10、如,正六形A1B1C1D1E1F1的2,正六形A2B2C2D2E2F2的外接与正六形A1 B1C1D1E1F1的各相切,正六形A3B3C3D3E3F3的外接与正六形A2B2C2D2E2F2的各相切,⋯按的律行下去,A10B10C10D10E10F10的()A.B.C.D.二、填空题(共 6 小题,每题 4 分,满分 24 分)11、已知圆心角为120°的扇形的面积为2cm.12πcm,则扇形的弧长是12、如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB等于(度)13、在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.14、以下图,△ABC的三个极点的坐标分别为A(-1,3)、 B (- 2,- 2) 、C (4,- 2) ,则△ABC外接圆半径的长度为.15、已知半径为R的半圆,过直径AB上一点,作⊥ 交半圆于点,且3O C CD AB D CD R ,2则 AC的长为.16、如图①,O1,O2,O3,O4为四个等圆的圆心,A, B, C, D为切点,请你在图中画出一条直线,将这四个圆分红面积相等的两部分,并说明这条直线经过的两个点是;如图②,O1,O2,O3, O4, O5为五个等圆的圆心,A,B,C,D, E为切点,请你在图中画出一条直线,将这五个圆分红面积相等的两部分,并说明这条直线经过的两个点是....三、解答题(此题有7 个小题,共66 分)解答应写出证明过程或推演步骤.17、(6 分)作图题:用直尺和圆规作出△ABC的外接圆 O(不写作法,保存作图印迹);18、(8 分)如图,点 D 在⊙O的直径 AB 的延伸线上,点 C 在⊙O 上,且,∠° .(1)求证:CD是⊙O的切线;(2)若⊙O的半径为 2,求图中暗影部分的面积 .19、(8 分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥ BC,OD与 AC交于点E.( 1)若∠B=70°,求∠CAD的度数;( 2)若AB=4,AC=3,求DE的长.20、( 10 分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的均分线交⊙ O于点D.(Ⅰ)如图①,若BC为⊙ O的直径, AB=6,求 AC,BD, CD的长;(Ⅱ)如图②,若∠CAB=60°,求 BD的长.21、( 10 分)如图,在单位长度为 1 的正方形网格中成立平面直角坐标系,一段圆弧经过网格的交点为 A、 B、C.(1)在图中标出该圆弧所在圆的圆心D,并连结 AD、 C D.(2)在( 1)的基础上,达成以下填空:①写出点的坐标:C()、D();②⊙ D的半径是2(结果保存根号);③若扇形 DAC是一个圆锥的侧面睁开图,则该圆锥的底面的面积(结果保存π).22、( 12 分)已知:如图,⊙O和⊙ O’订交于 A、 B两点, AC是⊙ O’的切线,交⊙O于 C 点,连结 CB并延伸交⊙ O’于点 F, D为⊙ O’上一点,且∠DAB=∠ C,连结 DB交延伸交⊙ O于点E。

第3章 圆的基本性质 浙教版九年级上册单元提升必刷卷B及答案

第3章 圆的基本性质 浙教版九年级上册单元提升必刷卷B及答案

【单元测试】第3章圆的基本性质(提升能力)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10有个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若∠ACB=20°,则∠ACD的度数是()A.55°B.60°C.65°D.70°【答案】D【分析】由旋转的性质得∠BCD=90°,再利用∠ACB=20°求解即可.【详解】解:∵将△ABC绕点C顺时针旋转90°得到△EDC,∴∠BCD=90°,∵∠ACB=20°,∴∠ACD=∠BCD-∠ACB=90°-20°=70°,故选:D【点睛】此题考查了旋转的性质,熟练掌握旋转的性质是解题的关键.2.⊙O的直径为10cm,点A到圆心O的距离OA=6cm,则点A与⊙O的位置关系为()A.点A在圆上B.点A在圆外C.点A在圆内D.无法确定【答案】B【分析】根据题意得⊙O的半径为5cm,则点A到圆心O的距离大于圆的半径,则根据点与圆的位置关系可判断点A在⊙O外.【详解】解:∵⊙O的直径为10cm,∴⊙O的半径为5cm,而点A到圆心O的距离OA=6cm>5cm,∴点A在⊙O外.故选B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外,则d>r;点P在圆上,则d=r;点P在圆内,则d<r.3.如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为( )A.3B.C.D.3【答案】C【分析】利用圆的周长先求出圆的半径,正六边形的边长等于圆的半径,正六边形一条边与圆心构成等边三角形,根据边心距即为等边三角形的高用勾股定理求出OG.【详解】∵圆O的周长为,设圆的半径为R,∴∴R=3连接OC和OD,则OC=OD=3∵六边形ABCDEF是正六边形,∴∠COD=,∴△OCD是等边三角形,OG垂直平分CD,∴OC=OD=CD,∴故选C【点睛】本题考查了正多边形,熟练掌握圆内接正多边形的相关概念是解题的关键.4.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【答案】B【分析】根据圆的相关知识进行逐一判断即可.【详解】解:A.过圆心且两个端点在圆上的线段是直径,故该选项说法错误;B. 面积相等的圆,则半径相等,是等圆,故该选项说法正确;C. 同圆或等圆中两个半圆是等弧,故该选项说法错误;D. 同圆或等圆中相等的圆心角所对的弧相等,故说法说法错误;故选:B.【点睛】本题主要考查圆的基本知识,熟知圆的相关知识是解题的关键.5.如图,是直径,点,在半圆上,若,则()A.B.C.D.【答案】C【分析】连接BC,由直径所对的圆周角是直角可求得∠B的度数,再由圆内接四边形的性质即可求得∠ADC 的度数.【详解】解:连接,是直径,,,,四边形是圆的内接四边形,,,故选:.【点睛】本题考查了直径所对的圆周角是直角及圆内接四边形的性质,连接BC并运用这两个性质是解题的关键.6.如图,在⊙O中,点C是的中点,若,则∠D的度数是( )A.B.C.D.【答案】C【分析】利用等弧对相等的圆周角可求得,然后在中利用三角形的内角和即可求得,最后利用同弧所对的圆周角相等即可求解.【详解】解:∵点C是的中点,∴,∴AC=BC,∴,∵,∴,故选:C.【点睛】本题考查了圆周角定理及三角形的内角和定理,熟练掌握圆周角定理是解题的关键.7.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°【答案】C【分析】根据半径相等得到OM=ON,则∠M=∠N=52°,然后根据三角形内角和定理计算∠MON的度数.【详解】∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°-2×52°=76°.故选C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).8.如图,正方形的边,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.C.D.【答案】A【分析】根据图中1、2、3、4图形的面积和为正方形的面积,求出它们的面积,再用两个扇形的面积的和-正方形的面积=无阴影两部分的面积之差来求解.【详解】解:如图:正方形的面积;①两个扇形的面积;②②①,得:.故选:A.【点睛】本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.9.如图,是的直径,点、在上,,,则()A.70°B.60°C.50°D.40°【答案】D【分析】根据邻补角的定义可求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD 的度数.【详解】∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°,∵AD∥OC,OD=OA,∴∠D=∠A=70°,∴∠AOD=180°-2∠A=40°,故选:D.【点睛】本题考查了圆的有关性质,平行线性质及三角形内角和定理的运用.正确的识别图形是解题的关键.10.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以闹息“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图()有如下四个结论:①勒洛三角形是中心对称图形;②使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;③图2中,等边三角形的边长为,则勒洛三角形的周长为;④图3中,在中随机以一点,则该点取自勒洛三角形部分的概率为,上述结论中,所有正确结论的序号是() A.①②B.②④C.②③D.③④【答案】C【分析】根据轴对称的性质,圆的性质,等边三角形的性质,概率的概念分别判断即可.【详解】解:①勒洛三角形是轴对称图形,不是中心对称图形,故①错误;②夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故②正确;③设等边三角形DEF的边长为2,∴勒洛三角形的周长=,圆的周长=,故③正确;④设等边三角形DEF的边长为,∴阴影部分的面积为:;△ABC的面积为:,∴概率为:,故④错误;∴正确的选项有②③;故选:C.【点睛】本题考查了平行线的距离,等边三角形的性质,轴对称的性质,概率的定义,正确的理解题意是解题的关键.二、填空题(本大题共8有小题,每题3分,共24分)11.如图,一块直角三角板的30°角的顶点落在上,其两条边分别交于,两点,连接,,.若弦,则的半径为__________.【答案】3【分析】根据圆周角等于同弧所对圆心角的一半得到∠BOC=60°,推出△BOC是等边三角形,即可求出OB=BC=3.【详解】解:∵∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OB=BC=3,即的半径为3,故答案为:3.【点睛】此题考查了圆周角定理,等边三角形的判定及性质,正确理解同弧所对的圆心角等于圆周角的二倍是解题的关键.12.如图,BC是圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=65°,那么∠DOE的度数为_____.【答案】50°.【分析】利用三角形内角和定理求出∠B+∠C=115°,再利用等腰三角形的性质求出∠BOD+∠EOC即可解决问题.【详解】解:∵∠A=65°,∴∠B+∠C=115°,∵OB=OD,OC=OE,∴∠B=∠ODB,∠C=∠OEC,∴∠BOD+∠EOC=180°﹣2∠B+180°﹣2∠C=130°,∴∠DOE=180°﹣(∠BOD+∠EOC)=180°﹣130°=50°,故答案为:50°.【点睛】本题考查了等腰三角形的性质,圆的性质和三角形内角和,掌握知识点是解题关键.13.如图,⊙O的半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为_____.【答案】【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】解:如图,连接BO,CO,OA.由题意得,△OBC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,∴△OBC的面积=△ABC的面积,∴图中阴影部分的面积等于扇形OBC的面积=.故答案为【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出阴影部分面积=S扇形OBC,属于中考常考题型.14.如图,已知、是⊙O的直径,,,则的度数为______度.【答案】【分析】根据对顶角的性质,再结合等弧所对的圆心角相等,即可求解.【详解】故答案为:64【点睛】本题考查了对顶角的性质,以及圆心角,弧,弦的关系,解题关键是熟练掌握等弧所对的圆心角相等.15.如图,是半圆的直径,四边形和都是正方形,其中,,在上,、在半圆上.若则正方形的面积与正方形的面积之和是16,则的长为________.【答案】8【分析】连接ON、OF,设正方形的边长为,正方形边长为,,根据正方形的性质和勾股定理可得、,进而得到,化简得,再代入,最后根据两正方形的和为16列方程求解即可.【详解】解:连接,,设正方形的边长为,正方形边长为,,则,,四边形和都是正方形,,,设,由勾股定理得:,,①,②,①②,得,,,,,,,,即,把代入①,得,正方形的面积与正方形的面积之和是16,,,解得(负值舍去),.故答案为:8.【点睛】本题主要考查了勾股定理在直角三角形中的运用、正方形的性质、圆的性质等知识点,灵活运用勾股定理解决实际问题成为解答本题的关键.16.如图,四边形ABCD内接于以BD为直径的⊙O,CA平分∠BCD,若四边形ABCD的面积是30cm2,则AC=______cm.【答案】【分析】过A点作AE⊥AC,交CD的延长线与点E,证明△ABC≌△ADE,从而得到四边形ABCD的面积等于△ACE的面积,然后证明出△ACE是等腰直角三角形,根据三角形的面积公式即可求出AC的长度.【详解】如图,过A点作AE⊥AC,交CD的延长线与点E.∵BD为⊙O的直径∴∠BAD=∠BCD=90°∵CA平分∠BCD∴∠BCA=∠ACD=45°∴∠E=∠ACD=45°∴AC=AE∵AE⊥AC∴∠CAE=90°∴∠CAD+∠DAE=90°又∵∠BAC+∠CAD=90°∴∠BAC=∠DAE又∵∠BCA=∠E=45°在△ABC≌△ADE中,∴△ABC≌△ADE(ASA)∴∴∴∴故答案为:【点睛】本题主要考查了圆周角定理和圆内接四边形的性质,关键在于运用转化思想,将四边形ABCD的面积转化为△ACE的面积.17.如图,在矩形ABCD中,BC=2AB,点P为边AD上的一个动点,线段BP绕点B顺时针旋转60°得到线段BP',连接PP' ,CP'.当点P' 落在边BC上时,∠PP'C的度数为________;当线段CP' 的长度最小时,∠PP'C的度数为________【答案】 120°##120度 75°##75度【分析】由旋转性质及旋转角知△BPP′为等边三角形,得到∠PP′B=60°;当点P' 落在边BC上时,∠PP'C=180°-∠PP′B=120°;将线段BA绕点B逆时针旋转60°后点A落在点E,连接BE,得到△ABP≌△EBP′(SAS),再证明△ABP为等腰直角三角形,进而得到∠EP′B=∠APB=45°,最后当CP′⊥EF于H时,CP′有最小值,由此可以求出∠PP'C=∠EP′C-∠EP′P=90°-15°=75°.【详解】解:由线段BP绕点B顺时针旋转60°得到线段BP'可知,△BPP′为等边三角形,∴∠PP′B=60°,当点P' 落在边BC上时,∠PP'C=180°-∠PP′B=180°-60°=120°;将线段BA绕点B逆时针旋转60°,点A落在点E,连接BE,设EP′交BC于G点,如下图所示:则∠ABP=∠ABE-∠PBE=60°-∠PBE,∠EBP′=∠PBP′-∠PBE=60°-∠PBE,∴∠ABP=∠EBP′,且BA=BE,BP=BP′,∴△ABP≌△EBP′(SAS),∴AP=EP′,∠E=∠A=90°,由点P' 落在边BC上时,∠PP'C=120°可知,∠EGC=120°,∴∠CGP′=∠EGB=180°-120°=60°,∴△EBG与△P′CG均为30°、60°、90°直角三角形,设EG=x,BC=2y,则BG=2EG=2x,CG=BC-BG=2y-2x,GP′=CG=y-x,∴EP′=EG+GP′=x+(y-x)=y=BC,又已知AB=BC,∴EP′=AB,又由△ABP≌△EBP′知:AP=EP′,∴AB=AP,∴△ABP为等腰直角三角形,∴∠EP′B=∠APB=45°,∠EP′P=60°-∠EP′B=60°-45°=15°,当CP′⊥EF于H时,CP′有最小值,此时∠PP'C=∠EP′C-∠EP′P=90°-15°=75°,故答案为:120°,75°.【点睛】本题考察了三角形全等的判定方法、矩形的性质、旋转的性质及等腰三角形的性质,属于四边形的综合题,难度较大,熟练掌握各图形的性质是解题的关键.18.如图,是正方形边上一个动点,线段与关于直线对称,连接并延长交直线于点,连接.(1)如图1,,直接写出=_____;(2)如图2,连接,是的中点,,若点从点运动到点,直接写出点的运动路径长为_____.【答案】 45°【分析】(1)由轴对称的性质可得,,由等腰三角形的性质和三角形内角和定理可求解;(2)先确定点在以为圆心,为半径的圆上运动,再用弧长公式可求解.【详解】解:(1),,线段与关于直线对称,,,,,,;(2)如图,连接,交于点,连接,四边形是正方形,,又是中点,,点在以为圆心,为半径的圆上运动,点从点运动到点,点的运动路径长,故答案为:,.【点睛】本题是四边形综合题,考查了正方形的性质,轴对称的性质,三角形中位线定理,求弧长等知识,灵活运用这些性质解决问题是本题的关键.三、解答题(本大题共6有小题,共66分;第19小题8分,第20-21每小题10分,第22-23每小题12分,第24小题14分)19.如图所示,已知∠CAE=65°,∠E=70°,且AD⊥BC,如果△ABC经过旋转后与△ADE重合.(1)旋转中心是哪个点?(2)旋转了多少度?(3)∠BAC的度数是多少?【答案】(1)点A(2)65°(3)85°【分析】(1)由旋转的定义可得;(2)由旋转的定义即可得;(3)根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF中易求∠B=25°,所以利用△ABC的内角和是180°来求∠BAC的度数即可.【详解】(1)由旋转的性质可得:旋转中心是点A;(2)由旋转的性质可得:旋转的角度即为∠CAE=65°;(3)根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F,则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.【点睛】本题考查了旋转的性质.解题的过程中,利用了三角形内角和定理和直角三角形的两个锐角互余的性质来求相关角的度数.20.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,,过点C作CD∥AB交BE 的延长线于D,AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF,若∠AOF=3∠FOE且AF=3,求的长.【答案】(1)证明见解析;(2)【分析】(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得:,,由一组对边平行且相等可得四边形ABCD是平行四边形,由AB=BC可得结论;(2)先设∠FOE=x,则∠AOF=3x,根据∠ABC+∠BAD=180°,列方程得:4x+2x+(180-3x)=180,求出x的值,接着求所对的圆心角和半径的长,根据弧长公式可得结论.【详解】(1)证明:∵,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形;(2)∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180﹣3x)=180,x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=3,∴的长==.【点睛】本题考查平行四边形和菱形的判定和性质、等边三角形的判定和性质、弧长公式,平行线的性质等知识,解题的关键是学会设未知数,列方程求角的度数,证明三角形是等边三角形是解题的突破点,属于中考常考题型.21.如图,☉O是正五边形ABCDE的外接圆,F是的中点,连接CF,EF.(1)请直接写出∠CFE= °;(2)求证:EF=CF;(3)若☉O的半径为5,求的长.【答案】(1)72°;(2)详见解析;(3)3π.【分析】(1)根据圆内接四边形的性质和正五边形的内角解答即可;(2)利用正五边形的性质和弧长关系证明即可;(3)利用弧长公式解答即可.【详解】解: (1)∵正五边形ABCDE,∴∠EDC=108°,∴∠CFE=180°−108°=72°,故答案为72°.(2)∵五边形ABCDE是正五边形,∴AE=BC,∴,又∵F是的中点,∴,∴,∴,∴EF=CF.(3)∵☉O是正五边形ABCDE的外接圆,∴,∵R=5,∴×2πR=2π,又∵=π,∴=3π.【点睛】本题考查了正多边形与圆,解题关键是根据圆内接四边形的性质和正五边形的性质解答.22.已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A 的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.【答案】(1)见解析;(2)【分析】(1)由题意得出O1P=AP=O2P=O1O2,则可得出∠O1AO2=90°,由平行线的性质可得出∠O1BC =90°,过点O2作O2D⊥BC交BC的延长线于点D,证得O2D=r2,则可得出结论;(2)由直角三角形的性质求出∠BO1C=60°,由勾股定理求出BC长,则可根据S阴影=求出答案.【详解】(1)证明:连接AP,∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,∴O1P=AP=O2P=O1O2,∴∠O1AO2=90°,∵BC//O2A,∴∠O1BC=∠O1AO2=90°,过点O2作O2D⊥BC交BC的延长线于点D,∴四边形ABDO2是矩形,∴AB=O2D,∵O1A=r1+r2,∴O2D=r2,∴BC是⊙O2的切线;(2)解:∵r1=2,r2=1,O1O2=6,∴O1A=O1O2,∴∠BO1C=60°,∴O1C=2O1B=4,∴BC==,∴S阴影==O1B×BC-==.【点睛】本题考查了切线的判定,平行线的性质,直角三角形的判定与性质,勾股定理,扇形的面积等知识,熟练掌握切线的判定是解题的关键.23.如图,⊙O的半径为2,O到顶点A的距离为5,点B在⊙O上,点P是线段AB的中点,若B在⊙O 上运动一周.(1)点P的运动路径是一个圆;(2)△ABC始终是一个等边三角形,直接写出PC长的取值范围.【答案】(1)见解析;(2)≤PC≤【分析】(1)连接OA、OB,取OA的中点H,连接OB,HP,则HP是△ABO的中位线,得出HP=OB =1,即P点到H点的距离固定为1,即可得出结论;(2)由等边三角形的性质和直角三角形的性质分别求出PC的最小值和最大值即可.【详解】(1)解:连接OA、OB,取OA的中点H,连接HP,如图1所示:则HP是△ABO的中位线,∴HP=OB=1,∴P点到H点的距离固定为1,∴B在⊙O上运动一周,点P运动的路径是以点H为圆心,半径为1的一个圆;(2)解:连接AO并延长AO交⊙O于点M、N,如图2所示:∵△ABC是等边三角形,点P是线段AB的中点,∴PC⊥AB,PA=PB=AB=BC,∴PC=PA=AB,当点B运动到点M位置时,点P运动到点P'位置,PC最短,∵AM=OA﹣OM=5﹣2=3,∴AP'=AM=,∴PC=;当点B运动到点N位置时,点P运动到点P''位置,PC最长,∵AN=OA+ON=5+2=7,∴AP''=AN=,∴PC=;∴PC长的取值范围是≤PC≤.【点睛】本题考查确定圆的条件、三角形中位线定理、等边三角形的性质、直角三角形的性质等知识;熟练掌握三角形中位线定理和等边三角形的性质是解题的关键.24.【模型构建】如图1,在四边形ABCD中,,AB=AD,,.求四边形ABCD的面积.琪琪同学的做法是:延长CD至E点,使DE=BC,连结AE.易证.进而把四边形ABCD的面积转化为的面积,则四边形ABCD的面积为________.【应用】如图2,为的外接圆,AB是直径,AC=BC,点D是直径AB左侧的圆上一点,连接DA,DB,D C.若CD=4,求四边形ADBC的面积;【灵话运用】如图3,在四边形ADBC中,连结AB、CD,,四边形ADBC的面积为,则线段CD=________.【答案】(1)9;(2)8;(3)4【分析】(1)根据可得,根据证明进而把四边形ABCD的面积转化为的面积,根据,,即可求解.(2)由旋转得到,可得,根据,可得,根据(1)的模型即可求解.(3)根据(1)的模型可得,根据等边的面积为,即可求解.【详解】(1),,,又,,,,,,,是等腰直角三角形,,故答案为:9(2)解:如图,旋转得到,使得与重合,∵AB是直径,∴,∵旋转得到,∴,∴CD=CE=4,,∴,∵点A、C、B、D在上,∴,∵,∴,∴D、B、E三点共线∴四边形ADBC的面积.(3)如图,将绕点旋转使得与重合,∵旋转得到,∴,,是等边三角形,,四点共圆,,,,是等边三角形,,,,四边形ADBC的面积为,,故答案为:4.【点睛】本题考查了旋转的性质,直径所对的圆周角相等,圆内接四边形对角互补,等边三角形的性质,勾股定理,全等的性质,理解题意,转化四边形的面积为三角形的面积是解题的关键.。

2024-2025学年浙教版九年级上册数学 第三章 圆的基本性质 单元培优测试卷 (含详解)

2024-2025学年浙教版九年级上册数学 第三章 圆的基本性质 单元培优测试卷 (含详解)

圆的基本性质单元培优测试卷一、选择题(每题3分,共30分)1.如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41',∠F=43°19',则∠A的度数为( )第1题图第2题图第4题图A.42°B.41°20'C.41°D.40°20'2.如图,⊙O中,弦AB的长为43,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定3.在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO=AB,∠OAB=120°,将△AOB绕点O逆时针旋转,每次旋转60°,则第2024次旋转后,点B的坐标为( )A.(−3,3)B.(−3,0)C.(3,3)D.(−23,0)4.如图,在半圆O中,直径AB=2,C是半圆上一点,将弧AC沿弦AC折叠交AB于D,点E是弧AD 的中点.连接OE,则OE的最小值为( )A.2−1B.2+1C.4−2D.22−25.△ABC内接于⊙O,过点A作直线EF,已知∠B=∠EAC,根据弦AB的变化,两人分别探究直线EF 与⊙O的位置关系:甲:如图1,当弦AB过点O时,EF与⊙O相切;乙:如图2,当弦AB不过点O时,EF也与⊙O相切;第5题图第6题图第7题图下列判断正确的是( )A .甲对,乙不对B .甲不对,乙对C .甲乙都对D .甲乙都不对6.如图,等圆⊙O 1和⊙O 2相交于A ,B 两点,⊙O 1经过⊙O 2的圆心O 2,若O 1O 2=2,则图中阴影部分的面积为( )A .2πB .43πC .πD .23π7.如图,正六边形ABCDEF 内接于⊙O ,点P 在边BC 上.结论Ⅰ:若⊙O 的半径为2,P 是边BC 的中点,则PE 的长为13;结论Ⅱ:连接PF .若S △PEF =32,则EF 的长为π3,关于结论Ⅰ、Ⅱ,判断正确的是( )A .只有结论Ⅰ对B .只有结论Ⅱ对C .结论Ⅰ、Ⅱ都对D .结论Ⅰ、Ⅱ都不对8.已知等腰直角三角形OAC ,∠OAC =90°,以O 为圆心,OA 为半径的圆交OC 于点F ,过点F 作AC的垂线交⊙O 于点E ,交AC 于点B.连结AE ,交OC 于点D ,若OD =1+22,则AB 的长为( )第8题图 第9题图 第10题图A .2B .22C .2+1D .2+29.如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BC 于点D ,点E 为半径OB 上一动点.若OB =3,则阴影部分周长的最小值为( )A .62+π2B .22+π3C .62+π3D .2+2π310.如图,AB 是⊙O 的直径,点C ,点D 是半圆上两点,连结AC ,BD 相交于点P ,连结AD ,OD .已知OD ⊥AC 于点E ,AB =2.下列结论其中正确的是( )①∠DBC +∠ADO =90°;②AD 2+AC 2=4;③若AC =BD ,则DE =OE ;④若点P 为BD 的中点,则DE =2OE .A .①②③B .①③④C .②③④D .①②④二、填空题(每题4分,共24分)11.如图,OA 是⊙O 的半径,BC 是⊙O 的弦,OA ⊥BC 于点D ,AE 是⊙O 的切线,AE 交OC 的延长线于点E .若∠AOC =45°,BC =2,则线段AE 的长为 .第11题图 第12题图 第13题图12.如图,在矩形ABCD 中,AB =4,AD =2.以点A 为圆心,AD 长为半径作弧交AB 于点E ,再以AB为直径作半圆,与DE 交于点F ,则图中阴影部分的面积为 .13.如图,直线l 与⊙O 相切于点A ,点C 为⊙O 上一动点,过点C 作CB ⊥l ,垂足为B ,已知⊙O 的半径为6,则BC +43AB 的最大值为  .14.如图,正方形ABCD 内接于⊙O ,线段MN 在对角线BD 上运动,若⊙O 的面积为2π,MN =1,则(1)⊙O 的直径长为 ;(2)△AMN 周长的最小值是 .第14题图 第15题图 第16题图15.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的点,连接CD ,AC ,OD ,且AB =4,OD ∥AC ,设CD =x,AC =y ,则y 与x 之间的函数表达式为 .16.如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E ,交AC 于点F ,DB 交AC于点G ,连结AD .给出下面四个结论:①∠ABD =∠DAC ;②AF =FG ;③当DG =2,GB =3时,FG =142;④当BD =2AD ,AB =6时,△DFG 的面积是3,上述结论中,正确结论的序号有  .三、综合题(17-19每题6分,20-21每题8分,22题12分,共46分)17.如图,已知OA是⊙O的半径,过OA上一点D作弦BE垂直于OA,连接AB,AE.线段BC为⊙O的直径,连接AC交BE于点F.(1)求证:∠ABE=∠C;(2)若AC平分∠OAE,求AFFC的值18.如图,AC为⊙O的直径,BD是弦,且AC⊥BD于点E.连接AB、OB、BC.(1)求证:∠CBO=∠ABD;(2)若AE=4cm,CE=16cm,求弦BD的长.19.如图,AB是⊙O的直径,点C,D是⊙O上的点,且OD∥BC,AC分别与BD,OD相交于点E,F.(1)求证:点D为AC的中点;(2)若DF=4,AC=16,求⊙O的直径.20.如图,已知四边形ABCD内接于⊙O,对角线AC,BD交于点E,AC=BD,AC⊥BD.(1)猜想∠ACB的度数,并说明理由.(2)若⊙O的半径为10,∠BCD=60°,求四边形ABCD的面积.(3)若过圆心O作OF⊥BC于点F.求证:AD=2OF.21.已知:⊙O的两条弦AB,CD相交于点M,且AB=CD.(1)如图1,连接AD.求证:AM=DM.(2)如图2,若AB⊥CD,点E为弧BD上一点,BE=BC=α°,AE交CD于点F,连接AD、DE.①求∠E的度数(用含α的代数式表示).②若DE=7,AM+MF=17,求△ADF的面积.22.如图,在△ABC中,AB=BC,∠ABC=90°,D是AB上一动点,连接CD,以CD为直径的⊙M交AC 于点E,连接BM并延长交AC于点F,交⊙M于点G,连接BE.(1)求证:点B在⊙M上.(2)当点D移动到使CD⊥BE时,求BC:BD的值.(3)当点D到移动到使∠CMG=30°时,求证:A E2+C F2=E F2.答案解析部分1.【答案】C【解析】【解答】解:∵四边形ABCD 内接于圆O ,∴∠A+∠BCD=180°,∵∠BCD 、∠EBC 分别是△EBC 和△ABF 的一个外角,∠EBC=∠A+∠F ,∠BCD=∠E+∠EBC ,∴∠BCD=∠E+∠A+∠F ,∴∠A+∠E+∠A+∠F=180°,∴2∠A+54°41'+43°19'=180°,解之:∠A=41°.故答案为:C. 2.【答案】C【解析】【解答】解:如图,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵OC ⊥AB ,且AB =43,∴∠ADO=90°,且AD =12AB =23,∵sin ∠AOC=sin60°=AD AO,∴AO =ADsin60°=2332=4,∵OP=5>AO=4,∴点P 在圆O 外部.故答案为:C. 3.【答案】D【解析】【解答】解:过B 作BH ⊥y 轴于H ,在Rt△ABH中,∠AHB=90°,∠BAH=180°−120°=60°,AB=OA=2,∴∠ABH=30°,∴AH=12AB=1,OH=OA+AH=3,由勾股定理得BH=AB2−AH2=3,∴B(3,3),由题意,可得:B1(−3,3),B2(−23,0),B3(−3,−3),B4(3,−3),B5(23,0),B6(3,3),⋯,6次一个循环,∵2024÷6=337……2,∴第2024次旋转后,点B的坐标为(−23,0),故答案为:D.4.【答案】A【解析】【解答】解:连接CO,如图,由三角形两边之差小于第三边,当C、O、E共线时,OE最小,设⏜AC的弧度为x,则⏜BC的弧度为180°-x,∵∠CAB=∠CAD,∴⏜CD的弧度为180°-x,由折叠知:⏜AEC=⏜AC=x,⏜AD=x-(180°-x)=2x-180°,∵点E为弧AD的中点,∴⏜AE=12⏜AD=x-90°,∴⏜CE=⏜AC-⏜AE=90°,∴⏜CE所对圆心角为90°,∵直径AB=2,∴ CE=2,∴OE= CE-OC=2−1.故答案为:A.5.【答案】C【解析】【解答】解:甲:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°,∵∠EAC=∠B,∴∠EAC+∠BAC=90°,∴EF⊥AB,∵OA是半径,∴EF是⊙O的切线;乙:作直径AM,连接CM,如图所示:即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠EAC=∠B,∴∠EAC=∠AMC,∵AM是⊙O的直径,∴∠MCA=90°,∴∠MAC+∠AMC=90°,∴∠EAC+∠MAC=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.故答案为:C 6.【答案】D7.【答案】C【解析】【解答】解:如图,连接CE 、OB 、OC ,过点D 作DH ⊥CE 于点H ,∵六边形ABCDEF 为正六边形,∴∠BCD =∠CDE =(6−2)⋅180°6=120°,CD =DE ,∠BOC =360°6=60°,OB =OC ,∴∠DCE =∠DEC =12(180°−∠CDE)=30°,△OBC 是等边三角形,∴CH =EH =12CE =CD ⋅cos ∠DCE =3,∠PCE =∠BCD−∠DCE =90°,EF =BC =OB =OC =CD =2,∴CE =23,∵P 是边BC 的中点,∴CP =BP =12BC =1,∴PE =PC 2+CE 2=12+(23)2=13,故结论Ⅰ正确;设点N 是边BC 的中点,连接NO 并延长交EF 于点M ,连接OE 、OF ,过点D 作DH ⊥CE 于点H ,设正六边形ABCDEF 的边长为a ,∵六边形ABCDEF 为正六边形,∴NM ⊥EF ,NM ⊥BC ,FM =EM =12EF =12a ,∠EOF =360°6=60°,EF ∥BC ,∴S △NEF =S △PEF =32,由Ⅰ的解答过程可知,CH=EH=12CE=CD⋅cos∠DCE=32a,∠NCE=∠BCD−∠DCE=90°,EF=BC=OB=OC=a,∴CE=3a,四边形NCEM是矩形,∴MN=CE=3a,∴12EF⋅MN=12×a×3a=32,∴a=1,∴EF的长为60π×1180=π3,故Ⅱ正确,故答案为:C.8.【答案】C【解析】【解答】解:过点O作AE的垂线交BE于点H,连接AH,如图所示:设⊙O的半径为R∵∠OAC = 90°,OA=AC=R∴∠O=∠C=45°∴∠E=12∠O==22.5°在Rt△0AC中,由勾股定理得:OC = OA2+AC2=2R∵OD=2∴CD=OC-OD=2R−2∵EB⊥AC,∠C =45°∴△BFC为等腰直角三角形,∴∠BFC= ∠DFE=∠C = 45°∴∠ADC= ∠E + ∠DFE =22.5°+45°=67.5°在Rt△ABE中,∠E =22.5°,∠ABE = 90°∴∠CAE =90°-∠E=67.5°∴∠CAE = ∠ADC∴AC=CD,即R= 2R−2,解得:r=2+2,即OA=2+2∵OH⊥AEOH是AE的垂直平分线∴AH = EH∴∠EAH= ∠E= 22.5°∴∠HAB = ∠CAE- ∠EAH= 67.5°-22.5°=45°∴△ABH为等腰直角三角形∴AB =BH∴∠OAE= ∠OAC-∠OAE = 90° - 67.5°= 22.5°.'.∠OAH = ∠OAE + ∠EAH = 45°∴OH⊥AE,∠EAH=22.5°∴∠AHO =90°-∠EAH = 90° - 22.5°= 67.5°∴∠AOH = 180°- ∠OAH- ∠AHO=180°-45°-67.5°= 67.5°∴∠AHO = ∠AOH = 67.5°∴AH =OA=2+2,在Rt△ABH中,AB = BH,AH=2+2由勾股定理得:A B2+B H2=A H2即2A B2=(2+2)2∴AB=2+1故答案为:2+1.9.【答案】A【解析】【解答】解:由于CD是定值,要求阴影部分周长的最小值,即求CE+DE最小值即可作点D关于OB对称的对称点D′,连接CD′与直线OB交于点E,则OC=OD′,CE+DE=CD′,此时CE+DE为最小值连接OD′,∵OD平分∠BOC,∠BOC=60°,∴∠BOD =∠COD =12∠BOC =30°,∴∠BOD =∠BOD ′=30°,∠COD ′=90°,在Rt △COD ′中,CD ′=OC 2+OD ′2=2OC =2OB =32,CD =30π×3180=12π,阴影部分周长的最小值为12π+32=62+π2.故答案为:A .10.【答案】B【解析】【解答】解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵OD ⊥AC ,∴OD ∥BC ,∴∠DBC =∠BDO ,∵∠BDO +∠ADO =90°,∴∠DBC +∠ADO =90°,①正确;∵∠ACB =90°,∴B C 2+A C 2=A B 2=4,AB =2,根据条件无法得到BC =AD ,②错误;∵AC =BD ,∴⏜AD =⏜BD ,∴⏜AD =⏜BC ,∵OD ⊥AC ,∴⏜AD =⏜CD ,∴⏜AD=⏜BC=⏜CD,∴∠AOD=13×180°=60°,∵OA=OD,∴△AOD为等边三角形∵AE⊥OD,∴DE=OE,③正确;若点P为BD的中点,则PD=PB,∵∠PED=∠BCP=90°,∠EPD=∠CPB,∴△EPD≅△CPB(AAS),∴DE=BC,∵OD⊥AC,O为AB的中点,∴BC=2OE,∴DE=2OE,④正确;故答案为:B.11.【答案】212.【答案】3+23π【解析】【解答】解:连接AF,EF,过点F作FH⊥AB于点H,∵以点A为圆心,AD长为半径作弧交AB于点E,∴AD=AE=AF=2,∵再以AB为直径作半圆,与DE交于点F,∴AE=BE=2,AE=EF,∴AF=AE=EF=2,∴△AEF是等边三角形,∴∠FAE=∠AEF=60°,AH=1,∴FH=AH·tan∠FAE=AH·tan60°=3∴S扇形FAE=60π×22360=23π,S弓形AF=60π×22360−12×23=23π−3,∴S阴影部分=S半圆AB-S扇形FAE-S弓形AF=12×4π−23π−(23π−3)=3+23π故答案为:3+2 3π.13.【答案】83614.【答案】22;415.【答案】y=−12x2+416.【答案】①②③【解析】【解答】解:如图:连接DC,∵D是AC的中点,∴AD=DC,由圆周角定理的推论得:∠ABD=∠DAC,故①正确;∵AB是直径,∴∠ADB=90°,∴∠DAC+∠AGD=90°,∵DE⊥AB∴∠BDE+∠ABD=90°,∵∠ABD=∠DAC,∴∠BDE=∠AGD,∴DF=FG,∵∠BDE+∠ABD=90°,∠BDE+∠ADE=90°,∴∠ADE=∠ABD,∵∠ABD=∠DAC,∴∠ADE=∠DAC,∴AF=FD,∴AF=FG,即②正确;在△ADG和△BDA,{∠ADG =∠BDA∠DAG =∠DBA ,∴△ADG ∽△BDA ,∴AD BD =GDAD ,即:AD 2+3=2AD,解得:AD =10,由勾股定理得:AG =AD 2+DG 2=10+4=14,∵AF =FG ,∴FG =12AG =142,故③正确;如图:假设半圆的圆心为O ,连接OD ,CO ,CD ,∵BD =2AD ,AB =6,D 是AC 的中点,∴AD =DC =13AB ,∴∠AOD =∠DOC =60°,∵OA =OD =OC ,∴△AOD ,△ODC 是等边三角形,∴OA =AD =CD =OC =OD =6,∴四边形ADCO 是菱形,∴∠DAC =∠OAC =12∠DAO =30°,∵∠ADB =90°,∴tan ∠DAC =tan30°=DGAD ,即33=DG 6,解得:DG =23,∴S △ADG =12AD ⋅DG =12×6×23=63,∵AF =FG∴S △DFG =12S △ADG =33,故④错误.故答案为:①②③.17.【答案】(1)证明:∵OA ⊥BE ,∴AB=AE,∴∠ABE=∠C;(2)解:∵AC平分∠OAE,∴∠OAC=∠EAC,∵∠EAC=∠EBC,∴∠OAC=∠EBC,∵OA=OC,∴∠OAC=∠C,∴∠EBC=∠C,∴BF=CF,由(1)∠ABE=∠C,∴∠ABE=∠C=∠EBC,∵BC为直径,∴∠BAC=90°,∴∠ABE+∠C+∠EBC=90°,∴∠ABE=30°,∴AF=12 BF,∴AF=12 CF,即AFCF=12.18.【答案】(1)证明:∵AC是直径,AC⊥BD ∴AB=AD∴∠ABD=∠C又∵OB=OC∴∠OBC=∠C∴∠CBO=∠ABD(2)解:∵AE=4cm,CE=16cm∴直径AC=AE+CE=20cm∴OA=OB=10cm∴OE=OA-AE=10-4=6cm∵AC是直径,AC⊥BD∴BE=ED= BO2−OE2=8cm∴BD=2BE=16cm19.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠OFA=90°,∴OF⊥AC,∴AC=CD,即点D为AC的中点;(2)解:OF⊥AC,∴AF=12AC=8,∵DF=4,∴OF=OD−DF=OA−4,∵OA2=AF2+OF2,∴OA2=82+(OA−4)2,∴OA=10,∴⊙O的直径为20.20.【答案】(1)解:∠ACB=45°,理由如下:∵AC⊥BD,∴∠AEB=90°.∴∠ABE+∠BAE=90°.∴AD+BC=180°.∴AB+CD=180°.∵AC=BD,∴AC=BD.∴AC−AD=BD−AD.∴AB=CD.∴AB=90°.∴∠ACB=45°.(2)解:如图,连结BO,DO,过点O作OH⊥BD交BD于点H.∵∠BCD=60°, ∴∠BOD=120°.∵OH⊥BD,∴∠BOH=60°, BH=DH.在Rt△BHO中,∠BOH=60°,OB=10,∴OH=5,BH=53.∴BD=103=AC.∴S四边形ABCD=12×103×103=150.(3)证明:如图,延长BO交⊙O于点M,连结CM,DM.∵OF⊥BC,∴BF=CF,即点F是BC的中点.又∵点O是BM的中点,∴OF是△BCM的中位线.∴CM=2OF.∵DM⊥BD,AC⊥BD,∴DM∥AC.∴AD=CM.∴AD=2OF.21.【答案】(1)证明:如图1,∵AB=CD,∴AB=CD,即AC+BC=BD+BC,∴AC =BD ,∴∠A =∠D ,∴AM =DM ;(2)解:①∠M =90°−12α°.理由如下:连接AC ,如图,∵BE =BC =α°,∴∠CAB =12α°,∵AB ⊥CD ,∴∠AMC =90°,∴∠M =∠C =90°−12α°;②∵BE =BC =α°,∴∠CAB =∠EAB ,∵AB ⊥CD ,∴AC =AF ,∴∠ACF =∠AFC ,∵∠ACF =∠E ,∠AFC =∠DFE ,∴∠DFE =∠E ,∴DF =DE =7,∵AM =DM ,∴AM =MF +7,∵AM +MF =17,∴MF +7+MF =17,解得MF =5,∴AM =12,∴S △ADF =12×7×12=42.22.【答案】(1)证明:根据题意得CM=DM=12CD,∵∠ABC=90°,∴BM=12 CD,∴CM=DM=BM,∴点B在⊙M上.(2)解:连接DE,如图,∵CD⊥BE,CD为⊙M直径,∴BD=DE,∠ABC=∠DEC=90°,∵AB=BC,∠ABC=90°,∴∠DAE=∠ADE=45°,∴DE=AE,∴AD=2DE=2BD,∴AD+BD=AB=(2+1)BD,∴BC=(2+1)BD,∴BCBD=2+1.(3)证明:过点B作BN⊥BG,过点A作AN⊥AE,交BN于点N,连接DE,NE,∵AB=BC,∠ABC=90°,∴∠DAC=∠BCA=45°,∴∠BAN=∠BCF=45°,∵M为CD的中点,∴MD =MB =MC ,∵∠CMG =∠MBC +∠MCB =30°,∴∠MDB =∠MBD =75°,∠MBC =∠MCB =15°,∠DCE =∠BCE−∠MCB =30°,∴∠EDC =∠EBC =60°,∴∠EBF =∠EBC−∠MBC =45°,∴∠EBF =∠EBN =45°,∴∠ABN =90°−∠ABF =∠CBF ,∵{∠ABN=∠CBFAB =BC ∠BAN =∠BCF ,∴△BAN≌△BCF(ASA),∴AN =CF ,BN =BF ,∵{BN =BF∠NBE =∠FBE BE =BE ,∴△NBE≌△FBE(SAS),∴NE =EF ,在Rt △AEN 中,N E 2=A N 2+A E 2,∴E F 2=C F 2+A E 2.。

第3章 圆的基本性质 浙教版数学九年级上册单元能力提升卷(含解析)

第3章 圆的基本性质 浙教版数学九年级上册单元能力提升卷(含解析)

浙教版数学九上第三章《圆的基本性质》单元能力提升卷一.选择题(共30分)1.如图,AB是⊙O的直径,CD是弦,AB⊥CD,垂足为点E,连接OD、CB、AC,∠DOB =60°,EB=2,那么CD的长为( )A.3B.23C.33D.43 2.如图,若干全等正五边形排成形状,图中所示的是前3个正五边形,则要完成这一圆环还需这样的正五边形( )A.6个B.7个C.9个D.10个3.如图,已知BD是⊙O的直径,BD⊥AC于点E,∠AOC=100°,则∠OCD的度数是( )A.20°B.25°C.30°D.40°4.扇子最早称“翣”,在我国已有两千多年历史.“打开半个月亮,收起兜里可装,来时荷花初放,去时菊花正黄.”这则谜语说的就是扇子.如图,一竹扇完全打开后,外侧两竹条,夹角为,的长为,扇面BD的长为,则扇面面积为()cm2A.B.C.D.5.如图,已知圆的内接正六边形的半径为2,则扇形的面积是()A.B.C.D.6.如图,正方形ABCD内接于⊙O,点P在AB上,则∠BPC的度数为( )A.30°B.45°C.60°D.90°7.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为( ).A.30°B.40°C.50°D.60°8.如图,六位朋友均匀的围坐在圆桌旁聚会.圆桌的半径为80cm,每人离桌边10cm,又后来两位客人,每人向后挪动了相同距离并左右调整位置,使8个人都坐下,每相邻两人之间的距离与原来相邻两人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为xcm.则根据题意,可列方程为( )A.60π(80+10)180=45π(80+10+x)180B.45π×80180=36π(80+x)180C.2π(80+10)×8=2π(80+x)×10 D.2π(80﹣x)×10=2π(80+x)×89.如图,在半径为3的⊙O中,B是劣弧AC的中点,连接AB并延长到D,使BD=AB,连接AC、BC、CD,如果AB=2,那么CD等于( )A.2B.1C.23D.4310.如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则S1S2的值是( )A.5π2B.3πC.5πD.11π2二.填空题(共24分)11.已知扇形的弧长为π,半径为1,则该扇形的面积为 12.如图,在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠D= .13.如图,在△ABC中,∠BAC=90°,AB=AC=4.将△ABC绕点B逆时针旋转45°,得△A′BC′,则阴影部分的面积为 .14.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A= °.15.如图,ΔABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为 .16.如图,在⊙O中,C是弦AB上的点,AC=2,CB=8.连接OC,过点C作DC⊥OC,与⊙O交于点D,DC的长为 .三‘解答题(共66分)17.(6分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=12,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求BD的长.18.(8分)如图,在⊙O中,点C是优弧ACB的中点,D、E分别是OA、OB上的点,且AD=BE,弦CM、CN分别过点D、E.(1)求证:CD=CE.(2)求证: AM = BN . 19.(8分)如图, AB 是 ⊙O 的直径,弦 CD ⊥AB ,E 是 CA 延长线上的一点,连结 DE 交 ⊙O 于点 F ,连结 AF ,CF .(1)若 BD 的度数是40°,求 ∠AFC 的度数; (2)求证: AF 平分 ∠CFE ;(3)若 AB =5,CD =4,CF 经过圆心,求 CE 的长.20.(10分)如图,点D 是△ABC 的外接圆⊙O 上一点,且 AD =BC =12AmB ,连接BD 交AC 于点E ,(1)求证AC=BD ;(2)若BD 平分∠ABC ,BC=1,求BD 的长;(3)已知圆心O 在△ABC 内部(不包括边上),⊙O 的半径为5.①若AB=8,求△ABC 的面积;②设 BDBE =x ,BC·AC=y ,求y 关于x 的函数关系式,并求出y 的取值范围。

第3章 圆的基本性质 浙教版九年级上册单元提升必刷卷A及答案

第3章 圆的基本性质 浙教版九年级上册单元提升必刷卷A及答案

【单元测试】第3章圆的基本性质(夯实基础)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P( )A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定【答案】A【分析】由已知⊙O的直径为3cm,则半径为1.5cm,点P到圆心O的距离OP=2cm>1.5cm,所以点P在⊙O外.【详解】解:根据⊙O的直径为3cm,∴半径为1.5cm,点P到圆心O的距离OP=2cm>1.5cm,所以点P在⊙O外.故选:A.【点睛】此题主要考查了点与圆的位置关系,熟悉点与圆的位置关系的判定方法是解题关键.2.如图,已知、是的弦,,点C在弦上,连接CO并延长CO交于于点D,,则的度数是()A.30°B.40°C.50°D.60°【答案】C【分析】连接OA,根据圆的半径相等证明∠OAB=∠B和∠OAD=∠D,得到答案.【详解】解:连接OA,∵OA=OB,∴∠OAB=∠B=30°,∵OA=OD,∴∠OAD=∠D=20°,∴∠BAD=∠OAB+∠OAD=50°,故选:C.【点睛】本题考查的是圆的性质和等腰三角形的性质,掌握圆的半径相等和等边对等角是解题的关键.3.在图形的旋转中,下列说法不正确的是()A.旋转前和旋转后的图形一样B.图形上的每一个点到旋转中心的距离都相等C.图形上的每一个点旋转的角度都相同D.图形上可能存在不动的点【答案】B【分析】根据旋转的性质对A、B、C进行判断;利用旋转中心为图形上一点的情况可D进行判断.【详解】解:A、旋转前和旋转后的图形全等,故A选项不符合题意;B、在图形上的对应点到旋转中心的距离相等,故B选项符合题意;C、图形上每一点移动的角度相同,都等于旋转角,故C选项不符合题意;D、图形上可能存在不动的点,故D选项不符合题意.故选:B.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4.如图所示,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的长方形,则这个窗户的外框总长为()A.B.C.D.【答案】A【分析】先求出上半圆的直径为,即可得出答案.【详解】解:由题意得,上半圆的直径为,∴窗户的外框总长为,故答案选A.【点睛】本题主要考查了圆的周长公式和列代数式,解题的关键是确定半圆的直径.5.如图,边长为1的正方形绕点A逆时针旋转得到正方形,连接,则的长是()A.1B.C.D.【答案】B【分析】连接、,根据图形旋转前后长度不变且旋转角为,可得是等边三角形,根据勾股定理,求出正方形的对角边长度即可.【详解】如图所示,连接、∵四边形是四边形逆时针旋转∴,∴是等边三角形∴在中,∴故选:B.【点睛】本题考查图形旋转、等边三角形的判定、正方形的性质及勾股定理等知识,熟练掌握图形旋转、等边三角形的性质、正方形的性质及勾股定理是解题的关键.6.如图,,,是上的三点,若,则的度数是()A.B.C.D.【答案】B【分析】由圆周角定理,即可求得的度数,又由,根据等边对等角与三角形内角和定理,即可求得的度数.【详解】解:连接,,,,.故选:B【点睛】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°【答案】A【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°−30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【详解】设半圆圆心为O,连OA,OB,如图,∵∠AOB=86°−30°=56°,∴∠ACB=∠AOB=×56°=28°.故选A.【点睛】本题主要考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.是等边三角形【答案】D【分析】根据正八边形和圆的性质进行解答即可.【详解】解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH 与四边形EFGH全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=∵OE=OH∴∠OEH=∠OHE=∠DOE=22.5°∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=(180°-∠CHE)=67.5°∴不是等边三角形,故选项错误,符合题意.故选:D.【点睛】本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.9.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为⊙O的直径,弦AB ⊥CD,垂足为E,CE为1寸,AB为10寸,求直径CD的长.依题意,CD长为()A.寸B.13寸C.25寸D.26寸【答案】D【分析】连结AO,根据垂径定理可得:,然后设⊙O半径为R,则OE=R-1.再由勾股定理,即可求解.【详解】解:连结AO,∵CD为直径,CD⊥AB,∴.设⊙O半径为R,则OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴R2=52+(R-1)2,∴R=13,∴CD=2R=26(寸).故选:D【点睛】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理是解题的关键.10.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角形成的扇面,若,,则阴影部分的面积为()A.B.C.D.【答案】D【分析】根据S阴影=S扇形AOD-S扇形BOC求解即可.【详解】解:S阴影=S扇形AOD-S扇形BOC====2.25π(m2)故选:D.【点睛】本题考查扇形面积,不规则图形面积,熟练掌握扇形面积公式是解题的关键.二、填空题(本大题共8个小题,每题2分,共16分)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.【答案】.【详解】试题分析:根据勾股定理可求得BD=5,三个顶点A、B、C中至少有一个点在圆内,点A与点D 的距离最近,点A应该在圆内,所以r>3,三个顶点A、B、C中至少有一个点在圆外,点B与点D的距离最远,点B应该在圆外,所以r<5,所以r的取值范围是.考点:勾股定理;点和圆的位置关系.12.如图,将绕点C顺时针旋转30°得到,边,相交于点F,若,则的度数为______.【答案】118°##180度【分析】将△ABC绕点C顺时针旋转30°得到△DEC,得∠ACD=30°,∠A=∠D=32°,进而根据三角形的内角和定理得结果.【详解】解:∵将△ABC绕点C顺时针旋转30°得到△DEC,∴∠ACD=30°,∠A=∠D=32°,∴∠DFC=180°-(∠ACD+∠D)=180°-(32°+30°)=118°,故答案为:118°.【点睛】本题主要考查了旋转的性质,三角形内角和定理,熟练掌握旋转的性质是解题的关键.13.如图,中,弦,已知的半径为,,,那么与间的距离是________.【答案】7【分析】过O点作OM⊥AB于M点,延长MO交CD于点N,连接AO、CO,根据,OM⊥AB,可得ON⊥CD,利用垂径定理可得AM=3,CN=4,结合后⊙O的半径为5,在Rt△AMO和Rt△COD中,利用勾股定理可求得MO=4,NO=3,则问题得解.【详解】过O点作OM⊥AB于M点,延长MO交CD于点N,连接AO、CO,如图,∵,OM⊥AB,∴OM⊥CD,即ON⊥CD,∴AM=MB=AB,CN=ND=CD,∵AB=6,CD=8,∴AM=3,CN=4,∵⊙O的半径为5,∴AO=CO=5,∵OM⊥AB,即ON⊥CD,∴在Rt△AMO和Rt△COD中,利用勾股定理可求得MO=4,NO=3,∵MN⊥AB,,∴AB与CD的距离即为线段MN的长,∴MN=OM+ON=4+3=7,故答案为:7.【点睛】本题主要考查了垂径定理,构造辅助线,通过垂径定理得到MO=4,NO=3,是解答本题的关键.14.如图,点、分别在轴、轴上,直线与以为直径的圆交于点,则点的坐标为____.【答案】【分析】先根据直线y=x是一三象限角平分线得到∠AOC=∠BOC=45°,然后过点C分别作CE⊥OA,CF⊥OB,进而得到CE=CF,再利用圆的对称性得到AC=BC,进而可证三角形全等,从而得到AE=CF,那么可将OA+OB转化为OE+OF,又因为OE=OF,故可求得OE、OF的长,也便求出点C的坐标.【详解】解:如图,过点C分别作CE⊥OA,CF⊥OB,垂足分别为E、F,连接CA、CB,∵点C在直线y=x上,∴OC平分∠AOB,又∵CE⊥OA,CF⊥OB,∴CE=CF,∵OC平分∠AOB,∠AOB=90°,∴∠AOC=∠BOC=45°,∴AC=BC,在Rt△ACE与Rt△BCF中∴Rt△ACE≌Rt△BCF(HL)∴AE=BF,∴OA+OB= OE +AE+OB,= OE +BF+OB,= OE +OF,∵点、∴OA=m+6,OB=m,∴OE +OF= m+6+m=2m+6∵∠AOB= ∠CEO=∠CFO=90°,CE=CF,∴四边形CEOF为正方形,∴OE=OF=(2m+6)=m+3,∴点的坐标为.【点睛】本题主要综合考查了圆的对称性、全等三角形的判定,以及线段的转化,综合运用所学知识解决问题是本题的关键.15.如图,在中、三条劣弧、、的长都相等,弦与相交于点,弦与的延长线相交于点,且,则的度数为________.【答案】##70度【分析】连接,由弧、、的长相等,可得,设,在中,根据三角形内角和定理建立方程,解方程求得的值,进而即可求解.【详解】解:连接,弧、、的长相等,,设,,,,在中,,解得,,.故答案为:.【点睛】本题考查了弧与圆周角的关系,三角形的外角与内角和,掌握弧与圆周角的的关系是解题的关键.16.如图,是的弦,O是圆心,把的劣弧沿着对折,A是对折后劣弧上的一点,若,那么_________.【答案】20°【分析】由已知条件先求出∠A'=100,再利用圆内接四边形的性质即可求出∠B的度数,分别得到∠BCD+∠BDC和∠ACD+∠ADC,相减即可.【详解】解:如图,翻折△ACD,点A落在A'处,∴∠A'=∠A=100°,∴∠ACD+∠ADC=80°,∵四边形A'CBD是⊙O的内接四边形,∴∠A'+∠B=180°,∴∠B=80°,∴∠BCD+∠BDC=180°-80=100°,∴∠BCA+∠BDA=(∠BCD+∠BDC)-(∠ACD+∠ADC)=20°,故答案为:20°.【点睛】此题考查了几何图形折叠的问题以及圆内接四边形的性质,解本题的关键是得出∠A'=100°.17.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积来近似估计的面积,设的半径为1,则__________.【答案】【分析】如图,过点A作AC⊥OB,垂足为C,先求出圆的面积,再求出△ABC面积,继而求得正十二边形的面积即可求得答案.【详解】如图,过点A作AC⊥OB,垂足为C,∵的半径为1,∴的面积,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=,∴AC=OB=,∴S△AOB=OB•AC=,∴圆的内接正十二边形的面积S1=12S△AOB=3,∴则,故答案为.【点睛】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.18.如图,在扇形MON中,圆心角∠MON=60°,边长为2的菱形OABC的顶点A,C,B分别在ON,OM 和上,且ND∥AB,交CB的延长线于点D,则阴影部分的面积是_____.【答案】6﹣2【分析】由扇形的面积计算公式结合三角形、平行四边形的面积计算公式计算即可.【详解】解:如图连接OB,过C点做OB的垂线,垂足为E点,由四边形OABC为菱形,∠MON=60°,可得∠COB=∠BOA=∠COA=,可得,,在RT△OCE中,OC=2, ∠COB=,可得CE=1,OE=,则OB=,即圆的半径为,可得:==,=,,,阴影部分的面积即为四边形ABDN的面积,由BD∥AN,AB∥DN,可得四边形ABDN为平行四边形,过点B做BF⊥AN,可得BF=,,故阴影部分的面积为.【点睛】本题主要考查扇形的计算公式、三角形和平行四边形的面积公式,综合性较强,需综合运用所学知识求解.三、解答题(本大题共8个小题,共54分;第19-22每小题6分,23-24每小题7分,25-26每小题8分)19.如图,一艘轮船以30海里/小时的速度由西向东航行,途中接到台风警报,台风中心正以60海里/小时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区,当轮船到A处时,测得台风中心移动到位于点A正南方向的B处,且海里.若轮船以原方向、原速度继续航行,求轮船从A点出发到最初遇到台风的时间.【答案】轮船从点出发小时后最初遇到台风【分析】根据题意可得轮船正好在以台风中心为圆心、20海里长为半径的圆上即为轮船最初遇到台风的时间,设小时后最初遇到台风,画出图形(见解析),先求出的长,再利用勾股定理建立方程,解方程即可得.【详解】解:由题意可知,轮船正好在以台风中心为圆心、20海里长为半径的圆上即为轮船最初遇到台风的时间,因为海里,所以当台风中心到达点时,轮船恰好在台风区的边界,所以轮船从点出发到最初遇到台风时,台风中心位于点的下方,画出图形如下:其中点为台风中心,点为轮船,则海里,设小时后最初遇到台风,则海里,海里,海里,海里,由勾股定理得:,即,解得或,当时,,不符题意,舍去,答:轮船从点出发小时后最初遇到台风.【点睛】本题考查了点与圆的位置关系、一元二次方程的应用、勾股定理的应用,画出图形,正确建立方程是解题关键.20.如图1,边长为4的正方形与边长为()的正方形的顶点重合点在对角线上.(1)【问题发现】如图1,与的数量关系为______.(2)【类比探究】如图2,将正方形绕点顺时针旋转度(),问题发现中的结论是否还成立?如成立写出推理过程,如不成立,说明理由.(3)【拓展延伸】在图1中,若点为的中点,将正方形绕点顺时针旋转,在旋转过程中,当点,,在一条直线上时,直接写出此时线段的长度.【答案】(1)(2),证明见解答过程,(3)【分析】易证AB∥EF,由平行线分线段成比例可解.证明△ACE和△BCF相似可解.分情况讨论,连接CE交GF于H,由正方形的性质可得四边长度和对角线的长度,进而求出CF,GF,HE 等线段长度,最终得到AH的长度,得到答案.(1)证明:∵四边形ABCD和四边形EFCG是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,,CE⊥GF,∴AB∥EF,∴∴故答案为(2)上述结论还成立,证明,连接CE,如图,∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF,在Rt△CEG和Rt△CBA中,∴∴△ACE∽△BCF,则∴(3)分两种情况:连接CE交GF于H,如图,∵四边形ABCD和四边形EFCG是正方形,∴AB=BC=4,HF=HE=HC,∵点F为BC的中点,∴CF=BC=2,GF=CE=2,GH=HF=HE=HC=,∴则连接CE交GF于H,如图,由①可知:GH=HF=HE=HC=∴则故AG的长度为【点睛】题是四边形的综合题目,考查正方形的性质、图形旋转、平行线分线段成比例、相似三角形的判定和性质、勾股定理等知识,解题关键是熟练运用正方形的性质,证明三角形相似,得到对应边成比例.21.如图,在四边形ABCD中,,,AD不平行于BC,过点C作交的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形(2)连接CO,求证:CO平分.【答案】(1)见解析(2)见解析【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE/CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【详解】(1)证明:∵∠B=∠E,∠B=∠D,∴∠E=∠D,∵,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴,∴四边形AECD为平行四边形;(2)证明:作OM⊥BC于M,ON⊥CE于N,如图,∵四边形AECD为平行四边形,∴AD=CE,又∵AD=BC,∴CE=CB,∵OM⊥BC,ON⊥CE,∴∠ONC=∠OMC=90°,,∴,∵OC=OC,∴,∴ON=OM,∵OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点睛】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.22.如图,⊙O的弦AB、DC的延长线相交于点E.(1)如图1,若为120°,为50°,求∠E的度数;(2)如图2,若AE=DE,求证:AB=CD.【答案】(1)∠E=35°(2)见解析【分析】(1)先求出∠ACD,∠BAC的度数,再根据三角形外角的性质得出答案;(2)先根据“ASA”证明△ACE≌△DBE,得出BE=CE,再结合已知条件得出答案即可.【详解】(1)连接AC,∵为120°,为50°,∴,,∴∠E=∠ACD-∠BAC=60°-25°=35°;(2)证明:连接AC、BD,∵,∴∠A=∠D,在△ACE和△DBE中,,∴△ACE≌△DBE(ASA),∴BE=CE,∵AE=DE,∴AE-BE=DE-CE,即AB=CD.【点睛】本题考查了圆的相关计算与证明,三角形全等的判定和性质,正确理解圆心角、弧与弦的关系是解题的关键.23.如图,在四边形ABCD中,AD//BC,⊙O经过点A、C、D,分别交边AB、BC于点E、F,连接DE、DF,且DE=DF.(1)求证:AB//CD;(2)连接AF,求证:AB=AF.【答案】(1)见解析;(2)见解析.【分析】(1)借助弦相等对应的弧相等,弧相等所对的圆周角得到∠A=∠C,进而AB∥CD;(2)连接AF,,由(1)知四边形ABCD是平行四边形,得到∠B=∠AFB,故AB=AF.【详解】解:(1)∵AD//BC,∴∠A+∠B=180°,∵DE=DF,∴,∴,∴,∴∠A=∠C,∴∠B+∠C=180°,∴AB//CD;(2)连接AF,∵AB//CD,AD//BC,∴四边形ABCD是平行四边形,∴∠B=∠D,∵四边形AFCD是圆内接四边形,∴∠AFC+∠D=180°,∵∠AFC+∠AFB=180°,∴∠AFB=∠D=∠B,∴AB=AF.【点睛】本题主要考查圆周角定理,解题关键是熟练掌握在同圆或者等圆中,有两条弦、两条弧、两个圆周角,其中有一组量相等,其它的量全部相等.24.如图,已知AD是⊙O的直径,B、C为圆上的点,OE⊥AB、BC⊥AD,垂足分别为E、F.(1)求证:2OE=CD;(2)若∠BAD+∠EOF=150°,AD=4,求阴影部分的面积.【答案】(1)见解析(2)2π-【分析】(1)连接BD,先证,,再根据垂径定理,证得,最后通过等量代换证得结论.(2)将代入∠BAD+∠EOF=150°,结合,解得,,由,分别求得、、,计算即可.【详解】(1)证明:连接BD,∵AD是⊙O的直径,B为圆上的点,∴,∵OE⊥AB,∴,∴,∴,∵AD是⊙O的直径,即O为AD的中点,∴E为AB的中点,∴.∵AD是⊙O的直径,B、C为圆上的点,BC⊥AD,∴,∴,即.(2)解:∵,又∵∠BAD+∠EOF=150°,∴,即.∵,∴,∴,.如图,连接BD,∵AD=4,AD是⊙O的直径,,∴.同理,,,,∴,.∵AD是⊙O的直径,B、C为圆上的点,BC⊥AD,∴.∵AD=4,,∴.,,,∴.【点睛】本题考查了垂径定理,中位线的判定及性质,扇形相关的阴影面积计算,综合运用以上知识是解题的关键.25.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长),设所在圆的圆心为,半径,垂足为.拱高(弧的中点到弦的距离).连接.(1)直接判断与的数量关系;(2)求这座石拱桥主桥拱的半径(精确到).【答案】(1)(2)这座石拱桥主桥拱半径约为【分析】(1)根据垂径定理即可得出结论;(2)设主桥拱半径为,在中,根据勾股定理列出方程,即可得出答案.【详解】(1)解:∵半径,∴.故答案为:.(2)设主桥拱半径为,由题意可知,,∴,,在中,由勾股定理,得,即,解得,∴,因此,这座石拱桥主桥拱半径约为.【点睛】此题考查垂径定理和勾股定理,是重要考点,根据题意利用勾股定理列出方程是解题关键.26.问题提出(1)如图①,的半径为8,弦,则点O到的距离是__________.问题探究(2)如图②,的半径为5,点A、B、C都在上,,求面积的最大值.问题解决(3)如图③,是一圆形景观区示意图,的直径为,等腰直角三角形的边是的弦,直角顶点P在内,延长交于点C,延长交于点D,连接.现准备在和区域内种植草坪,在和区域内种植花卉.记和的面积和为,和的面积和为.①求种植草坪的区域面积.②求种植花卉的区域面积的最大值.【答案】(1)8;(2)32;(3)①,②.【分析】(1)作交AB于点C,连接OA,利用垂径定理和勾股定理即可求出OC;(2)作交AB于点D,连接OA,可知当CD经过圆心O的时候面积最大,由垂径定理和勾股定理可求出,进一步可求出的面积;(3)①连接OD,OA,求出AD,进一步可求出;②表示出,利用完全平方公式求出,当时,有最大值为.【详解】解:作交AB于点C,连接OA,∵,由垂径定理可知:,∵,∴;(2)作交AB于点D,连接OA,∵,若使面积最大,则CD应最大,∴当CD经过圆心O的时候取值最大,由垂径定理可知:,∵,∴,∴,∴,(3)①连接OD,OA,则,∵是等腰直角三角形,∴,∴,即是等腰直角三角形,∴,∵,,∴是等腰直角三角形,∵,,∴,②由①可知:,设,,故,∵,∴,当时,等号成立,∴,当时,有最大值为.【点睛】本题考查垂径定理,勾股定理,完全平方公式的应用,等腰直角三角形的判定及性质,(3)小问较难,解题的关键是表示出,求出AD,利用完全平方公式求出.。

第三章《圆的基本性质》单元过关测试(含答案)-

第三章《圆的基本性质》单元过关测试(含答案)-

第三章《圆的基本性质》单元过关测试(综合能力与应用创新能力)注意事项:1.本卷共三大题,计 21小题,满分100分,考试时间为45分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.已知⊙O的半径为5厘米,A为线段OP的中点,当OP=6厘米时,点A与⊙O的位置关系是( )A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定2.下列命题中不正确的是( )A.圆有且只有一个内接三角形;B.三角形的外心是这个三角形任意两边的垂直平分线的交点;C.三角形只有一个外接圆;D.等边三角形的外心也是三角形的三条中线、高、角平分线的交点.3.过⊙内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()(A)3cm (B)6cm (C)cm (D)9cm4.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()A、AB⊥CDB、∠AOB=4∠ACDC、D、PO=PD5.如图所示,以O为圆心的两个同心圆中,小圆的弦AB的延长线交大圆于C,若AB=3,BC=1,则与圆环的面积最接近的整数是( )A.9B.10C.15D.13D(第4题) (第5题) (第6题)6.下图中BOD ∠的度数是( )A 、550B 、1100C 、1250D 、15007.如图,圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面积为( ) A. 60πcm 2 B. 45πcm 2C. 30πcm 2 D15πcm2P(第7题) (第8题) (第9题)8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE =8个单位,OF =6个单位,则圆的直径为 ( ) A .12个单位B .10个单位C .4个单位D .15个单位9.如图,有一块边长为6 cm 的正三角形ABC 木块,点P 是边CA 延长线上的一点,在A 、P 之间拉一细绳,绳长AP 为15 cm.握住点P ,拉直细绳,把它紧紧缠绕在三角形ABC 木块上(缠绕时木块不动),则点P 运动的路线长为(精确到0.1厘米,π≈3.14)( ) A.28.3 cmB.28.2 cmC.56.5 cmD.56.6 cm10.如图所示,⊙O 的弦AB 垂直于直径MN ,C 为垂足,若OA =5厘米,下面四个结论中可能成立的是( )A.AB =12厘米B.OC =6厘米C.MN =8厘米D.AC =2.5厘米(第10题) (第11题) (第13题)二、填空题(本大题共5小题,每小题4分,共20分)11.如图,⊙O 的半径OA=6,以A 为圆心,OA 为半径的弧交⊙O 于B 、C ,则BC= . 12.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______.7厘米或1厘米13.如图,矩形ABCD 中,86AB AD ==,,将矩形ABCD 在直线l 上按顺时针方向不滑动的每秒转动90,转动3秒后停止,则顶点A 经过的路线长为 . 14.如图,矩形ABCD 与与圆心在AB 上的⊙O 交于点G 、B 、F 、E ,GB=8cm ,AG=1cm ,DE=2cm ,则EF= cm .(第14题) (第15题)15.如图,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为m 4的半圆,其边缘AB = CD =m 20,点E 在CD 上,CE =m 2,一滑板爱好者从A 点滑到E 点,则他滑行的最短距离约为 m .(边缘部分的厚度忽略不极,结果保留整数)三、解答题(本大题共6小题,共50分.解答应写出文字说明,证明过程或演算步骤) 16.(本题6分)已知:如图,在△ABC 中,∠ACB =90°,∠B =25°,以C 为圆心,CA 长为半径的圆交AB 于D ,求的度数.A17.(本题8分)“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图3-2-16所示,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E , CE =1寸,求直径CD 的长.”C18.(本题8分)如图所示,OA 、OB 、OC 都是圆O 的半径,∠AOB =2∠BOC . 求证:∠ACB =2∠BAC .CBAO19.(本题8分)如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面12,为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB =cm 8,求这个零件的表面积.结果保留π)高BC =cm20.(本题10分)一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,AB与C D是水平的,BC与水平面的夹角为600,其中AB=60cm,CD=40cm,BC=40cm,请你作出该小朋友将园盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.60cm21.(本题10分)画一画世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问图中三个图形中是轴对称图形的有_______,是中心对称图形的有_______(分别用三个图的代号a、b、c填空).(2)请你在图d、e两个圆中,按要求分别画出与a、b、c图案不重复的图案(草图)(用尺规画或徒手画均可,但要尽可能准确些,美观些).d是轴对称图形但不是中心对称图形;e既是轴对称图形又是中心对称图形.a c车方向盘铜浪汽层石激起一千钱d e参考答案1.A 2.A 3.A 4.D 5.D 6.B 7.D 8.B 9.C 10.A 11.36 12.7厘米或1厘米 13.12π 14.6 15.22 16.50° 17.26寸18.求证圆周角∠ACB =2∠BAC ,只要证明弧AB 的度数是弧BC 度数的两倍即可,由已知条件∠AOB =2∠BOC 容易得到.19.这个零件的表面积为:ππππ192609636=++. 20. 示意图略,路线的长度为140-π3103320+ 21.(1)三个图形中轴对称的为a 、b 、c .是中心对称的为a 和c .(2)(略)(提示:因为圆既是轴对称图形,又是中心对称图形.因此在圆内任意画一个是轴对称而不是中心对称的图形即可满足d 的要求,所以这样的图形太多了,同理满足e 的图案也 很多)。

九上数学第三章:圆的基本性质能力提升测试题答案

九上数学第三章:圆的基本性质能力提升测试题答案

九上数学第三章:圆的基本性质能力提升测试题答案一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出1.答案:C解析:四边形ABCD 是⊙O 的内接四边形, ∴0180=∠+∠BCD A , ∴0059121180=-=∠A , ∴01185922=⨯=∠=∠A BOD , 故选:C2.答案:D解析:连接OF ,如图: ∵DE ⊥AB ,AB 过圆心O , ∴DE =EF ,AD AF = ∵D 为弧AC 的中点, ∴AD DC = ∴ADC DAF =, ∴AC =DF , ∵⊙O 的直径为10, ∴OF =OA =5, ∵AE =2,∴OE =OA ﹣AE =5﹣2=3,在Rt △OEF 中,由勾股定理得:EF =4352222=-=-OE OF , ∴DE =EF =4,∴AC =DF =DE +EF =4+4=8, 故选:D .3.答案:B解析:∵AB是⊙O的直径的直径,∴∠ADB=∠ADE=∠ACB=90°,∴∠AEB+∠EAD=90°,∵C是弧AB的中点,∴AC=BC,∴∠CAB=∠CBA=45°,∴∠EAD+∠BAD=45°,∵∠BCD=∠BAD,∴∠EAD+∠BCD=45°,∴∠AEB+∠EAD﹣(∠EAD+∠BCD)=90°﹣45°=45°,∴∠AEB﹣∠BCD=45°.故选:B.4.答案:D解析:作半径OC⊥AB于点D,连结OA,OB,∵将O沿弦AB折叠,圆弧较好经过圆心O,∴OD=CD,OD=12O C=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB =12∠AOB =60°.(圆周角等于圆心角的一半) 故选D.5.答案:D解析:连接AB 、BC ,如图, ∵A (0,3)、B (4,3), ∴AB ⊥y 轴, ∴∠BAC =90°,∴BC 为△ABC 外接圆的直径, ∵AC =3+1=4,AB =4,∴BC =244422=+,∴△ABC 外接圆的半径为22. 故选:D6.答案:D解析:过O 作OC AB ⊥于C ,连接OA ,则90OCA ∠=︒,6MO =,30OMA ∠=︒, 132OC MO ∴==,在Rt OCA △中,由勾股定理得:2222534AC OA OC -=-, OC AB ⊥,OC 过O ,BC AC ∴=,即2248AB AC ==⨯=, 故选:D .7.答案:D解析:在⊙O 中, ∵AB CD =∴AB CD =,AOB COD ∠=∠ 故A 、C 选项正确,不符合题意; ∵AB CD =,OA =OD ,OB =OC ∴OAB ODC ≌ ∴OABODCSS=∵OE ⊥AB ,OF ⊥CD , ∴1122AB OE CD OF ⋅=⋅ ∴OE =OF故B 选项正确,不符合题意. 故选D8.答案:C 解析:连接AC ,∵∠ABC =50°,四边形ABCD 是圆内接四边形, ∴∠ADC =130°, ∵点D 是弧AC 的中点, ∴CD =AC ,∴∠DCA =∠DAC =25°, ∵AB 是直径,∴∠BCA =90°,∴∠BCD =∠BCA +∠DCA =115°, 故选:C .9.答案:B解析:标注顶点,连接AB , 由对称性可得:阴影部分面积=S 扇形AOB -S △ABO = 290212223602ππ⨯-⨯⨯=-.故选:B .10.答案:B解析:∵六边形ABCDEF 是正六边形∴=120CDE ∠︒ 连接OE ,OC ,则60OCN OEM ∠=∠=︒ ∴OC OE CD DE === ∴四边形OCDE 是菱形, ∴120COE CDE ∠=∠=︒∵120POQ ∠=︒∴MOE CON ∠=∠在MOE ∆和NOC ∆中MOE CON OC OE OEM OCN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴MOE CON ∆≅∆ ∴MONDE OCDE S S =五边形菱形∵AB =2∴CD =DE =2过点C 作CD ⊥ED 的延长线于点H ∴60CDH ∠=︒∴30DCH ∠=︒ ∴DH =1∴3CH = ∴扇形半径长为23∴=23MONDE OCDE S S DE CH ==五边形菱形 ∴2120=(23)4360OQP S ππ⨯⨯=扇形 ∴==423OQP OCDE S S S π--阴影扇形菱形 故选:B二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.答案:0115 解析:连接AC ,∵∠ABC =50°,四边形ABCD 是圆内接四边形, ∴∠ADC =130°, ∵点D 是弧AC 的中点, ∴CD =AC ,∴∠DCA =∠DAC =25°, ∵AB 是直径, ∴∠BCA =90°,∴∠BCD =∠BCA +∠DCA =115°,12.答案:050 解析:根据题意, ∵,25DE AC CAD ⊥∠=︒, ∴902565ADE ∠=︒-︒=︒,由旋转的性质,则65∠=∠=︒B ADE ,AB AD =, ∴65ADB B ∠=∠=︒,∴180665550BAD ︒-∠=︒=︒-︒; ∴旋转角α的度数是50°; 故答案为:50°.13.答案:0≤PM ≤25且PM ≠1.5. 解析:如图:延长CP 交⊙O 于N ,连接DN . ∵AB ⊥CN , ∴CP =PN , ∵CM =DM , ∴PM =21DN , ∴当DN 为直径时,PM 的值最大,最大值为25, 当DN =NC 时,PM 最小,最小值为0, ∴PM 的范围是0≤PM ≤25且PM ≠1.5. 故答案为:0≤PM ≤25且PM ≠1.5.14.答案:)(27cm π 解析:第一次是以B 为旋转中心,BA 长5cm 为半径旋转90°, 此次点A 走过的路径是ππ255241=⨯⨯ 第二次是以C 为旋转中心,3cm 为半径旋转60°此次走过的路径是ππ=⨯⨯3261, ∴点A 两次共走过的路径是()cm πππ2725=+.15.答案:π1613839- 解析:如图,作AB 、BC 的垂直平分线,两线交于O ,连接OA 、OE 、OC , 由图形可知△ACD 是等腰直角三角形, ∴∠DAC =45°, ∴∠EOC =90°,∵AC =CD =133222=+, ∴OA =OE =213, ∴S 阴影=S △ACD ﹣S △AOE ﹣S 扇形EOC =ππ161383936021390213213211313212-=⎪⎪⎭⎫⎝⎛⨯-⨯⨯-⨯⨯.故答案为:π1613839-16.答案:12解析:连接OA、OD、OF,如图,设这个正多边形为n边形,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD=3604︒=90°,∠AOF=3603︒=120°,∴∠DOF=∠AOF-∠AOD=30°,∴n=36030︒︒=12,即DF恰好是同圆内接一个正十二边形的一边.故答案为:12.三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.解析:连结OD,如图,∵直径AB=2CD,∴OD=CD,∴∠DOC=∠C=25°,∴∠EDO=∠DOC+∠C=50°,∵OD=OE,∴∠E=∠EDO=50°,∴∠AOE=∠E+∠C=75°18.解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.19.解析:连接OC,如图,∵AB为直径,弦CD⊥AB,∴CE=DE,∵AB=8,∴OA=OC=4,∴OE=OA-AE=4-1=3,在Rt△OCE中,C E=22-=,437∴CD=2CE=27.20.解析:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°﹣∠ABC.∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°﹣∠ABC,∴∠ECB =∠A . 又∵C 是BD 的中点,∴CD CB =,∴∠DBC =∠A ,∴∠ECB =∠DBC ,∴CF =BF ;(2)∵CD CB =∴BC =CD =6,∵∠ACB =90°,∴AB =10862222=+=+AC BC ,∴⊙O 的半径为5,∵S △ABC =21AB •CE =21BC •AC , ∴CE =5241086=⨯=⨯AB AC BC .21.(1)证明:连接AD ,∵点D 是BC 的中点,∴∠CAD =∠BAD ,∴CD =BD ,在△CAD 和△BAD 中,⎪⎩⎪⎨⎧=∠=∠=AD AD BAD CAD AB AC ,∴△CAD ≌△BAD (SAS ),∴∠ACD =∠ABD ,∴∠DCE =∠DBF ,在△CED 和△BFD 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BDF CDE DBCD DBF DCE , ∴△CED ≌△BFD (ASA ),∴DF =DE ;(2)∵四边形ABDC 是圆内接四边形,∴∠DBF =∠ACD ,∵∠ACD =∠ABD ,∴∠ABD =∠DBF ,∴∠ABD =90°,∴∠ECD =∠ABD =90°,∴AD 是⊙O 的直径,∵CD =BD =6,CE =8,∴DE =1022=+CE CD ,∴EB =10+6=16,在Rt △ABE 中,AB 2+BE 2=AE 2,设AB =AC =x ,则x 2+162=(x +8)2,解得x =12,∴AB =12,在Rt △ABD 中,AB 2+BD 2=AD 2,∴AD =5661222=+,∴⊙O 的半径为53.22.解析:(1)连接OD ,如图,∵BD 为∠ABC 平分线,∴∠1=∠2,∵OB =OD ,∴∠1=∠3, ∴∠2=∠3,∴OD ∥BC ,∵∠C =90°,∴∠ODA =90°,∴OD ⊥AC ,∴AC 是⊙O 的切线.(2)过O 作OG ⊥BC ,连接OE ,则四边形ODCG 为矩形, ∴GC =OD =OB =2,OG =CD =3,在Rt △OBG 中,利用勾股定理得:BG =1,∴BE =2,则△OBE 是等边三角形,∴阴影部分面积为2602360π⨯﹣12×2×3=233π-.23.解析:(1)如图,1ADE ∠=∠,2ABE ∠=∠,3DAF ∠=∠,4BAE ∠=∠在正方形ABCD 中,AB=AD在△ADF 和△ABE 中12AB AD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABE (SAS );(2)由(1)结论得:△ADF ≌△ABE∴AF=AE ,∠3=∠4正方形ABCD 中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=2AE即DE-DF=2AE∴DE-BE=2AE;(3)连接BD,将△CBE绕点C顺时针旋转90°至△CDH∵四边形BCDE内接于圆∴∠CBE+∠CDE=180°∴E,D,H三点共线在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴BC CD=∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得22在Rt△BDE中,由勾股定理得:227-=BD BE在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴2.。

浙教版数学九年级上册 第3章测试卷 圆的基本性质(含答案)

浙教版数学九年级上册  第3章测试卷 圆的基本性质(含答案)

第3章测试卷圆的基本性质班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置( )A. 一定在⊙O的内部B. 一定在⊙O的外部C. 一定在⊙O上D. 不能确定2.正六边形的每个内角度数为( )A. 90°B. 108°C. 120°D. 150°3.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A. 60°B. 50°C. 40°D. 20°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A7 B. 7 C. 6 D. 85. 下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是( )A. ①②③B. ①③④C. ②③D. ②④6. 如图,正方形ABCD 内接于⊙O,AB=22,则AB的长是( )A. πB.32π C. 2π D127.如图,已知 BC 是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点 A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°8. 如图,在扇形 AOB中,∠AOB=90°,点C 是弧AB 的中点,点 D 在OB 上,点 E 在OB 的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( )A. π-2B. 2π—2C. π—4D. 2π-49. 如图,四边形ABCD内接于⊙O,点I是△ABC角平分线的交点,∠AIC=124°,点 E 在AD 的延长线上,则∠CDE的度数为( )A. 56°B. 62°C. 68°D. 78°10. 如图,AB是半圆O 的直径,点 P 从点O 出发,沿OA→AB→BO(的路径匀速运动一周.设OP 的长为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,点 A,B,C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为 .12. 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为 .13. 如图,在四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC 交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .14.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为 .15.如图,在半径2₂的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形面积为 .16. 如图所示,E,F分别是正方形ABCD 的边AB,BC上的点,BE=CF,连结CE,DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转了.三、解答题(本大题有8小题,共66分)17. (6分)已知扇形的半径为6cm,面积为10πcm²,求该扇形的弧长.18. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,点O,M也在格点上.(1)画出△ABC关于直线OM 对称的△A₁B₁C₁;(2)画出△ABC绕点O按顺时针方向旋转 90°后所得的△A₂B₂C₂.19. (6分)中国的拱桥始建于东汉中后期,已有一千八百余年的历史,如图,一座拱桥在水面上方部分是.AB,拱桥在水面上的跨度AB为8米,拱桥AB与水面的最大距离为3米.(1)用直尺和圆规作出AB所在圆的圆心O;(2)求拱桥 AB所在圆的半径.20.(8分)如图所示,在△ABC中,AB=AC,∠A=30°,,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点 B作BP 平行于DE,交⊙O于点P,连结OP,CP.(1)求证:BD=DC;(2)求∠BOP的度数.21.(8分)如图,AB是⊙O的直径,C是.AE的中点,CD⊥AB于点D,交AE于点F,连结AC.求证:AF=CF.22.(10分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1) 试判断△ABC是否为等边三角形? 为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,,求⊙O的半径长.23.(10分)如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的⊙O交BC 于点D,且.BD= DE.(1)求证:AB为⊙O的直径;(2)若AB=8,∠BAC=45°,,求阴影部分的面积.24.(12分)如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)如图,过点O作(OE⊥AB于点E,交AC于点 P.若AB=2,∠AOE=30°,求 PE的长.第3章测试卷 圆的基本性质1. B2. C3. B4. B5. C6. A7. D8. A9. C 10. C 11. 6 12. 3 13. 6π14 12 15. π 16. 9017. 解:由 S =12l ⋅R 得 l =2S R =2×106=103π(cm ).18. 解:(1)如图, △A₁B₁C₁即为所求作的三角形.(2)如图, △A₂B₂C₂即为所求作的三角形.19. 解:(1)如图1所示,点 O 即为所求;(2)如图2 所示,取 AB 的中点D ,连结OD 交AB 于点 E,连结OA,则 OD ⊥AB,且AE=EB=4米,由题意得,DE=3米,设圆的半径为r 米,在 Rt△AEO 中, AE +EO²=OA²,即 4²+(r−3)²=r²,解得 r =256.即拱桥AB 所在圆的半径为 256米.20. (1)证明:如图,连结 AD.∵AB 为⊙O 的直径,∴∠ADB=90°,即 AD⊥BC,∵AB=AC,∴BD=CD. (2)解:∵∠BAC= 30°,AB= AC,∴ ∠ABC =12×(180∘−30∘)=75°.∵四边形 ABDE 为圆O 的内接四边形,∴∠EDC=∠BAC=30°.∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠OBP=∠ABC--∠PBC=45°.∵OB =OP,∴∠OPB=∠OBP=45°,∴∠BOP =90°21. 证明:延长CD 交⊙O 于点 H,∵C 是 AE 的中点, ∴AC =CE ,∵CD ⊥AB,∴AC =AH ,∴CE =AH ,∴∠ACD=∠CAE,∴AF=CF.22. 解:(1)△ABC 是等边三角形.理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB =180°−∠BAC−∠ABC =180°− 60°−60°=60°,∴△ABC 是等边三角形. (2)如图,连结OB,∵△ABC 为等边三角形,⊙O 为其外接圆,∴BO 平分∠ABC,∴∠OBC=30°,∵OD ⟂BC,∴BD =CD,BE =CE = 4,∠BOD =60∘,∴OE =433, OB =833.∴OO|的半径长 833.23. (1)证明:如图,连结.AD, ∵⌢BD =DE ,∴∠BAD =∠CAD.又∵AB = AC, ∴AD ⊥ BC, ∴∠ADB=90°,∴AB 为⊙O 的直径. (2)解:∵AB 为⊙O 的直径,∴O 在AB 上,如图,连结OE,∵AB=8,∠BAC=45°,∴∠AOE=∠BOE= ∴1∘∴AB =8,∴BO =EO =4,S 扇形AOE =90×π×42360 =4π,S BOE =12OB 2=12×16=8,∴S 阴影=S BOE24. (1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC,∴∠BAC=∠OAC,即AC 平分∠OAB. (2)解: COE⟂AB,∴AE =BE =12AB =1,又∵∠AOE 、30°,∠PEA=90°,∴∠OAE= 60∘,∴∠EAP =3∠OAE =30∘,∴PE =12PA.设PE=x,则 PA=2x,根据勾股定理得 x²+1²=(2x)²,解得 x =33,∴PE =33.。

【浙教版】九年级数学上册 第三章 圆的基本性质单元能力提升测试卷(含答案)

【浙教版】九年级数学上册 第三章 圆的基本性质单元能力提升测试卷(含答案)

第三章圆的基本性质能力提升测试卷班级姓名学号一.选择题(共10小题,每小题3分,满分30分)1.下列标志既是轴对称图形又是中心对称图形的是()A B C D2.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A 与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定3.如图,点A.B.C在圆O上,∠A=60°,则∠BOC的度数是()A.15°B.30°C.60°D.120°4..如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于( ).A.55°B.90°C.110°D.120°5.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ).A.60°B.90°C. 120°D.180°6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ).A.(2,-1)B.(2,2)C.(2,1)D.(3,1)7.若圆的一条弦把圆分成度数的比为1∶3的两条弧,则劣弧所对的圆周角等于()A. 45°B. 90°C. 13D. 270°8.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A. B.C. D.9.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有( )A. 1条B. 2条C. 3条D. 4条10.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A. 3B. 2C. 1D. 0二.填空题(共6小题,每小题4分,满分24分)11.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有_____________.12.如图,已知直线CD与⊙O相切于点C,AB为直径,若∠BCD=40°,则∠ABC的大小等于(度)13.已知⊙O中,两弦AB和CD相交于点P,若AP:PB=2:3,CP=2cm,DP=12cm,则弦AB的长为cm。

第3章 圆的基本性质单元测试卷(含解析)

第3章 圆的基本性质单元测试卷(含解析)

第三章圆的基本性质单元测试卷一.选择题(共10小题,满分20分,每小题2分)1.如图,四边形ABCD是⊙O的内接四边形,若∠B=80°,则∠ADC的度数是()A.60°B.80°C.90°D.100°2.如图,等边△ABC内接于⊙O,动点P在劣弧AB上,且不与A、B重合,则∠BPC等于()A.30°B.45°C.60 D.90°3.如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm4.用圆心角为60°,半径为24cm的扇形做成一个圆锥的侧面,那么这个圆锥底面的半径是()A.4πcm B.8πcm C.4cm D.8cm5.已知点P是半径为5的⊙O内的一个定点,且OP=3,则过点P的所有弦中,弦长为整数的弦共有多少条()A.2条B.3条C.4条D.5条6.如图,一个长方体盒子,BC=CD=8,AB=4,则沿盒子表面从A点到D点的最短路程是()A.4B.4+4C.4+8 D.47.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④8.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°9.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A.AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA10.如图,AB为⊙O的直径,作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在下半圆上移动时,(不与点A、B重合),下列关于点P描述正确的是()A.到CD的距离保持不变B.到D点距离保持不变C.等分D.位置不变二.填空题(共10小题,满分30分,每小题3分)11.如图,点O是∠EPF的平分线上一点,⊙O和∠EPF的两边分别交于点A、B 和C、D,根据上述条件,可以推出.(要求:填写一个你认为正确的结论即可,不再标注其他字母,不写推理过程)12.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径为cm.13.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙O的运动过程中,线段FG的长度的最小值为.14.如图,已知A、C是半径为2的⊙O上的两动点,以AC为直角边在⊙O内作等腰Rt△ABC,∠C=90°.连接OB.则OB的最小值为.15.如图,在边长为1的小正方形网格中,△ABC的三个顶点都在格点上,将△ABC绕点B逆时针旋转90°得到△A′B′C′,则图中阴影部分图形的面积为.(结果保留π).16.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,弧AB的长为6πcm,则该圆锥的侧面积为.17.如图,矩形木块ABCD放置在直线L上,将其向右作无滑动的翻滚,直到被正方形PQRS挡住为止,已知AB=3,BC=4,BP=16,正方形木块PQRS边长为2,则点D经过的路线长为.18.如图,已知在扇形OAB中,∠AOB=90°,半径OA=10,正方形FCDE的四个顶点分别在和半径OA、OB上,则CD的长为.19.A、B两点在数轴上,点A所表示的实数是﹣3,⊙A的半径为2,⊙B的半径为3,若⊙B与⊙A相切,则点B所表示的实数是.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交AB于E,交⊙O于D.则弦AD的长是cm.三.解答题(共6小题,满分50分)21.(6分)如图,⊙O的直径EF为10cm,弦AB、CD分别为6cm、8cm,且AB ∥EF∥CD.求图中阴影部分面积之和.22.(8分)如图,AB是⊙O的直径,C是的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为4,求BC的长.23.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.24.(8分)如图,点A是半圆上的一个三等分点,点B是弧AN的中点,点P是直径MN上一个动点,圆O的半径为1,(1)找出当AP+BP能得到最小值时,点P的位置,并证明(2)求出AP+BP最小值.25.(8分)如图,AB为⊙O的直径,CD⊥AB于E,CO⊥AB于F,求证:AD=CD.26.(12分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,又∠B=80°,∴∠ADC=100°,故选:D.2.解:∵△ABC为正三角形,∴∠A=60°,∴∠BPC=∠A=60°.故选:C.3.解:根据题意得:=4πcm,故选:D.4.解:根据扇形的弧长公式l===8π,设底面圆的半径是r,则8π=2πr∴r=4cm,这个圆锥底面的半径是4cm.故选:C.5.解:如图,过P作弦AB⊥OP,交⊙O于A、B,连接OA;Rt△OAP中,OP=3,OA=5;根据勾股定理,得AP=4;∴AB=2AP=8;故过点P的弦的长度都在8~10之间;因此弦长为8、9、10;当弦长为8、10时,过P点的弦分别为弦AB和过P点的直径,分别有一条;当弦长为9时,根据圆的对称性知,符合条件的弦应该有两条;故弦长为整数的弦共有4条.故选:C.6.解:如图,把正面和左面展开,形成一个平面,AD两点之间线段最短.即AD===4(cm);如图,把正上面和上面展开,形成一个平面,AD两点之间线段最短.即AD===4(cm).如图,把右面和上面展开,形成一个平面,AD两点之间线段最短.AD===4(cm),故从A点到D点的最短路程为:4cm.故选:D.7.证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②如图1,连结CD,∵AB为直径,∴∠ADB=90°,∴∠BDF=90°,假设AC平分∠BAF成立,则有DC=BC,∴在RT△FDB中,DC=BC=FC,∴AC⊥BF,且平分BF,∴AC垂直BF,但不能得出AC平分BF,与①中的AC垂直BF,但不能得出AC平分BF相矛盾,故②错误,③如图2:∵AB为直径,∴∠ACB=90°,∠ADB=90°,∴D、P、C、F四点共圆,∴∠CFP和∠CDB都对应,∴∠CFP=∠CDB,∵∠CDB=∠CAB,∴∠CFP=∠CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确.故选:D.8.解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故选:B.9.解:∵弦BD平分∠ABC,∴∠DBC=∠ABD,∴=,AD=DC,故A、B正确;∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,故C正确;∵无法确定∠DAB=∠CBA,故D错误,符合题意.故选:D.10.解:不发生变化.连接OP,∵OP=OC,∴∠P=∠OCP,∵∠OCP=∠DCP,∴∠P=∠DCP,∴CD∥OP,∵CD⊥AB,∴OP⊥AB,∴=,∴点P为的中点不变.故选:D.二.填空题(共10小题,满分30分,每小题3分)11.解:如图:作OM⊥AB,交AB于点M,ON⊥CD,交CD于点N,点O是∠EPF的平分线上一点,∴OM=ON,根据在同圆中两弦的弦心距相等,则弦长相等,知,AB=CD,故弧AB=弧CD.12.解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故答案为:2.513.解:作GM⊥AC于M,连接AG.∵GO⊥AB,∴OA=OB,在Rt△AGO中,∵AG=2,OG=1,∴AG=2OG,OA==,∴∠GAO=30°,AB=2AO=2,∴∠AGO=60°,∵GC=GA,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=2,MG=CG=1,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.故答案为2,﹣1.14.解:如图,作等腰直角三角形△OCO′,CO=CO′,∠OCO′=90°,∵AC=CB,∠ACB=∠OCO′,∴△ACO≌△BCO′,∴OA=O′B,∴当点C固定时,点B在以O′为圆心OA为半径的圆上运动,∴当O、B、O′共线时,OB的值最小,最小值=OO′﹣O′B=2﹣2.故答案为2﹣2.15.解:根据旋转的性质和勾股定理得到:A′B2=AB2=22+32=13.S阴影=﹣×2×3=.故答案是:.16.解:由题意得,=6π,解得,OA=9,∴该圆锥的侧面积=×6π×9=27π(cm2),故答案为:27πcm2.17.解:第一次旋转是以点C为圆心,CD为半径,旋转角度是90度,所以弧长==1.5π;第二次旋转是以点D为圆心,所以没有路程;第三次旋转是以点A为圆心,AD为半径,角度是90度,所以弧长==2π;第四次是以点B为圆心,BD为半径,角度是30度,所以弧长==π;所以点D经过的路线长=1.5π+2π+π=π.故答案为:π.18.解:过点O作OH⊥CF于点H,交DE于点K,连接OF,∵OH过圆心,∴CH=HF,∵四边形FCDE是正方形,∴OH⊥DE,DK=EK,∴△OEK是等腰直角三角形,OK=EK,设CD=x,则HK=x,HF=OK=EK=,在Rt△OHF中,OH2+HF2=OF2,即(x+)2+()2=102,解得x=2.即CD的长为2.故答案为:2.19.解:设数轴上点B所表示的实数是b,如果⊙B与⊙A外切,则|b﹣(﹣3)|=2+3,即|b+3|=5,解得b=2或﹣8;如果⊙B与⊙A内切,则|b﹣(﹣3)|=3﹣2,即|b+3|=1,解得b=﹣2或﹣4.故答案为2或﹣8或﹣2或﹣4.20.解:连接BD,∵AB为⊙O的直径,∴∠BCA=90°,∵CD平分∠ACB,∴∠ACD=45°,∴∠ABD=45°,∴△ABD为等腰直角三角形,∴AD 2+BD 2=AB 2, ∵AB=10cm ,∴AD=5cm .故答案为5.三.解答题(共6小题,满分50分)21.解:如图,作直径MN ,使MN ⊥EF 于O ,交AB 于G ,交CD 于H ;连接OA 、OB 、OC 、OD ;在Rt △OBG 中,BG=3cm ,OB=5cm ,因此OG=4cm ; 同理:在Rt △OCH 中,CH=4cm ,OC=5cm ,因此OH=3cm ; sin ∠DOF==, sin ∠BOF==, sin ∠COE==, sin ∠AOE==,即∠DOF=∠AOM=∠COE=∠BOM ,∠CON=∠DON=∠AOE=∠BOF , 因此S 扇形OAE =S 扇形OBF =S 扇形CON =S 扇形ODN ∴S 阴影=S △ABE +S 弓形AMB +S △CDF +S 弓形CND =S △OAB +S 弓形AMB +S △OCD +S 弓形CND =S 扇形OAB +S 扇形OCN +S 扇形ODN =S 扇形OAB +S 扇形OAE +S 扇形OBF =S ⊙O =12.5πcm 2.故图中阴影部分面积之和为12.5πcm 2.22.(1)证明:延长CE交⊙O于点M,∵AB是⊙O的直径,CE⊥AB,∴=,∵C是的中点,∴=,∴=,∴∠BCM=∠CBD,∴CF=BF;(2)解:连接AC,∵AB是⊙O的直径,CE⊥AB,∴∠BEF=∠ADB=90°,∵∠ABD=∠FBE,∴Rt△ADB∽Rt△FEB,∴,∵AD=2,⊙O的半径为4,∴AB=8,∴,∴BF=4EF,又∵BF=CF,∴CF=4EF,利用勾股定理得:BE==EF,又∵∠ACB=∠CEB=90°,∠ABC=∠CBE,∴△EBC∽△ECA,∴,∴CE2=AE•BE,∴(CF+EF)2=(8﹣BE)•BE,∴25EF2=(8﹣EF)•EF,∴EF=,∴BC==2.23.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)24.(1)证明:过A作AA′⊥MN于E,连接BA′.∵MN过圆心O,∴AE=EA′,∴AP=PA′,即AP+BP=PA′+BP,根据两点间线段最短,当A′,P,B三点共线时,PA′+BP=BA',AP+BP此时为最小值,∴P位于A′B与MN的交点处;(2)解:∵点A是半圆上的一个三等分点,∴∠AON=∠A'ON=60°,∵点B是弧AN的中点,∴=,∴∠BON=30°,∴∠BOA'=∠A'ON+∠BON=90°,∵OB=OA=1,∴BA′=,即AP+BP最小值为.25.证明:∵CD⊥AB,CO⊥AB,∴∠OEC=∠OFA=90°,AD=2AF,CD=2CE,在△OCE和△OAF中,,∴△OCE≌△OAF(AAS),∴CE=AF,∴AD=CD.26.(1)证明:连接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)设∠FGB=α,∵AB是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH==,设AH=3a,AC=5a,则CH==4a,tan∠CAH==,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK==a,∵AK=,∴a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH==,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN==4b=.。

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案一、单选题1.如图,图中的弦共有( )A .1条B .2条C .3条D .4条2.平面直角坐标系中,O 为坐标原点,点A 的坐标为( 3,1),将OA 绕原点O 按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .(1, 3 )B .(-1, 3)C .(- 3 ,1)D .( 3 ,-1)3.如图,⊙O 的直径为10,AB 为弦,OC ⊙AB ,垂足为C ,若OC =3,则弦AB 的长为( )A .8B .6C .4D .104.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是⊙ABC 的( )A .三条高的交点B .重心C .内心D .外心5.如图,点A ,B ,C 是⊙O 上的三点,已知⊙AOB=100°,那么⊙ACB 的度数是( )A .30°B .40°C .50°D .60°6.半径为 a 的圆的内接正六边形的边心距是( )A .2aB .22aC 3aD .a7.如图所示,在O 中30AB AC A ︒=∠=,,则B ∠的度数为( ).A.150︒B.75︒C.60︒D.15︒8.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧(4) 圆是轴对称图形,任何一条直径都是对称轴A.0个B.1个C.2个D.3个9.下列说法不正确的是()A.过不在同一直线上的三点能确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.相等的弧所对的弦相等10.如图,在Rt⊙ABC中,⊙ACB=90°,将⊙ABC绕顶点C逆时针旋转得到⊙A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,⊙BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1二、填空题11.如图,在梯形ABCD中,AD⊙BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于度.12.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且⊙EDF=45°,将⊙DAE绕点D逆时针旋转90°,得到⊙DCM.若AE=1,则FM的长为.13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD 于点E.若AB=6,则⊙AEC的面积为.14.如图,在扇形BOC中,⊙BOC=60°,点D是BC的中点,点E,F分别为半径OC,OB上的动点.若OB=2,则⊙DEF周长的最小值为.三、解答题15.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.16.如图,AB是⊙O的直径,弦CD⊙AB于E,⊙CDB=30°,CD=3,求阴影部分的面积.17.如图,在平面直角坐标系中,⊙ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出⊙A1B1C1,使⊙A1B1C1与⊙ABC关于x轴对称;(2)将⊙ABC绕点O逆时针旋转90°,画出旋转后得到的⊙A2B2C2,并直接写出点B旋转到点B2所经过的路径长.18.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,⊙APC=⊙CPB=60°.判断⊙ABC 的形状,并证明你的结论;19.如图,射线PG 平分⊙EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与⊙EPF 两边相交于A 、B 和C 、D ,连结OA ,此时有OA⊙PE(1)求证:AP=AO ;(2)若弦AB=12,求tan⊙OPB 的值.四、综合题20.如图,在⊙ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线交边AC 于点F.(1)求证:DF⊙AC ;(2)若⊙O 的半径为5,⊙CDF =30°,求弧BD 的长(结果保留π).21.如图,在 O 中 AC CB = , CD OA ⊥ 于点D , CE OB ⊥ 于点E.(1)求证: CD CE = ;(2)若 120,2AOB OA ∠=︒= ,求四边形 DOEC 的面积.22.如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H.(1)求证:ABE FEH ≅;(2)连接BH ,若30EBC ∠=︒,求ABH ∠的度数.23.如图1,⊙O 的直径AB 为4,C 为⊙O 上一个定点,⊙ABC=30°,动点P 从A 点出发沿半圆弧 AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:⊙ABC⊙⊙PDC(2)如图2,当点P 到达B 点时,求CD 的长;(3)设CD 的长为 x .在点P 的运动过程中, x 的取值范围为(请直接写出案).答案解析部分1.【答案】B【解析】【解答】解:图形中有弦AB和弦CD,共2条故答案为:B.【分析】由连接圆上任意两点间的距离就是弦即可判断得出答案.2.【答案】B【解析】【解答】过点B作BC⊙x轴于点C,过点B作BC⊙y轴于点F∵点A的坐标为( 3,1),将OA绕原点O逆时针旋转90°到OB的位置∴BC 3=,CO=1∴点B的坐标为:(﹣1,3).故答案为:B.【分析】先根据旋转的性质作图,利用图象则可求得点B的坐标.3.【答案】A【解析】【解答】解:连接OA∵OA=5,OC=3,OC⊙AB∴AC=22-=4OA OC∵OC⊙AB∴AB=2AC=2×4=8.故答案为:A.【分析】连接OA,利用勾股定理求出AC的长,根据垂径定理可得AB=2AC,从而求出AB的长. 4.【答案】D【解析】【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等∴凳子应放在⊙ABC 的三条垂直平分线的交点最适当.故答案为:D .【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.5.【答案】C【解析】【解答】解:∵⊙AOB 与⊙ACB 都对 AB ,且⊙AOB=100°∴⊙ACB= 12 ⊙AOB=50°故选C【分析】根据图形,利用圆周角定理求出所求角度数即可.6.【答案】C【解析】【解答】解:如图,连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距.∵六边形ABCDEF 为正六边形∴60AOB ∠=︒ ,OA=OB=AB=a ,AH=BH= 2a ∴2222233()24aOH OA AH a a =-=-== 即半径为 a 3a . 故答案为:C.【分析】连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距,根据正六边形的性质用勾股定理可求解.7.【答案】B【解析】【解答】解:∵AB AC =∴AB=AC∴⊙B=⊙C=12(180°-⊙A)=12(180°-30°)=75°.故答案为B:.【分析】利用同圆和等圆中,相等的弧所对的弦相等,可证得AB=AC,利用等边对等角及三角形的内角和定理可求出⊙B的度数.8.【答案】A【解析】【解答】(1)、不符合题意,需要添加前提条件,即在同圆或等圆中;(2)、不符合题意,平分的弦不能是直径;(3)、不符合题意,等弧是指长度和度数都相等的弧;(4)、不符合题意,圆的对称轴是直径所在的直线.故答案为:A.【分析】在同圆或等圆中,相等的圆心角所对的弧相等,据此判断(1);平分弦(不是直径)的直径垂直于弦,据此判断(2);能重合的弧叫做等弧,据此判断(3);圆是轴对称图形,任何一条直径所在的直线都是对称轴,据此判断(4).9.【答案】B【解析】【解答】解:A、过不在同一直线上的三点能确定一个圆,正确,不符合题意;B、平分弦(不是直径)的直径垂直于弦,故原命题错误,符合题意;C、圆既是轴对称图形又是中心对称图形,正确,不符合题意;D、相等的弧所对的弦相等,正确,不符合题意.故答案为:B.【分析】根据确定圆的条件可判断A;根据垂径定理可判断B;根据轴对称图形、中心对称图形的概念可判断C;根据弧、弦的关系可判断D.10.【答案】B【解析】【解答】解:如图连接PC.在Rt⊙ABC中,∵⊙A=30°,BC=2∴AB=4根据旋转不变性可知,A′B′=AB=4∴A′P=PB′∴PC=12A′B′=2∵CM=BM=1又∵PM≤PC+CM,即PM≤3∴PM的最大值为3(此时P、C、M共线).故答案为:B.【分析】连接PC,根据⊙A=30°,BC=2,可知AB的值,根据旋转的性质可知A′B′=AB,进而可知A′P、PB′、PC的知,结合图形和三角形三边关系即可得出PM的取值范围,进而可知P、C、M共线时,PM值最大,即可选出答案.11.【答案】60【解析】【解答】解:连接CC′,如图所示:则B′、C′、C在一条直线上由旋转的性质得:⊙1=⊙2,DC′=DC∴⊙3=⊙4∵A′D′⊙B′C′∴⊙2=⊙3∴⊙1=⊙3=⊙4∴⊙CDC′是等边三角形∴⊙CDC′=60°;故答案为:60.【分析】根据旋转的性质“对应点与旋转中心连线所成的角度都等于旋转的角度”可求解。

浙教版九年级数学上册第3章圆的基本性质单元提高测试卷解析版

浙教版九年级数学上册第3章圆的基本性质单元提高测试卷解析版

浙教版九年级数学上册第3章圆的基本性质单元提高测试卷解析版一、选择题(共10题;共30分)1.如图是几种常见的汽车轮毂图案,图案围绕中心旋转90°后能与原来的图案重合的是()A. B. C. D.2.矩形中,,,如果分别以、为圆心的两圆外切,且点在圆内,点在圆外,那么圆的半径的取值范围是()A. B. C. D.3.如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB的度数是()A. 70°B. 80°C. 82°D. 85°4.如图,已知AB是⊙O的直径,点C,D在⊙O上,弧AC的度数为100°,则∠D的大小为()A. 30°B. 40°C. 50°D. 60°5.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5,则AB的长为()A. 8B. 12C. 16D. 26.如图,四边形ABCD内接于半径为6的⊙O中,连接AC,若AB=CD,∠ACB=45°,∠ACD=∠BAC,则BC的长度为()A. 6B. 6C. 9D. 97.如图,将边长为3的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()A. S1>S2B. S1=S2C. S1<S2D. S1=S28.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A. 12B. 15 -6πC. 30 ﹣12πD. π9.如图,在矩形ABCD中,把矩形ABCD绕点C旋转,得到矩形FEGH,且点E落在AD上,连接BE,BG,交CE于点H,连接FH,若FH平分DEFG,则下列结论:① ;② ;③ ;④ ,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个10.如图,正方形ABCD和等边△AEF都内接于圆O,EF与BC,CD别相交于点G,H.若AE=6,则EG 的长为()A. B. 3﹣ C. D. 2 ﹣3二、填空题(共6题;共18分)11.若扇形的圆心角为45°,半径为3,则该扇形的弧长为________。

第二十三讲第三章圆的基本性质 单元测试(能力提升)2021年新九年级数学暑假课程(浙教版)(解析版)

第二十三讲第三章圆的基本性质 单元测试(能力提升)2021年新九年级数学暑假课程(浙教版)(解析版)

第二十三讲第三章圆的基本性质单元测试(能力提升)一、单选题1.下列说法:①经过三点可以作一个圆;②90°的角所对的弦是直径;③相等的圆周角所对的弧相等;④直径是圆中最长的弦.其中正确的说法有()A.1个B.2个C.3个D.4个【答案】A【解析】分析:根据确定圆的条件对①进行判断;根据圆周角定理对②进行判断;根据圆周角定理对③行判断,根据直径对④判断.详解:经过不在同一条直线上的三点可以作一个圆,所以①错误;90°的圆周角所对的弦是直径,所以②错误;在同圆或等圆中,相等的圆周角所对的弧相等,所以③错误;直径为圆中最长的弦,故④正确;故选:A.点睛:本题考查了圆的相关概念.综合性较强,熟练掌握各个定理及性质是解题的关键,注意定理中应满足的条件.2.如图,AB是⊙O的直径,OC是⊙O的半径,点D是半圆AB上一动点(不与A、B重合),连结DC交直径AB与点E,若∠AOC=60°,则∠AED的范围为()A.0°< ∠AED <180°B.30°< ∠AED <120°C.60°< ∠AED <120°D.60°< ∠AED <150°【答案】D【分析】连接BD,根据圆周角定理得出∠ADC=30°, ∠ADB=90°,再根据三角形的外角性质可得到结论.【解析】如图,连接BD ,由∵∠AOC=60°, ∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故选D【点睛】本题考查了圆周角定理和三角形的外角性质.正确应用圆周角定理找出∠ADC=30°, ∠ADB=90°是解题的关键.3.如图,AB 是O 的直径,4AB =,AC 是的弦,过点O 作//OD AC 交于点D ,连接BC ,若24ABC ∠=︒,则劣弧CD 的长为( )A .715πB .1115πC .1315πD .1715π 【答案】B【分析】连接CO ,首先判断OD ⊥BC ,由直角三角形两锐角互余可得∠BOD=66°,从而可得∠COD=66°,利用弧长公式即可求得结论.【解析】∵AB 是O 的直径,∴∠ACB=90°∵//OD AC∴∠BEO=90°∵24ABC ∠=︒∴∠BOE=66°连接CO ,如图,则∠COE=∠BOE=66°所以,劣弧CD 的长为:66211=18015ππ 故选:B.【点睛】 此题主要考查了弧长的计算,同时也考查了垂径定理以及圆周角定理,熟练掌握计算公式是解答本题的关键.4.如图,弧BE 是半径为6的圆D 的14圆周,C 点是BE 上的任意一点,△ABD 是等边三角形,则四边形ABCD 的周长P 的取值范围是( )A .12<P ≤18B .18<P ≤24C .18<P ≤18+2D .12<P ≤12+2【答案】C【解析】∵△ABD 是等边三角形,∴AB +AD +CD =18,得P >18,∵BC 的最大值为当点C 与E 重合的时刻,BE =2266+=62,∴P 的取值范围是18<P ≤18+62.故选C .5.如图,O 是正八边形ABCDEFGH 的外接圆,连接AE ,CE .若O 的半径为2,则图中阴影部分的面积为( ).A .12π+ B .2π+ C .4π+ D .21π+【答案】B【分析】连接OC ,由正八边形的性质得出OC ⊥AE ,得出∠AOC=∠EOC=90°,由扇形面积公式和三角形面积公式即可得出答案.【解析】连接OC ,如图所示:则OC ⊥AE ,∴∠AOC=∠EOC=90°,∴图中阴影部分的面积=290213602π⨯+×2×2=π+2; 故选:B .【点睛】此题考查正多边形和圆,正八边形的性质以及扇形面积公式,熟练掌握正八边形的性质是解题的关键. 6.如图,ABC 为等边三角形,点D 在边AB 上,且1BD =,连接CD ,将BCD △绕点C 旋转一定角度,使得BC 与AC 重合得到ACE ,连接,7DE DE =,则ABC 的边长为( )A .3B .4C .5D .6【答案】A【解析】 根据旋转性质可得,60CE CD DCE BCA =∠=∠=︒,∴DEC 是等边三角形.∴DE DC =.如解图,过点D 作DF BC ⊥于点F ,∵1BD =,且60B ∠=︒,∴13,22BF DF ==.在Rt CDF 中,222235(7)22CF CD DF ⎛⎫=-=-= ⎪⎝⎭,∴15322BC BF FC =+=+=,即ABC 的边长为3.7.如图,△ABC 内接于⊙O ,将BC 沿BC 翻折,BC 交AC 于点D ,连接BD ,若∠BAC =66°,则∠ABD 的度数是( )A .66B .44C .46D .48【答案】D【分析】根据折叠的性质和圆内接四边形的性质得到∠A +∠BDC =180°,求得∠BDC 的度数,再根据三角形的外角性质即可求得结果.【解析】解:如图,补全翻折前的图形,点'D 与点D 关于BC 对称,∴'∠=∠BD C BDC ,∵四边形'ABD C 内接于⊙O ,∴'180∠+∠=︒BD C A ,∴180∠+∠=︒BDC A ,∵66A ∠=︒,∴180114∠=︒-∠=︒BDC A ,∵BDC A ABD ∠=∠+∠,∴==11466=48∠∠-∠︒-︒︒ABD BDC A ,故选:D .【点睛】本题考查了折叠的性质、圆内接四边形对角互补和三角形的外角性质,正确的识别图形是解题的关键. 8.如图,矩形ABCD 中,60AB =,45AD =,P ,Q 分别是AB ,AD 边上的动点,52PQ =,以PQ 为直径的O 与BD 交于点M ,N .则MN 的最大值为( ).A .48B .45C .42D .40【分析】过A 点作AH ⊥BD 于H ,连接OM ,如图,先利用勾股定理计算出BD =75,则利用面积法可计算出AH =36,再证明点O 在AH 上时,OH 最短,此时HM 有最大值,最大值为24,然后根据垂径定理可判断MN 的最大值.【解析】解:过A 点作AH ⊥BD 于H ,连接OM ,如图,在Rt △ABD 中,BD 2222604575AB AD +=+=, ∵12×AH ×BD =12×AD ×AB , ∴AH =604575⨯=36, ∵⊙O 的半径为522=26, ∴点O 在AH 上时,OH 最短,∵HM 22OM OH -∴此时HM 有最大值,最大值为: ()2222222610HM OM OH OM AH AO =-=--=-=24,∵OH ⊥MN ,∴MN =2MH ,∴MN 的最大值为2×24=48.故选:A .【点睛】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了矩形的性质和勾股定理.9.如图,AB 是O 的直径,弦,//CD AB DE CB ⊥交O 于点E ,若15CBA ∠=︒,则∠BOE 的度数A.50︒B.60︒C.70︒D.80︒【答案】B【分析】连接OC,根据圆周角定理求出∠AOC,求出AC的度数,根据直角三角形的性质求出∠BCD=70°,根据平行线的性质求出∠D,求出CBE的度数,求出AE的度数可得∠AOE,再求出答案即可.【解析】解:连接OC,∵AB⊥CD,∴∠CFB=90°,∵∠CBA=15°,∴∠AOC=2∠CBA=30°,∠BCD=90°-∠CBA=75°,∴AC的度数是30°,∵DE∥BC,∴∠BCD+∠D=180°,∴∠D=105°,∴CBE的度数是210°,∴CAE的度数是360°-210°=150°,∴ADE 的度数是150°-30°=120°,∴∠AOE =120°,∴12061801800BOE AOE ∠=︒∠-︒-==︒︒故选:B .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系等知识点,能熟记知识点是解此题的关键. 10.如图,过半径为6的圆O 上一点A 作圆O 的切线l ,点P 从A 点出发,沿逆时针方向运动到点B ,作PH ⊥l 于点H ,连接PA .如果PA=x ,AH=y ,那么下列图象中,能大致表示y 与x 的函数关系的是( )A .B .C .D .【答案】C【解析】连接PB .∵AB 是直径,∴∠APB =90°.90BAP HAP ∠+∠= , 90HAP APH ∠+∠=,BAP APH ∴∠=∠ ,APB PHA ∴∆~∆ , AH AP PB AB ∴= , 22612yx x ∴=- , 24236144y x x ∴=-+ ,2236612x y ⎛⎫∴=-- ⎪⎝⎭,∴图像类似于抛物线,且62x = 的时候取得最大值,故选C.11.如图所示,AB 是半圆O 的直径,5cm AB =,4cm AC =,D 是弧BC 上的一个动点(含端点B ,不含端点C ),连接AD ,过点C 作CE AD ⊥于E ,连接BE ,在点D 移动的过程中,BE 的取值范围是( )A 91325BE <≤B 1323BE ≤<C .935BE ≤< D 132132BE ≤< 【答案】B【分析】由∠AEC=90°知E 在以AC 为直径的⊙M 的CN 上(不含点C 、可含点N ),从而得BE 最短时,即为连接BM 与⊙M 的交点(图中E′点),在Rt △BCM 中利用勾股定理求得13BE 长度的最小值BE′=BM -ME′=13;由BE 最长时即E 与C 重合,根据BC=3且点E 与点C 不重合,得BE <3,从而得出答案.【解析】解:如图,由题意知,∠AEC=90°,∴E 在以AC 为直径的⊙M 的CN 上(不含点C 、可含点N ),∴BE 最短时,即为连接BM 与⊙M 的交点(图中E′点),∵AB 是半圆O 的直径,∴∠ACB=90°,∴AB=5,AC=4,∴BC=3,CM=2,则22CM BC +2223+13∴BE 长度的最小值BE′=BM -13,当BE 最长时,即E 与C 重合,∵BC=3,且点E 与点C 不重合,∴BE <3, 132≤BE <3,故选:B .【点睛】本题考查了圆周角定理、勾股定理等知识点,根据题意得出BE 最短时,即为连接BM 与⊙M 的交点是解题的关键.12.如图,A B C D E 、、、、是O 上的5等分点,连接AC CE EB BD DA 、、、、,得到一个五角星图形和五边形MNFGH .有下列3个结论:①AO BE ⊥,②CGD COD CAD ∠=∠+∠,③BM MN NE ==.其中正确的结论是( )A .①B .①②C .②③D .①②③【答案】B【分析】 根据圆的性质得到AO ⊥BE ,故①正确;由A 、B 、C 、D 、E 是⊙O 上的5等分点,得到弧CD 的度数,求得∠COD =72°,根据圆周角定理得到∠CAD =36°;连接CD 求得∠CGD =108°,于是得到∠CGD =∠COD +∠CAD ,故②正确;连接AB ,AE ,根据全等三角形的性质即可得到结论.【解析】解:A 、B 、C 、D 、E 是O 上的5等分点,∴AB AE =,AO BE ∴⊥,故①正确; A 、B 、C 、D 、E 是O 上的5等分点,∴CD 的度数360725︒==︒, 72COD ∴∠=︒,2COD CAD ∠=∠,36CAD ∴∠=︒;连接CDA 、B 、C 、D 、E 是O 上的5等分点,∴AB DE BC CD ===,36BDC DCE CAD ∴∠=∠=∠=︒,108CGD ∴∠=︒,CGD COD CAD ∴∠=∠+∠,故②正确;连接AB ,AE ,则36BAM ABM EAN AEN ∠=∠=∠=∠=︒,AB AE =,()ABM AEN ASA ∴≅△△,BM EN AM AN ∴===,36MAN ∠=︒,AM MN ∴≠,③错误.故选:B .【点睛】本题考查了正多边形与圆,等腰三角形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.二、填空题13.点P 是非圆上一点,若点P 到O 上的点的最小距离是4cm ,最大距离是9cm ,则O 的半径是______. 【答案】6.5cm 或2.5cm【分析】分点P 在O 外和O 内两种情况分析;设O 的半径为xcm ,根据圆的性质列一元一次方程并求解,即可得到答案.【解析】设O 的半径为xcm当点P 在O 外时,根据题意得:429x += ∴ 2.5x cm =当点P 在O 内时,根据题意得:294x =+∴ 6.5x cm =故答案为:6.5cm 或2.5cm .【点睛】本题考查了圆、一元一次方程的知识;解题的关键是熟练掌握圆的性质,从而完成求解.14.当点A (1,2),B (3,﹣3),C (m ,n )三点可以确定一个圆时,m ,n 需要满足的条件 _____.【答案】5m+2n≠9.【解析】试题分析:先求出直线AB 的解析式,设直线AB 的解析式为y=kx+b,将A(1,2),B(3,-3)代入得,2{33k b k b=+-=+,解得:52{92k b =-=,所以直线AB 解析式为y=-5922x +,:因为不在同一条直线上的三个点确定一个圆,所以C 点不在直线AB 上,即坐标不满足解析式,也就是n≠-5922m +,整理得:5m+2n≠9.故m ,n 需要满足的条件是5m+2n≠9.考点:点和圆的位置关系.15.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .【答案】5.【解析】试题分析:根据圆的确定先做出过A ,B ,C 三点的外接圆,从而得出答案.如图,分别作AB 、BC 的中垂线,两直线的交点为O ,以O 为圆心、OA 为半径作圆,则⊙O 即为过A ,B ,C 三点的外接圆,由图可知,⊙O 还经过点D 、E 、F 、G 、H 这5个格点,故答案为5.考点:圆的有关性质.16.如图,在正六边形ABCDEF 中,连接BD 、BE 、DF ,则BE DF的值为_____.23【分析】 根据含30°角的直角三角形的性质可得BE =2DE ,BD 3,再通过证明△BCD ≌△DEF (SAS ),可得BD =DF 3,即可求得BE DF 3DE 23. 【解析】解:∵六边形ABCDEF 是正六边形,∴BC =CD =DE =EF ,∠C =∠CDE =∠DEF =16⨯ (6﹣2)×180°=120°, ∴∠CDB =∠CBD =30°,∴∠BDE =120°﹣30°=90°,∠DEB =∠FEB =60°,∴∠DBE =30°,∴BE =2DE ,BD 3,在△BCD 和△DEF 中, BC DE C DEF CD EF =⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△DEF (SAS ),∴BD =DF 3,∴BE DF 3DE 23 23. 【点睛】本题考查了正六边形的问题,掌握正六边形的性质、含30°角的直角三角形的性质、全等三角形的性质以及判定定理是解题的关键.17.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有_____个.①AB CD = ;②DB CA =;③AC =BD ;④∠BOD =∠AOC .【答案】4【分析】根据圆心角、弧、弦之间的关系即可解决问题;【解析】解:∵∠1=∠2,∴AB CD =, ∠BOD =∠AOC ,∴DB CA =,∴BD=AC ,∴正确的有:①②③④;故答案为:4.【点睛】本题考查了圆周角定理、圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考基础题.18.如图,点O 是等边ABC ∆内一点,110AOB ∠=︒,将BOC ∆绕点C 按顺时针方向旋转60︒得ADC ∆,连接OD ,若OD AD =,则BOC ∠的度数为___.【答案】140︒【分析】由题意易得△BOC ≌△ADC ,则有∠BOC=∠ADC ,OC=CD ,进而可得△ODC 是等边三角形,设∠AOD=∠OAD=x ,则∠ADO=180°-2x ,∠ADC=240°-2x ,然后根据角的和差关系进行求解即可.【解析】解:∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∵将BOC ∆绕点C 按顺时针方向旋转60︒得ADC ∆,∴△BOC ≌△ADC ,∴∠BOC=∠ADC ,OC=CD ,∴△ODC 是等边三角形,∴∠DOC=∠ODC=60°,∵OD AD =,∴设∠AOD=∠OAD=x ,则有∠ADO=180°-2x ,∠ADC=240°-2x ,∴∠BOC=360°-110°-60°-x=190°-x ,∴240°-2x=190°-x ,解得:x=50°,∴∠BOC=140°,故答案为140°.【点睛】本题主要考查旋转的性质及等腰三角形的性质、等边三角形的性质与判定,熟练掌握旋转的性质及等腰三角形的性质、等边三角形的性质与判定是解题的关键.19.如图,在ABCD 中,4AB =,3BC =,60ABC ∠=︒,把ABCD 绕点B 逆时针旋转60°得到A BC D ''',其中点D 的运动路径为DD ',则图中阴影部分的面积为________.【答案】37636π- 【解析】 【解答】如解图,连接BD '、BD ,过点D 作BC 的垂线交BC 的延长线于点E .由旋转的性质知,60A BA D BD ABC ∠'=∠'=∠=︒,∵四边形ABCD 是平行四边形,∴4CD AB ==,//AB CD ,∴60DCE ABC ∠=∠=︒.在Rt CDE △中,sin 4sin6023DE CD DCE =⋅∠=⨯︒=,cos 4cos602CE CD DCE =⋅∠=⨯︒=,∴325BE BC CE =+=+=,∴在Rt BDE 中,由勾股定理得()222252337BD BE DE =+=+=,∴D BC ABD DBC ABD ABCD DBD DBD DBD S S S S S S S S S'''''=--=--=-△△△△阴影扇形扇形扇形()2603737323633606ππ⋅=-⨯=-.20.如图,CD 是O 的弦,O 是圆心,把O 的劣弧沿着CD 对折,A 是对折后劣弧上的一点,若100CAD ∠=︒,那么BCA BDA ∠+∠=_________.【答案】20°【分析】由已知条件先求出∠A '=100,再利用圆内接四边形的性质即可求出∠B 的度数,分别得到∠BCD +∠BDC 和∠ACD +∠ADC ,相减即可.【解析】解:如图,翻折△ACD ,点A 落在A '处,∴∠A '=∠A =100°,∴∠ACD +∠ADC =80°,∵四边形A 'CBD 是⊙O 的内接四边形,∴∠A '+∠B =180°,∴∠B =80°,∴∠BCD +∠BDC =180°-80=100°,∴∠BCA +∠BDA =(∠BCD +∠BDC )-(∠ACD +∠ADC )=20°,故答案为:20°.【点睛】此题考查了几何图形折叠的问题以及圆内接四边形的性质,解本题的关键是得出∠A '=100°.21.如图,O 是ABC 的外接圆,M 、N 分别是AB 、AC 的中点,连接OM 、ON ,分别交BC 于点F 、E ,若5BF =,3FE =,4EC =,则ABC 的面积为________.【答案】24【分析】解:连接AF,AE,由题意得出AF=BF,AE=EC,可证得∠AEF=90°,根据三角形的面积公式可得出答案.【解析】解:连接AF,AE,∵O是ABC的外接圆,M、N分别是AB、AC的中点,∴OM⊥AB,ON⊥AC,∴AF=BF,AE=EC,∵BF=5,EC=4,∴AF=5,AE=4,∵EF=3,∴EF2+AE2=AF2,∴∠AEF=90°,∵BC=BF+EF+EC=5+3+4=12,∴S△ABC=12×BC×AE=12×12×4=24.故答案是:24.【点睛】本题考查了三角形的外接圆:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了直角三角形的性质和勾股定理的逆定理,三角形的面积.22.如图,正方形ABCD中,AB=5cm,以B为圆心,2cm长为半径画⊙B,点P在⊙B上移动,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′.在点P移动的过程中,BP′长度的最小值为_______cm.【答案】522-【分析】连接BP、DP′、BD,根据题意易得点P′的运动轨迹是以D为圆心,2cm长为半径的圆,进而可知当点B、D、P′三点共线时,BP′长度的为最小,然后利用勾股定理求解即可.【解析】解:连接BP、DP′、BD,如图所示:四边形ABCD是正方形,AB=5cm,∴AB=AD=5cm,∠DAB=90°,∴2252BD AD AB=+=将AP绕点A逆时针旋转90°至AP′,∴AP= AP′,∠P′AP=90°,∠DAP为∠P′AP与∠DAB的公共角,∴∠P′AD=∠PAB,∴△P′AD≌△PAB,PB=2cm,∴DP′=2cm,∴点P′的运动轨迹是以D为圆心,2cm长为半径的圆,如图所示:∴当点B 、D 、P′三点共线时,BP′长度的为最小, ∴522BP BD DP ''=-=-;故答案为522-.【点睛】本题主要考查正方形的性质及圆的基本性质,关键是利用正方形的性质得到动点的运动轨迹,然后利用圆的最短路径问题求解即可.23.如图,边长为4的正方形ABCD 内接于⊙O ,点E 是AB 上的一动点(不与点A 、B 重合),点F 是BC 上的一点,连接OE ,OF ,分别与交AB ,BC 于点G ,H ,且∠EOF =90°,连接GH ,有下列结论: ①AE BF =;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化;④△GBH 周长的最小值为422+.其中正确的是____________.(把你认为正确结论的序号都填上)【答案】①②④【解析】试题分析:①如图1中,连接OB 、OA .∵四边形ABCD 是正方形,∴∠EOF =∠AOB =90°,∴∠AOE +∠BOE =∠BOF +∠BOE ,∴∠AOE =∠BOF ,∴AE BF =.所以①正确;②如图1中,在△AOG 和△BOH 中,45AOG BOH OAG OBH AO BO ∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△AOG ≌△BOH ;∴OG =OH ,∵∠GOH =90°,∴△OGH 是等腰直角三角形.所以②正确;③如图1中,∵△AOG ≌△BOH ,∴四边形OGBH 的面积=△AOB 的面积=14正方形ABCD 的面积, ∴四边形OGBH 的面积不发生变化.所以③错误;④∵△AOG ≌△BOH ,∴AG =BH ,∴BG +BH =BG +AG =BC =4,设BG =x ,则BH =4-x ,则GH∴当x =2时GH最小,最小值为∴△GBH 周长的最小值为4+所以④正确.故答案为:①②④.点睛:考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,相等的圆心角所对的弧相等,等腰直角三角形的判定,勾股定理,综合性较强,有一定的难度.24.如图,矩形ABCD中,点E,F分别在边AD,CD上,且EF⊥BE,EF=BE,△DEF的外接圆⊙O恰好切BC于点G,BF交⊙O于点H,连结DH.若AB=8,则DH=_____.【答案】2【解析】【分析】如图,连接OG,反向延长交DE于M,连接EH,过H作HN//BC,HP//CF,根据AAS可证明△BAE≌△EDF,即可得出DE=AB=8,由切线性质可知OG⊥BC,OM⊥DE,MG=AB=8,由垂径定理可得ME的长,利用勾股定理可求出OE的长,进而可得OM的长,根据中位线的性质可得DF 的长,根据等腰三角形的性质可得BH=HF,由HN//BC,HP//CF,∠C=90°可判定四边形HPCN是矩形,进而可得HP是△BFC的中位线,即可求出FN的长,进而可得DN的长,由圆周角定理可得∠EDH=45°,即可求出∠HDN=45°,即可证明△DHN是等腰直角三角形,即可求出DH的长.【解析】如图,连接OG,反向延长交DE于M,连接EH,过H作HN//BC,HP//CF,∵∠BEF=90°,ABCD是矩形,∴∠ABE+∠AEB=90°,∠DEF+∠AEB=90°,∴∠ABE=∠DEF,又∵BE=EF,∠BAE=∠EDF=90°,∴△BAE≌△EDF,∴DE=AB=8,∵⊙O切BC于G,∴OG⊥BC,OM⊥DE,MG=AB=8,∴ME=12DE=4,在Rt△OEM中,OE2=OM2+ME2,即OE2=(8-OE)2+42,解得:OE=5,∴OM=3,∵OM是△DEF的中位线,∴DF=2OM=6,∴CF=8-6=2,∵∠EDF=90°,⊙O是△DEF的外接圆,∴EF是⊙O的直径,∴∠EHF=90°,∵BE=EF,∴BH=HF,∵HN//BC,HP//CF,∠C=90°,∴四边形HPCN是矩形,∴PH是△BFC的中位线,∴PH=CN,PH=12 CF,∴CN=1,FN=1,∴DN=6+1=7,∵∠BFE=∠EDH=45°,∠EDF=90°,∴∠HDN=45°,∴△DHN是等腰直角三角形,∴DH=2DN=72.故答案为2【点睛】本题考查了全等三角形的判定与性质、垂径定理、圆周角定理、三角形中位线的性质.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于所对圆心角的一半,直径所对的圆周角等于90°;垂直于弦的直径,平分这条弦,也平分这条弦所对的两条弧;三角形的中位线平行于第三边,且等于第三边的一半.三、解答题25.如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,证明点C 在圆O上;【答案】证明见解析【分析】连接CO;由勾股定理求出AC,利用勾股定理的逆定理证明△ACD是直角三角形,得出∠A CD=90°;再根据斜边上中线的性质和圆的对称性分析,即可完成证明.【解析】如图,连接CO∵AB=6,BC=8,∠B=90°,∴2210=+=AC AB BC∵CD=24,AD=26∴222=+AD AC CD∴△ACD是直角三角形,∴∠ACD=90°∵AD为⊙O的直径∴AO=OD∴OC为Rt△ACD斜边上的中线∴12OC AD AO OD ===∴点C在圆O上.【点睛】本题考查了圆、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握圆的对称性、勾股定理及其逆定理、直角三角形斜边中线的性质,从而完成求解.26.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,OD交⊙O于点D,点E在⊙O上,若∠AOD=50°.(1)求∠DEB的度数;(2)若OC=3,OA=5,①求弦AB的长;②求劣弧AB的长.【答案】(1)25°;(2)①8;②25 9π【分析】(1)由垂径定理,可知AD BD=,再由圆周角定理求得∠DEB的度数.(2)①由勾股定理可得AC=4,由垂径定理可知,AC=BC=12AB=4,即可求解;②根据弧长公式即可求得答案.【解析】解:(1)∵OD⊥AB,∴AD BD=,∴∠AOD=∠BOD∴∠DEB=12∠AOD=12×50°=25°.(2)①∵OC=3,OA=5,∴AC=4,∵OD⊥AB,∴12AD BD AB==,∴AC=BC=12AB=4,∴AB=8;②∵∠AOD=50°,AD BD=,∴∠AOB=100°,∵OA=5,∴AB的长=100525 1801809n rπππ⨯==.【点睛】本题考查了圆周角定理、垂径定理,勾股定理及弧长公式.解答关键是应用垂径定理求得AC=BC=12AB=4.27.如图,O是正方形ABCD与正六边形AEFCGH的外接圆.()1正方形ABCD与正六边形AEFCGH的边长之比为______;()2连接BE,BE是否为O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.【答案】(12;(2)是,n=12.【解析】试题分析:(1)连接OC、OD、OG,设半径为r,根据中心角的度数可知正六边形的相邻两半径与边构成等边三角形,从而可用含r的式子表示边长,同理也用含r的式子表示正方形的边长,即可得;(2)求出∠BOE的度数,然后去除360°,根据所得的商即可得.试题解析:(1)连接OC、OD、OG,设半径为r , 1360904COD ∠=⨯︒=︒,1360606COG ∠=⨯︒=︒, COD 是等腰直角三角形,222CD CD OD r =+=,COG 是等边三角形,CG OC r ==,∴:2:2:1CD CG r r ==.(2)若是,则360BOE n︒∠=, 又∵9060BOE ∠=︒-︒,∴36030n ︒=︒,12n =, 故BE 是⊙O 内接正十二边形.28.已知:如图,点P 是正方形ABCD 内一点,连接PA 、PB 、PC .(1)将△PAB 绕点B 顺时针旋转90°得到△P′CB,若AB=m,PB=n(n<m).求△PAB 旋转过程中边PA 扫过区域(阴影部分)的面积;(2)若PA= ,PB=2,∠APB=135°,求PC 的长.【答案】(1);(2) 【解析】【分析】(1)根据旋转的性质得到S △ABP =S △CBP′,根据扇形的面积公式计算即可;(2)连接PP′,根据勾股定理计算即可.【解析】(1)由旋转的性质可知,S △ABP =S △CBP′,∴△PAB 旋转过程中边PA 扫过区域面积=; (2)连接PP′,由旋转的性质可知,∠BP′C=∠APB=135°,∠PBP′=90°,BP′=B P=2 ,P′C=PA=,∴PP′==4,∠PP′C=90°, ∴PC=.【点睛】此题考查正方形的性质,旋转的性质,扇形面积的计算,解题关键在于作辅助线.29.如图,四边形ABCD 内接于圆,60ABC ∠=︒,对角线BD 平分ADC ∠.(1)求证:ABC 是等边三角形;(2)过点B 作//BE CD 交DA 的延长线于点E ,若23AD DC ==,,求BDE 的面积.【答案】(1)见解析;(2253 【分析】 (1)根据三个内角相等的三角形是等边三角形即可判断;(2)过点A 作AE ⊥CD ,垂足为点E ,过点B 作BF ⊥AC ,垂足为点F .根据S 四边形ABCD =S △ABC +S △ACD ,分别求出△ABC ,△ACD 的面积,即可求得四边形ABCD 的面积,然后通过证得△EAB ≌△DCB (AAS ),即可求得△BDE 的面积=四边形ABCD 的面积253【解析】解:(1)证明:∵四边形ABCD 内接于⊙O .∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形;(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=12AD=1,223AD DM-,∵CD=3,∴CM=CD+DE=1+3=4,∴S△ACD=12CD-AM=12×3×333在Rt△AMC中,∠AMD=90°,∴2219AM CM+∵△ABC是等边三角形,∴AB=BC=AC=19∴357 BC=,∴S △ABC =12×19×572=1934, ∴四边形ABCD 的面积=1934+332=2534, ∵BE ∥CD ,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=BDC , ∵四边形ABCD 内接于⊙O ,∴∠EAB=∠BCD ,在△EAB 和△DCB 中,E BDC EAB DCB AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EAB ≌△DCB (AAS ),∴△BDE 的面积=四边形ABCD 的面积=2534. 【点睛】本题考查圆内接四边形的性质,等边三角形的判定和性质,勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.30.如图,在⊙O 中,AB 是直径,P 为AB 上一点,过点P 作弦MN ,∠NPB =45°.(1)若AP =2,BP =6,求MN 的长;(2)若MP=3,NP=5,求AB的长;(3)当P在AB上运动时(∠NPB=45°不变),222PM+PNAB的值是否发生变化?若不变,请求出其值;若变化,请求出其范围.【答案】(1);(2);(3)不变,值为1 2【分析】(1)作OH⊥MN于H,连接ON,先计算出OA=4,OP=2,在Rt△POH中,由于∠OPH=45°,则Rt△OHN中,利用勾股定理计算出OH⊥MN得到HM=HN,所以(2)作OH⊥MN于H,连接ON,先计算出HM=HN=4,PH=1,在Rt△POH中,由∠OPH=45°得到OH=1,再在Rt△OHN中利用勾股定理可计算出;(3) 作OH⊥MN于H,连接ON,根据垂定理得HM=HN,设圆的半径为R,在Rt△OHN中,利用勾股定理得到OH2+NH2=ON2=R2,在Rt△POH中,由∠OPH=45°得OH=PH,则PH2+NH2=R2,然后变形PM2+PN2可得到2(PH2+NH2),所以PM2+PN2的值为2R2,又AB=2R,代入计算即可求出答案.【解析】解:(1)作OH⊥MN于H,连接ON,∵AP=2,BP=6,∴AB=8,∴OA=4,OP=2,在Rt△POH中,∵∠OPH=45°,∴在Rt△OHN中,∵ON=4,∴∵OH⊥MN,∴HM=HN,∴;(2)作OH⊥MN于H,连接ON,则HM=HN,∵MP=3,NP=5,∴MN=8,∴HM=HN=4,∴PH=1,在Rt△POH中,∵∠OPH=45°,∴OH=1,在Rt△OHN中,∵HN=4,OH=1,∴,∴(3)222PM+PNAB的值不发生变化,为定值12,作OH⊥MN于H,连接ON,则HM=HN,设圆的半径为R,在Rt△OHN中,OH2+NH2=ON2=R2,在Rt△POH中,∵∠OPH=45°,∴OH=PH,∴PH2+NH2=R2,∵PM2+PN2=(HM-PH)2+(NH+PH)2 =(NH-PH)2+(NH+PH)2=2(PH2+NH2)=2R2.又AB2=4R2,∴222PM+PNAB=2224RR=12∴222PM+PNAB的值不发生变化,为定值12.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理. 31.阿基米德(Archimedes ,公元前287年~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯A1-Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,前苏联在1964年根据A1-Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图①,已知AB 和BC 是O 的两条弦(即折线ABC 是O 的一条折弦),,BC AB M >是ABC 的中点.那么从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD AB BD =+.下面是运用“截长法”证明CD AB BD =+的部分证明思路:证明:如图②,在CB 上截取CG AB =,连接,MA MB ,…………(定理证明)按照上面的思路,写出剩余部分的证明过程.(问题解决)如图③,等边ABC ∆内接于,3,O AB D =为AC 上一点,45ACD ∠=︒.求BDC ∆的周长.【答案】【定理证明】:见解析;【问题解决】:BDC ∆的周长为332+【分析】(1)首先证明△MBA ≌△MGC (SAS ),进而得出MB=MG ,再利用等腰三角形的性质得出BD=GD ,即可得出答案;(2)首先证明△ABF ≌ACD (SAS ),进而得出AF=AD ,以及CD+DE=BE ,进而求出DE 的长即可得出答案.【解析】解:(1)如图②,连接,MC MG .可得A C ∠=∠.由M 是ABC 的中点,可求得MA MC =.CG AB =,MBA MGC ∴∆≅∆.MB MG ∴=.MD BC ⊥,BD GD ∴=.CG GD AB BD ∴+=+.即CD AB BD =+.(2)如图③,作AE BD ⊥.由AB AC =,可得AB AC =.由阿基米德折弦定理,可得BE ED DC =+.由于45,3ACD ABD AB ∠=∠=︒=,所以,在Rt ABE ∆中,可求得322BE =. 故BDC ∆的周长为332+.【点睛】此题主要考查了全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.32.如图,BC 是半⊙O 的直径,点P 是半圆弧的中点,点A 是弧BP 的中点,AD ⊥BC 于D ,连结AB 、PB 、AC ,BP 分别与AD 、AC 相交于点E 、F .(1)求证:AE=BE ;(2)判断BE 与EF 是否相等吗,并说明理由;(3)小李通过操作发现CF=2AB ,请问小李的发现是否正确?若正确,请说明理由;若不正确,请写出CF 与AB 正确的关系式.【答案】(1)见解析;(2)BE=EF ,理由见解析;(3)小李的发现是正确的,理由见解析【分析】(1)如图1,连接AP ,由BC 是半⊙O 的直径,AD ⊥BC 于D ,得到∠ACB+∠ABC=∠BAD+∠ABD=90°,于是得到∠ACB=∠BAD,根据圆周角定理得到∠P=∠ACB=∠ABP,即可求出结论;(2)根据圆周角定理求出∠ABE=∠BAE,求出AE=BE,求出∠CAD=∠AFB,求出AE=EF,即可得出答案;(3)根据全等三角形的性质和判定求出BG=CF,AB=AG,即可得出答案.【解析】(1)如图1,连接AP,∵BC是半⊙O的直径,∴∠BAC=90°,∵AD⊥BC于D,∴∠ADB=90°,∴∠ACB+∠ABC=∠BAD+∠ABD=90°,∴∠ACB=∠BAD,∵点A是弧BP的中点,∴∠P=∠ACB=∠ABP,∴∠ABE=∠BAE,∴AE=BE;(2)BE=EF,理由是:∵BC是直径,AD⊥BC,∴∠BAC=∠ADC=90°,∴∠BAD=∠ACB,∵A为弧BP中点,∴∠ABP=∠ACB,∴∠BAD=∠ABP,∴BE=AE,∠FAD=∠AFB,∴EF=AE,∴BE=EF ;(3)小李的发现是正确的,理由是:如图2,延长BA 、CP ,两线交于G ,∵P 为半圆弧的中点,A 是弧BP 的中点,∴∠PCF=∠GBP ,∠CPF=∠BPG=90°,BP=PC ,在△PCF 和△PBG 中,PCF PBG PC BPCPF BPG ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△PCF ≌△PBG (ASA ),∴CF=BG ,∵BC 为直径,∴∠BAC=90°,∵A 为弧BP 中点,∴∠GCA=∠BCA ,在△BAC 和△GAC 中,CAB CAG AC ACBCA GCA ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△BAC ≌△GAC (ASA ),∴AG=AB=12BG , ∴CF=2AB .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,全等三角形的性质和判定等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目综合性比较强,有一定的难度.33.已知:如图,ABC ∆内接于O ,AB AC =,点E 为弦AB 的中点,AO 的延长线交BC 于点D ,联结ED ,过点B 作BF DE ⊥交O 于点F ,联结CF .(1)求证:BAD CBF ∠=∠;(2)如果O 的半径为8,且OD DB =,BF AB 12==,求CF 的长.【答案】(1)证明见解析;(2)CF=122-12.【分析】()1由等腰三角形的性质得出A ABC CF ∠∠=,由垂径定理得出AD BC ⊥,BD CD =,证出DE 是ABC 的中位线.得出//DE AC ,结合BF ⊥DE 证出90BGC ∠=,由角的互余关系即可得出结论; ()2连接.OB 证出ODB 是等腰直角三角形,得出45.BOD ∠=再由等腰三角形的性质得出.OBA OAB ∠∠=即可得出结论.【解析】 ()1证明:如图1所示:AB AC =,A ABC CF ∠∠∴=,直线AD 经过圆心O ,AD BC ∴⊥,BD CD =,点E 为弦AB 的中点,DE ∴是ABC 的中位线.//DE AC ∴,BF DE ⊥,90BPD ∠∴=,90BGC ∠∴=,90CBF ACB ∠∠∴+=.AB AC =,ABC ACB ∠∠∴=,90CBF ABC ∠∠∴+=,又AD BC ⊥,90BAD ABC ∠∠∴+=,BAD CBF ∠∠∴=;()2证明:连接.OB 如图所示:AD BC ⊥,OD DB =, ODB ∴是等腰直角三角形,45BOD ∠∴=.122.52BAO BOD ∠∠∴==, AB AC =,且AD BC ⊥,245BAC BAO ∠∠∴==.∴∠BFC =BAC ∠ =45°,BF AC ⊥,ABG ∴和△CFG 均为等腰直角三角形, 22AG BG ∴==AB .CG =FG =22FC ; ∵AC =AB =BF =12∴AG =BG =62,CG =FG =12-62 ∴CF =(12-62)×2=122-12【点睛】本题考查了圆周角定理、等腰三角形的性质、等腰直角三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握圆周角定理和垂径定理是解题的关键.34.如图,已知等边ABC 内接于O ,点P 为AB 上任意一点(点P 不与点A 、点B 重合),连结PB PO 、,取BC 的中点D ,取OP 的中点E ,连结DE ,若OED α=∠.(1)求线段OE 和BC 之间的数量关系;(2)当P 运动到AB 的中点时,求此时α的值;(3)求PBC ∠的度数.(用含α的代数式表示).【答案】(1)BC =23OE ;(2)30°;(3)60°+α. 【分析】(1)如图1,连接OB ,OD ,证明BC =2BD =23OD ,只需证明OD =OE 即可;(2)如图2,证明PO ⊥AB ,△BDE 是等边三角形,求解即可;(3)如图3,连接PB ,AD ,证明A ,O ,D 三点一线,可得证PBC ∠=∠PBA +∠ABC =60°+α. 【解析】(1)如图1,连接OB ,OD ,∵D 是BC 的中点,∴DO⊥BD,BD=CD,∵△ABC是等边三角形,点O是外心,∴∠OBD=12ABC∠=30°,∴OD=12 OB,∴BD=2222(2)-=-OB OD OD OD=3OD,∴BC=2BD=23OD,∵OP的中点E,∴12OE OP=,∵PO=OB,∴OE=OD,∴BC=23OE,(2)如图2,∵P是AB的中点,∴PO⊥AB,∴PO的中点E也是AB的中点,∴∠OEB=90°,∵点D是BC的中点,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章圆的基本性质能力提升测试卷一、选择题(共10小题,每小题3分,满分30分)1、下列标志既是轴对称图形又是中心对称图形的是()A B C D2、若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定3、如图,点A、B、C在圆O上,∠A=60°,则∠BOC的度数是()A.15°B.30°C.60°D.120°4、.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于( ).A.55°B.90°C.110°D.120°5、一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ).A.60°B.90°C.120°D.180°6、如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ).A.(2,-1)B.(2,2)C.(2,1)D.(3,1)7、若圆的一条弦把圆分成度数的比为1∶3的两条弧,则劣弧所对的圆周角等于()A. 45°B. 90°C. 135°D. 270°8、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.9、在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有()A. 1条B. 2条C. 3条D. 4条10、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3 B.2 C.1 D.0二、填空题(共6小题,每小题4分,满分24分)11、如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有_____________.12、如图,已知直线CD与⊙O相切于点C,AB为直径,若∠BCD=40°,则∠ABC的大小等于(度)13、已知⊙O中,两弦AB和CD相交于点P,若AP:PB=2:3,CP=2cm,DP=12cm,则弦AB的长为cm。

14、正六边形的边长是2cm,那么它的外接圆的直径是cm.15、如图,已知两个等圆⊙O1与⊙O2相交于A、B两点,一条直线经过点A,分别与两圆相交于点C、D,MC切⊙O1于点C,MD切⊙O2于点D,若∠BCD=30°,则∠M等于(度)16、如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的倍,第n个半圆的面积为(结果保留π)三、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,求油的最大深度.18、(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C,求证:(1)CB∥PD;(2)=.19、(8分)在⊙O中,AB是直径,CD是弦,AB⊥CD。

(1)P是优弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论。

20、(10分)如图,已知BC是⊙O的弦,△ABC为正三角形,D为BC的中点,M是⊙O 上一点,并且∠BMC=60°.(1)求证:AB为⊙O的切线;(2)若E、F分别是AB、AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE +CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.21、(10分)已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围22、(12分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(2)如图②,若∠CAB=60°,求BD的长.23、(12分)问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON =60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.答案详解一、选择题(共10小题,每小题3分,满分30分)1.A;2.C;3、如图,点A 、B 、C 在圆O 上,∠A =60°,则∠BOC 的度数是()A .15°B .30°C .60°D .120°【解答】解:∵∠BOC =2∠A ,而∠A =60°,∴∠BOC =120°.故选D .4、.如图所示,CA 为⊙O 的切线,切点为A ,点B 在⊙O 上,若∠CAB =55°,则∠AOB 等于( ).A .55°B .90°C .110°D .120°【解答】解:由切线性质、等腰三角形性质找出数量关系式.由AC 切O 于A ,则∠OAB =35°,所以∠AOB =180°-2×35°=110°.5、一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ).A .60°B .90°C . 120°D .180°【解答】解:设底面半径为r ,母线长为l , 则21232r l r ππ=,∴ 3l r =, ∴ 32180n r r ππ=, ∴ n =120,∴ ∠AOB =120°.6、如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ).A.(2,-1) B.(2,2)C.(2,1) D.(3,1)【解答】解:横坐标相等的点的连线,平行于y轴;纵坐标相等的点的连线,平行于x轴.结合图形可以发现,由点(2,5)和(2,-3)、(-2,1)和(6,1)构成的弦都是圆的直径,其交点即为圆心(2,1).7、若圆的一条弦把圆分成度数的比为1∶3的两条弧,则劣弧所对的圆周角等于()A. 45°B. 90°C. 135°D. 270°【解答】解:圆的一条弦把圆分成度数之比为1:3的两条弧,则所分的劣弧的度数是90°,当圆周角的顶点在优弧上时,这条弦所对的圆周角等于45°,当这条弦所对的圆周角的顶点在劣弧上时,这条弦所对的圆周角等于135°。

如图,弦AB将⊙O分成了度数比为1:3两条弧.连接OA、OB;则∠AOB=90°;①当所求的圆周角顶点在优弧上,即位于D点时,这条弦所对的圆周角∠ADB=12∠AOB=45°;②当所求的圆周角顶点在劣弧上,即位于C点时,这条弦所对的圆周角∠ACB=180°-∠ADB=135°。

故选C.8、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.故选C.9、在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有()A. 1条B. 2条C. 3条D. 4条【解答】解:根据题中条件,在Rt△AOB中,OA=4,OB=3,所以AB=5,而两圆半径为和,且,即两圆的圆心距等于两圆的半径之和,所以两圆相外切,共有3条公切线.10、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3 B.2 C.1 D.0解答:解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2B D.∴∠C=∠BDC=30°,∴BD=BC,②成立;∴AB=2BC,③成立;∴∠A=∠C,∴DA=DC,①成立;综上所述,①②③均成立,故答案选:A.二、填空题(共6小题,每小题4分,满分24分)11、如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.【解答】解:本题中由弦AB=CD可知,因为同弧或等弧所对的圆周角相等,故有∠1 =∠6=∠2=∠5.12、如图,已知直线CD与⊙O相切于点C,AB为直径,若∠BCD=40°,则∠ABC的大小等于(度)【解答】解:连接AC,∵直线CD与⊙O相切于点C,∴根据弦切角定理得到∠A=∠BCD=40°。

相关文档
最新文档